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Unitary transformations, empirical processes
and distribution free testing
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The main message in this paper is that there are surprisingly many different Brownian bridges, some of
them – familiar, some of them – less familiar. Many of these Brownian bridges are very close to Brownian
motions. Somewhat loosely speaking, we show that all the bridges can be conveniently mapped onto each
other, and hence, to one “standard” bridge.

The paper shows that, a consequence of this, we obtain a unified theory of distribution free testing in R
d ,

both for discrete and continuous cases, and for simple and parametric hypothesis.
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1. Introduction

Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables in R
d with distribution F , and

consider an empirical process based on this sequence:

vnF (B) = √
n
[
Fn(B) − F(B)

]
,

where B is a Borel subset of Rd and

Fn(B) = 1

n

n∑
i=1

I{Xi∈B}

is an empirical distribution. If sets B are chosen as unbounded rectangles (−∞, x] = (−∞, x1]×
· · · × (−∞, xd ], then we obtain more common form of empirical processes indexed by points
x ∈R

d and denoted vnF (x), but most of the time we will be using the function-parametric version
of empirical process,

vnF (φ) =
∫
Rd

φ(x)vnF (dx) = 1√
n

n∑
i=1

[
φ(Xi) − Eφ(Xi)

]
, φ ∈ L2(F ).

As we know (see, e.g., [30], Chapter 2), on properly restricted class of functions φ ∈ �, the
empirical processes vnF converge to function-parametric Brownian bridge vF . If the distribution
F is uniform on [0,1]d , then vF becomes a standard Brownian bridge, which we denote u. We
recall exact definitions in the next section.
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In this paper, we show that from a certain type of transformation of vnF a unified approach to
distribution free testing of hypothesis about F is emerging. The approach can be used regardless
of whether the hypothesis is simple or parametric, or whether F is one-dimensional or multi-
dimensional, and also whether F is continuous or discrete. The last point is demonstrated in
[13] and also in Corollary 5, Section 3.1. We also believe that the approach is simple to imple-
ment: on-going research shows that parametric families with, multidimensional parameters, as
say, family with 9 parameters, in one of the examples in [24], can be studied without noticeable
numerical difficulties.

The structure of the transformation in question is the following: let K be a unitary operator of
a certain type, acting on L2(F ), and consider a transformed process(

K∗vnF

)
(φ) = vnF (Kφ). (1)

The explicit description of the operators we propose to use we defer to Section 3, where we
show that the processes so obtained will have very desirable asymptotic properties while being
one-to-one transformations of vnF and, therefore, containing the same amount of “statistical
information”. As a preliminary illustration of one type of results of this form, let us formulate
the following proposition. It is a particular case of Theorem 2 of Section 3.1.

Proposition 1. Suppose F is an absolutely continuous distribution on [0,1]d (different from
uniform distribution), which has a.e. positive density f . The process u = {u(x), x ∈ [0,1]d} with
the differential

u(dx) = 1√
f (x)

vF (dx) − 1 − √
f (x)

1 − ∫
[0,1]d

√
f (y)dy

∫
[0,1]d

1√
f (y)

vF (dy)dx (2)

is the standard Brownian bridge.

For goodness of fit theory on R
d , this means that with help of a single stochastic integral

above, the asymptotic situation of testing a simple null hypothesis F can be transformed into the
situation of testing the uniform distribution. In other words, transformation (2) from empirical
process vnF possesses the same convenience for asymptotic statistical inference as the uniform
empirical process in [0,1]d .

As the first step toward (1), in Section 2 below we will find that there are many more different
Brownian bridges than is commonly realized. We will also see, within the same framework, that
although their distributions remain mutually singular, the boundary between Brownian bridges
and Brownian motion is somewhat blurred and unitary operators can easily be used to trans-
form Brownian bridges into a version of bridges, which are “almost” Brownian motion. This is
described in Section 3.2.

Let us now briefly outline the situation with distribution free goodness of fit testing in R
d .

If F is a continuous distribution in R, and un is the uniform empirical process, then, since
[19], we know that vnF can be transformed to un as

vnF (x) = un(t), t = F(x),
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or, in function-parametric setting, for φ ∈ L2([0,1])

vnF (Uφ) = un(φ),

where U∗φ(x) = φ(F (x)). It is good to note that this operator, from L2([0,1]) to L2(F ), is also
a unitary operator, that is,

∫
y∈R

(
U∗φ

)2
(y)dF(y) =

∫
y∈R

φ2(F(y)
)

dF(y) =
∫

t∈[0,1]
φ2(t)dt,

although there is little tradition of using this terminology, because in this situation it looks incon-
sequential.

An analog of time transformation t = F(x) exists in R
d as well and is called the Rosen-

blatt transformation, [26]. In, say, three-dimensional space, in obvious notation, it has the form
t1 = F(x1), t2 = F(x2|x1), t3 = F(x3|x1, x2). For some reason, and maybe because dealing with
conditional distributions is often awkward, the transformation is rarely used. It also fails to
lead to distribution free testing, when F depends on a finite-dimensional parameter (cf. Sec-
tion 3.3).

A unitary operator, very different in its nature from time transformation, was introduced for
the empirical processes in d-dimensional time in [16] and [17] and, in two-sample problem, in
[6]. In its origin it is connected with the innovation problem for curves in Hilbert spaces, [3], and
the theory of innovation martingales; see, for example, [22], Section 7.4. In its simplest form,
it is an operator from LF = {φ ∈ L2(F ) :

∫
Rd φ(x)dF(x) = 0} onto L2(F ) and the result was a

one-to-one transformation from Brownian bridge vF to Brownian motion wF . It extends to the
case of parametric hypothesis in R

d . We comment further on it in Section 3.2.
The approach of this paper seems to us closest to the geometric argument behind K. Pearson’s

chi-square statistic, [25]; see also retrospective historic account in [28]. The idea itself is very
simple and it is somewhat strange that it was not discovered before. In the case of one given F ,
the operators involved will map LF in LG and subsequently transform one Brownian bridge, vF ,
into another Brownian bridge, vG, with G of our choice. Just as Fisher [7] and [8] has extended
chi-square theory to the parametric case, our approach as we said, also extends to the case of
parametric families; see Section 3.3.

Next, in Section 2, as we said, we present a somewhat broader definition of Brownian bridges
as projected Brownian motions. In Section 3, we present the main results. The case of a simple
hypothesis, which also serves as an illustration of the whole approach, is treated in Section 3.1,
the transformation to “almost” Brownian motion is shown in Section 3.2, while the case of para-
metric hypotheses is considered in Section 3.3. In Section 3.4, we discuss the problem of unique-
ness of the proposed transformations. In the last Section 4, we illustrate the rate of convergence of
transformed empirical processes to their distribution free limits through the rate of convergence
of the two classical goodness of fit statistics based on these processes: Kolmogorov–Smirnov
statistic and omega-square statistic.
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2. Preliminaries: q-projected Brownian motions

Consider wF (φ),φ ∈ L2(F ), a function parametric F -Brownian motion, which is a linear func-
tional in φ and for each φ is a Gaussian random variable with mean 0 and variance

Ew2
F (φ) =

∫
y∈Rd

φ2(y)dF(y) = ‖φ‖2
F .

This implies that the covariance between wF (φ) and wF (φ̃) is

EwF (φ)wF (φ̃) =
∫

y∈Rd

φ(y)φ̃(y)dF(y) = 〈φ, φ̃〉F .

As far as we are not considering trajectories of wF (φ) in φ, we need only to know that φ is
indeed square integrable with respect to F . For the theory of wF (φ) as linear functionals on
L2(F ) and reproducing kernel Hilbert spaces, where they live, we refer, for example, to [10] or
the monograph [21].

Let vF (φ) denote the function-parametric F -Brownian bridge, defined as a linear transforma-
tion of wF :

vF (φ) = wF (φ) − 〈φ,q0〉F wF (q0). (3)

Here, we used q0 for the function identically equal to 1. This transformation has a particular
structure, which is important for what follows. Namely, we have the following lemma.

Lemma 1. Equality (3) represents vF as an orthogonal projection of wF parallel to the function
q0.

This statement was initially proved as early as [14]. We show its proof here for readers’ con-
venience.

Proof of Lemma 1. To shorten notation, denote the right-hand side of (3) by �wF (φ), so that
(3) takes the form vF (φ) = �wF (φ),φ ∈ L2(F ). Then it is easy to see that

��wF = �vF = vF ,

or �2 = �, so that � is indeed a projector. Besides, �wF (q0) = vF (q0) = 0, which, in usual
terminology (see, e.g., [9], Section 1.10, and [21]), means that the linear functional vF (·) and the
function q0 are orthogonal. �

Substituting the indicator function φ = I(−∞,x], from (3) we obtain

vF (x) = wF (x) − F(x)wF (∞), (4)

which represents trajectories of vF (x) as projection of trajectories of wF . It also leads to the defi-
nition of vF as the Gaussian process in x with mean 0 and variance F(x)−F 2(x) (or covariance
F(min(x, x′)) − F(x)F (x′)).
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We can now replace q0 with any other function q of unit L2(F )-norm. This will lead to the
process

v
q
F (φ) = wF (φ) − 〈φ,q〉F wF (q), (5)

which certainly is again a projection of wF parallel to q and, therefore, also could be called
Brownian bridge. However, it does not satisfy the second definition of a bridge. This is more
visible in point-parametric version

v
q
F (x) = wF (x) −

∫
y≤x

q(y)dF(y)

∫
y∈Rd

q(y)wF (dy) (6)

and the variance of v
q
F is of a different form:

E
[
v

q
F (x)

]2 = F(x) −
[∫

y≤x

q(y)dF(y)

]2

, (7)

so that if q �= q0, the second term is not square of the first. Therefore, even in one-dimensional
case, with F being just uniform distribution on interval [0,1], the distribution of maxx |vq

F (x)|
is not Kolmogorov distribution and the distribution of

∫ 1
0 [vq

F (x)]2 dF(x) is not omega-square
distribution unless q = q0 F -a.e. We call v

q
F (x) a slightly longish name of a q-projected F -

Brownian motion. The processes v
q
F arise naturally as weak limits in certain statistical problems

and they will be useful in this paper.
We stress again, that the definition of v

q
F involves two objects – a distribution F and a func-

tion q ∈ L2(F ). When F is uniform distribution on [0,1]d we call v
q
F a q-projected standard

Brownian motion (or simply q-projected Brownian motion) and use, most of the time, notation
vq without index F . In the case of general F , we would still call v

q0
F a Brownian bridge and

often omit q0 from notation. Obviously vq0 is just a standard Brownian bridge u. We formulate
the lemma below for convenience of reference later on.

Lemma 2. Suppose distribution F is supported on the unit cube [0,1]d and has a.e. positive
density f . Suppose w is standard Brownian motion on [0,1]d and vF is defined as in (3) and (4).
Then

ξ(x) =
∫

y≤x

1√
f (y)

vF (dy)

is q-projected standard Brownian motion with q = √
f ,

ξ(x) = w(x) −
∫

y≤x

√
f (y)dy

∫
y∈[0,1]d

√
f (y)w(dy), (8)

or, for ψ ∈ L2([0,1]d),

ξ(ψ) = w(ψ) − 〈ψ,
√

f 〉w(
√

f ). (9)
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Conversely, if ξ is q-projected standard Brownian motion, then

vF (x) =
∫

y≤x

q(y)ξ(dy)

is F -Brownian bridge, as defined in (4), with F(x) = ∫
y≤x

q2(y)dy.

Proof. The first statement of the lemma follows from the connection (4) between vF and wF .
Indeed, substitute the normalized differential of vF ,

1√
f (y)

vF (dy) = 1√
f (y)

wF (dy) − √
f (y)wF (Rd)dy,

in the definition of ξ(x) to obtain

ξ(x) =
∫

y≤x

1√
f (y)

wF (dy) −
∫

y≤x

√
f (y)dywF (∞)

and note that

w(x) =
∫

y≤x

1√
f (y)

wF (dy)

is the standard Brownian motion – it obviously is 0-mean Gaussian process with independent
increments and

E

[∫
y≤x

1√
f (y)

wF (dy)

]2

=
∫

y≤x

1

f (y)
F (dy) = x.

Note also that we can write wF (∞) as∫
y∈[0,1]d

√
f (y)w(dy). �

Remark. Note, that the normalization vF (dy) by
√

f (y) does not help to standardize ξ(dx) – in
(9) we still have linear functional 〈ψ,

√
f 〉, and thus, the dependence on F in ξ is still present.

This was well understood for a very long time, and it is quite unexpected that using one extra
stochastic integral (see Proposition 1), the standardization becomes possible.

The normalization by 1/
√

f used in the lemma is a particular form of the more general map-
ping. Namely, let G be another distribution on R

d , which is absolutely continuous with respect
to F . Then the function

l(x) =
√

dG

dF
(x) (10)

belongs to L2(F ). and moreover, if ψ ∈ L2(G), then lψ ∈ L2(F ) and ‖ψ‖G = ‖lψ‖F . If dis-
tributions G and F are equivalent (mutually absolutely continuous), then the inverse is also
true: if φ ∈ L2(F ) then φ/l ∈ L2(G), and the norm is preserved. This, in particular, means that
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re-normalization of F -Brownian motion into G-Brownian motion is straightforward: if wF (φ)

is an F -Brownian motion in φ ∈ L2(F ), then wF (lψ) = wG(ψ) is a G-Brownian motion in
ψ ∈ L2(G). This, we repeat, does not extend to v

q
F and vF – the distribution of, say, vF (lψ)

depends on both F and G. The first theorem in Section 3 below shows, however, that a simple
isomorphism exists.

To describe one more object we consider in this paper, complement q0 by a sequence of or-
thonormal functions q1, . . . , qκ , which are also orthogonal to q0, and consider the process

v̂F (φ) = wF (φ) −
κ∑

i=0

〈qi,φ〉F wF (qi).

Similar to what we said about vF , the process v̂F is the orthogonal projection of wF parallel
to the functions q0, . . . , qκ . We still call v̂F a q-projected F -Brownian motion. It may be that
notation v̂

q
F is used again, but when q is a vector function, there is no other “more traditional”

notion to be confused with v̂F ; so we skip q as an upper index.
The role of the process v̂F becomes clear when we examine asymptotic behavior of the para-

metric empirical process. Consider the problem of testing parametric hypothesis that the distri-
bution function of Xis belongs to a given family of distribution functions Fθ(x), depending on a
finite-dimensional parameter θ . The value of this parameter is not prescribed by the hypothesis
and has to be estimated using the sample X1, . . . ,Xn. Denote

vn(B, θ̂n) = √
n
[
Fn(B) − F

θ̂n
(B)

]
the parametric empirical process (indexed by sets). (Note that, in presence of θ and θ̂ , one
can skip index F in notation.) As has been known since Kac et al. [12] and later Durbin
[5] and other work, the asymptotic behavior of empirical processes with estimated parame-
ters is different from that of vnF , and in particular, its limit distribution depends not only
on the true value of the parameter but also on the score function. However, we can say
more.

Namely, under usual and mild assumptions (see, e.g., [2], Chapter 3, and see the modern
exposition in [29], Section 5), the MLE θ̂n possesses an asymptotic representation

√
n(θ̂n − θ) = 	−1

θ

∫
x∈Rd

ḟθ (x)

fθ (x)
vnF (dx, θ) + oP (1), n → ∞,

where we denote by fθ and ḟθ the hypothetical density and the vector of its derivative with
respect to parameter θ and denote

	θ =
∫

y∈Rd

ḟθ (y)ḟ T
θ (y)

fθ (y)
dy
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the Fisher information matrix. Consequently, the parametric empirical process has asymptotic
expansion

vn(B, θ̂n) = vn(B, θ) −
∫

B

ḟ T
θ (y)

fθ (y)
Fθ (dy)	−1

θ

∫
y∈Rd

ḟθ (y)

fθ (y)
vn(dy, θ) + oP (1),

(11)

= vn(B, θ) −
∫

B

βT
F (y)Fθ (dy)

∫
y∈Rd

βF (y)vn(dy, θ) + oP (1),

where

βF (x) = 	
−1/2
θ

ḟθ (x)

fθ (x)
.

As shown in [14] (see also [18], Section 2.2), the main part of this expansion represents vn(·, θ̂n)

as the orthogonal projection of vn(·, θ) parallel to the normalized score function βF and, there-
fore, the limit in distribution of vn(·, θ̂n) can be written (in function-parametric form) as

vF (φ) − 〈
βT

F ,φ
〉
F
vF (βF ).

At the same time, the score function βF is orthogonal to the function q0 and its coordinates
are orthonormal and will play the role of functions q1, . . . , qκ above. Therefore, substituting
representation (3) of vF through wF , we see that the limit in distribution of the process vN(·, θ̂n)

is v̂F .
It is well known that the actual weak convergence statement in function-parametric set-up

requires some restriction on the underlying class of functions φ, but these restrictions are well
understood and we refer readers to [30]. For an earlier proof in Skorohod space, see [20] and [5],
while for the proof in L2(F ) see [14].

3. The main result and its corollaries

The main geometric idea in this paper can be described as follows. When testing for fixed dis-
tribution F , the corresponding empirical processes will converge to vF , which is an orthogonal
projection of the Brownian motion. When testing for a different G, there will be convergence to
vG, which is also an orthogonal projections of Brownian motion. However, we will see that if
G and F are equivalent; these projections can be “rotated” to each other. The unitary operators
involved in this rotation form a group, transient on the class of all Brownian bridges with all G

equivalent to the F . In other words, the problem of testing F can be mapped to the problem of
testing G and vice versa, and these, seemingly distinct problems are not distinct problems, but
form one equivalence class. Therefore, one representative of each equivalence class is sufficient,
and we propose a form of such representative. Since the processes v̂F and v̂G are both orthog-
onal projections as well, the idea of unitary transformation extends to the parametric classes of
distributions.
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3.1. The case of fixed F

Although the following Theorem 2 is generalized by Theorem 7, by starting with the case of
one fixed F and giving an independent proof we hope to make the overall presentation more
transparent.

Consider an operator on L2(F )

K = I − 2

‖l − q0‖2
F

(l − q0)〈l − q0, ·〉F , (12)

where I is identity operator and l is the function defined in (10), while the function q0 identically
equals 1. Below we will also need the linear subspace L = L(q0, l), generated by functions q0

and l and functions l⊥ and q0,⊥, which are parts of l and q0, orthogonal to q0 and l, respec-
tively,

l⊥ = l − 〈l, q0〉F q0, q0⊥ = q0 − 〈l, q0〉F l.

It is clear that (
q0,

1

‖l⊥‖ l

)
and

(
l,

1

‖q0⊥‖q0⊥
)

form two orthonormal bases of L.
The operator K has the following properties.

Lemma 3. (i) Operator K is a (self-adjoint) unitary operator on L2(F ), ‖Kφ‖F = ‖φ‖F , such
that

Kφ = φ, if φ ⊥ l, q0 and Kl = q0, Kq0⊥ = l⊥, while Kq0 = l.

(ii) Coordinate representation of this operator is

K = IL⊥ + q0〈l, ·〉F + l⊥〈q0⊥, ·〉F ,

where IL⊥ is the projection operator on the subspace of L2(F ) orthogonal to L.

The reader can easily verify the lemma. Part (i) is needed just below, part (ii) will be useful
to draw similarity with Section 3.3. below. Note that one could use a similar unitary operator,
with l − q0 replaced by l + q0. We chose the present form only because the norm ‖l − q0‖F is
a well-known object – the Hellinger distance between distributions F and G. To what extent the
choice of K is unique is discussed in Section 3.4. Note also that

‖l − q0‖2
F = 2

∫
y∈Rd

(
1 − l(y)

)
dF(y) = −2〈l − q0, q0〉F . (13)
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Theorem 2. Suppose distribution G is absolutely continuous with respect to distribution F (and
different from F ). If vF is F -Brownian bridge, then the process with differential

vG(dx) = l(x)vF (dx)
(14)

−
∫

y∈Rd

l(y)vF (dy)
1

1 − ∫
y∈Rd l(y)dF(y)

[
l2(x) − l(x)

]
f (x)dx

is G-Brownian bridge.
If distributions G and F are equivalent, that is, if l = √

dG/dF is positive F -a.e., then (14) is
one-to-one.

If F is an absolutely continuous distribution on the unit cube [0,1]d and its density f is posi-
tive a.e., while G is uniform on this cube, then l(x) = 1/

√
f (x) and we obtain the transformation

of F -Brownian bridge into the standard Brownian bridge, already given in Proposition 1.

Remark. It was interesting to realize that vG in (14) remains G-Brownian bridge even if dG/dF

can be 0 on a set of positive probability F .

Proof of Theorem 2. As we know, for any function ψ ∈ L2(G), under our conditions, lψ ∈
L2(F ). Since vF (l − q0) = vF (l), the function-parametric form of (14) is

vG(ψ) = vF (Kφ), with φ = lψ.

We need to show that the covariance operator of vG is that of G-Brownian bridge. For this it is
sufficient to consider the variance of vG(ψ),

E
[
vG(ψ)

]2 = E
[
vF (Kφ)

]2 = ‖Kφ‖2
F − [〈Kφ,q0〉F

]2
.

However,

‖Kφ‖2
F = ‖φ‖2

F = ‖ψ‖2
G,

and, using (13), we obtain

〈Kφ,q0〉F = 〈φ,qo〉F − 2

‖l − q0‖2
F

〈l − q0, q0〉F 〈l − q0, φ〉F = 〈φ, l〉F

= 〈lψ, l〉F = 〈ψ,q0〉G.

Therefore,

E
[
vG(ψ)

]2 = ‖ψ‖2
G − [〈ψ,q0〉G

]2
,

which is the expression for the variance of G-Brownian motion. �

Although any distribution F in R
d can be mapped to a distribution on the unit cube, in some

cases this mapping may involve unpleasant technicalities. Corollary 3 helps to make this mapping
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very simple, and actually unnecessary, in a wide class of situations. The idea is that vF can be
transformed into vG, and for this G the mapping to the unit cube will be immediate. Namely,
choose d densities g1, . . . , gd on R, and let

g(x) =
d∏

i=1

gi(xi).

Denote ti = ∫ xi

−∞ gi(s)ds, i = 1, . . . , d . Then

d∏
i=1

ti =
d∏

i=1

∫ xi

−∞
gi(s)ds (15)

is direct d-dimensional analogue of Kolmogorov time transformation t = G(x) on the real line. It
seems clearer to give the formulation of the next statement for rectangles rather than for general
Borel sets B .

Corollary 3. Suppose g1, . . . , gd are such that the distribution G with density g is absolutely
continuous with respect to F . Suppose the points t ∈ [0,1]d and x ∈ R

d are connected as in
(15). If vF is F -Brownian bridge and vG is its transformation (14), then the process u,

u(t) = vG(x),

is a standard Brownian bridge on [0,1]d .

It is now clear that there is no need to perform the time transformation (15), because it is
obvious how to choose test statistics from vG, which are invariant under this transformation. For
example, for G as in (15), the statistics

sup
x∈Rd

∣∣vG(x)
∣∣ and

∫
x∈Rd

v2
G(x)dG(x) (16)

have distributions independent from G and, hence, from the initial distribution F . On the other
hand, the class of distributions F for which the product distribution G exists, and then there
are infinitely many of them, is broad: any distribution which has rectangular support, whether
bounded or unbounded, is such a distribution. Equivalently, if the copula function corresponding
to F has positive density on [0,1]d , then G exists (see, e.g., [23] and [11] for such examples)
and one can choose g1, . . . , gd as marginal densities of F .

As an immediate consequence of Theorem 2 for finite n, we have the following weak conver-
gence statement. Consider the process

ṽn(x) =
∫

y≤x

l(y)vnF (dy)

(17)

−
∫

y∈Rd

l(y)vnF (dy)
1

1 − ∫
y∈Rd l(y)dF(y)

[
G(x) −

∫
y≤x

l(y)dF(y)

]
.
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Corollary 4. Let vG be the point-parametric G-Brownian bridge defined in (14). Then, as n →
∞,

ṽn
D(F )−→ vG.

In other words, the limit distribution of ṽn under F is the same as the limit distribution of
empirical process vnG under G. If F has a rectangular support, then, as noted above, G of product
form exists. Then, using (15), ṽn can further be transformed into a process, which under F ,
converges in distribution to the standard Brownian bridge u. In other words, construction of
asymptotically distribution free test statistics from ṽn becomes obvious, cf. (16).

For the proof of this corollary, note that the weak convergence statement for the first integral
in (17) as a process in x easily follows from, say Theorem 2.5.2 of [30], as it can be viewed as
statement for function-parametric process indexed by functions l(y)1(−∞,x](y), which certainly
satisfy the conditions of that theorem. Convergence of the second integral, with respect to vnF ,
is also clear, while the rest is a fixed deterministic function.

Our last corollary in this section uses the fact that in Theorem 2 we did not need absolute
continuity of G and F with respect to Lebesgue measure, but only absolute continuity of G

with respect to F . Therefore, we can consider discrete distributions with infinitely many positive
probabilities.

Suppose X is a countable collection of points of, say, Rd , and F is a (discrete) probability
distribution on X with probabilities p(x) > 0. Suppose G is another distribution on X with
probabilities π(x). Definition of vF and wF , as Gaussian processes with prescribed covariance,
carries out to the case of discrete F without change. The differential vF (dx) will now be a jump
of vF at x ∈ X and will be 0 at any other x. Thus, we obtain the following statement. It can be
viewed as an extension of Theorem 1, (ii), of [13] for m = ∞. In its form, it is no different from
(14) but for the fact that F discrete.

Corollary 5. For x ∈ X , let l(x) = √
π(x)/p(x). If vF is F -Brownian bridge (on X ), then the

process

vG(B) =
∫

y∈B∩X
l(y)vF (dy)

(18)

−
∫

y∈X
l(y)vF (dy)

1

1 − ∫
y∈X l(y)dF(y)

∫
y∈B∩X

(
dG(y) − l(y)dF(y)

)

is G-Brownian bridge.

Weak convergence statement in discrete case is very simple: with no possibility of misunder-
standing, denote the transformation in (18) applied to vnF again by ṽn. For any functional, or
statistic, S(ṽn) based on this ṽn, which has the property that for arbitrary small ε > 0 there is a
finite collection of points Xε , and a functional Sε(ṽn), which depends only on ṽn(x), x ∈Xε and
is such that

P
(∣∣S(ṽn) − Sε(ṽn)

∣∣ > ε
)
< ε,
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for all sufficiently large n, then

S(ṽn)
d(F )−→ S(ṽG).

3.2. Mapping to Brownian motion

Consider one more form of unitary transformations, applied to a Brownian bridge. It takes some-
what unusual form and seems important in its own right. In particular, it shows how blurred
the difference between Brownian motions and Brownian bridges can become and, using some
freedom of speech, that “a Brownian motion can be also a Brownian bridge”.

Let the distribution F be supported on [0,1]d and have there a.e. positive density f . Let A be
a fixed subset of [0,1]d and let ηA(x) denote the square root of a density concentrated on A, that
is, ηA(x) = 0 if x /∈ A, and

∫
A

η2
A(x)dx = 1. It is appropriate to think about A as a “small” set,

although there will be no formal requirement on this. As we know (see Lemma 2 in Section 2),
the process with the differential

ξ(dx) = vF (dx)√
f (x)

is the
√

f -projected standard Brownian motion. At the same time, the process with the differen-
tial

b(dx) = w(dx) − ηA(x)

∫
A

ηA(y)w(dy)dx (19)

is the ηA-projected standard Brownian motion, cf. (8), and satisfies orthogonality condition∫
A

ηA(x)b(dx) = 0.

In other words, the distribution F is, in the both cases, just uniform distribution on [0,1]d , but
the processes are projected parallel to different functions. What we want to do now is to rotate ξ

to b.
Since ξ(φ) and b(φ) are now defined on L2([0,1]d), for our rotation we need to use operator

U∗ = I − 2

‖ηA − √
f ‖2

(ηA − √
f )〈ηA − √

f , ·〉,

which is (self-adjoint) unitary operator on L2([0,1]d) and maps ηA to
√

f . (Here and in the
proof below, in inner products and norms in L2([0,1]d) we skip the index F .) The result, the
process

ξ
(
U∗φ

)
,

is what we consider in the next statement. Although a general principle here remains the same,
we believe it is more convenient to formulate it as a theorem and give the proof.
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Theorem 6. Choose η2
A to be a density on A. With above assumption on F , the process with

differential

b(dx) = vF (dx)√
f (x)

−
∫

y∈A

ηA(y)
vF (dy)√

f (y)

1

1 − ∫
y∈A

ηA(y)
√

f (y)dy

(
ηA(x) − √

f (x)
)

dx

is a standard Brownian motion on [0,1]d \ A, while

∫
y∈A

ηA(y)b(dy) = 0.

In other words, b is ηA-projected standard Brownian motion.

Proof of Theorem 6. The last equality follows from definition of b. Using the process ξ , see
Lemma 2, we easily see that the function-parametric form of the process b is

b(φ) = ξ(φ) − 2

‖ηA − √
f ‖2

ξ(ηA)〈φ,ηA − √
f 〉.

Now note that from the definition of ξ in (9) it easily follows that for φ, φ̃ ∈ L2([0,1]d)

Eξ(φ)ξ(φ̃) = 〈φ, φ̃〉 − 〈φ,
√

f 〉〈φ̃,
√

f 〉.

Also note that

‖ηA − √
f ‖2 = 2

(
1 − 〈ηA,

√
f 〉),

which will somewhat simplify notations below. Thus, we obtain

Eb(φ)2 = 〈φ,φ〉 − 〈φ,
√

f 〉2

− 2

1 − 〈ηA,
√

f 〉
(〈φ,ηA〉 − 〈φ,

√
f 〉〈ηA,

√
f 〉)〈φ,ηA − √

f 〉

+ 1

(1 − 〈ηA,
√

f 〉)2

(
1 − 〈ηA,

√
f 〉2)〈φ,ηA − √

f 〉2,

or

Eb(φ)2 = 〈φ,φ〉 − 〈φ,
√

f 〉2

− 〈φ,ηA − √
f 〉

1 − 〈ηA,
√

f 〉
[
2〈φ,ηA〉 − 2〈φ,

√
f 〉〈ηA,

√
f 〉 − (

1 + 〈ηA,
√

f 〉)〈φ,ηA − √
f 〉],
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and after simplifications within the square brackets we finally obtain

Eb(φ)2 = 〈φ,φ〉 − 〈φ,
√

f 〉2 − 〈φ,ηA − √
f 〉〈φ,ηA + √

f 〉
= 〈φ,φ〉 − 〈φ,ηA〉2,

which proves the claim: restriction x ∈ [0,1]d \A is equivalent to restriction that φ is orthogonal
to all ηA with given A, in which case we obtain the variance of just Brownian motion, while if
φ = ηA the variance of b(η) is 0. �

Remark. If we choose η2
A as the uniform density on A, ηA(x) = IA(x)/�, with � = μd(A),

then the process b, or rather the finite n-version of the process, is certainly

bn(dx) = vnF (dx)√
f (x)

−
∫

A

vnF (dy)√
f (y)

1√
� − ∫

A

√
f (y)dy

(
ηA(x) − √

f (x)
)

dx (20)

which integrates to 0 on A. This, however, should not be perceived as a “loss of observations on
A”: the integral with respect to vnF over A enters the differential of bn at all x /∈ A.

Remark. If we choose ηA(x)2 as the conditional density of F given A, η2
A(x) = 1A(x)f (x)/

F (A), then

bn(dx) = vnF (dx)√
f (x)

+ vnF (A)
1√

F(A) − F(A)

√
f (x)dx, x /∈ A, (21)

is another asymptotically Brownian motion on [0,1]d \ A. In this version integration over A,
where f may happen to be numerically small, is replaced by vn(A). The latter is simpler to
calculate and may have better convergence properties than the integral

∫
A
(1/

√
f (y))vnF (dy)

(cf. Figures 3 and 4 of Section 4).

A one-to-one transformation, of a different nature, of a Brownian bridge to a Brownian motion
was earlier suggested in [16] and [17]. It is interesting to compare that transformation with the
present one. For this we need a so called scanning family of subsets St ,0 ≤ t ≤ 1, of [0,1]d ,
which is increasing, St ⊆ St ′ for t < t ′, and such that μd(S0) = 0,μd(S1) = 1 and μd(St ) is
continuous in t . Then, with ξ as above, the process

b̃(C, t) = ξ(C ∩ St ) −
∫ t

0

∫
Sc

τ

√
f (y)ξ(dy)

1 − F(Sτ )
d

∫
C∩Sτ

√
f (z)dz

is not only a Gaussian martingale in t , but also has independent increments in C ⊆ St , so that
b̃(C,1) is a Brownian motion in C ⊆ [0,1]d . The latter expression is a multidimensional exten-
sion of the classical situation for d = 1 and f = 1 on [0,1], when the ξ(t) = u(t) is the standard
Brownian bridge. Indeed, from the above we obtain the well-known representation of u(t) as a
Gaussian semimartingale

b̃(dt) = u(dt) + u(t)

1 − t
dt,
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where b̃ is Brownian motion. In statistical context, see its use in [1] and [15], Section 1; see also
[27], Chapter 6. The inverse of this representation,

u(t) = (1 − t)

∫ t

0

b̃(ds)

1 − s
,

was used for statistical purpose as early as [4].
The transformation of Theorem 6 is simpler; for A = [0,�] ⊆ [0,1] it takes the form

b(dt) = u(dt) − u(�)

�
dt, t ≤ �,

b(dt) = u(dt) − u(�)√
� − �

dt, t > �,

and represents a Brownian bridge on [0,�] and Brownian motion on [�,1]. Although in last
three displays the same process u is transformed and the same, in distribution, process is obtained
on [�,1] as a result, the transformations are very different.

3.3. Parametric family of distributions

We extend now the results for the case of fixed F to the parametric case. Namely, along with dis-
tribution Fθ and its orthonormal score function βF , consider now another distribution G together
with orthonormal vector (r1, . . . , rκ )T , with coordinates in L2(G), of the same dimension as βF .
One may think about this vector βG as a score function of a more or less fictitious parametric
family to which G belongs. Let us augment both score functions by a function identically equal 1.
If G is absolutely continuous with respect to F , then the vector (l, lr1, . . . , lrd) is orthonormal in
L2(F ).

Use notation L̂ for a subspace of functions

L̂ = L(q0, . . . , qκ , l, . . . , lrκ) ⊂ L2(F ),

where we recall, q0 = 1 and qi, i = 1, . . . , κ , are coordinate functions of βF . In the subspace L̂,
consider two bases. One, the a basis, has coordinate functions ai = qi for i ≤ κ while ai, i =
κ + 1, . . . ,2κ + 1, is any orthonormal sequence, which complements a0, . . . , aκ to a basis in L̂.
The other, b basis, has coordinate functions bi = lri , i ≤ κ , and bi, i = κ + 1, . . . ,2κ + 1, can be
any orthonormal sequence, which complements b0, . . . , bκ to a basis in L̂. Let K̂ be the unitary
operator in L̂, defined as

K̂ = IL̂⊥ +
2κ+1∑
i=0

ai〈bi, ·〉F , (22)

where IL̂⊥ is projector on the orthogonal complement of L̂ to L2(F ). For convenience, let us
single out three short statements as a lemma.
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Lemma 4. (i) The operator K̂ is unitary on L̂. It maps basis b into basis a while it maps any
function, orthogonal to L̂ to itself:

K̂b = a, and K̂φ = φ, if φ ⊥ L̂.

(ii) For a function φ consider its projection parallel to functions q0, . . . , qκ ,

φ −
κ∑

i=0

qi〈qi,φ〉F .

Then

v̂F (φ) = v̂F

(
φ −

κ∑
i=0

qi〈qi,φ〉F
)

= wF

(
φ −

κ∑
i=0

qi〈qi,φ〉F
)

.

In other words, according to (ii), the processes v̂F and wF coincide on the subspace of func-
tions orthogonal to q0, . . . , qκ . Both (i) and (ii) can be easily checked. For example, the last
equality follows from the definition of v̂F in Section 2.

Theorem 7. If v̂F is q-projected F -Brownian motion and G is absolutely continuous with re-
spect to F , then

v̂G(ψ) = v̂F

(
K̂(lψ)

)
or, more explicitly,

v̂G(ψ) = v̂F (lψ) −
2κ+1∑
i=κ+1

v̂F (ai)〈lψ, ai − bi〉F (23)

is r-projected G-Brownian motion. If G and F are equivalent, then this transformation is one-
to-one.

From the point of view of this theorem, testing of various parametric families with square
integrable score functions of the same dimension and equivalent Fθ and Gθ ′ , is not a multitude
of various unconnected testing problems; since these testing problems can be mapped into one
another they can be glued in equivalence classes. One representative from each class is, therefore,
sufficient to use and this makes the testing asymptotically distribution-free.

Proof of Theorem 7. First, we prove that v̂G(ψ) is r-projected G-Brownian motion in ψ , and
then we show that explicit expression of the right-hand side is that given in (23). Consider

K̂φ = φ −
2κ+1∑
i=0

bi〈φ,bi〉F + K̂

2κ+1∑
i=0

bi〈φ,bi〉F

= φ −
2κ+1∑
i=0

bi〈φ,bi〉F +
2κ+1∑
i=0

ai〈φ,bi〉F .
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The second equality here uses part (i) of the lemma. The last display in part (ii) shows that we
need to consider projection of the latter function parallel to a0, . . . , aκ . In taking this projection,
the sum

∑κ
i=0 ai〈φ,bi〉F will be annihilated, so that the projection is

φ −
2κ+1∑
i=0

bi〈φ,bi〉F +
2κ+1∑
i=κ+1

ai〈φ,bi〉F . (24)

Therefore, again using (ii),

v̂F (K̂φ) = wF

(
φ −

2κ+1∑
i=0

bi〈φ,bi〉F +
2κ+1∑
i=κ+1

ai〈φ,bi〉F
)

.

The first difference in (24) is orthogonal to the second sum. Therefore,

Ev̂2
F (K̂φ) = 〈φ,φ〉F −

2κ+1∑
i=0

〈φ,bi〉2
F +

2κ+1∑
i=κ+1

〈φ,bi〉2
F

= 〈φ,φ〉F −
κ∑

i=0

〈φ,bi〉2
F .

For φ = lψ , the latter expression is equal to

〈ψ,ψ〉G −
κ∑

i=0

〈ψ, ri〉2
G,

which is the variance of v̂G(ψ). To arrive now at the explicit form (23) of v̂G(ψ), rewrite (24) as

φ −
2κ+1∑
i=0

ai〈φ,ai〉F +
2κ+1∑
i=κ+1

ai〈φ,bi〉F

and use orthogonality of vF to a0, . . . , aκ . �

Weak convergence result, which follows from our theorem, is easy to formulate in function-
parametric as well as set-parametric versions, but it is somewhat more convenient for application
to consider, again, the point-parametric version of the parametric empirical process, where the
family of functions ψ is chosen as a family of indicator functions, ψ(y) = 1(∞,x](y), indexed
by x. Then transformation in (23) applied to vn(·, θ̂n) leads to the process

ṽn(x, θ̂n) =
∫

y≤x

l(y)vn(dy, θ̂n)

(25)

−
2κ+1∑
i=κ+1

∫
y∈Rd

ai(y)vn(dy, θ̂n)

∫
y≤x

(
ai(y) − bi(y)

)
dF(y).
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Weak convergence of the process vn(·, θ̂n) was considered in a very large number of publications;
among the first we know of are [12] and much later, but still long ago, [5]. Certain (incomplete)
review is given in [27], Chapter 3.5; convergence of vn(φ, θ̂n) on countably many square inte-
grable functions was studied in [14]. Based on this, we take the weak convergence of the first
integral in (25) as a process in x as given, as well as convergence of integrals from ai with respect
to vn(·, θ̂n). Their joint weak convergence is obvious and this leads to the statement

ṽn(·, θ̂n)
D(Fθ )−→ v̂G(·). (26)

If Fθ in our parametric family have rectangular support in R
d then, as we already mentioned,

the product distribution G exists and we can proceed as in Corollary 4. However, one point here
needs some remark. The most natural choice of G will be a product of the marginal distributions
of Fθ and, therefore, G = Gθ will depend on θ as well. All functions, l = lθ , ai = aiθ , bi = biθ ,
which participate in the transformation, will also depend on θ . The latter is true even if one
chooses one common G for all Fθ , simply because Fθ and, therefore, βFθ as well, depend on θ .
Hence, in (25) the functions l

θ̂n
, a

iθ̂n
, b

iθ̂n
will have to be used. This, however, creates only a

minor problem: in simple continuity assumptions on lθ and βFθ in θ , similar, for example, to
bracketing assumptions in [30], one can see that the difference between transformation produced
by l

θ̂n
, a

iθ̂n
, b

iθ̂n
and lθ , aiθ , biθ is asymptotically small and, therefore, (26) is still true.

More interesting and specific to this paper is the problem of practical implementation and
convenience of transformation (23).

3.4. Uniqueness of K̂ and practical calculations of vn(K̂ψ)

Start by noting that the operator K̂ is an extension of the operator K of (12) to the parametric
case. Moreover, the former can be expressed by the latter. To show this, assume first κ = 0 and
denote

Kg,h = I − 2

‖h − g‖2
F

(h − g)〈h − g, ·〉F

a unitary operator on L2(F ) with the same properties as in Lemma 3, only with l and q0 replaced
by general h and g, respectively. Thus, Kq0,l = K of (12). Now assume κ = 1. Recall that Kq0,l

maps function l to function q0 and maps any function, orthogonal to l and q0, to itself. Consider
the image of the function lr1,

Kq0,l lr1 = l̃r1.

Since l and lr1 are orthogonal by construction, then so are their images q0 and l̃r1. Now consider
operator K

q1,l̃r1
. The product

K̂ = K
q1,l̃r1

Kq0,l (27)

is another form of the operator K̂ . Indeed, as a product of unitary operators, K̂ is a unitary
operator, and it maps any functions φ⊥, which are orthogonal to l, lr1, q0, q1, to itself, while it
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maps l into q0 and lr1 into q1:

K
q1,l̃r1

Kq0,l l = K
q1,l̃r1

q0 = q0,

and

K
q1,l̃r1

Kq0,l lr1 = K
q1,l̃r1

l̃r1 = q1.

Since b2 and b3 are orthonormal and orthogonal to l and lr1, it follws that K̂b2 and K̂b3 also
will be orthonormal and orthogonal to q0 and q1, which is what is required from a2 and a3.

This procedure can be iterated in κ = 2,3, and so forth. Hence, it follows that transforma-
tion (23) can be carried out as a sequence of κ + 1 just one-dimensional transformations. This
was tried recently in [24] with applications to testing independence in contingency tables, and
demonstrated that the coding is simple and the calculations quick. In one of numerical examples,
the author considered 5 × 6 tables with, therefore, κ = 9 marginal probabilities to estimate.

At the same time, comparison of the representation (27) with the coordinate form used in
Lemma 4 rises the question of uniqueness of K̂ , which is good to clarify.

To this end, consider the orthogonal decomposition of L2(F ), which uses the basis b:

L̂⊥ + L̂ = L̂⊥ +L1b +L2b,

where the subspace L1b = L(b0, . . . , bκ) = L(l, . . . , lrκ) is generated by the functions b0, . . . , bκ ,
and L2b = L(bκ+1, . . . , b2κ+1) is generated by the remaining part of the basis b, and L̂⊥ is the
orthogonal complement of their sum to L2(F ). Similarly, consider orthogonal decomposition
which uses the basis a:

L̂⊥ + L̂ = L̂⊥ +L1a +L2a.

Then what the operator K̂ , defined in (22), does is the following: it maps unitarily subspace Lib

onto Lia, i = 1,2, while leaves L⊥ unperturbed. However, let Tb be a unitary operator, which
can be decomposed into direct sum Tb = T⊥ + T1b + T2b of unitary operators, of which L̂⊥, L1b

and L2b are invariant subspaces, respectively. Then, for any such operator, the process

vG,Tb
(ψ) = vF (K̂Tblψ)

is also a G-Brownian motion. Moreover, if Ta is a similar unitary operator with invariant sub-
spaces L̂⊥, L1a and L2a , then

vG,Ta,Tb
(ψ) = vF (TaK̂Tblψ)

is again a projected G-Brownian motion. This makes nonuniqueness of (22) an obvious and,
basically, trivial fact.

However, in practical problems we will not be in need to use Tb and Ta in so much generality.
Indeed, there does not seem to be a reason to “rotate” φ⊥ and therefore we can agree to choose
T⊥ as the identity operator on L⊥. Given “target” score functions, that is, given l, . . . , lrκ , and
the score functions q0, . . . , qκ of the hypothetical parametric family, it does not seem useful
to “rotate” any of them and one can agree to the rule that each lri is mapped onto qi for all
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i = 0, . . . , κ . This will uniquely define the image of φ1b as
∑κ

i=0 ai〈φ1b, bi〉. Moreover, for each
φ, the decomposition of φ = φ⊥ + φ1b + φ2b into its parts in the corresponding subspaces is
unique, and, in particular, φ2b does not depend on the choice of bi, i = κ+1, . . . ,2κ+1, although
the choice of these latter functions is not unique.

More specifically, with the matrix

C = ∥∥〈qi, lrj 〉
∥∥, i, j = 0, . . . , κ

the coordinate functions of the vector

(q0, . . . , qκ)T − C(l, . . . , lrκ)T

are orthogonal to coordinates of (l, . . . , lrκ )T and, therefore, the vector (bκ+1, . . . , b2κ+1)
T has

to be a linear transformation of the latter:

(bκ+1, . . . , b2κ+1)
T = H

[
(q0, . . . , qκ)T − C(l, . . . , lrκ)T

]
.

This linear transformation H renders the coordinates of (bκ+1, . . . , b2κ+1)
T mutually orthog-

onal and normalized. However, the H is not defined uniquely. Therefore, although with our
agreement, the vector

K̂
[
(q0, . . . , qκ)T − C(l, . . . , lrκ )T

] = (l, . . . , lrκ )T − C(q0, . . . , qκ)T

remains the same for any choice of operator K̂ with properties as in Lemma 4, nonuniqueness of
H makes the multiple choice of aκ+1, . . . , a2κ+1 possible.

Apart from simplicity in numerical calculations, the advantage of the representation (27) is that
it offers a unique “canonical” form of transformation. Then there is no need to be interested in the
form of aκ+1, . . . , a2κ+1, as they do not enter in our transformation v̂G = v̂F (K̂lψ) explicitly.

4. Some numerical illustrations

Let ũn denote the process obtained as transformation (2) applied to empirical process vnF :

ũn(x) =
∫

y≤x

1√
f (y)

vnF (dy) −
∫
y≤x

(1 − √
f (y))dy

1 − ∫
[0,1]d

√
f (y)dy

∫
[0,1]d

1√
f (y)

vnF (dy).

The choice of d = 1 suggested itself by the fact that the limit distributions of statistics below are
known and, therefore, one can easily judge how quick is the convergence.

In Figure 1, two distribution functions of the statistic

D(ũn) = sup
0<x<1

∣∣ũn(x)
∣∣

are shown, for sample size n = 200. It is not easy to distinguish them, although the statis-
tics are based on samples from quite different beta distributions: with a bell-shaped (param-
eters 3 and 3) and J-shaped (parameters 0.8 and 1.5) beta densities, respectively. The third
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Figure 1. Distribution functions of K-S statistics D(ũn) for the beta distributions, with bell-shaped and
J-shaped densities, described in the text. We used 10 000 simulations of samples of size n = 200. The third
is the graph of Kolmogorov distribution, which is their limit in n.

graph is that of the Kolmogorov distribution function, which is the limiting distribution of the
D(u) = sup0<x<1 |u(x)|. If ũn were a sort of an empirical process, like, say v

nF̃
with some F̃ , the

distribution of its supremum will again be that of D(u) and some doubts would remain whether
ũn behaves as a uniform empirical process or an empirical process based on some other distribu-
tion. However, our ũn is not an empirical process at all – it is a difference between some weighted
version of an empirical process and some deterministic function times a linear functional from
the former.

Now, on Figure 2, we show distribution functions of the omega-square statistic

�2 =
∫ 1

0

[
ũn(t)

]2
dt.

These distribution functions cannot converge to the omega-square distribution unless ũn indeed
behaves as the uniform empirical process. But it seems that they do. Although the differences are
now visible, note that the integral was calculated merely as a Darboux sum with not too fine step,
and that the sample size was only n = 50.

It is interesting to have some indication of how quickly the processes of Theorem 6 converge to
Brownian motion. The point of particular interest was whether division by

√
f , as in (20), spoils

the convergence, and if so, by how much. For this comparison we used still another version of
bn, which one obtains by integrating

√
f with respect to the process (21). For one-dimensional



Unitary transformations of empirical processes 585

Figure 2. Distribution functions of ω2-statistics for the same underlying beta distributions as above. We
used 10 000 simulations of samples of reduced size n = 50. The lowest is the graph of ω2 distribution,
which is their limit in n.

time, it leads to

∫ x

�

√
f (y)bn(dy) = vnF (x) − vnF (�) + vnF (�)

F(x) − F(�)√
F(�) − F(�)

, (28)

which certainly converges as quickly as empirical process vnF .
Figure 3 shows the graphs of distribution function of K-S statistic from the process (20),

D(bn) = sup
�<x<1

∣∣bn(x)
∣∣/√1 − �,

obtained for two different beta distributions (described above) along with the distribution func-
tion of supremum of a standard Brownian motion. We see that the discrepancy between pre-
limiting distribution, for n = 200, and the limit exists, but is very small, especially if we consider
convergence of quantiles.

The last Figure 4 shows distribution functions of K-S statistic from the process (28) normalized
by

√
1 − F(�) for samples from the same underlying distributions as in Figure 3. With respect

to the previous figure, there is some improvement, but not by much.
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Figure 3. Distribution functions of statistics D(bn) from the process (20) for the same underlying beta
distributions, as above. Again, 10 000 simulations of samples of size n = 200. The third is the graph of the
distribution of sup0<x<1 |b(x)|, which is the limit distribution for the first two.

Figure 4. Distribution functions of K-S statistic from the process (28) for the same underlying beta distri-
butions as above, and with 10 000 simulations of samples of size n = 200.
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