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We prove a law of large numbers for empirical approximations of the spectrum of a kernel integral operator
by the spectrum of random matrices based on a sample drawn from a Markov chain, which complements
the results by V. Koltchinskii and E. Giné for i.i.d. sequences. In a special case of Mercer’s kernels and ge-
ometrically ergodic chains, we also provide exponential inequalities, quantifying the speed of convergence.
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1. Introduction

Let (X ,F) be a measurable space. Consider a probability measure π on (X ,F) and a symmetric
measurable kernel h :X × X → R, square integrable with respect to π ⊗ π . With h one can
associate the kernel linear operator defined by the formula

Hf (x) =
∫
X

h(x, y)f (y)π(dy). (1)

This is a Hilbert–Schmidt self-adjoint operator on L2(π) and as such it possesses a real spec-
trum consisting of a square summable sequence of eigenvalues. In [14], Koltchinskii and Giné
investigated the problem of approximating the spectrum of H by the spectra of certain finite di-
mensional random operators constructed with the help of the function h and a sequence of i.i.d.
random variables (Xn)n≥0, distributed according to π . More precisely, they define a sequence of
random matrices

H̃n = 1

n

(
h(Xi,Xj )

)
0≤i,j≤n−1 (2)

and

Hn = 1

n

(
(1 − δij )h(Xi,Xj )

)
0≤i,j≤n−1 = H̃n − 1

n
diag

((
h(Xi,Xi)

)n−1
i=0

)
(3)

(above δij is the Kronecker’s symbol) and show that with probability one the spectrum of Hn

(completed to an infinite sequence with zeros) converges in a certain metric to that of H. They
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also show by simple examples that in general one cannot replace Hn with H̃n. Moreover, under
some stronger assumptions, they provide rates of convergence as well as infinite-dimensional
limit theorems.

Besides intrinsic mathematical interest, the original motivation in [14] came from the limiting
theory of U -statistics. A U -statistic of degree 2, based on a kernel h and a sequence X = (Xn)n≥0

is a random variable of the form

Un(h) = Un(h,X) = 1

n(n − 1)

∑
0≤i �=j≤n−1

h(Xi,Xj ). (4)

It is well known, that under certain assumptions and proper normalization, the law of Un(h)

converges to a random variable of the form
∑

i λi(g
2
i − 1), where gi ’s are i.i.d. standard

Gaussian variables and λi ’s are the eigenvalues of H. Thus, the approximate knowledge of
the spectrum of H allows for approximate sampling from the limiting spectral distribution of
corresponding U -statistics. Since the publication of [14], empirical approximations of spectra
found further applications, for example, in machine learning, especially in the theory of spec-
tral clustering on manifolds and in the Kernel Principal Component Analysis (see, e.g., [23–25,
28]).

Although the authors of [14] do not develop specific applications, their results can be inter-
preted as a Monte Carlo method for approximating the spectrum of a kernel operator. However,
such an approach would require access to an i.i.d. sample from the distribution π , whereas for
many situations of interest the density of the underlying probability measure is known only up to
constants. In such situations, random samples approximating π can be often obtained via Markov
Chain Monte Carlo (MCMC) methods, which rely on simulating a Markov chain with a simple
transition function and invariant measure π . By the ergodic theorem, after sufficiently many
steps the value of the chain will be distributed approximately as π . There are two popular ways
of using such samples with estimators. One of them is to generate sufficiently many independent
samples and to plug them in the estimator. Another one is to use the estimator directly on the
dependent sample coming from the Markov chain. While the former approach requires analysis
of the stability of the estimated quantity with respect to a small perturbation of the probability
measure, the latter one requires laws of large numbers in the dependent setting, which would
justify using the estimator directly on the Markov chain.

The objective of this paper is to provide such a law of large numbers, together with some
probability bounds for the problem of approximation of the spectrum of an integral operator.
Our motivation is manifold. First, we believe that extending the results of Koltchinskii and
Giné to a dependent setting is an interesting probabilistic problem in its own right. At the
same time, it indicates a possibility of having practical MCMC methods of estimating spectra.
Of course, a practical implementation of this approach would require overcoming additional
obstacles related, for example, to numerical inaccuracy; however, the law of large numbers
and probabilistic bounds provide its theoretical justification. Additionally, our results suggest
that it should be possible to justify the validity of at least some of the aforementioned ma-
chine learning methods in a dependent case, which may more accurately model real-life situ-
ations.
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As a tool, we also develop a law of large numbers for U -statistics of Markov chains started
from an arbitrary initial distribution, which complements results from [1,4,5,8].

The organization of the paper is as follows. First, in Section 2 we formulate our results, next
in Section 3 we present basic notation and preliminary facts concerning Markov chains (in par-
ticular the regeneration method) as well as tools from linear algebra which will be used in the
proofs. In Section 4, we prove the law of large numbers for U -statistics, and in Sections 5 and 6
we provide the proofs of our main results. Finally, in the last section we discuss the optimality of
our assumptions.

2. Main results

We will work with a measurable space (X ,F), where F is a countably generated σ -field. Let
X = (Xn)n≥0 be a Harris ergodic Markov chain with transition function P :X ×F → [0,1] and
let π be its unique invariant probability measure (we refer to [17,21] for the general theory of
Markov chains on not necessarily countable spaces). We will consider a symmetric measurable
kernel h :X × X → R and the corresponding kernel type operator H given by (1). Let H̃n and
Hn be random matrices given by (2) and (3) respectively.

Since the infinite-dimensional operators we will consider will always be Hilbert–Schmidt,
their spectra may be identified with an infinite sequence λ = (λn)n≥0 ∈ �2, where �2 is the Hilbert
space of all square summable sequences. There is clearly some ambiguity here related to the
ordering of eigenvalues, but thanks to the choice of the metric we are about to make, it will not
pose a problem in the sequel, so we may disregard it.

Since we want to approximate the spectrum of H by a spectrum of a finite-dimensional opera-
tor, just as in [14] we will always identify the finite spectrum of the latter with an element of �2,
by appending to it an infinite sequence of zeros. We will denote the spectrum of an operator or a
matrix K , by λ(K).

The metric we will use to compare spectra will be the δ2 metric defined as

δ2(x, y) = inf
σ∈P

( ∞∑
i=0

(xi − yσ(i))
2

)1/2

,

where P is the set of all permutations of natural numbers. It is easy to see that δ2 is a pseudometric
on �2.

In what follows, we will always use the notation μf = ∫
f dμ for a measure μ and a func-

tion f .
Our first result is the following.

Theorem 2.1. Let X = (Xn)n≥0 be a Harris ergodic Markov chain on (X ,F) with invariant
probability measure π and let h :X × X → R be a symmetric measurable function. Assume
that there exists F :X → R, such that πF 2 < ∞ and |h(x, y)| ≤ F(x)F (y) for all x, y ∈ X .
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Let H :L2(π) → L2(π) be the linear operator given by (1) and H̃n, Hn be defined by (2), (3),
respectively. Then for every initial measure μ of the chain X, with probability one,

δ2
(
λ(H̃n), λ(H)

)
, δ2

(
λ(Hn), λ(H)

) → 0.

Let us now briefly comment on the hypotheses of the above theorem. Our main assumption is
the majorization of the form |h(x, y)| ≤ F(x)F (y) for some F :X → R with πF 2 < ∞. There
are two main reasons for considering this type of assumptions. The first one is technical. As
shown in [1], the law of large numbers for U -statistics (which we will use in the proofs) of mixing
sequences may fail if one assumes just integrability of the kernel, which intuitively is related to
the fact that the behaviour of the random variable h(Xi,Xi+1) may depend on the behaviour of h

on π⊗2-negligible sets (since Xi,Xi+1 are dependent). As we will see in Section 7, in our setting
a similar phenomenon occurs, in particular the law of large numbers for the spectra may fail if one
assumes only that π⊗2h2 < ∞. The second reason is the fact that in the theory of Markov chains,
one often proves ergodicity by means of drift conditions and pointwise assumptions related to
the drift functions V :X → [0,∞) (see, e.g., [7,11,12,17]). The drift conditions are expressed
only in terms of the drift function and the transition function P . While it is not always easy to
check integrability of a general function with respect to the stationary measure, the drift criteria
provide certain integrability for the drift function. Thus, one can often construct the majorant F

in terms of the function V .
Let us also stress that we require that the inequality between h and F hold pointwise and not

just π⊗2 a.s. Again, the reason is related to the dependencies between the variables Xi . From the
point of the MCMC applications, it is crucial to allow the Markov chain to start from arbitrary
initial conditions and the distribution of the chain approaches the stationary measure only in the
limit. As a consequence, it is not enough to assume a π⊗2-a.s. bound. In Section 7, we will
illustrate these remarks with examples.

Finally, let us note that the above theorem provides convergence of spectra also for the random
operator H̃n, which as we have mentioned and as was noted in [14] is not the case in general,
even in the i.i.d. setting. To see this, it is enough to choose a function h vanishing everywhere on
X ×X except for the diagonal, for absolutely continuous π and such that

∫
h(x, x)π(dx) = ∞.

The validity of the law of large numbers for the spectrum of H̃n in our case is of course again a
consequence of our assumptions on h and F , which preclude such counterexamples.

Let us now pass to our second result, which is a tail inequality for the approximation of spectra.
For this, we will work in a more restrictive, analytic framework, we will also impose stronger
ergodicity assumptions on the chain.

Recall that a Harris ergodic Markov chain with transition function P and invariant measure π ,
is geometrically ergodic if there exists 0 < ρ < 1 such that for every x ∈ X and some constant
M(x), we have for every n ≥ 0,

∥∥P n(x, ·) − π
∥∥

TV ≤ M(x)ρn, (5)

where ‖ · ‖TV is the total-variation distance and P n is the n-step transition function of the chain.
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Theorem 2.2. Let π be a probability measure on (X ,F), where X is a metric space and F
the Borel σ -field. Let h :X × X → R be a bounded function and H the corresponding kernel
operator defined by (1). Assume that there exist continuous functions φn :X → R, n ∈ I (where
I = {0, . . . ,R} or I = N) which form an orthonormal system in L2(π) and a sequence of non-
negative numbers λ = (λn)n∈I ∈ �2(I ) such that we have a point-wise equality

h(x, y) =
∑
n∈I

λnφn(x)φn(y),

with the series converging absolutely and almost uniformly on X ×X . Assume furthermore that
X = (Xn)n≥0 is a geometrically ergodic Markov chain with invariant measure π , started at a
point z. Then

P
(
δ2

(
λ(H̃n), λ(H)

) ≥ t
) ≤ 2 exp

(
− 1

L
nmin

(
t2

supx∈X h(x, x)2
,

t

supx∈X h(x, x)

))
,

where the constant L depends only on the transition function P and the starting point z.

In the above formulation, we do not specify the dependence of the constants in the inequality
on the parameters of the Markov chain. This will be done in Section 6 via drift conditions.

We state Theorem 2.2 for chains started from a point. In fact, it holds also for chains started
from more general measures μ satisfying some mild conditions. Since to formulate this condition
we would need to introduce the regeneration technique for Markov chains, such a formulation is
deferred to Remark 6.3 in Section 6.

We remark that the assumptions concerning the function h are satisfied for continuous positive
definite kernels on a large class of topological spaces. In the case of compact spaces this fact is
known as Mercer’s theorem (see, e.g., [18,26]). Since there are many generalizations of this
result, with subtle differences, and a discussion of this topic is beyond the scope of this article
we prefer to formulate the theorem in an abstract form.

We remark that similar inequalities in the i.i.d. case were considered, for example, in [15,16]
under weaker assumptions than the boundedness of h (instead some exponential integrability
was assumed). However, those estimates consider a weaker metric between spectra and, when
specialized to the case of bounded kernels, involve additional logarithmic factors. Thus, Theo-
rem 2.2 (in a version for chains started not necessarily from a point) improves on their result for
bounded kernels even in the i.i.d. case.

Let us also mention that in our case one can also obtain results for unbounded kernels, under
appropriate drift conditions involving the function h (using, e.g., results from [3]). However,
their formulation would be much more involved, so we restrict to the special case of uniformly
bounded kernels.

We would like to stress the important role of positive definiteness in Theorem 2.2. As will be
shown in the proof, thanks to this assumption we can replace the operator H̃n by a sum of the form∑n−1

i=1 f (Xi) ⊗ f (Xi) for some f :X → L2(π) which is an L2(π)-valued additive functional of
the Markov chain X (similar ideas in the i.i.d. case were used, e.g., in [15,16,25]). This allows to
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apply the regeneration technique for obtaining concentration inequalities for additive functionals
of Markov chains.

3. Notation and preliminary facts

3.1. Markov chains

We will now present basic facts related to the regeneration technique for Markov chains on gen-
eral state spaces. This technique was independently discovered by Nummelin [20] and Athreya–
Ney [6] and relies on a decomposition of the trajectory of a Markov chain into one-dependent
paths of random length. Instead of providing the technical details of the construction, we will
just present its properties, which will be used in the proof. The technical details can be found in
many monographs on Markov chains; we recommend [10,17,21].

Let thus (X ,F) be a state space, with F countably generated and assume that P is a Markov
chain transition function on X . Assume also that the corresponding Markov chain X = (Xn)n≥0

is Harris ergodic. Then there exists a set C ∈ F with π(C) > 0, a positive integer m, δ > 0 and a
probability measure ν on (X ,F), such that for all x ∈ C, A ∈F ,

P m(x,A) ≥ δν(A). (6)

Using the set C for any probability measure μ one can define two sequences of random vari-
ables (X̃n)n≥0, (Yn)n≥0 (on some probability space) with the following properties:

(A0) (X̃n)n≥0 is a Markov chain, X̃0 ∼ μ.
(A1) Yn ∈ {0,1}.
(A2) The stopping times T0 = inf{k ≥ 0: Yk = 1}, Ti = inf{k > Ti−1: Yk = 0} are almost

surely finite. Moreover, T0, T1 − T0, T2 − T1, . . . are independent random variables,
whereas T1 − T0, T2 − T1, . . . are i.i.d. and their distribution depends only on P (and
not on μ). Moreover, E(T1 − T0) < ∞.

(A3) The blocks Zi = (X̃m(Ti+1), X̃m(Ti+1)+1, . . . , X̃mTi+1+m−1) form a one-dependent sta-
tionary sequence of random variables with values in (Z,S), where Z = ⋃∞

k=1 X k ,
S = σ(

⋃∞
k=1 F⊗k) (i.e., for all k, the σ -fields σ(Zi : i < k) and σ(Zi : i > k) are in-

dependent).
(A4) For any f ∈ L1(π) and all k,

E

mTk+1+m−1∑
i=m(Tk+1)

f (X̃i) = mE(T1 − T0)πf.

As already mentioned, in the proofs we will use only the above properties and so we do not
present the general construction of the chain (X̃n)n≥0. Let us however briefly describe the intu-
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ition hidden behind it in the special case of m = 1. Informally, if one attempts to generate the
chain then one draws X̃0 according to the measure μ, and next if at step n one has X̃n = x, then
for x /∈ C, the next variable X̃n+1 is drawn from the distribution P(x, ·) and one sets Yn = 0. If
x ∈ C then one tosses a coin with heads probability equal to δ. If one gets heads, then X̃n+1 is
generated according to ν and Yn is set to one, otherwise Yn is set to zero and X̃n+1 is generated
according to the probability measure

Q(x, ·) = P(x, ·) − δν(·)
1 − δ

.

It is straightforward but slightly tedious to formalize this intuition and prove that for Harris
ergodic chains it gives properties (A0)–(A4). For general m, one can still repeat this construction
for the m-step transition function to define the chain (X̃nm)n≥0 and then fill in the intermediate
variables in such a way that properties (A0)–(A4) are still satisfied (note that for m = 1 the blocks
Zi of property (A3) are in fact independent, which is not necessarily the case for general m). We
refer the reader to [10,17,21] for the details.

Since the Markov chain (Xn)n≥0, started from μ has the same distribution as (X̃n)n≥0 above,
to prove a limit theorem for (Xn)n≥0 it is enough to do it for (X̃n)n≥0 for which one can exploit
the additional structure given by the auxiliary variables (Yn)n≥0, which often allows to reduce
the proof to the corresponding limit theorem in the one-dependent or independent case. This
strategy has been adopted for many problems, including the law of large numbers, the central
limit theorem or the law of the iterated logarithm. We again refer to [10,17,21] for a detailed
exposition. As a consequence, for the purpose of proving limit theorems, we can identify the
sequences (Xn)n≥0 and (X̃n)n≥0. In what follows, we will adopt this convention (in particular
we will drop the tilde in X̃n).

In the proofs, we will use the strong law of large numbers for Markov chains, which can be
easily proved using the regeneration method (see [17,21]).

Theorem 3.1. Let X = (Xn)n≥0 be a Harris ergodic Markov chain on (X ,F), with invariant
probability measure π and let f :X → R be a π -integrable function. Then with probability one,
as n → ∞,

1

n

n−1∑
i=0

f (Xi) → πf.

3.2. Linear algebra

The main linear-algebraic result we will need is the Hoffman–Wielandt inequality. To prove the
law of large numbers, it will be sufficient to use its original finite-dimensional version. However,
for the exponential inequality we will use the infinite-dimensional version proved in [9].

Theorem 3.2 (Hoffman–Wielandt inequality). If A,B are normal Hilbert–Schmidt operators
on some Hilbert space, then

δ2
(
λ(A),λ(B)

) ≤ ‖A − B‖HS.
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4. Strong law of large numbers for U -statistics
of Markov chains

Recall the notation (4). The aim of this section is to prove the following.

Proposition 4.1. Let X = (Xn)n≥0 be a Harris ergodic Markov chain on (X ,F) with invariant
probability measure π and let h :X ×X → R be a symmetric measurable function. Assume that
there exists a π -integrable F :X → R+, such that |h(x, y)| ≤ F(x)F (y) for all x, y ∈ X . Then
for every initial probability μ of the chain X, with probability one,

Un(h) → πh

as n → ∞.

We remark that in the literature there are several results concerning laws of large numbers for
U -statistics under dependence. In [1], such a result is obtained for a class of ergodic stationary
sequences, under assumption of the same nature as ours. However, we need the above version,
since for MCMC applications it is important to consider Markov chains started from a point
(as the very purpose of MCMC algorithms is to simulate the stationary distribution, which is
not directly accessible). Results of this type have been obtained recently, for example, in [4,8];
however, they require higher order ergodicity of the chain. We would like to add that the results
in [8] are not expressed in terms of point-wise bounds on the kernel h but rather in terms of
integrability of certain functionals on the paths of the Markov chains. Thus, in general they are
not comparable to Proposition 4.1. On the one hand they may be applicable to kernels which are
not bounded by tensor products, on the other hand the verification of assumptions may be more
difficult.

To prove Proposition 4.1, we will use the following result which is a simple corollary to The-
orem 5.2. in [1] (we remark that this theorem is stated for Z = R, but it is easy to see that its
proof works for an arbitrary measurable space).

Lemma 4.2. Let Z = (Zk)k≥0 be a one-dependent stationary sequence of (Z,S)-valued random
variables and let H :Z2 → R be a symmetric measurable function. Assume that there exists
F :Z → R+ such that |H(x,y)| ≤ F(x)F (y) for all x, y ∈ Z and EF(Z0) < ∞. Then with
probability one

Un(H,Z) → EH(Z0,Z2)

as n → ∞.

Proof of Proposition 4.1. Define Nn = sup{k: mTk + m − 1 ≤ n − 1} (with the convention that
sup∅ = 0). By the law of large numbers and property (A2), we have as n → ∞,

n

Nn

→ mE(T1 − T0), Pμ-a.s. (7)
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Recall the space Z defined in property (A3). In what follows, we will use the following conven-
tion regarding its elements: for x = (x1, . . . , xk) ∈ Z we set |x| = k. Let H :Z ×Z → R be the
kernel defined by

H(x,y) =
|x|∑
i=1

|y|∑
j=1

h(xi, yj ).

Note that for F̃ :Z → R+, given by

F̃ (x) =
|x|∑
i=1

F(xi),

we have |H(x,y)| ≤ F̃ (x)F̃ (y). Moreover, by property (A4) we have EF̃ (Z0) < ∞.
By properties (A3), (A4) and the Fubini theorem, we also get

EH(Zk,Zl) = (
mE(T1 − T0)

)2
π⊗2h

if |k − l| ≥ 2.
Thus, by Lemma 4.2, (7) and the above equality, we get

1

n(n − 1)

∑
0≤i �=j≤Nn−1

H(Zi,Zj ) → π⊗2h. (8)

Define also H̃ :Z ×Z → R as H̃ (x,y) = ∑|x|
i=1

∑|y|
j=1 |h(xi, yj )|.

In view of (8), to prove the proposition it remains to show that with probability one the se-
quences

In = 1

n(n − 1)

mT0+m−1∑
i=0

n−1∑
j=m(T0+1)

∣∣h(Xi,Xj )
∣∣,

IIn = 1

n(n − 1)

Nn∑
i=0

H̃ (Zi,Zi),

IIIn = 1

n(n − 1)

Nn−1∑
i=0

H̃ (ZNn,Zi),

converge a.s. to 0 as n → ∞.
Note that

In ≤
mT0+m−1∑

i=0

F(Xi)
1

n(n − 1)

n−1∑
j=0

F(Xj ) → 0 a.s.
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since by Theorem 3.1, n−1 ∑n−1
j=0 F(Xj ) → πF a.s.

As for IIn, we have

EH̃ (Zi,Zi)
1/2 ≤ E

mTi+1+m−1∑
i=m(Ti+1)

F (Xi) = mE(T1 − T0)πF < ∞,

where we again used (A4).
Thus, using (A3) and (7) we get by the Marcinkiewicz law of large numbers that IIn → 0 a.s.
To prove that IIIn → 0 a.s., note that

IIIn = Nn(Nn + 1)

2n(n − 1)
UNn+1(H̃ ,Z) − Nn(Nn − 1)

2n(n − 1)
UNn(H̃ ,Z).

By Lemma 4.2 and (7), both terms on the right-hand side above converge a.s. to

2−1(mE(T1 − T0)
)−2

E

mT1+m−1∑
i=m(T0+1)

mT3+m−1∑
j=m(T2+1)

∣∣h(Xi,Xj )
∣∣ ≤ 2−1(πF)2 < ∞,

where in the first inequality we used the assumption on h and F together with (A3), (A4) and the
Fubini theorem.

This shows that indeed IIIn → 0 a.s. and ends the proof of Proposition 4.1. �

5. Proof of Theorem 2.1

To prove Theorem 2.1, we will need one more simple result, namely a Marcinkiewicz–Zygmund-
type law of large numbers for Markov chains. Its proof is a standard application of the regen-
eration technique. Since we have not been able to find it in the literature, we provide it for
completeness.

Lemma 5.1 (Marcinkiewicz–Zygmund LLN for Markov chains). Let X = (Xn)n≥0 be a Har-
ris ergodic Markov chain on (X ,F) and let f :X → R be a measurable function. Consider
p ∈ (0,1) and assume that π |f |p < ∞. Then for any initial measure of the chain, with probabil-
ity one

1

n1/p

n−1∑
i=0

f (Xi) → 0.

Proof. As in the proof of Proposition 4.1, define N = Nn = sup{k: mTk + m − 1 ≤ n − 1} and
recall (7). Define a function F :Z → R (where Z is defined in property (A3) of Section 3) with
the formula

F(x) =
|x|∑
i=1

∣∣f (xi)
∣∣.
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Then, by concavity of the function t �→ |t |p and property (A4) we get for i ≥ 1,

EF(Zi)
p ≤ E

mTi+1+m−1∑
i=m(Ti+1)

∣∣f (Xi)
∣∣p = m

(
E(T1 − T0)

)
π |f |p < ∞. (9)

Now

1

n1/p

∣∣∣∣∣
n−1∑
i=0

f (Xi)

∣∣∣∣∣ ≤ 1

n1/p

mT0+m−1∑
i=0

∣∣f (Xi)
∣∣ + 1

n1/p

Nn∑
i=0

F(Zi).

The first term on the right-hand side above converges a.s. to zero as n → ∞. Moreover, since
Zi form a stationary one-dependent sequence by (7), (9) and the classical Marcinkiewicz–
Zygmund LLN, the second term also converges a.s. to zero, which ends the proof of the
lemma. �

The proof of Theorem 2.1 will mimic closely the corresponding proof by Koltchinskii and
Giné, in fact one could keep the linear-algebraic part exactly the same, while replacing just
the probabilistic ingredients (using Proposition 4.1 and Lemma 5.1). However, we will slightly
change the exposition with respect to [14], which will allow to shorten the proof a little bit.

Proof of Theorem 2.1. Let us first notice that thanks to the Hoffman–Wielandt inequality and
the assumption on h, we have

δ2
(
λ(Hn), λ(H̃n)

)2 ≤ ‖Hn − H̃n‖2
HS ≤ 1

n2

n∑
i=1

F(Xi)
4.

Since πF 2 < ∞, by Lemma 5.1 applied with p = 1/2, the right-hand side above converges a.s.
to zero. Thus, it is enough to prove the theorem for the matrix H̃n.

Since π⊗2h2 ≤ (πF 2)2 < ∞, H is a Hilbert–Schmidt operator and so, by the spectral theorem,
there exists an orthonormal system (φi)i∈I in L2(π) (where I = {0, . . . ,R} for some R ∈ N or
I =N) and a square summable sequence (λi)i∈I with non-increasing absolute values such that

h(x, y) =
∑
i∈I

λiφi(x)φi(y), (10)

where the equality holds in the L2(π
⊗2) sense.

As in [14] assume first that h(x, y) = ∑R
i=0 λiφi(x)φi(y) and the equality holds pointwise.

Define for n ≥ 0, the sequence of vectors in R
n,


n
i =

(
φi(X0)√

n
, . . . ,

φi(Xn−1)√
n

)
, 0 ≤ i ≤ R
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and note that for u ∈R
n,

H̃nu =
R∑

i=0

λi

〈

n

i ,u
〉

n

i ,

where 〈·, ·〉 denotes the standard inner product in R
n.

Now consider the space R
R+1 with the standard basis e0, . . . , eR and let An :RR+1 → R

n be
the operator given by Anei = 
n

i , i = 0, . . . ,R. Define also an operator K on R
R+1 as

Ku =
R∑

i=0

λi〈ei, u〉ei .

Then, as one can easily check,

H̃n = AnKAT
n

and since for any two operators K1 :Ra → R
b and K2 :Rb → R

a , the (algebraic) spectra of
K1K2 and K2K1 are the same (recall our convention of completing the spectra with zeros to
an infinite sequence), we get λ(H̃n) = λ(KAT

n An). Together with the obvious equality λ(K) =
λ(H), this gives

δ2
(
λ(H̃n), λ(H)

) = δ2
(
λ
(
KAT

n An

)
, λ(K)

)
. (11)

But for each i, j = 0, . . . ,R we have 〈AT
n Anei, ej 〉 = 〈Anei,Anej 〉 = 1

n

∑n−1
k=0 φi(Xk)φj (Xk).

Thus, by Theorem 3.1 with probability one, 〈AT
n Anei, ej 〉 → πφiφj = δij and thus KAT

n An →
K , which implies that the right-hand side of (11) converges to zero a.s. (note that KAT

n An in
general is not a normal matrix, so we cannot use the Hoffman–Wielandt inequality, but we are
working now in a fixed dimension R + 1 and so we can simply use the fact that the eigenvalues
are continuous functions of the matrix entries; see, e.g., Appendix D in [13]). This proves the
theorem in the special case of finite dimensional kernels.

Consider now an arbitrary kernel h, satisfying (10). Fix ε > 0. Since
∑

i∈I λ2
i < ∞, there

exists R such that
∑

i∈I,i>R λ2
i < ε. Set hR(x, y) = ∑R

i=0 λiφi(x)φi(y) (by which we mean
that the equality holds pointwise, for some particular fixed choice of representatives from the
equivalence class of φi in L2(π)). Let HR be the kernel operator corresponding to hR and H̃R

n =
(hR(Xi,Xj ))0≤i,j≤n−1. Define moreover h̃R = h − hR . We have

δ2
(
λ(H), λ

(
HR

))2 =
∞∑

i∈I,i>R

λ2
i < ε. (12)

Define the function F1 = F + ∑R
i=0

√|λi ||φi | (again we interpret this equality in the point-
wise sense) and note that F1 ∈ L2(π). Moreover, for all x, y ∈ X , |hR(x, y)|, |h̃R(x, y)| ≤
F1(x)F1(y). Thus, by the first part of the proof, we get

δ2
(
λ
(
HR

)
, λ

(
H̃R

n

)) → 0 a.s., (13)
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while by Proposition 4.1 and Lemma 5.1 we obtain that with probability one,

lim
n→∞

∥∥H̃n − H̃R
n

∥∥2
HS = lim

n→∞
1

n2

n−1∑
i,j=0

h̃R(Xi,Xj )
2

≤ lim
n→∞Un(h,X) + lim

n→∞
1

n2

n−1∑
i=0

F1(Xi)
4 = π⊗2h̃2

R =
∞∑

i∈I,i>R

λ2
i < ε.

Thus, by the Hoffman–Wielandt inequality,

lim sup
n→∞

δ2
(
λ(H̃n), λ

(
H̃R

n

)) ≤ ε1/2 a.s.

In combination with (12) and (13), this implies that for every ε > 0,

lim sup
n→∞

δ2
(
λ(H), λ(H̃n)

) ≤ 2ε1/2 a.s.

and in consequence

δ2
(
λ(H), λ(H̃n)

) → 0 a.s. �

6. Proof of Theorem 2.2

Proof of Theorem 2.2. In what follows by 〈·, ·〉 we will denote both the inner product in L2(π)

and in finite-dimensional spaces, since the precise meaning will always be clear from the context,
this should not lead to ambiguity. The letters C,c will denote absolute positive constants, whose
values may differ between occurrences.

Define f :X → L2(π) with the formula

f (x) =
∑
i∈I

√
λiφi(x)φi(·).

Note that
∑

i∈I (
√

λiφi(x))2 = h(x, x) < ∞ and that φi form an orthonormal system in L2(π),
so the above series indeed converges in L2(π). Consider now a random operator on L2(π) given
by

Kn = 1

n

n−1∑
i=0

f (Xi) ⊗ f (Xi),

that is, for all u ∈ L2(π)

Knu = 1

n

n−1∑
i=0

〈
f (Xi), u

〉
f (Xi).
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Note that Kn can be written as AnA
T
n , where An :Rn → L2(π) is defined by Anei =

n−1/2f (Xi) (e0, . . . , en−1 being the standard basis in R
n). Thus λ(Kn) = λ(AT

n An) (recall that
we append spectra of finite dimensional operators with infinite sequences of zeros). But

〈
AT

n Anei, ej

〉 = 〈Anei,Anej 〉 = 1

n

〈
f (Xi), f (Xj )

〉 = 1

n

∑
k∈I

λkφk(Xi)φk(Xj ) = 1

n
h(Xi,Xj ),

so AT
n An = H̃n. Thus, our goal will be to bound the distance between the spectrum of Kn and

the sequence λ.
The random operator Kn is a sum of independent random rank one operators, moreover, using

the fact that φi form an orthonormal system in L2(π) one easily checks that∥∥f (x) ⊗ f (x)
∥∥

HS = h(x, x) (14)

and

Eπf (Xi) ⊗ f (Xi) = H (15)

(where the expectation on the left-hand side is the Bochner integral in the Hilbert space of
Hilbert–Schmidt operators).

Thus, we can apply to Kn classical results concerning concentration for sums of independent
Banach space valued random variables [after passing to the block decomposition given by (A3)].
The inequality we will use is a version of Bernstein’s ψ1 inequality. To formulate it, let us first
recall the definition of the Orlicz ψ1 norm. For a Banach space valued random variable X, we
define

‖X‖ψ1 = inf
{
ρ > 0: E exp

(‖X‖/ρ) ≤ 2
}
.

By exponential Chebyshev’s inequality, we have

P
(|X| ≥ t

) ≤ 2 exp
(−t/‖X‖ψ1

)
(16)

for t > 0.
The following inequality is a simple corollary to Theorem 1.4. in [27].

Lemma 6.1. Let U,Ui , i = 1, . . . , n, be i.i.d. mean zero random variables with values in a
Banach space (B,‖ · ‖). Assume that ‖U‖ψ1 < ∞. Then for all t > 0,

P

(∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

Ui

∥∥∥∥∥ −E

∥∥∥∥∥
n∑

i=1

Ui

∥∥∥∥∥
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−c min

(
t2

n‖U‖2
ψ1

,
t

‖U‖ψ1

))
,

where c > 0 is a universal constant.

It is well known (see, e.g., [17], Chapters 15, 16, or [7,22]) that for uniformly ergodic Markov
chains we have ‖T1 −T0‖ψ1 < ∞ and if the chain is started from a point, then also ‖T0‖ψ1 < ∞,
which allows for the use of the above inequality in our setting.
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Let us now define g(x) = f (x)⊗f (x), Ui = ∑mTi+1+m−1
i=m(Ti+1) (g(Xi)−πg) and recall the defini-

tion N = Nn = sup{k: mTk + m − 1 ≤ n − 1}. Using properties (A0)–(A4) and (15) we get that
EUi = 0 and∥∥∥∥∥1

n

n−1∑
i=0

g(Xi) − H

∥∥∥∥∥
HS

= 1

n

∥∥∥∥∥
n−1∑
i=0

(
g(Xi) − πg

)∥∥∥∥∥
HS

≤ 1

n

∥∥∥∥∥
(mT0+m−1)∧(n−1)∑

i=0

(
g(Xi) − πg

)∥∥∥∥∥
HS

+ 1

n

∥∥∥∥∥
N−1∑
i=0

Ui

∥∥∥∥∥
HS

+ 1

n

∥∥∥∥∥
n−1∑

i=m(TN+1)

g(Xi) − πg

∥∥∥∥∥
HS

≤ 2m

n
(T0 + 1)‖g‖∞ + 1

n

∥∥∥∥∥
N−1∑
i=0

Ui

∥∥∥∥∥
HS

+ 2

n

(
n − m(TN + 1)

)
+‖g‖∞,

where ‖g‖∞ = supx∈X ‖g(x)‖HS.
Therefore,

P

(∥∥∥∥∥1

n

n−1∑
i=0

g(Xi) − H

∥∥∥∥∥
HS

≥ t

)

≤ P
(
2m(T0 + 1)‖g‖∞ ≥ tn/3

) + P

(∥∥∥∥∥
N−1∑
i=0

Ui

∥∥∥∥∥
HS

≥ tn/3

)
(17)

+ P
(
2
(
n − m(TN + 1)

)‖g‖∞ ≥ tn/3
)
.

By (16),

P
(
2m(T0 + 1)‖g‖∞ ≥ tn/3

) ≤ 2 exp

(
− nt

6m‖T0 + 1‖ψ1‖g‖∞

)
. (18)

Moreover, by Lemma 3 in [2] we have for all t > 0,

P
(
2
(
n − m(TN + 1)

) ≥ t
) ≤ 2 exp

(
−c

t

mτ log τ

)
,

where τ = max{‖T0 + 1‖ψ1,‖T1 − T0‖ψ1} (we remark that the notation and the definition of
splitting times in [2] are slightly different than ours, in particular the Markov chain there is
indexed by N \ {0} and not by N, however it is easy to see that the simple proof of Lemma 3 can
be carried over to our setting). Thus,

P
(
2
(
n − m(TN + 1)

)‖g‖∞ ≥ tn/3
) ≤ 2 exp

(
−c

nt

m‖g‖∞τ log τ

)
. (19)
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To handle the middle term in the decomposition (17), we will apply Lemma 6.1 to the random
variables Ui . Since for m > 1, these variables are only one-dependent; moreover, the number of
full blocks Zi in the sequence X0, . . . ,Xn−1 is random, there are two technical steps, which have
to be carried out first, namely we have to split the sum

∑N−1
i=0 Ui into odd and even terms and

use a Lévy type inequality to handle the random number of summands. We have

P

(∥∥∥∥∥
N−1∑
i=0

Ui

∥∥∥∥∥
HS

≥ t/3

)

≤ P

(∥∥∥∥ ∑
0≤i≤N−1,2|i

Ui

∥∥∥∥
HS

≥ t/6

)
+ P

(∥∥∥∥ ∑
0≤i≤N−1,¬2|i

Ui

∥∥∥∥
HS

≥ t/6

)

≤ CP

(∥∥∥∥∥
�n/m�−1∑

i=0

Ũi

∥∥∥∥∥
HS

≥ t/C

)
,

where C is a universal constant and Ũi is a sequence of independent random variables, distributed
as U0. In the last inequality, we used the fact that Nm ≤ n and a Lévy-type inequality for i.i.d.
Banach-space valued random variables due to Montgomery–Smith [19], which asserts that for a
sequence Wi of i.i.d. Banach space-valued variables

P

(
max
k≤n

∥∥∥∥∥
k∑

i=1

Wi

∥∥∥∥∥ ≥ t

)
≤ CP

(∥∥∥∥∥
n∑

i=1

Wi

∥∥∥∥∥ ≥ t/C

)
.

Now, we have

‖Ui‖ψ1 ≤ 2m‖g‖∞‖T1 − T0‖ψ1

and so Lemma 6.1 gives

P

(∥∥∥∥∥
N−1∑
i=0

Ui

∥∥∥∥∥
HS

≥ CE

∥∥∥∥∥
�n/m�−1∑

i=0

Ũi

∥∥∥∥∥
HS

+ s/3

)

≤ 2 exp

(
−c min

(
s2

nm‖g‖2∞‖T1 − T0‖2
ψ1

,
s

m‖g‖∞‖T1 − T0‖ψ1

))
.

Using the above bound together with (17), (18) and (19) we arrive (after adjusting the con-
stants) at

P

(∥∥∥∥∥1

n

n−1∑
i=0

g(Xi) − H

∥∥∥∥∥
HS

≥ Cn−1
E

∥∥∥∥∥
�n/m�−1∑

i=0

Ũi

∥∥∥∥∥
HS

+ t

)

≤ 2 exp

(
−cnmin

(
t2

m‖g‖2∞τ 2
,

t

m‖g‖∞τ log τ

))
.
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Using the fact that the norm ‖ · ‖HS is Hilbertian and EŨi = 0, we obtain

E

∥∥∥∥∥
�n/m�−1∑

i=0

Ũi

∥∥∥∥∥
2

HS

=
�n/m�−1∑

i=0

E‖Ũi‖2
HS ≤ 4n

m
m2

E(T1 − T0)
2‖g‖2∞ ≤ Cnmτ 2‖g‖2∞,

which combined with the previous inequality gives

P

(∥∥∥∥∥1

n

n−1∑
i=0

g(Xi) − H

∥∥∥∥∥
HS

≥ C

√
m

n
τ‖g‖∞ + t

)

≤ 2 exp

(
−cnmin

(
t2

m‖g‖2∞τ 2
,

t

m‖g‖∞τ log τ

))
.

It is easy to see that by adjusting the value of the absolute constant this is equivalent to

P

(∥∥∥∥∥1

n

n−1∑
i=0

g(Xi) − H

∥∥∥∥∥
HS

≥ t

)
≤ 2 exp

(
−cnmin

(
t2

m‖g‖2∞τ 2
,

t

m‖g‖∞τ log τ

))
. (20)

Since by (14) ‖g‖∞ = supx∈X |h(x, x)|, to finish the proof of Theorem 2.2 it is enough to com-
bine the above inequality with Theorem 3.2. �

Remark 6.2. Let us mention that a Markov chain is geometrically ergodic iff it satisfies the
following drift condition (see Theorem 16.0.1. in [17]). There exists λ ∈ (0,1), b ∈ R+ and
V :X → [1,∞) such that for some set C, satisfying (6) and π(C) > 0,

P mV − V ≤ −λV + b1C

and K := supx∈C V (x) < ∞. Finding appropriate drift functions is in fact the most common way
of proving geometric ergodicity.

It turns out that one can bound the quantity τ appearing in the estimate (20) in terms of the
parameters of the drift condition and (6). Such an estimate follows directly from Propositions
6, 7 from [3] (obtained with help of previous important estimates from [7]). Namely for a chain
started from a point x, we have

τ ≤ 2 log

(
log(6/(2 − δ))

log(6/(2 − δ))

)

× max

(
log(V (x)1Cc(x) + (b(1 − λ)−1 + K)1C(x))

log 2
,

log(b(1 − λ)−1 + K)

log 2
,1

)

× 1

log(1/(1 − λ))
,

where δ is the parameter from (6).
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Remark 6.3. It is clearly seen from the proof of Theorem 2.2 that the chain does not have to be
started from a point. It is sufficient to assume that the stopping time T0 is exponentially integrable
under the starting measure μ. This will be the case, for example, if the function V in the drift
conditions is μ-integrable (as follows by Proposition 4.1. (ii) in [7]).

Remark 6.4. We also note that the absolute constant c in (20) can be given explicitly, since
Lemma 6.1 with explicit constants is known [27], the constant from Lemma 3 in [2] can be
easily read from the proof and the Lévy type inequality by Montgomery–Smith is also given
with explicit constants [19]. We do not pursue this direction here. See [3] for related inequalities
for additive functionals of Markov chains with explicit constants.

7. Discussion of optimality. Counterexamples

We would like to conclude with an example of a square integrable kernel h and a uniformly er-
godic Markov chain for which the conclusion of Theorem 2.1 fails and the empirical counterpart
of the spectrum almost surely is not convergent to the spectrum of H. The example uses directly
the construction of [1], where a counterexample to the law of large numbers for U -statistics was
given. We adapt it to our setting and provide the details for the sake of completeness.

Let thus ε0, ε1, . . . be i.i.d. random variables with distribution P(εi = 1) = P(εi = 0) = 1/2
and Y0, Y1, . . . – i.i.d. random variables distributed uniformly on the interval (0,1), independent
of the sequence (εi). Define X0 = x,

Xn+1 =
{

Xn if εn = 0,

Yn+1 if εn = 1.

It is easy to see that (6) is satisfied with m = 1, δ = 1/2, C = (0,1) and ν being the Lebesgue
measure on (0,1), thus (see [17]) the chain is uniformly ergodic (i.e., it is geometrically ergodic
and the function M(x) in (5) is bounded by a constant independent of x). The unique station-
ary measure for the chain, π is in this case the Lebesgue measure. Consider now a function
h : (0,1)2 →R given by h(x, y) = 0 if x �= y and h(x, x) = 1/x3.

Of course h = 0 π ⊗ π -a.s. and so H = 0. Let now i0 < i1 < i2 < · · · be defined as i0 = 0,
in+1 = min{i > in: εi = 0, εi+1 = 1}. Then for k > 0, Xik = Xik+1, moreover conditionally on
(εi)i≥0, Xik are i.i.d., distributed according to π . Since the absolute value of the largest eigen-
value of a matrix is not smaller than the absolute value of its maximal entry, both Hn and H̃n have
at least one eigenvalue, which in absolute value exceeds n−1 max0≤i≤n−2 h(Xi,Xi+1). More-
over, by the law of large numbers in/n → 4 a.s., so using the conditional independence of Xi ,
the Borel–Cantelli lemma and the fact that P(Xik ≤ t) = t for t ∈ (0,1), we get

lim sup
n→∞

maxλ(Hn), lim sup
n→∞

maxλ(H̃n) ≥ lim sup
k→∞

1

ik + 2
h(Xik ,Xik+1)

= lim sup
k→∞

1

ik + 2

1

X3
ik

= ∞ a.s.

This shows that the law of large numbers for spectra fails in this case.
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