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Integral representation of random variables
with respect to Gaussian processes
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It was shown in Mishura et al. (Stochastic Process. Appl. 123 (2013) 2353–2369), that any random variable
can be represented as improper pathwise integral with respect to fractional Brownian motion. In this paper,
we extend this result to cover a wide class of Gaussian processes. In particular, we consider a wide class of
processes that are Hölder continuous of order α > 1/2 and show that only local properties of the covariance
function play role for such results.
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1. Introduction

In stochastic analysis and its applications such as financial mathematics, it is an interesting ques-
tion what kind of random variables one can replicate with stochastic integrals. In order to answer
this question, first one needs to consider in which sense the stochastic integral exists. In par-
ticular, if the driving process X is not a semimartingale it is not clear how to define integrals
with respect to X and what kind of integrands can be integrated with the given definition of the
integral.

The motivation for our work originates back to Dudley [3] who showed that any functional
ξ of a standard Brownian motion W can be replicated as an Itô integral

∫ 1
0 �(s)dWs , where �

is an adapted process satisfying
∫ 1

0 �2(s)ds < ∞ a.s. Moreover, under additional assumption∫ 1
0 E[�2(s)]ds < ∞ one can cover only centered random variables with finite variance. On the

other hand, in this case the process � is unique.
Later on Mishura et al. [7] considered the same problem where standard Brownian motion

W was replaced with fractional Brownian motion (fBm) BH with Hurst index H > 1
2 . In this

case the authors considered generalised Lebesgue–Stieltjes integrals with respect to fBm which
can be defined, thanks to results of Azmoodeh et al. [1], for integrands of form f (BH

u ) where
f is a function of locally bounded variation. As an application of the results in [7], the authors
considered financial implications of the results and gave a negative answer to the problem of zero
integral; does

∫ 1
0 ψ(s)dBH

s = 0 imply that ψ(s) = 0. This problem was open for fBm for some
time, and in addition the result was known only for Brownian motion.

It is interesting to note that while the stochastic integrals are defined in different ways, the
results for standard Brownian motion and fBm are quite similar. On the other hand, the key idea
to obtain representation for arbitrary processes with integrals with respect to some given process
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is to use idea of “tracking”: first define a sequence which obviously converges and then track that
sequence. The simplest way to do this is to define an integrand on a given time interval which
diverges in the limit and then use stopping times. This idea was first used by Dudley [3] for
Brownian motion and then by Mishura et al. [7] for fBm.

In this article, motivated by these two contributing works, we study the problem for more gen-
eral class of Gaussian processes. In particular, we also consider generalised Lebesgue–Stieltjes
integrals and show that the brilliant construction introduced in [7] for fBm applies, with small
modifications, for more general Gaussian processes. We also note that the integrals exist also as
forward integrals in the sense of Föllmer [4]. Our class of Gaussian processes consists of wide
class of processes which has versions that are Hölder continuous of order α > 1

2 . More precisely,
our class of processes consist of Hölder continuous Gaussian processes X which also satisfy sev-
eral mild extra conditions given for the corresponding covariance function R. In particular, the
class includes many stationary and stationary increment processes that are Hölder continuous of
sufficient order. In order to obtain such result for general class of Gaussian processes, we show
that for the construction introduced in [7] the only required facts are local properties of the cor-
responding covariance function. Moreover, we show that the replication can be done in arbitrary
small amount of time which has significant implications to the finance. As such, this article is a
hybrid of discussing review paper and an original research article; We prove similar results as for
fBm and use the same idea of tracking so the proofs are quite similar with only minor changes
needed and no unnecessary complexity is added. On the other hand, the results are extended to
much wider class of processes, the needed properties for such results are identified and it is also
shown that the replication can be done in any time interval. We also discuss applications such as
implications to finance and the problem of zero integral. In particular, the results of this paper
indicate that with pathwise integrals the answer to the problem of zero integral is usually false.

The rest of the paper is organised as follows. We start Section 2 by recalling the findings ob-
tained in [7] for fBm. Moreover, we introduce the key properties of fBm under which the authors
in [7] obtained their results. We end the Section 2 by introducing our notation and assumptions.
We also recall basic facts on generalised Lebesgue–Stieltjes integrals and Föllmer integrals. In
Section 3, we introduce and prove the main results for our general class of processes. We end the
paper by discussion in Section 4 where we shortly discuss financial applications, uniqueness of
the representation and the problem of zero integral.

2. Auxiliary facts

Key properties for fractional Brownian motion

In [7], the authors proved the following:

• For any distribution function F there exists an adapted process � such that
∫ 1

0 �(s)dBH
s is

well-defined (in the sense of generalised Lebesgue–Stieltjes integral) and has distribution F .
• Any measurable random variable ξ can be represented as an improper integral, that is, ξ =

limt→1−
∫ t

0 �(s)dBH
s .

• A measurable random variable ξ which is an end value of some Hölder continuous process
can be represented as a proper integral.
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Our aim is to establish similar results for general class of Gaussian processes. By studying the
paper [7], one can see that in a sense the following facts are the main ingredients for such results:

1. Itô’s formula: for every locally bounded variation function f we have

F
(
BH

T

) =
∫ T

0
f

(
BH

u

)
dBH

u ,

where F(x) = ∫ x

0 f (y)dy,
2. fBm has stationary increments,
3. a crossing bound at zero: there exists a constant C such that for every 0 < s < t ≤ T we

have

P
(
BH

s < 0 < BH
t

) ≤ C(t − s)H t−H ,

4. small ball probability: there exists a constant C such that for every T and ε we have

P

(
sup

0≤t≤T

∣∣BH
t

∣∣ ≤ ε
)

≤ exp
(−CT ε−1/H

)

provided that ε ≤ T H .

For our purposes, we have results similar to conditions 1 and 3 for more general class of processes
obtained by Sottinen and Viitasaari [11] (see subsection below). The conditions 2 and 4 we
replace with weaker assumptions on the covariance structure of the Gaussian process X.

Definitions and auxiliary results

Throughout the paper, we are restricted on a bounded interval [0, T ] which is usually omitted in
notation.

Definition 2.1. Let X be a centered Gaussian process. We denote by RX(t, s), WX(t, s), and
VX(t) its covariance, incremental variance and variance, that is,

RX(t, s) = E[XtXs],
WX(t, s) = E

[
(Xt − Xs)

2],
VX(t) = E

[
X2

t

]
.

We denote by w∗
X(t) the “worst case” incremental variance

w∗
X(t) = sup

0≤s≤T −t

WX(s, s + t).

Let now α ∈ ( 1
2 ,1). We consider the following class of processes.
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Definition 2.2. A centered continuous Gaussian process X = (Xt )t∈[0,T ] with covariance RX

belongs to the class X α
T if there is a constant δ such that for every u ∈ [T − δ, T ) the process

Yt = Xt+u − Xu for t ∈ [0, T − u] satisfies:

1. RY (s, t) > 0 for every s, t > 0,
2. the “worst case” incremental variance satisfies

w∗
Y (t) = sup

0≤s≤T −t−u

WY (s, s + t) ≤ Ct2α,

where C > 0,
3. there exist c, δ̂ > 0 such that

VY (s) ≥ cs2

provided s ≤ δ̂,
4. there exists a δ̂ > 0 such that

sup
0<t<2δ̂

sup
t/2≤s≤t

RY (s, s)

RY (t, s)
< ∞.

The class depends also on parameter δ which will be omitted on the notation.
Note that the definition is quite technical. However, the conditions are needed in order to have

Itô formula and crossing bound for incremental process Y close to time T . Moreover, the results
for fBm relies on the fact that BH has stationary increments. For our class we simply need certain
structure for covariance close to T . The idea on the results is that before some point t = T − δ

we simply wait and do nothing. Moreover, the following remarks and examples show that the
assumptions are not very restrictive and are satisfied for many Gaussian processes. For further
discussion and details, see [11] where the class was first introduced such that the covariance of
X itself satisfy properties 1–4.

Remark 2.3.

1. Note that the first condition means that the increments of the process are positively corre-
lated close to time T . More precisely, we need

RX(t + u, s + u) + RX(u,u) > RX(t + u,u) + RX(u, s + u).

In other words, the covariance function should have positive increments on rectangles.
2. The second condition implies that Y has version which is Hölder continuous of any order

a < α. For the rest of the paper, we assume that this version is chosen.
3. A special subclass of X α

T are processes with stationary increments. In this case, we have

RY (t, s) = RX(t, s) = 1
2

[
V (t) + V (s) − V (t − s)

]
,

WY (t, s) = WX(t, s) = VX(t − s),

w∗
Y (t) = w∗

X(t) = VX(t).
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Especially, stationary increment processes with WX(t, s) ∼ |t − s|2α at zero with α > 1
2

belong to X α
T for every T . In particular, fBm with Hurst index H > 1

2 belongs to X α
T .

4. Another special subclass of X α
T are stationary processes. In this case, we have

RX(t, s) = r(t − s),

WX(t, s) = 2
[
r(0) − r(t − s)

]
,

VX(t) = r(0),

w∗
X(t) = 2

[
r(0) − r(t)

]
and

RY (t, s) = r(t − s) + r(0) − r(t) − r(s),

WY (t, s) = WX(t, s),

VY (t) = WX(t + u,u) = w∗
X(t),

w∗
Y (t) = w∗

X(t).

Consequently, for a stationary process X with covariance function r(t) we have X ∈ X α
T if

r(t) satisfies

r(t − s) + r(0) > r(t) + r(s),

ct2 ≤ r(0) − r(t) ≤ Ct2α

and

sup
0<t<2δ̂

sup
t/2≤s≤t

r(0) − r(s)

r(t − s) + r(0) − r(t) − r(s)
< ∞.

Especially, processes with strictly decreasing covariance at zero satisfy assumptions 1
and 4. In particular, stationary processes with strictly decreasing covariance and WX(t, s) ∼
|t − s|2α at zero with α > 1

2 belongs to X α
T for every T . As an example, the process X with

covariance function

r(t) = exp
(−|t |2α

)
with 1

2 < α < 1 belongs to X α
T . We will use this process as a motivating example throughout

the paper, and we will denote this process by X̃.

The following statement derived in Sottinen and Viitasaari [11] is one of the main ingredients
for our study.

Theorem 2.4. Let X ∈ X α
T with α > 1

2 and let f be a function of locally bounded variation. Set
F(x) = ∫ x

0 f (y)dy. Then

F(XT − Xu) =
∫ T

u

f (Xs − Xu)dXs (2.1)
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provided u ∈ [T −δ, T ), where the integral can be understood as a generalised Lebesgue–Stieltes
integral or as Föllmer integral.

Remark 2.5. In the original paper [11], the authors considered only convex functions. However,
by examining the proof it is evident that the result holds also for functions of locally bounded
variation.

Furthermore, we make the following assumption for small ball probabilities. The examples are
discussed in the next subsection.

Assumption 2.6. There exist constants C,δ > 0 such that for every s, t ∈ [T − δ, T ] with t =
s + 	 it holds

P

(
sup

s≤u≤t
|Xu − Xs | ≤ ε

)
≤ exp

(−C	ε−1/α
)

(2.2)

provided that ε ≤ 	α .

Which processes satisfy the Assumption 2.6?

In this subsection, we briefly review what kind of processes X ∈ X α
T satisfy the Assumption 2.6.

In general, the small ball probabilities are an interesting subject of study and a survey on small
ball probabilities is given by Li and Shiao [6] where also the following theorem can be found.

Theorem 2.7. Let {Xt, t ∈ [0,1} be a centered Gaussian process with X0 = 0. Assume that there
is a function σ 2(h) such that

∀0 ≤ s, t ≤ 1, E(Xs − Xt)
2 ≤ σ 2(|t − s|),

and that there are 0 < c1 ≤ c2 < 1 such that c1σ(2h ∧ 1) ≤ σ(h) ≤ c2σ(2h ∧ 1) for 0 < h < 1.
Then there exists K > 0 depending only on c1 and c2 such that

P

(
sup

0≤t≤1
|Xt | ≤ σ(ε)

)
≥ exp

(
−K

ε

)
.

Example 2.8. It is straightforward that fBm satisfies the assumptions for any H ∈ (0,1).

As a direct consequence, we obtain the following statement.

Corollary 2.9. Let X ∈X α
T . Then for every t ∈ [0, T ] there exist 	 > 0 and K > 0 such that

P

(
sup

s≤u≤t
|Xu − Xs | ≤ ε

)
≥ exp

(−K	ε−1/α
)
,

provided that |t − s| ≤ 	.
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According to this corollary the bound given in Assumption 2.6 is the best possible in terms
of 	 and ε. The upper bound is more difficult to obtain. Moreover, it is pointed out in [6] that
the incremental variance is not an appropriate tool for the upper bound. However, in many cases
of interest we can have the required upper bound. In particular, many cases of interest have
stationary increments or are stationary processes. For processes with stationary increments, the
following theorem can be used to study the upper bound. For the proof, we refer to [5] where a
slightly more general setup was considered.

Theorem 2.10. Assume that the centered process X has stationary increments and the incre-
mental variance W(t, s) = W(0, t − s) satisfies:

1. There exists θ ∈ (0,4) such that for every x ∈ [0, 1
2 ] we have

W(0,2x) ≤ θW(0, x).

2. For every 0 < x < 1 and 2 ≤ j ≤ 1
x

− 2, we have

6W(0, jx) + W
(
0, (j + 2)x

) + W
(
0, (j − 2)x

)
(2.3)

≥ 4W
(
0, (j + 1)x

) + 4W
(
0, (j − 1)x

)
.

Then there exists a constant K > 0 such that for every ε ∈ (0,1) we have

P

(
sup

0≤t≤1
|Xt − X0| ≤

√
W(0, ε)

)
≤ exp

(
−K

ε

)
.

Remark 2.11. In the original theorem, it was stated that instead of (2.3) it is also sufficient that
the incremental variance W(t, s) is concave. Note that in our case usually W(0, t) ∼ t2α with
α > 1

2 . Hence, W(t, s) cannot be concave.

Remark 2.12. We remark that the result holds also for stationary Gaussian processes.

Corollary 2.13. Assume that X ∈ X α
T has stationary increments or is stationary such that

W(0, t) ∼ t2α . Then Assumption 2.6 is satisfied.

Proof. It is straightforward to see that a function W(0, x) = x2α satisfies (2.3) provided α > 1
2 .

It remains to note that with δ small enough, we have W(0, t − s) ∼ C|t − s|2α provided
|t − s| ≤ 	. �

Example 2.14. As special examples we note that fBm BH with H > 1
2 and the process X̃ satisfy

the Assumption 2.6.

For general processes, X ∈ X α
T it is not clear when Assumption 2.6 is satisfied. In principle,

one can derive similar result as Theorem 2.10 under similar conditions. However, in this case the
incremental variance function W(t + s, s) depends also on the starting point s. Consequently,
one needs to check the condition when s is close to T . Hence in this case, the structure of the
covariance function is more important.
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Pathwise integrals

In this section, we briefly introduce two kinds of pathwise integrals.

Generalized Lebesgue–Stieltjes Integral

The generalized Lebesgue–Stieltjes integral is based on fractional integration and fractional
Besov spaces. For details on these topics, we refer to [9] and [8].

Recall first the definitions for fractional Besov norms and Lebesgue–Liouville fractional inte-
grals and derivatives.

Definition 2.15. Fix 0 < β < 1.

1. The fractional Besov space W
β

1 = W
β

1 ([0, T ]) is the space of real-valued measurable func-
tions f : [0, T ] →R such that

‖f ‖1,β = sup
0≤s<t≤T

( |f (t) − f (s)|
(t − s)β

+
∫ t

s

|f (u) − f (s)|
(u − s)1+β

du

)
< ∞.

2. The fractional Besov space W
β

2 = W
β

2 ([0, T ]) is the space of real-valued measurable func-
tions f : [0, T ] →R such that

‖f ‖2,β =
∫ T

0

|f (s)|
sβ

ds +
∫ T

0

∫ s

0

|f (u) − f (s)|
(u − s)1+β

duds < ∞.

In this paper, we study the norm ‖f ‖2,β on different intervals [0, t]. Hence we use short
notation ‖f ‖t,β .

Remark 2.16. Let Cα = Cα([0, T ]) denote the space of Hölder continuous functions of order α

on [0, T ] and let 0 < ε < β ∧ (1 − β). Then

Cβ+ε ⊂ W
β

1 ⊂ Cβ−ε and Cβ+ε ⊂ W
β

2 .

Definition 2.17. Let t ∈ [0, T ]. The Riemann–Liouville fractional integrals I
β

0+ and I
β
t− of order

β > 0 on [0, T ] are

(
I

β

0+f
)
(s) = 1

(β)

∫ s

0
f (u)(s − u)β−1 du,

(
I

β
t−f

)
(s) = eiπβ

(β)

∫ t

s

f (u)(u − s)β−1 du,

where  is the Gamma-function. The Riemann–Liouville fractional derivatives D
β

0+ and D
β
t− are

the left-inverses of the corresponding integrals I
β

0+ and I
β
t−. They can be also define via the Weyl
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representation as

(
D

β

0+f
)
(s) = 1

(1 − β)

(
f (s)

sβ
+ β

∫ s

0

f (s) − f (u)

(s − u)β+1
du

)
,

(
D

β
t−f

)
(s) = eiπβ

(1 − β)

(
f (s)

(t − s)β
+ β

∫ t

s

f (s) − f (u)

(u − s)β+1
du

)

if f ∈ I
β

0+(L1) or f ∈ I
β
t−(L1), respectively.

Denote gt−(s) = g(s) − g(t−).
The generalized Lebesgue–Stieltjes integral is defined in terms of fractional derivative opera-

tors according to the next proposition.

Proposition 2.18 ([8]). Let 0 < β < 1 and let f ∈ W
β

2 and g ∈ W
1−β

1 . Then for any t ∈ (0, T ]
the generalized Lebesgue–Stieltjes integral exists as the following Lebesgue integral∫ t

0
f (s)dg(s) =

∫ t

0

(
D

β

0+f0+
)
(s)

(
D

1−β
t− gt−

)
(s)ds

and is independent of β .

We will use the following estimate to prove the existence of Föllmer integrals.

Theorem 2.19 ([8]). Let f ∈ W
β

2 and g ∈ W
1−β

1 . Then we have the bound∣∣∣∣
∫ t

0
f (s)dg(s)

∣∣∣∣ ≤ sup
0≤s<t≤T

∣∣D1−β
t− gt−(s)

∣∣‖f ‖2,β .

Föllmer integral

We also recall the definition of a forward-type Riemann–Stieltjes integral due to Föllmer [4] (for
English translation, see [10]).

Definition 2.20. Let (πn)
∞
n=1 be a sequence of partitions πn = {0 = tn0 < · · · < tn

k(n)
= T } such

that |πn| = maxj=1,...,k(n) |tnj − tnj−1| → 0 as n → ∞. Let X be a continuous process. The
Föllmer integral along the sequence (πn)

∞
n=1 of Y with respect to X is defined as

∫ t

0
Yu dXu = lim

n→∞
∑

tnj ∈πn∩(0,t]
Ytnj−1

(Xtnj
− Xtnj−1

),

if the limit exists a.s.

The Föllmer integral is a natural choice for applications such as finance. However, usually
it is difficult to prove the existence of the Föllmer integral. For instance, for finite quadratic
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variation processes the existence of the integral is a consequence of the Itô’s formula. On the other
hand, generalised Lebesgue–Stieltjes integrals provides a tool to obtain the existence of Föllmer
integral. For instance, in [11] the authors proved first the existence of a generalised Lebesgue–
Stieltjes integral and then obtained the existence of Föllmer integral by applying Theorem 2.19.

3. Main results

We begin with the following technical lemma which gives the diverging integrand. In our case,
it can be defined similarly as for fBm. Hence, we simply present the key points of the proof.

Lemma 3.1. Let X ∈ X α
T such that Assumption 2.6 is satisfied. Then one can construct F-

adapted process φT on [0, T ] such that the integral

∫ s

0
φT (s)dXs

exists for every s < T and

lim
s→T −

∫ s

0
φT (s)dXs = ∞ (3.1)

a.s.

Proof. Fix numbers γ ∈ (1, 1
α
) and η ∈ (0, 1

γα
− 1). Furthermore, set t0 = 0 and tn = ∑n

k=1 	k ,

n ≥ 1 where 	n = T n−γ∑∞
k=1 k−γ , and define a function fη(x) = (1+η)|x|η sign(x). Note that we can

assume without loss of generality that conditions of Definition 2.2 hold in the whole interval.
Otherwise set t1 = T − δ and start after t1. Finally, we set

τn = min
{
t ≥ tn−1: |Xt − Xtn−1 | ≥ n−1/(1+η)

} ∧ tn

and

φT (s) =
∞∑

n=1

fη(Xs − Xtn−1)1[tn−1,τn)(s).

In order to complete the proof, we have to show that ‖φT ‖s,β < ∞ a.s. for every s < T and that
(3.1) holds. The fact that ‖φT ‖s,β < ∞ can be proved similarly as for fBm case in [7] together
with Theorem 2.4. Hence, it remains to show that (3.1) holds.

First by Theorem 2.4, we get that for every s ∈ [tn−1, tn)

∫ s

0
φT (u)dXu =

n−1∑
k=1

|Xτk
− Xtk−1 |1+η + |Xs∧τn − Xtn−1 |1+η.
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Now, as in the case of fBm, it is enough to show that only finite numbers of events An happen
where An is defined by

An =
{

sup
tn−1≤t≤tn

|Xt − Xtn−1 | < n−1/(η+1)
}
.

But now, by Assumption 2.6, we have

P(An) ≤ e−Cn−γ+1/(α(η+1))

for n large enough. Noting our choices of γ and η we obtain
∑

n≥1 P(An) < ∞, and thus the
result follows from Borel–Cantelli lemma. �

Remark 3.2. Same result can be obtained for integrals over any interval [s, t] ⊂ [T − δ, T ].
Remark 3.3. It was remarked in paper by Mishura et al. [7] that for fBm it is easy to see that
‖φT ‖t,β < ∞ even for random times t < T . This is indeed natural, since the Itô’s formula (2.1)
holds also for any bounded random time τ (see [11] for details).

Remark 3.4. It was shown in [1] that for fBm one can approximate the integral of Itô’s formula
(2.1) with Riemann–Stieltjes sums along uniform partition, i.e. the integral exists also as Föllmer
integral. Moreover, it was pointed out in [11] that this is true for more general processes X ∈X α

T

and any partition. Hence for any n, the integral∫ tn

tn−1

fη(Xs − Xtn−1)dXs

exists also as Föllmer integral. Now by noting that φT (s) is defined as a linear combination of
functions of this form it is evident that the integral∫ t

0
φT (s)dXs

exists also as Föllmer integral for every t < T . The same conclusion holds true also for other
results presented in this paper.

As a direct corollaries, we obtain that integral with respect to Xt can have any distribution and
that any measurable random variable can be represented as an improper integral; same results as
for fBm. For the sake of completeness, we present the results.

Corollary 3.5. For any cdf F one can construct adapted process ψT (s) such that
∫ T

0 ψT (s)dXs

has distribution F .

Proof. The proof follows same arguments as for fBm in [7] except that since we do not know
how the process X behaves before some time close to T , we have to choose some point v < T

such that Xv has non-vanishing variance. The rest follows with same arguments with obvious
changes. �
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Remark 3.6. Note that the result remains true if replace the process X with Y = h(X), where h

is strictly monotone C1 function. In this case the integrals of form

∫ T

0
ψT (s)dYs

are well defined by results in [11]. We remark that the result is still valid even if the function h is
uniformly bounded.

Theorem 3.7. Let (�,F ,P) be a complete probability space with left-continuous filtration F =
{Ft }t∈[0,T ] and let X ∈ X α

T such that Assumption 2.6 is satisfied. Then for any FT measurable
random variable ξ one can construct F-adapted process �T on [0, T ] such that the integral

∫ s

0
�T (s)dXs

exists for every s < T and

lim
s→T −

∫ s

0
�T (s)dXs = ξ

a.s.

Proof. As in the proof of Lemma 3.1, we can assume that assumptions of Definition 2.2 are
satisfied for the whole interval. Put first Yt = tanE[arctan ξ |Ft ]. Now Yt is adapted, and we
have Yt → ξ as t → T − a.s. by martingale convergence theorem and left continuity of F. Next
for a sequence tn increasing to T , set δn = Ytn − Ytn−1 and τn = inf{t ≥ tn: Zn

t = |δn|}, where
Zn

t = ∫ t

tn
φtn+1(s)dXs , and φtn+1(s) is the process constructed in Lemma 3.1 such that Zn

t → ∞
as t → tn+1. By setting

�T (s) =
∑
n≥1

φtn+1(s)1[tn,τn](s) sign(δn)

we can repeat the arguments in [7] to conclude that

Vt := lim
t→T −

∫ t

0
�T (s)dXs = ξ. �

Remark 3.8. Consider an arbitrary F measurable process Yt . If for every t ∈ (0, T ] we have
X ∈ X α

t , then by Theorem 3.7 we have that for every t there is a process �t(u) such that the
process

Vt := lim
s→t−

∫ s

0
�t(u)dXu

is a version of Yt .
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For the proof of our main theorem we also need a bound for the probability that a Gaussian
process X crosses a zero level. The bound is a consequence of the following more general result
proved in [11].

Lemma 3.9. Let X be a centered Gaussian process with strictly positive and bounded covariance
function R, 0 < s < t ≤ T and a ∈R. Then there exists a universal constant C = C(T ) such that

P(Xs < a < Xt)

≤ C

√
W(t, s)√
V (s)

[
1 + R(s, s)

R(t, s)
+ |a|e−a2/(2V ∗)

√
V (s)

max

(
1,

R(s, s)

R(t, s)

)]
,

where

V ∗ = sup
s≤T

V (s).

Corollary 3.10. Let X be a centered Gaussian process with positive and bounded covariance
function R(s, t), and let 0 < s ≤ t ≤ T be fixed. Then there exists a constant C = C(T ) such
that

P(Xs < 0 < Xt) ≤ C

√
W(t, s)

V (s)

[
1 + R(s, s)

R(t, s)

]
.

In [7] the authors also studied when a random variable ξ can be viewed as a proper integral,
that is,

ξ =
∫ 1

0
�(s)dBH

s

for some process �(s). As a result it was shown in [7] that this is true if ξ can be viewed as an
endpoint of some stochastic process which is Hölder continuous of some order a > 0. Moreover,
under assumption that � is continuous the authors also proved that the conditions are necessary.
As the proof is based on similar arguments as the proofs of previous theorems, it is not a surprise
that we can derive similar results for our general class of processes. However, in our general case
we have to modify the proof accordingly by choosing parameters differently. Consequently, we
can only cover processes ξ which are Hölder continuous of order a > 1 − α. For extensions, see
Remark 3.12 below.

Theorem 3.11. Let X ∈ X α
T such that Assumption 2.6 is satisfied, and let ξ be FT measurable

random variable. If there exists a Hölder continuous process Zs of order a > 1 − α such that
ZT = ξ , then one can construct F-adapted process �T on [0, T ] such that the integral

∫ T

0
�T (s)dXs
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exists and ∫ T

0
�T (s)dXs = ξ

a.s.

As in the proof of Lemma 3.1 and without loss of generality, we assume that conditions of
Definition 2.2 are satisfied for the whole interval. Otherwise we simply choose t1 large enough
such that we are close to T .

Proof of Theorem 3.11. Without loss of generality, we can assume a < α. Let β ∈ (1−α,a∧ 1
2 )

and fix γ > 1
a−β

∨ 1. We put 	n = T n−γ∑∞
k=1 k−γ and set t0 = 0, tn = ∑n−1

k=1 	k , n ≥ 2. Note that

with our choice of γ and β we have γ (α − β) − 1 > γ (α − a). Hence, we can choose some
κ ∈ (γ (α − a), γ (α − β) − 1). Next, we proceed as for fBm case and divide the proof into three
steps:

1. Set �T (t) = 0 on interval [t0, t1]. To proceed the construction is done recursively on in-
tervals (tn, tn+1] and the construction is divided into two steps depending on whether we
have Ytn−1 = Ztn−2 (Case A) or Ytn−1 �= Ztn−2 (Case B). For the sake of completeness and
clearness, we present the steps.

Put Yt = ∫ t

0 �T (s)dXs and assume that �T (s) is constructed on [0, tn−1] for some n ≥ 2.
If we have Case A, then we set

τn = inf
{
t ≥ tn−1: nκ |Xt − Xtn−1 | = |Ztn−1 − Ztn−2 |

} ∧ tn

and for s ∈ [tn−1, tn),

�T (s) = nκ sign(Xs − Xtn−1) sign(Ztn−1 − Ztn−2)1[0,τn](s).

Now if τn < tn, we obtain by Itô’s formula (2.1) that

Ytn = Ztn−1 .

Assume next that we have Case B. Then we proceed as in Theorem 3.7 and set

Yn
t =

∫ t

tn−1

φtn(s)dXs,

where φtn(s) is the process constructed in Lemma 3.1 such that Yn
t → ∞ as t → tn,

τn = inf
{
t ≥ tn−1: Yn

t = |Ztn−1 − Ytn−1 |
}
,

and for s ∈ [tn−1, tn),

�T (s) = φtn(s) sign(Ztn−1 − Ytn−1)1[0,τn](s).

Then Ytn = Ztn−1 .
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2. Next, note that for a fixed n, the only possibility that Ytn �= Ztn−1 is that we have case A and
τn ≥ tn. Hence, it suffices to show that the event

Cn =
{

sup
tn−1≤t≤tn

nκ |Xt − Xtn−1 | ≤ |Ztn−1 − Ztn−2 |
}

happens only finite number of times. For this we take b ∈ (α − κ
γ
, a), and the arguments in

[7] implies that it is sufficient to show that only finite number of events

Dn =
{

sup
tn−1≤t≤tn

nκ |Xt − Xtn−1 | ≤ 	b
n

}

happen. Recall that now we have b > α − κ
γ

which can be written as γ b + κ > γα. Hence
we can apply the small ball estimate (2.2) of Assumption 2.6 together with Borel–Cantelli
lemma to obtain the result.

3. To complete the proof, we have to show that ‖�T ‖T ,β < ∞ a.s. For this, we go through the
main steps which are different from the case of fBm. We write

An = {
We have Case A on (tn−1, tn]

}
, Bn = AC

n ,

and

�T (s) =
∑
n≥2

�T (s)1(tn−1,tn](s)1An

+
∑
n≥2

�T (s)1(tn−1,tn](s)1Bn

=: �A
T (s) + �B

T (s).

As for fBm case, it is evident that ‖�B
T (s)‖T ,β < ∞ since only finite numbers of events Bn

happen. Furthermore, we can write

E
[∥∥�A

T (s)
∥∥

T ,β

] =
∫ T

0

E|�A
T (s)|
sβ

+
∞∑

n=2

∫ tn

tn−1

∫ tn−1

0

E|�A
T (t) − �A

T (s)|
(t − s)β+1

ds dt

+
∞∑

n=2

∫ tn

tn−1

∫ t

tn−1

E|�A
T (t) − �A

T (s)|
(t − s)β+1

ds dt

=: I1 + I2 + I3.
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The finiteness of I1 and I2 are easy to show and we omit the details. For I3 we set λn(t) =
sign(Xt − Xtn−1) and obtain

I3 =
∞∑

n=2

∫ tn

tn−1

∫ t

tn−1

E|�A
T (t) − �A

T (s)|
(t − s)β+1

ds dt

=
∞∑

n=2

nκ

∫ tn

tn−1

∫ t

tn−1

E|λn(t)1s≤τn − λn(s)1s≤τn |1An

(t − s)β+1
ds dt

≤
∞∑

n=2

nκ

∫ tn

tn−1

∫ t

tn−1

E[|λn(t) − λn(s)| + 1s≤τn<t ]
(t − s)β+1

ds dt.

Now note that∣∣λn(t) − λn(s)
∣∣ = 1{Xs−Xtn−1≤0≤Xt−Xtn−1 } + 1{Xs−Xtn−1 ≥0≥Xt−Xtn−1 },

and by taking expectation together with symmetry it is sufficient to consider probability

P(Xs − Xtn−1 ≤ 0 ≤ Xt − Xtn−1).

Let us study the integral∫ tn

tn−1

∫ t

tn−1

P(Xs − Xtn−1 ≤ 0 ≤ Xt − Xtn−1)

(t − s)β+1
ds dt.

By change of variable, we obtain that it is sufficient to study∫ tn−tn−1

0

∫ t

0

P(Xs+tn−1 − Xtn−1 ≤ 0 ≤ Xt+tn−1 − Xtn−1)

(t − s)β+1
ds dt

=
∫ tn−tn−1

0

∫ t/2

0

P(Xs+tn−1 − Xtn−1 ≤ 0 ≤ Xt+tn−1 − Xtn−1)

(t − s)β+1
ds dt

+
∫ tn−tn−1

0

∫ t

t/2

P(Xs+tn−1 − Xtn−1 ≤ 0 ≤ Xt+tn−1 − Xtn−1)

(t − s)β+1
ds dt

=: J1 + J2.

For J1 we can bound the probability with one and get

J1 ≤ C	1−β
n .

Consider next the term J2. By assumption 1 of Definition 2.2 the covariance of Gaussian
processes Xs+tn−1 − Xtn−1 and Xt+tn−1 − Xtn−1 is positive for every n and every s, t ∈
[0, tn − tn−1]. Thus we can apply Corollary 3.10 and assumption 4 to obtain

P(Xs − Xtn−1 ≤ 0 ≤ Xt − Xtn−1) ≤ C

√
Wn(t, s)√

E(Xs − Xtn−1)
2
,
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where

Wn(t, s) = E
(
Xt+tn−1 − Xtn−1 − (Xs+tn−1 − Xtn−1)

)2

≤ C(t − s)2α,

and

E(Xs+tn−1 − Xtn−1)
2 ≥ Cs2

by assumptions. Hence, by symmetry of probabilities P(Xs −Xtn−1 ≤ 0 ≤ Xt −Xtn−1) and
P(Xs − Xtn−1 ≥ 0 ≥ Xt − Xtn−1), we obtain

J2 ≤ C

∫ tn−tn−1

0

∫ t

t/2

(t − s)α−β−1

s
ds dt

≤ C

∫ tn−tn−1

0
tα−β−1 dt

≤ C	α−β
n .

To conclude, we note that ∫ tn

tn−1

∫ t

tn−1

1s≤τn<t

(t − s)β+1
ds dt ≤ C	1−β

n ,

and hence

I3 ≤ C

∞∑
n=2

nκ−γ (α−β) < ∞

by our choice of κ , γ , and β . �

Remark 3.12. With our general assumptions, we can only cover Hölder continuous variables of
order a > 1 − α. However, under additional assumption that for s close to T and small enough
	 the incremental variance satisfies

E[Xs+	 − Xs]2 ≥ C	2θ

with some constant C and some parameter θ ∈ (α,1), we can cover more. More precisely, we can
cover Hölder continuous processes of order a > θ − α. Especially this is the case if the process
X is stationary or has stationary increments with WX(0, t) ∼ t2α . In particular case of fBm one
can cover Hölder continuous processes of any order a > 0. Similarly, with a process X̃ one can
cover Hölder continuous processes of any order a > 0.

Remark 3.13. In [7], the authors proved also that under additional assumption that � is continu-
ous, the assumption of the Theorem 3.11 is also necessary. The proof is based only to the Hölder
continuity of fBm and well-known properties of Young integrals. Consequently, same conclusion
remains for our general class of processes.
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Corollary 3.14. Let Zt be a.s. Hölder continuous process of order a > 1 − α and for every
t ∈ (0, T ] we have X ∈X α

t . Then for every t there exists F-adapted process �t such that it holds,
a.s., ∫ t

0
�t(s)dXs = Zt ,

i.e. the integral
∫ t

0 �t(s)dXs is a version of Zt .

4. Applications and discussions

In the paper [7], the authors considered financial implications of their results to a model where
the stock is driven by geometric fBm. In particular, the results indicate one more reason why
geometric fBm is not a proper model in finance. Evidently, we could state similar results in our
general setting and as a consequence, we can argue that processes X ∈ X α

T do not fit well as
the driving process of stock prices. This is also discussed with details in [11] where the authors
proved the pathwise Itô–Tanaka formula for processes in our class. For further details, we refer
to [7] and [11], and the repetition of the arguments presented in [7] for more general processes
X ∈ X α

T are left to the reader. However, we wish to give one remark on financial implications of
our results. In [7], the authors proved that if the stock is driven by geometric fractional Brownian
motion, then one can replicate essentially all interesting derivatives. On the other hand, we can
never know whether the process driving the stock is geometric fBm or not. The benefit of our
results is that in addition to the fact that the replication can be done with much more general class
of processes, the replication can be done also in arbitrary small amount of time. This means that
one can wait and observe the process up to some time arbitrary close to the maturity, and start
the replication procedure after that point. Especially this is useful if there is no information on
the stock dynamics. Assuming that the driving process is Gaussian, one can save time to estimate
the covariance structure of the process and use this information for the replication.

On the uniqueness of representation

In the case of standard Brownian motion, every centered random variable ξ with finite variance
can be represented as

ξ =
∫ 1

0
�(s)dWs,

where
∫ 1

0 E[�(s)]2 ds < ∞. Moreover, a direct consequence of the Itô isometry implies that
in this case the process � is unique. However, for generalised Lebesgue–Stieltjes integrals the
representation is not unique. As an example, consider fractional Ornstein–Uhlenbeck process
given by

Uθ
t =

∫ t

0
e−θ(t−s) dBH

s .
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On the other hand, by Theorem 3.11 we know that

Uθ
t =

∫ t

0
�t(s)dBH

s ,

where �t(s) is defined equally zero on interval [0, t1], and t1 can be chosen arbitrary close to 1.
Hence, the representation is clearly not unique in general with pathwise integrals. On the other
hand, for Skorokhod integrals with respect to fBm the representation is unique (see [2]).

The problem of zero integral

Another application which was considered in [7] for fBm was the problem of zero integral, and
we wish to end the paper by giving some remarks on zero integral problem for our general class
of processes.

Recall that the zero integral problem refers to the question whether we have implication

∫ 1

0
us dXs = 0, a.s. ⇒ us = 0, P⊗ Leb

([0, T ]) a.e. (4.1)

For standard Brownian motion this is true under assumption
∫ T

0 E[u2
s ]ds < ∞, and the result is

a direct consequence of the Itô isometry. On the other hand, if we only have that
∫ 1

0 u2
s ds < ∞

a.s., then the conclusion is false. In particular, one can construct an adapted process such that∫ 1/2
0 us dWs = 1 and

∫ 1
1/2 us dWs = −1.

Similarly for fBm, the authors in [7] explained that one can construct an adapted process such
that

∫ 1/2
0 us dBH

s = 1 and
∫ 1

1/2 us dBH
s = −1. Now the results presented in this paper indicate

that the same conclusion remains true if we replace fBm BH with more general Gaussian process
X. This suggests that the problem of zero integral is not interesting in the first place since the
conclusion is false in most of the interesting case unless one poses some extra assumptions. We
also note that a negative answer to the question of zero integral is a direct consequence of the
fact that the representation is not unique. As another example of this, consider a random variable
(X1 − K)+. Clearly this random variable is an end value of Hölder continuous process, and thus
Theorem 3.11 implies that there is a process �1(s) such that

(X1 − K)+ =
∫ 1

0
�1(s)dXs.

Moreover, by construction of the process �1(s) we have �1(s) = 0 on the interval s ∈ [0, t1].
On the other hand, by Theorem 3.11 (assuming that the covariance RX of the process X itself
satisfies 1–4) we have

(X1 − K)+ = (X0 − K)+ +
∫ 1

0
1Xs>K dXs.
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If now X0 ≤ K a.s., subtracting first equation from the second one, we obtain that

0 =
∫ 1

0
�1(s) − 1Xs>K dXs.

Now �1(s) = 0 a.s. on [0, t1], and clearly the same is not true for process 1Xs>K . This is another

argument to show that the
∫ 1

0 us dXs = 0 does not imply us = 0 a.s. in general.
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