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We investigate a new natural class J of probability distributions modeling large claim sizes, motivated by
the ‘principle of one big jump’. Though significantly more general than the (sub-)class of subexponential
distributions S, many important and desirable structural properties can still be derived. We establish rela-
tions to many other important large claim distribution classes (such as D, S, L, K, OS and OL), discuss
the stability of J under tail-equivalence, convolution, convolution roots, random sums and mixture, and
then apply these results to derive a partial analogue of the famous Pakes–Veraverbeke–Embrechts theorem
from ruin theory for J . Finally, we discuss the (weak) tail-equivalence of infinitely-divisible distributions
in J with their Lévy measure.
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1. Introduction

Large claim size distributions play an important role in many areas of probability theory and
related fields, in particular insurance and finance. They often describe ‘extreme events’ and are
typically ‘heavy-tailed’ (see, e.g., [9] for an overview). However, the class of heavy-tailed ran-
dom variables K (defined in Section 2.3 below) has a very rich structure, and the identification
and discussion of relevant sub-classes is still an area of active research (see, e.g., [12] for a re-
cent account). While this makes it difficult to formulate general statements for K, for example
regarding ruin probabilities, such results can be achieved for certain important subclasses, most
importantly the subexponential distributions S . Recall that the distribution F of i.i.d. nonnegative
random variables X1,X2, . . . is called subexponential, iff

lim
x→∞

P(max(X1, . . . ,Xn) > x)

P(X1 + · · · + Xn > x)
= 1 (1.1)

for every n ≥ 2. This means that the tail of the distribution of the maximum of n such random
variables is asymptotically equivalent to the tail of the distribution of their sum. Hence, this sum
is typically dominated by its largest element in the case of an extreme event.

The class S of subexponential distributions has several important stability properties, and in
particular allows an elegant characterization of the asymptotic behaviour of the ruin probability
in the Cramér–Lundberg model (and in a weaker form also for more general renewal models).
Indeed, the corresponding ruin function � is asymptotically equivalent, for large initial capital,
to the so-called tail-integrated distribution FI associated with F (suitably normalized), iff FI ∈ S
(e.g., [10], see also Theorem 18 below).
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From an intuitive point of view, one might ask whether condition (1.1) on the tail behaviour of
the X1,X2, . . . might be too restrictive and could be weakened. For example, one could require
that the maximum is sufficiently close to, but not quite at the same level as, the sum of the claim
sizes x, say greater than x − K for some constant K . This appears to be a natural definition of
the folklore ‘principle of one big jump’ and leads to the following definition.

Definition 1 (Distributions of class J ). Let X1,X2, . . . be a sequence of i.i.d. nonnegative (es-
sentially) unbounded random variables. Let F denote their common distribution function and let
F denote the set of all distribution functions of nonnegative random variables with unbounded
support. We define the class J ⊂ F as the set of all distribution functions F ∈ F , such that for
all n ≥ 2,

lim
K→∞ lim inf

x→∞
P(max(X1, . . . ,Xn) > x − K,X1 + · · · + Xn > x)

P(X1 + · · · + Xn > x)
= 1. (1.2)

Just as in the case of subexponential distributions, it is enough that (1.2) holds for n = 2
(see Proposition 3). We will provide several equivalent formulations of (1.2) below. Of course,
such a definition raises immediately a variety of questions. First, one certainly needs to clarify
whether this definition produces a nontrivial new class of distributions at all. We will answer this
affirmatively in Section 2.3 where we will also discuss the relation of J to other distribution
classes (it is obvious from the definition that S ⊂ J ). At first sight rather surprisingly, it turns
out that our definition also admits some light-tailed distributions to J , see Example 6 (which, as
an element of S(γ ) with γ = 1, is also known to obey a ‘principle of one big jump’). Given this
last fact, a second natural question is whether J is still sufficiently coherent to exhibit convenient
closure properties. It turns out that J is closed under weak tail-equivalence (in contrast to S),
see Proposition 8 below, and has good properties with respect to closure under convolution and,
importantly, convolution roots (Proposition 10), as well as mixture (Proposition 12). The same
holds true for random sums (Propositions 14 and 16).

These rather remarkable properties will then be applied in Section 3, where we provide a
partial analogue of the Pakes–Veraverbeke–Embrechts theorem for J (Theorem 19), establishing
weak tail-equivalence among classical risk quantites from ruin theory. This result is new and
appears quite striking, given that the class J is far richer than S .

Finally, for infinitely-divisible elements of J , we prove their weak tail-equivalence with their
normalized Lévy measure, in the spirit of earlier results of Goldie et al. [8] and Shimura and
Watanabe [18].

Remark 2. Regarding the rationale behind (1.2) one might wonder whether one should also
consider distribution functions F with the property that

lim
x→∞

P(max(X1, . . . ,Xn) > (1 − ε)x,X1 + · · · + Xn > x)

P(X1 + · · · + Xn > x)
= 1, (1.3)

for all n ≥ 2, and for all ε ∈ (0,1). Indeed, this natural condition gives rise to an even larger class
of distributions, denoted by A, with S ⊂ J ⊂ A. Some results for the class A can be found in
the dissertation of Beck [2].
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2. Basic properties of the class J
2.1. Notation and set-up

Throughout Section 2, we let X1,X2, . . . be a sequence of i.i.d. random variables on some prob-
ability space (�,A,P) with values in [0,∞). Let F ∈F denote their common distribution func-
tion. We denote by Sn the sum of the first n random variables, that is

Sn =
n∑

i=1

Xi.

Further, let F(x) := 1 − F(x) be the tail of F . If ν is a probability measure on [0,∞), then we
define ν(t) := ν((t,∞)). Let F ∗ G be the convolution of two distribution functions F,G ∈ F
and Fn∗, for n ≥ 0, the n-fold convolution of F with itself, where F 1∗ := F and F 0∗ is the
distribution corresponding to the Dirac measure at 0. Let f and g be two positive functions on
[0,∞). We write that f ∼ g if

lim
x→∞

f (x)

g(x)
= 1,

that is, f and g are (strongly) asymptotically equivalent (as x → ∞), and f 	 g in the case

0 < lim inf
x→∞

f (x)

g(x)
≤ lim sup

x→∞
f (x)

g(x)
< ∞.

The latter relation will be called weak asymptotic equivalence. Whenever F̄ ⊆F , we freely write
X ∈ F̄ or μ ∈ F̄ for a nonnegative random variable X or a probability measure μ on [0,∞) when
the associated distribution function belongs to F̄ . Let G denote the set of nonnegative, unbounded
and nondecreasing functions. Finally, for all n ∈N and for all k ∈ {1, . . . , n}, xk,n denotes the kth
largest among x1, . . . , xn.

2.2. Equivalent characterizations of the class J
It is interesting to see that the defining relation (1.2) is only one of many ways to characterize the
class J . Define, for n ≥ 2,

J (n)
1 :=

{
F ∈F : lim

K→∞ lim inf
x→∞ P(X2,n ≤ K|Sn > x) = 1

}
,

J (n)
2 :=

{
F ∈F : lim

K→∞ inf
x≥0

P(X2,n ≤ K|Sn > x) = 1
}
,

J (n)
3 :=

{
F ∈F : lim

K→∞ lim inf
x→∞ P(X1,n > x − K|Sn > x) = 1

}
, (2.1)

J (n)
4 :=

{
F ∈F : lim

K→∞ lim inf
x→∞ P(X1,n > Sn − K|Sn > x) = 1

}
,

J (n) :=
{
F ∈F : lim

x→∞P
(
X2,n > g(x)|Sn > x

) = 0 ∀g ∈ G
}
.
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Note that, by definition, J = ⋂
n≥2 J

(n)
3 . However, it turns out that all of the above subclasses

are equal to the class J . Indeed, we have

Proposition 3. For all n ≥ 2,

(a) J (n) = J (n)
1 = J (n)

2 = J (n)
3 = J (n)

4 ,
(b) J (n) = J (n+1),
(c) J = J (2).

A proof can be found in Section 4. Note that a term reminiscent to the one in the definition of
class J (2) appears implicitly in [1], Proposition 2.

Remark 4. An elegant probabilistic way to think about the condition giving rise to class J (n)
2 is

to interpret it as tightness condition of the conditional laws of X2,n, given Sn > x.

2.3. Relation to other classes of claim size distributions and heavy tails

Recall that a claim size distribution F ∈ F is called heavy-tailed, if it has no exponential mo-
ments, that is, ∫ ∞

0
eλx dF(x) = ∞ for all λ > 0.

In this case, we write F ∈ K. Following the definition (but not the notation) of [20], we write
F ∈ K∗ if limx→∞ eλxF (x) = ∞ holds for all λ > 0. Note that K∗ �K, see, for example, [19],
and thus we call elements of K∗ ‘strongly heavy tailed’.

Three of the most important and well-studied subclasses of heavy-tailed distributions are the
class S of subexponential distributions, the class of long-tailed distributions L and the class D
of dominatedly varying distributions. Recall that a distribution F ∈F is subexponential if for all
n ≥ 2,

lim
x→∞

Fn∗(x)

F (x)
= n

(it is actually enough to require this condition for n = 2 only, see, e.g., [9]), and that F is long-
tailed if

lim
x→∞

F(x + y)

F (x)
= 1

for every y ∈ R\{0} (or equivalently for some). Further, F has a dominatedly varying tail,
if

lim sup
x→∞

F(xu)

F (x)
< ∞
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for all (or equivalently for some) 0 < u < 1. It is well known that

S ⊂ L ⊂K∗ ⊂K, D ⊂K∗ ⊂K, L∩D ⊂ S and D � S,S �D,

see [9] for most of these inclusions (the remaining ones are easy to check).
A generalization of the class of subexponential distributions is given by Shimura and Watanabe

[18]. They systematically investigate the class OS of ‘O-subexponential’ distributions, which
was introduced by Klüppelberg in [14], where F ∈ OS if

cF := lim sup
x→∞

F 2∗(x)

F (x)
< ∞. (2.2)

In a similar way, it is possible to generalize the class L. Let OL be the class of all distributions
such that

lim sup
x→∞

F(x + y)

F (x)
< ∞

for every y ∈ R. The generalizations OL and OS of the classes L and S contain some light-tailed
distributions, so that OL,OS �K. Further, it can be shown [18], Proposition 2.1, that

OS ⊂OL.

Finally, we recall the light-tailed distribution classes S(γ ) and L(γ ), for γ ≥ 0: We say that a
distribution F ∈F belongs to S(γ ) for some γ ≥ 0, if for any y ∈ R,

lim
x→∞

F(x + y)

F (x)
= exp(−γy), (2.3)

and for some constant c ∈ (0,∞),

F 2∗(x)

F (x)
= 2c < ∞.

A distribution F ∈ F belongs to L(γ ), iff it satisfies (2.3). These classes were introduced inde-
pendently by Chistyakov [3] and Chover, Ney and Wainger [4,5], see also [7]. Note that L(0) = L
and S(0) = S .

For our new class J , we have the following results.

Proposition 5.

(a) J ⊂OS ,
(b) J ∩L = S ,

(b′) J ∩L(γ ) = S(γ ), γ > 0,
(c) D ⊂ J ,
(d) J �K.
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A proof can be found in Section 4. Part (b′) has been suggested to us by Sergey Foss. Note
that (b′) already implies (d) (so that the latter is in principle redundant), but we think that the fact
that J includes some light-tailed functions is important and thus we end this subsection with a
concrete example (still obeying a ‘principle of one big jump’).

Example 6. Consider the distribution function F ∈F with density

f (x) = e−x C

1 + x2
, x ≥ 0,

for C > 0 such that
∫ ∞

0 f (x)dx = 1. Note that there seems to be no closed-form expression for
C, but it can be evaluated numerically to C ≈ 1.609. Obviously F /∈K and thus F /∈ S . Since

lim
K→∞ lim

x→∞

∫ x−K

K
f (y)f (x − y)dy∫ x

0 f (y)f (x − y)dy
= 0,

it follows that

lim
K→∞ lim sup

z→∞

∫ ∞
z

∫ x−K

K
f (y)f (x − y)dy dx∫ ∞

z

∫ x

0 f (y)f (x − y)dy dx
= lim

K→∞ lim sup
z→∞

P(X2,2 > K,S2 > z)

P(S2 > z)
= 0

and hence F ∈ J . From Proposition 5(a), we also have that F ∈ OS . Indeed, we can compute
cF from (2.2) and obtain

cF = Cπ. (2.4)

Note that f (x) is obtained from the (subexponential) density 2/(π(1 + x2)) by multiplication
with a negative exponential and a suitable constant. This is a typical way to construct distributions
of the distribution class S(γ ), γ ≥ 0, and indeed we have F ∈ S(γ ) with index γ = 1. This class
consists of light-tailed functions and has a well-studied ruin theory, obeys the ‘principle of one
big jump’, and is outside the classical Lundberg framework.

Remark 7. It seems natural to ask ‘how many’ or ‘which kind of’ light-tailed functions can be
found in J . As a first result in this direction note that since J ⊂ OL, it follows from Proposi-
tion 2.2 in [18] that each light-tailed distribution F ∈ J exhibits at least some infinite exponential
moments, that is, there exists a λF > 0 such that∫ ∞

0
eλF x dF(x) = ∞.

Hence, the class J in some sense ‘touches the boundary’ of the class of light-tailed functions. In
view of (b′), the conjecture J = (J ∩K) ∪ (

⋃
γ>0 S(γ )) seems attractive.

2.4. Closure properties

As a first result, we show that our new class J is closed under weak asymptotic tail-equivalence
(in contrast to S and L, which require (strong) asymptotic tail-equivalence for closure).
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Proposition 8. If F ∈ J and F 	 G, then G ∈ J .

Example 9. Neither L nor S are closed under weak tail-equivalence. Indeed, let

F(x) :=
(

1 − 1

x

)+
, x ≥ 0,

be a Pareto distribution with index 1, so that F is subexponential and long-tailed. Let G be the
‘Peter-and-Paul’ distribution, that is, G(x) = 2−k for x ∈ [2k,2k+1), k ∈ N0. Then F and G are
weakly tail-equivalent, that is, F 	 G, but G /∈ L and hence G /∈ S .

Although we will see that J is not closed under convolution, we will find below that we have
closure for ‘convolution powers’ and for weakly tail-equivalent distributions. Further, we have
closure for ‘convolution roots’, in contrast to OS (cf. [18]) – this property is highly desirable as
we will see in the sequel.

We say that a distribution class C is closed under convolution, if F1 ∗F2 ∈ C for any F1,F2 ∈ C.
It is well known that the class L is closed under convolution, see [6], Theorem 3(b).

Proposition 10.

(a) If F ∈ J , then F 	 Fn∗ and hence Fn∗ ∈ J .
(b) If F ∈ J and F 	 G, then F ∗ G ∈ J .
(c) If Fn∗ ∈ J , then F 	 Fn∗ and hence F ∈ J .

Example 11. The classes S and J are not closed under convolution. A counterexample for
the class S is given in [16], Section 3. Since S ⊂ L, by the counterexample from [16] and
Theorem 3(b) from [6] (convolution closure of L) we know there exist two distributions F1,
F2 such that F1,F2 ∈ S and F1 ∗ F2 ∈ L but F1 ∗ F2 /∈ S . Since we have J ∩ L = S from
Proposition 5(b), F1,F2 ∈ J but F1 ∗ F2 /∈ J .

We now turn to mixture properties of the class J . Let X,Y be two random variables with
distribution functions F,G ∈ F . Recall that X∨Y (resp. X∧Y ) denotes the pointwise maximum
(resp. minimum) of X and Y . We call a random variable Z mixture of X and Y with parameter
p ∈ (0,1), if its distribution function is given by

pF + (1 − p)G ∈F .

It is easy to see that if X and Y are independent, we have for all mixtures Z with p ∈ (0,1),

(X ∨ Y) 	 Z. (2.5)

Proposition 12. Let X,Y ∈F be independent.

(a) If X,Y ∈ J , then the following are equivalent:
(i) (X ∨ Y) ∈ J ;

(ii) (X + Y) ∈ J ;
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(iii) Z ∈ J .
(b) If X,Y ∈ J , then (X ∧ Y) ∈ J .

The previous statement remains true when J is replaced by S (see [23], Theorem 1, [13],
Theorem 1, and [12], Theorem 3.33).

Remark 13. Concerning part (b) of the previous proposition one may ask if X,Y ∈ J even
implies that X ∨ Y and X + Y are weakly tail equivalent which would immediately imply the
equivalence of (i) and (ii). Perhaps surprisingly, this is not true in general – not even under the
stronger assumption that X,Y ∈ S as the example in [16] shows.

2.5. Random sums

As before, let F ∈ F be the common distribution function of the i.i.d. random variables {Xi}.
Recall the notation

cF = lim sup
x→∞

F 2∗(x)

F (x)
.

Denote by N a discrete random variable with values in N0, independent of the {Xi}, with prob-
ability weights pn := P{N = n}, n ≥ 0 and p0 < 1. Denote by N(1) and N(2) two independent
copies of N , and write

(p ∗ p)n := P
(
N(1) + N(2) = n

)
, n ≥ 0.

We now consider the random sum

SN :=
N∑

i=1

Xi

with distribution function FN . Under a suitable decay condition on the (pn), we obtain the fol-
lowing stability property of J for a random number of convolutions and convolution roots:

Proposition 14.

(a) If F ∈ J and
∑∞

k=1 pk(cF + ε − 1)k < ∞ for some ε > 0, then FN 	 F and hence
FN ∈ J .

(b) If FN ∈ J and
∑∞

k=1 pk(cFN
+ ε − 1)k < ∞ for some ε > 0, then F 	 FN and hence

F ∈ J .

Remark 15. Note that one cannot infer FN ∈ J or F 	 FN from F ∈ J without additional
conditions on N . This is true even if N is a geometric random variable, say with parameter
p ∈ (0,1) and probability weights pk = pk(1 − p), k ≥ 0. Indeed, while it is obvious that the
condition of the Proposition is satisfied for all p ∈ (0, (cF +ε−1)−1), a counterexample is given
by the distribution F ∈ J from Example 6 with geometric N that has a parameter p close enough
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to 1. To see this, consider a sequence of i.i.d. random variables X1,X2,X3, . . . with distribution
function F ∈ J from Example 6. Let α > 0 be such that αEX1 > 1. For all m ∈ N we have

P(X1 + · · · + XN > m) ≥ P
(
N ≥ �αm�)P(X1 + · · · + X�αm� > m)

and

P(X1 > m) =
∫ ∞

m

Ce−x

1 + x2
dx ≤ Ce−m.

If p is close enough to 1 we obtain by our choice of α and the law of large numbers,

P(X1 + · · · + XN > m)

P(X1 > m)
≥ em

C
p�αm�P(X1 + · · · + X�αm� > m) → ∞,

for m → ∞, so F 	 FN does not hold. It follows from part (b) of Proposition 16 below that
FN /∈ J .

A related result for random sums in J and OS can be obtained under the following condition
on N and cF .

Proposition 16. Suppose

lim inf
n→∞

P(N1 + N2 > n)

P(N1 > n)
> cFN

= lim sup
x→∞

F 2∗
N (x)

FN(x)
,

then the following assertions hold.

(a) If FN ∈ OS , then there exists m ∈N such that Fm∗ 	 FN .
(b) If FN ∈ J , then F 	 FN and hence F ∈ J .

In [21] it is pointed out that limn→∞ pn+1
pn

= 0 implies limn→∞ (p∗p)n
pn

= ∞, which in turn

implies lim infn→∞ P(N1+N2>n)
P(N1>n)

= ∞. From there, we also recall some examples for N .

Example 17. The following distributions satisfy the condition lim infn→∞ (p∗p)n
pn

= ∞:

(1) Poisson distribution: pn = cn

n! e−c, c > 0.
(2) Geometric distribution: pn = (1 − p)pn, p ∈ (0,1).
(3) Negative Binomial distribution: pn = (

n+r−1
n

)
pn(1 − p)r , p ∈ (0,1), r > 0.

3. Applications

3.1. Ruin theory and maximum of a random walk

Let X1,X2, . . . be a family of strictly positive i.i.d. random variables on a probability space
(�,A,P) with distribution function FX and finite expectation μX . Let N = {N(t), t ≥ 0} be a
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renewal process with i.i.d. strictly positive waiting times W1,W2, . . . We assume that the Wi are
independent of the Xi , and with finite expectation 1/λ, for some λ > 0. We then define the total
claim amount process as

S(t) :=
N(t)∑
i=1

Xi, t ≥ 0.

Let Tn := W1 +· · ·+Wn,n ≥ 1 be the arrival times of the claims, where we set T0 := 0. By c > 0
we denote the premium rate and by u ≥ 0 the initial capital. Finally, we define the risk process,
for u ≥ 0, by

Z(t) := u + ct − S(t), t ≥ 0.

If the above claim arrival process N is a Poisson process, we are in the classical Cramér–
Lundberg model, otherwise, we are in the more general Sparre Andersen model. By

τ := inf
{
k ≥ 1 : Z(Tk) < 0

}
we denote the ruin time (with the usual convention that inf∅ = ∞), and by

�(u) := P
{
τ < ∞|Z(0) = u

}
we denote the ruin probability. This quantity is the central object of study in ruin theory. We
will be interested in obtaining asymptotic results for �(u) for large u if FX ∈ J . To this end, we
first reformulate the classical ruin problem into a question about the maximum of an associated
random walk with negative drift. We follow the exposition of [24]. Let

X̄k := Xk − cWk = −(
Z(Tk) − Z(Tk−1)

)
, k ≥ 1.

Note that the X̄i are i.i.d. with values in R. We denote their distribution function by FX̄ . By the
strong law of large numbers, we have �(u) ≡ 1 if E[X̄k] ≥ 0 (unless X̄1 ≡ 0). Otherwise, we
say that the net profit condition holds, and we denote a := E[X̄k] < 0. Let

S̄n := X̄1 + · · · + X̄n, n ≥ 1, S̄0 := 0.

Under the net profit condition, this is a discrete-time random walk with negative drift. For the
ruin probability, we obtain

�(u) = P
{

sup
n≥0

S̄n > u
}
, u ≥ 0.

Hence we have expressed the probability of ruin in terms of the distribution of the supremum of
a random walk with negative drift, which is the object that we will now investigate. Let

M := sup
n≥0

S̄n

be the supremum of the random walk and denote its distribution by FM . With this notation, we
have �(u) = FM(u), u ≥ 0.
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Denote by

τ+ := inf{n ≥ 1 : S̄n > 0},
the first passage time over zero, with the convention inf∅ = ∞. Then, the first ascending ladder
height is given by S̄τ+ , which is a defective random variable (since τ+ may be infinite). Set

P(τ+ < ∞) =: p < 1.

We assume that p > 0 which only excludes uninteresting cases and is automatically satisfied in
the Cramér–Lundberg model. Further, let

G(x) := P(S̄τ+ > x|τ+ < ∞), x ≥ 0.

It is well known (see [11], Chapter XII) that the tail of the distribution M can be calculated by
the formula

FM(x) = (1 − p)

∞∑
n=0

pnGn∗(x), x ≥ 0. (3.1)

Finally, denote by

FI (x) := 1 − min

{
1,

∫ ∞

x

FX̄(y)dy

}
, x ≥ 0,

the tail-integrated distribution of FX̄ . Then, the classical Pakes–Veraverbeke–Embrechts theorem
can be stated as follows (see [24]).

Theorem 18 (Pakes–Veraverbeke–Embrechts). With the above notation and assumptions, re-
calling a := E[X̄k] < 0, the following assertions are equivalent:

(1) FI ∈ S ;
(2) G ∈ S ;
(3) FM ∈ S ;
(4) FM ∼ − 1

a
FI .

Our main goal in this section is to (partially) extend this result from the class S to J . Recall
the notation

cG = lim sup
x→∞

G2∗(x)

G(x)
,

and from [24], Lemma 2.2, that if FI ∈OL, then G 	 FI .

Theorem 19. With the above notation and a < 0, assume additionally that FI ∈ OL and that
one of the following conditions holds:

(i) p(cG + ε − 1) < 1 for some ε > 0,
(ii) FM ∈OS ,
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(iii) FI ∈ J ∩K∗.

Then the following assertions are equivalent:

(1) FI ∈ J ;
(2) G ∈ J ;
(3) FM ∈ J .

Each one of (1), (2) or (3) combined with each one of (i), (ii) or (iii) implies

(4) FM 	 G 	 FI .

For a (nontrivial) example of a distribution FI ∈ OL ∩ J ∩ K∗, but F /∈ L, see the recent
article [22].

Corollary 20. If a < 0 and FI 	 H for some H ∈ S , then FM 	 G 	 FI .

Note that the analogous weak tail-equivalence does not hold if FI is an exponential distribution
with parameter λ > 0, while one has strong asymptotic tail-equivalence (up to a constant) in the
case FI ∈ S(γ ), see [15].

Theorem 19 is inspired by and should be compared with the recent partial generalization of
Theorem 18 to the even larger class OS by Yang and Wang in [24], Theorems 1.2 and 1.3, which
is however considerably weaker. In particular, it does not cover Example 3.2 in [22]. One reason
is that the class OS is not closed under convolution roots, as opposed to S and J .

Let H+ denote the positive part of a distribution function H .

Theorem 21. With the above notation and a < 0, if FI ∈OL, then

(a) lim supx→∞
FI (x)

FM(x)
< ∞;

(b) (i) FI ∈ OS and
(ii) G ∈OS are equivalent;

(c) (iii) FM 	 G 	 FI yields (i) or (ii).

If FI ∈ L and (cF+
I

− 1) < a, then (i) or (ii) yields (iii). In this case, (i) ((ii) or (iii)) implies
FM ∈ OS .

Note that the weak asymptotic tail equivalence (iii) requires FI ∈ L as opposed to the situation
in Theorem 19. Further, (a) gives only a lower asymptotic bound for FM in terms of FI .

3.2. Infinitely divisible laws

In this section, we consider the relation between the asymptotic tail behaviour of infinitely divis-
ible laws and their Lévy measures. Following [18], we denote by ID+ the class of all infinitely
divisible distributions μ on [0,∞) with Laplace transform

μ̂(s) = exp

{∫ ∞

0

(
e−st − 1

)
ν(dt)

}
,
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where the Lévy measure ν satisfies ν(t) > 0 for every t > 0, and∫ ∞

0
(1 ∧ t)ν(dt) < ∞.

Define the normalized Lévy measure ν1 as ν1 = 1{x>1}ν/ν(1,∞). Embrechts et al. proved in [8],
Theorem 1, the following classical result.

Theorem 22. Let μ be a distribution in ID+ with Lévy measure ν. Then the following assertions
are equivalent:

(1) μ ∈ S ;
(2) ν1 ∈ S ;
(3) μ ∼ ν.

Shimura and Watanabe partially extended the result of Embrechts from the class S to the class
OS in [18], Theorem 1.1:

Theorem 23. Let μ be a distribution in ID+ with Lévy measure ν.

(a) The following are equivalent:
(1) ν1 ∈ OS ;
(2) μ 	 ν1.

(b) The following are equivalent:
(1) μ ∈OS ;
(2) νn∗

1 ∈OS for some n ≥ 1;

(3) μ 	 νn∗
1 for some n ≥ 1.

(c) If ν1 is in OS , then μ is in OS . The converse does not hold.

Since the class J is closed under convolution roots, one expects to be able to improve the
result for OS to class J significantly. Indeed this is possible.

Theorem 24. Let μ be a distribution in ID+ with Lévy measure ν.

(a) Then the following assertions are equivalent:
(1) μ ∈ J ;
(2) ν1 ∈ J .

(b) If (1) or (2) holds, then μ 	 ν1.

Since the proof is simple, we refrain from postponing it to the next section and state it here.

Proof of Theorem 24. (a) From Theorem 23(b), J ⊆ OS , Proposition 8, μ ∈ J we infer μ 	
νn∗

1 and νn∗
1 ∈ J for some n ≥ 1. The equivalence μ ∈ J ⇔ ν1 ∈ J follows immediately from

Proposition 10(c).
(b) If (1) holds the assertion follows from Theorem 23(b), Propositions 8 and 10(c). If (2)

holds, then the assertion follows from Theorem 23(a) and J ⊂OS . �
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4. Proofs

Throughout the proofs, we will use the following notation. Denote by X,X1,X2, . . . i.i.d. random
variables with common distribution function F ∈ F , and by Y,Y1, Y2, . . . i.i.d. random variables
with common distribution function G ∈ F . By Xk,n we denote the kth largest element (point-
wise) out of X1, . . . ,Xn, 1 ≤ k ≤ n, and by Xk,(l,...,m) the kth largest element (pointwise) out of
Xl, . . . ,Xm, 1 ≤ l ≤ m,1 ≤ k ≤ m − l + 1. Further, let

Sn :=
n∑

k=1

Xk and Ŝn :=
n∑

k=1

Yk.

Finally, denote by S
(i)
n , respectively Ŝ

(i)
n , i = 1, . . . ,4, independent identically distributed copies

of Sn respectively Ŝn. We begin with several technical lemmas, which we collect here for refer-
ence.

Lemma 25. Let F,G,H, I ∈F . Suppose F 	 G and H 	 I . Then F ∗ H 	 G ∗ I .

A proof can be found in [18], Proposition 2.7. Recall from Section 4.1 that G denotes the set
of nonnegative, unbounded and nondecreasing real functions.

Lemma 26. Suppose g ∈ G. Then:

lim sup
x→∞

P(S2 > x,X1 ∧ X2 > g(x))

P(Ŝ2 > x,Y1 ∧ Y2 > g(x))
≤

(
lim sup
x→∞

F(x)

G(x)

)2

.

A proof can be found in [12], Lemma 2.36.

Lemma 27. For each F ∈F , c ≥ 0 and n ≥ 2, we have

lim
K→∞ lim sup

x→∞
P(X1,n > x − c,X2,n > K|Sn > x) = 0.

Proof. For x − c ≥ K ≥ c, we have

P(X1,n > x − c,X2,n > K|Sn > x)

≤ P(X1,n > x − c,X2,n > K)

P(X1,n > x − c,X2,n > c)
= 1 − (1 − F(x − c))n − nF(x − c)(F (K))n−1

1 − (1 − F(x − c))n − nF(x − c)(F (c))n−1

= nF(x − c)(1 − F(K)n−1) + o(F (x − c))

nF (x − c)(1 − F(c)n−1) + o(F (x − c))
= 1 − F(K)n−1 + o(1)

1 − F(c)n−1 + o(1)
,

and the result follows by passing to the limit. �
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Lemma 28. Let γ ≥ 0 and F ∈ L(γ ). Then F ∈ S(γ ) if and only if

P
(
X1 + X2 > x,min(X1,X2) > h(x)

) = o
(
F(x)

)
as x → ∞ (4.1)

for all h ∈ G.

The case γ = 0 is shown in [1], Proposition 2, and the case γ > 0 is analogous. In some
proofs, we will need the dominated convergence theorem and for its application an upper bound
for Fn∗(x)/F (x) is required. One such is given by the lemma below, known as Kesten’s lemma.

Lemma 29. If F ∈OS then, for every ε > 0, there exists c > 0 such that for all n ≥ 1 and x ≥ 0:

Fn∗(x)

F (x)
≤ c(cF + ε − 1)n.

A proof can be found in [18], Proposition 2.4.

4.1. Proof of Proposition 3

Proof of Proposition 3. (a) We show J (n) = J (n)
1 = J (n)

2 = J (n)
3 = J (n)

4 . The inclusions

J (n) ⊇ J (n)
1 ⊇ J (n)

2 and J (n)
4 ⊆ J (n)

3 are obvious. The inclusion J (n)
1 ⊆ J (n)

4 follows imme-
diately from {

X2,n <
K

n − 1
, Sn > x

}
⊆ {X1,n > Sn − K,Sn > x},

for all F ∈ F , K > 0 and x > 0. It remains to show J (n) ⊆ J (n)
1 ⊆ J (n)

2 and J (n)
1 ⊇ J (n)

3 .

First, we prove the inclusion J (n) ⊆ J (n)
1 . Suppose F ∈ J (n) and F /∈ J (n)

1 , then there is
τ > 0 such that for any m ≥ 1:

lim inf
x→∞ P(X2,n ≤ m|Sn > x) ≤ 1 − τ.

For every m ≥ 1, we choose an unbounded and strictly increasing sequence (xm
k )k∈N with

limm→∞ xm
m = ∞ such that for all k ∈ N:

P
(
X2,n ≤ m|Sn > xm

k

) ≤ 1 − τ

2
.

Hence, we obtain

lim sup
m→∞

P
(
X2,n ≤ m|Sn > xm

m

) ≤ 1 − τ

2
,

contradicting the fact that

lim
x→∞P

(
X2,n > g(x)|Sn > x

) = 0 for all g ∈ G,

so J (n) ⊆ J (n)
1 .
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Next, we show the inclusion J (n)
1 ⊆ J (n)

2 . Suppose F ∈ J (n)
1 . By definition we know that for

every ε > 0 there are constants x0 and K0 such that for all x ≥ x0 and K ≥ K0:

P(X2,n ≤ K|Sn > x) ≥ 1 − ε. (4.2)

Let δ > 0. Increasing K0 if necessary, we can assume that P(X2,n ≤ K) ≥ 1 − δ for all K ≥ K0.
Hence, we obtain for x ≤ x0 and K ≥ K0:

P(X2,n ≤ K|Sn > x) ≥ P(X2,n ≤ K) + P(Sn > x) − 1

P(Sn > x)
≥ 1 − δ

P(Sn > x0)
. (4.3)

By (4.2) and (4.3) we see that F ∈ J (n)
2 , since δ > 0 and ε > 0 are arbitrary.

Finally, we show J (n)
1 ⊇ J (n)

3 . Suppose F ∈ J (n)
3 and F /∈ J (n)

1 . Then there exists some δ > 0
such that for any m ≥ 1:

lim inf
x→∞ P(X2,n ≤ m|Sn > x) ≤ 1 − 2δ.

For every m ≥ 1, we choose an unbounded and strictly increasing sequence (xm
k )k∈N such that

for all k ∈N:

P
(
X2,n ≤ m|Sn > xm

k

) ≤ 1 − δ.

Since F ∈ J (n)
3 we know there exist c > 0 and x̄ > 0 such that for all x ≥ x̄:

P(X1,n > x − c|Sn > x) ≥ 1 − δ

3
.

Hence, we obtain for any m ≥ 1 and all k ≥ 1, xm
k ≥ x̄:

P
(
X1,n > xm

k − c,X2,n > m|Sn > xm
k

)
= P

(
X1,n > xm

k − c|Sn > xm
k

) − P
(
X1,n > xm

k − c,X2,n ≤ m|Sn > xm
k

)
≥ P

(
X1,n > xm

k − c|Sn > xm
k

) − P
(
X2,n ≤ m|Sn > xm

k

)
≥ 1 − δ

3
− 1 + δ = 2

3
δ.

We get

lim
m→∞ lim sup

x→∞
P(X1,n > x − c,X2,n > m|Sn > x) > 0,

which contradicts Lemma 27.
(b) We show J (n+1) = J (n). It suffices to prove the inclusion J (n+1)

2 ⊇ J (n)
2 . Then, we can

conclude from (a) that J (n+1) ⊇ J (n).
Suppose F ∈ J (n)

2 . By definition of J (n)
2 we know for all ε > 0 there exists a constant K0 > 0

such that for all x ≥ 0:

P(X2,n ≤ K0, Sn > x) ≥
(

1 − ε

n + 1

)
Fn∗(x).
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Hence, we obtain for K ≥ K0 and x ≥ 0:

P(X2,(1,...,n) ≤ K|Sn+1 > x) =
∫ ∞

0 P(X2,n ≤ K,Sn > x − t)dF(t)

F (n+1)∗(x)

≥ (1 − ε/(n + 1))
∫ ∞

0 Fn∗(x − t)dF(t)

F (n+1)∗(x)
= 1 − ε

n + 1
.

Thus, we see that for all K ≥ K0 and x ≥ 0:

P(X2,n+1 ≤ K|Sn+1 > x) = P(X2,(1,...,n) ≤ K,X2,(1,...,n−1,n+1) ≤ K,

. . . ,X2,(2,...,n,n+1) ≤ K|Sn+1 > x)

≥ (n + 1)P(X2,n ≤ K|Sn+1 > x) − n

≥ 1 − ε,

where we used the inequality

P

(
n+1⋂
i=1

Ai

)
≥

n+1∑
i=1

P(Ai) − n.

We obtain F ∈ J (n+1)
2 . �

In the second part of the proof of Proposition 3(b) we will use Proposition 5(a), for that reason
we give the proof of Proposition 5(a) already here.

Proof of Proposition 5(a). We prove J (n) ⊆ OS . Let n ≥ 3. Suppose that F ∈ J (n) = J (n)
1 .

Then,

1 = lim
K→∞ lim inf

x→∞ P

(
X2,n <

K

n − 1

∣∣∣Sn > x

)
≤ lim

K→∞ lim inf
x→∞ P(X1,n > x|Sn > x + K)

≤ lim
K→∞ lim inf

x→∞
nP(Xn > x)

P(Sn−1 > x)P(Xn > K)

≤ n lim
K→∞

(
1

P(Xn > K)
lim inf
x→∞

P(Xn > x)

P(Sn−1 > x)

)
.

Hence, we have lim infx→∞ P(X1>x)
P(Sn−1>x)

> 0 and thus lim supx→∞
P(Sn−1>x)

P(X1>x)
< ∞.

In the case n = 2 we use the inclusion J (3) ⊇ J (2), which was already shown above, to get
F ∈ J (3). �

We now resume the second part of the proof of Proposition 3.
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Proof of Proposition 3. We begin with the inclusion J (n+1) ⊆ J n. Suppose F ∈ J (n+1) and
F /∈ J (n). Then there exists g ∈ G such that

lim sup
x→∞

P
(
X2,n > g(x)|Sn > x

)
> 0

and

lim
x→∞P

(
X2,n+1 > g(x)|Sn+1 > x

) = 0.

Thus, we have:

lim sup
x→∞

P(X2,n > g(x), Sn > x)

P(X2,n+1 > g(x), Sn+1 > x)

P(Sn+1 > x)

P(Sn > x)
≤ lim sup

x→∞
P(Sn+1 > x)

P(Sn > x)
= ∞. (4.4)

By Proposition 5(a), we obtain F ∈ J (n+1) ⇒ F ∈OS . From the identical convolution closure
of OS (see also [18], page 452, Proposition 2.5(iv)), we see that F ∈ OS ⇒ Fn∗ ∈ OS ⇔
lim supx→∞

P(S2n>x)
P(Sn>x)

< ∞, by (4.4) we obtain a contradiction. �

4.2. Proof of Proposition 5

Proof of Proposition 5. (a) This was already shown above as part of the proof of Proposition 3.
(b) and (b′) Let γ ≥ 0. If F ∈ S(γ ), then F ∈ L(γ ) and, by Lemma 28, F ∈ J , so S(γ ) ⊆

J ∩L(γ ).
Conversely, let F ∈ J ∩L(γ ). From F ∈ J ⊂ OS , it follows that F satisfies (4.1) and there-

fore Lemma 28 implies that F ∈ S(γ ).
(c) We show D ⊆ J . Let F ∈D and

γ := sup
x≥0

F(x/2)

F (x)
.

Let ε > 0. There exists K0 > 0 such that for all K ≥ K0

P(X2 > K)γ <
ε

2
.

For K ≥ K0 and x such that x ≥ 2K , we get

P(X1 ∧ X2 > K|S2 > x) ≤ 2P

(
X1 >

x

2
,X2 > K|S2 > x

)
≤ 2P

(
X1 >

x

2

)
P(X2 > K)

P(S2 > x)

≤ 2P(X2 > K)γ < ε.

Since ε > 0 was arbitrary, the assertion follows. �
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4.3. Proof of Proposition 8

Next we prove Proposition 8, which establishes tail closure property of J .

Proof of Proposition 8. Suppose F ∈ J , F 	 G and G /∈ J . There exists h ∈ G such that

lim sup
x→∞

P
(
Y2,2 > h(x)|Ŝ2 > x

)
> 0.

Thus, we have by the definition of J :

lim sup
x→∞

P(Y2,2 > h(x), Ŝ2 > x)

P(Ŝ2 > x)

P(S2 > x)

P(X2,2 > h(x), S2 > x)
= ∞.

By Lemmas 25 and 26, we get a contradiction. �

4.4. Proof of Proposition 10

We prove the convolution closure properties of the class J .

Proof of Proposition 10. (a) We prove closure under convolution powers of J , that is, if F ∈ J
then Fn∗ ∈ J . Suppose Fn∗ ∈ J . We show Fn∗ 	 F (n+1)∗ and hence F (n+1)∗ ∈ J . From Sn ∈
J ⊂OS we obtain

lim sup
x→∞

P(Sn+1 > x)

P(Sn > x)

P(S2n > x)

P(S2n > x)
≤ cFn∗ lim sup

x→∞
P(Sn+1 > x)

P(S2n > x)
≤ cFn∗ .

(b) We prove closure under convolution for tail-equivalent random variables from the class J ,
that is, if F ∈ J and F 	 G, then F ∗ G ∈ J . Suppose F ∈ J , F 	 G and F ∗ G /∈ J . Then,
there exists an h ∈ G such that

lim sup
x→∞

P
(
(X1 + Y1) ∧ (X2 + Y2) > h(x)|Ŝ2 + S2 > x

)
> 0. (4.5)

By F ∈ J and (a) we have that F 2∗ ∈ J and it follows by definition that

lim sup
x→∞

P
(
(X1 + X2) ∧ (X3 + X4) > h(x)|S4 > x

) = 0. (4.6)

Combining (4.5) and (4.6) yields

lim sup
x→∞

P((X1 + Y1) ∧ (X2 + Y2) > h(x), Ŝ2 + S2 > x)

P((X1 + X2) ∧ (X3 + X4) > h(x), S4 > x)

P(S4 > x)

P(Ŝ2 + S2 > x)
= ∞. (4.7)

By Lemma 25, we obtain (F 2∗) ∗ (G2∗) 	 F 4∗, that is, lim supx→∞
P(S4>x)

P(Ŝ2+S2>x)
< ∞. Hence, by

Lemma 26 and (4.7) we get a contradiction.
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(c) We show root convolution closure for J , that is, if Fn∗ ∈ J then F ∈ J . Let n = 2m,
m ∈N. Suppose F 2m∗ ∈ J . Since J ⊂OS we have F 2m∗ ∈OS and hence there exists a constant
c2m such that

lim inf
x→∞

P(S2m−1 > x)

P(S2m > x)
> c2m > 0.

We obtain by definition for all h ∈ G

0 = lim sup
x→∞

P
(
S

(1)
2m ∧ S

(2)
2m > h(x)|S(1)

2m + S
(2)
2m > x

)
(4.8)

≥ c2m lim sup
x→∞

P
(
S

(1)

2m−1 ∧ S
(2)

2m−1 > h(x)|S(1)

2m−1 + S
(2)

2m−1 > x
)
.

Thus, we have F 2m−1∗ ∈ J . We repeat the argument leading to (4.8) for (m− 1) times and arrive
at

0 ≥ c2m lim sup
x→∞

P
(
S

(1)

2m−1 ∧ S
(2)

2m−1 > h(x)|S(1)

2m−1 + S
(2)

2m−1 > x
)

≥ c2m · c2m−1 lim sup
x→∞

P
(
S

(1)

2m−2 ∧ S
(2)

2m−2 > h(x)|S(1)

2m−2 + S
(2)

2m−2 > x
)

(4.9)
...

≥ c2m · · · c2 lim sup
x→∞

P
(
X1 ∧ X2 > h(x)|S2 > x

)
,

which gives F ∈ J . In case n �= 2m for all m ∈ N, we take m̃ := min{m ∈ N : n < 2m}. Denote
by k := 2m̃. By the argument in the proof of (a), we know that Fn ∈ J ⇒ Fk ∈ J . From (4.9),
we obtain F ∈ J . �

4.5. Proof of Proposition 12

Proof of Proposition 12. (a) The equivalence (i) ⇔ (iii) follows from (2.5) and Lemma 8. Next,
we show the equivalence (i) ⇔ (ii). Let (X + Y) ∈ J (with our usual slight abuse of notation).
To show that (X ∨ Y) ∈ J , abbreviate Vi := Xi ∨ Yi for i ∈ {1,2,3,4}. Then, for every g ∈ G
and x ≥ 0,

P(V1 ∧ V2 > g(x),V1 + V2 > x)

P(V1 + V2 > x)
≤ P(X1 ∧ X2 > g(x),X1 + X2 > x)

P(V1 + V2 > x)

+ P(Y1 ∧ Y2 > g(x),Y1 + Y2 > x)

P(V1 + V2 > x)
(4.10)

+ 2
P(X1 ∧ Y2 > g(x),X1 + Y2 > x)

P(V1 + V2 > x)
.
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From X ∈ J , we obtain for the first term on the right-hand side of (4.10):

lim sup
x→∞

P(X1 ∧ X2 > g(x), S2 > x)

P(V1 + V2 > x)
≤ lim sup

x→∞
P(X1 ∧ X2 > g(x), S2 > x)

P(S2 > x)
= 0.

Analogously for the second term:

lim sup
x→∞

P(Y1 ∧ Y2 > g(x),Y1 + Y2 > x)

P(V1 + V2 > x)
= 0.

From (X + Y) ∈ J , we obtain for the third term on the right-hand side of (4.10):

lim sup
x→∞

2
P(X1 ∧ Y2 > g(x),X1 + Y2 > x)

P(V1 + V2 > x)

≤ 2 lim sup
x→∞

(
P(X1 ∧ Y2 > g(x), S2 + Ŝ2 > x)

P(S2 + Ŝ2 > x)

P(S2 + Ŝ2 > x)

P(X1 + Y1 > x)

)
= 0.

Altogether, we arrive at

lim sup
x→∞

P
(
(X1 ∨ Y1) ∧ (X2 ∨ Y2) > g(x)|(X1 ∨ Y1) + (X2 ∨ Y2) > x

)
= lim sup

x→∞
P(V1 ∧ V2 > g(x),V1 + V2 > x)

P(V1 + V2 > x)
= 0

for all g ∈ G, that is, by (2.1), (X ∨ Y) ∈ J .
For the opposite implication (X ∨ Y) ∈ J ⇒ (X + Y) ∈ J abbreviate Wi := Xi + Yi for

i ∈ {1,2}. From (X ∨ Y) ∈ J and V1 + V2 ∈ J ⊂OS , we obtain for all g ∈ G

lim sup
x→∞

P(W1 ∧ W2 > g(x),W1 + W2 > x)

P(W1 + W2 > x)

≤ lim sup
x→∞

(
P((V1 + V2) ∧ (V3 + V4) > g(x),V1 + · · · + V4 > x)

P(V1 + · · · + V4 > x)

P(V1 + · · · + V4 > x)

P(V1 + V2 > x)

)
= 0,

hence by (2.1) (X + Y) ∈ J , which completes the proof of the equivalence (i) ⇔ (ii).
Next, we prove Proposition 12(b). The proof is analogous to the proof of the same asser-

tion for the class OS , see [17], Lemma 3.1. Let Li := Xi ∧ Yi for i ∈ {1,2}. For all g ∈ G we
have

P(L1 ∧ L2 > g(x),L1 + L2 > x)

P(L1 + L2 > x)

≤
∫ ∞
g(x)

P(X1 > (x − y) ∨ g(x))P(Y1 > (x − y) ∨ g(x))dFL2(y)

P(L1 > x)
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≤
∫ ∞
g(x)

P(X1 > (x − y) ∨ g(x))P(Y1 > (x − y) ∨ g(x))P(Y2 ≥ y)dFX2(y)

P(X1 > x)P(Y1 > x)

+
∫ ∞
g(x)

P(X1 > (x − y) ∨ g(x))P(Y1 > (x − y) ∨ g(x))P(X2 ≥ y)dFY2(y)

P(X1 > x)P(Y1 > x)
.

Using the inequality

P
(
Y1 > (x − y) ∨ g(x)

)
P(Y2 ≥ y) ≤ P(Y1 + Y2 > x)

we obtain

lim sup
x→∞

P(L1 ∧ L2 > g(x),L1 + L2 > x)

P(L1 + L2 > x)

≤ lim sup
x→∞

P(Y1 + Y2 > x)

P(Y1 > x)

∫ ∞
g(x)

P(X1 > (x − y) ∨ g(x))dFX2(y)

P(X1 > x)

+ lim sup
x→∞

P(X1 + X2 > x)

P(X1 > x)

∫ ∞
g(x)

P(Y1 > (x − y) ∨ g(x))dFY2(y)

P(Y1 > x)

= lim sup
x→∞

P(Ŝ2 > x)

P(Y1 > x)

P(S2 > x,X1 ∧ X2 > g(x))

P(X1 > x)

+ lim sup
x→∞

P(S2 > x)

P(X1 > x)

P(Ŝ2 > x,Y1 ∧ Y2 > g(x))

P(Y1 > x)

= 0,

since F,G ∈ J ⊂OS . The proof is complete. �

4.6. Proofs of Propositions 14 and 16

We begin with Proposition 14.

Proofs of Proposition 14. (a) Suppose F ∈ J and
∑∞

k=1 pk(cF + ε − 1)k < ∞ for some ε > 0.
Recall that we need to show that FN 	 F . From Lemma 29 (Kesten’s) and F ∈ J ⊂ OS we
obtain for some suitable c1 ∈ (0,∞) and all x ≥ 0,

FN(x) =
∞∑

k=1

pkF k∗(x) ≤
∞∑

k=1

pkc1(cF + ε − 1)kF (x)

= F(x)

∞∑
k=1

pkc1(cF + ε − 1)k.
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Hence, we see that lim supx→∞ FN(x)/F (x) < ∞. For the lower bound, pick some k ≥ 1 with
pk > 0. Then, for all x ≥ 0,

FN(x) ≥ pkP(Sk > x) ≥ pkF(x).

We obtain FN 	 F and therefore FN ∈ J .
(b) Suppose FN ∈ J and that

∑∞
k=1 pk(cFN

+ ε − 1)k < ∞ for some ε > 0. Again, we need
to prove that FN 	 F . To this end, by means of contradiction, suppose that for every integer
n ≥ 2,

lim inf
x→∞

Fn∗(x)

FN(x)
= 0.

Our proof then splits into two cases:
Case 1: p0 = 0. For every n ≥ 1, we choose an unbounded and strictly increasing sequence

(xn
k )k∈N such that for all n ∈N

lim
m→∞

Fn∗(xn
m)

FN(xn
m)

= 0 and in particular lim
m→∞

Fm∗(xm
m)

FN(xm
m)

= 0.

From Lemma 29 (Kesten’s) and p0 = 0 we conclude that, for some suitable c2 ∈ (0,∞), for all
n,m ∈N

Fn∗(xn
m)

FN(xn
m)

≤ Fn∗
N (xn

m)

FN(xn
m)

≤ c2(cFN
+ ε − 1)n.

Since by assumption the right-hand side is summable in n, we can use the dominated convergence
theorem to arrive at the desired contradiction:

1 = lim
m→∞

FN(xm
m)

FN(xm
m)

= lim
m→∞

∞∑
k=1

pk

F k∗(xm
m)

FN(xm
m)

=
∞∑

k=1

pk lim
m→∞

Fk∗(xm
m)

FN(xm
m)

≤
∞∑

k=1

pk lim
m→∞

Fm∗(xm
m)

FN(xm
m)

= 0.

Case 2: p0 > 0. This can be reduced to Case 1 by switching to the reweighted random variable
N̂ with probabilities

p̂n := P(N̂ = n) := pn

1 − p0
,

for n > 0 and p̂0 = P(N̂ = 0) := 0. Thanks to Case 1 we have that F
N̂

∈ J . Further, observe that

lim
x→∞

FN(x)

F
N̂

(x)
= lim

x→∞

∑∞
n=0 pnFn∗(x)∑∞
n=0 p̂nF n∗(x)

= 1 − p0

1
.

From Proposition 8 and FN 	 F
N̂

, we conclude that FN ∈ J . �
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Next, we prove Proposition 16 using the arguments of the proof of Theorem 1.5 of Watanabe
[21].

Proof of Proposition 16. (a) To infer that FN 	 Fm∗ for some m ∈ N, we again argue by con-
tradiction. So suppose that for every integer m ≥ 2

lim inf
x→∞

Fm∗(x)

FN(x)
= 0.

From FN ∈ OS , we know that cFN
< ∞ and from our assumption lim infn→∞ P(N1+N2>n)

P(N1>n)
> cFN

we infer that there exists a δ > 0 and an integer m0= m0(δ) such that, for every k ≥ m0 + 1,

P(N1 + N2 > k)

P(N1 > k)
> cFN

+ δ. (4.11)

Let (xn)n∈N be a strictly increasing sequence with limn→∞ xn = ∞ such that

lim
n→∞

Fm0∗(xn)

FN(xn)
= 0. (4.12)

Since Fm0∗(x) ≥ Fk∗(x) for 1 ≤ k ≤ m0, we have

lim
n→∞

Fk∗(xn)

FN(xn)
= 0

for 1 ≤ k ≤ m0. As in [21], define Ij (n) and Jj (n) for j = 1,2 as

J1(n) =
m0∑
k=0

(p ∗ p)kF k∗(xn), I1(n) =
m0∑
k=0

pkF k∗(xn),

J2(n) =
∞∑

k=m0+1

(p ∗ p)kF k∗(xn), I2(n) =
∞∑

k=m0+1

pkF k∗(xn).

We see from (4.12) that

lim
n→∞

I1(n)

FN(xn)
= lim

n→∞
J1(n)

FN(xn)
= 0, (4.13)

and since F 2∗
N = ∑∞

k=0(p ∗ p)kF
k∗, (4.11) and (4.13) give

cFN
≥ lim sup

n→∞
F 2∗

N (xn)

FN(xn)
= lim sup

n→∞
(J1(n) + J2(n))/FN(xn)

(I1(n) + I2(n))/FN(xn)
= lim sup

n→∞
J2(n)

I2(n)
.
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To arrive at the desired contradiction, define hm0+1(xn) := F (m0+1)∗(xn) and hj (xn) :=
Fj∗(xn) − F (j−1)∗(xn) for j > m0 + 1. We obtain

lim sup
n→∞

J2(n)

I2(n)
= lim sup

n→∞

∑∞
k=m0+1(p ∗ p)k

∑k
j=m0+1 hj (xn)∑∞

k=m0+1 pk

∑k
j=m0+1 hj (xn)

= lim sup
n→∞

∑∞
j=m0+1 hj (xn)

∑∞
k=j P(N1 + N2 = k)∑∞

j=m0+1 hj (xn)
∑∞

k=j P(N1 = k)

= lim sup
n→∞

∑∞
j=m0+1 hj (xn)P(N1 + N2 > j − 1)∑∞

j=m0+1 hj (xn)P(N1 > j − 1)

> cFN
+ δ.

This is a contradiction. Since Fm∗(x) ≤ FN(x) 1
pm

with pm > 0 for sufficiently large integers m,

it follows that FN 	 Fm∗.
(b) The assertion follows from (a), Proposition 10 and J ⊂OS . �

4.7. Proof of Theorem 19

We prepare the proof by recalling two results due to Yang and Wang [24] for reference.

Lemma 30 ([24], Lemma 2.2). With the notation of Theorem 18, if a < 0 and FI ∈ OL then
G 	 FI .

Theorem 31 ([24], Theorem 1.4). Let F be a distribution function on (−∞,∞) such that F is
integrable and FI ∈ OS∩DK. Further, let α and β be two fixed positive constants. Consider any
sequence {Xi : i ≥ 1} of independent random variables such that, for each i ≥ 1, the distribution
Fi of Xi satisfies the conditions

Fi(x) ≤ F(x), for all x ∈ (−∞,∞) and

∞∫
−∞

(y ∨ −β)dFi(y) ≤ −α.

Then there exists a positive constant r , depending only on F , α and β , such that for all sequences
{Xi : i ≥ 1} as above,

FM(x) ≤ rFI (x)

for all x ∈ (−∞,∞).

Now the proof of the P–V–E theorem for class J can simply be reduced to previously stated
results.
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Proof of Theorem 19. Since by assumption FI ∈ OL and a := E[X̄k] < 0 we obtain from
Lemma 30 that FI 	 G. Hence, the equivalence of (1) and (2) follows from the weak tail-
equivalence closure of the class J (Proposition 8).

Now additionally assume p(cG + ε −1) < 1 holds for some ε > 0 (condition (i)). As we know
from (3.1), we can write FM as a random sum

FM = (1 − p)

∞∑
n=0

pnGn∗(x). (4.14)

Hence, we obtain FM 	 G by application of Proposition 14. Now, applying the weak tail-
equivalence closure of the class J we conclude the equivalence of (2) and (3).

Next, assume additionally that FM ∈OS (condition (ii)) holds. Again, by using the expression
(4.14) and Proposition 16(b) we obtain FM 	 G and hence the equivalence of (2) and (3).

Finally, under condition FI ∈ J ∩ DK we can use Theorem 31. By choosing Fi = FX̄ it is
easy to see that we can find appropriate constants α,β such that

∫ ∞
−∞(y ∨ −β)dFX̄(y) ≤ −α

holds. Hence, there exists a constant r such that FM(x) ≤ rFI (x) for all x ∈ (−∞,∞). By (a)
of Theorem 21 we obtain FM 	 FI and hence FM,G ∈ J . Now, FM 	 G follows from FI 	 G

and FM 	 FI . �
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