
Bernoulli 21(3), 2015, 1575–1599
DOI: 10.3150/14-BEJ614

Maxima of long memory stationary
symmetric α-stable processes, and
self-similar processes with stationary
max-increments
TAKASHI OWADA1 and GENNADY SAMORODNITSKY2

1Faculty of Electrical Engineering, Technion, Haifa, Israel 32000. E-mail: takashiowada@ee.technion.ac.il
2School of Operations Research and Information Engineering, and Department of Statistical Science, Cor-
nell University, Ithaca, NY 14853, USA. E-mail: gs18@cornell.edu

We derive a functional limit theorem for the partial maxima process based on a long memory stationary α-
stable process. The length of memory in the stable process is parameterized by a certain ergodic-theoretical
parameter in an integral representation of the process. The limiting process is no longer a classical ex-
tremal Fréchet process. It is a self-similar process with α-Fréchet marginals, and it has stationary max-
increments, a property which we introduce in this paper. The functional limit theorem is established in
the space D[0,∞) equipped with the Skorohod M1-topology; in certain special cases the topology can be
strengthened to the Skorohod J1-topology.
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1. Introduction

The asymptotic behaviour of the partial maxima sequence Mn = max1≤k≤n Xk , n = 1,2, . . . for
an i.i.d. sequence (X1,X2, . . .) of random variables is the subject of the classical extreme value
theory, dating back to Fisher and Tippett [11]. The basic result of this theory says that only three
one-dimensional distributions, the Fréchet distribution, the Weibull distribution and the Gumbel
distribution, have a max-domain of attraction. If Y has one of these three distributions, then for
a distribution in its domain of attraction, and a sequence of i.i.d. random variables with that
distribution,

Mn − bn

an

⇒ Y (1.1)

for properly chosen sequences (an), (bn); see, for example, Chapter 1 in Resnick [27] or Sec-
tion 1.2 in de Haan and Ferreira [6]. Under the same max-domain of attraction assumption,
a functional version of (1.1) was established in Lamperti [18]: with the same sequences (an),
(bn) as in (1.1), (

M�nt� − bn

an

, t ≥ 0

)
⇒ (

Y(t), t ≥ 0
)

(1.2)
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for a nondecreasing right continuous process (Y (t), t ≥ 0), and the convergence is weak conver-
gence in the Skorohod J1-topology on D[0,∞). The limiting process is often called the extremal
process; its properties were established in Dwass [7,8] and Resnick and Rubinovitch [28].

Much of the more recent research in extreme value theory concentrated on the case when the
underlying sequence (X1,X2, . . .) is stationary, but may be dependent. In this case the extrema of
the sequence may cluster, and it is natural to expect that the limiting results (1.1) and (1.2) will,
in general, have to be different. The extremes of moving average processes have received special
attention; see, for example, Rootzén [29], Davis and Resnick [5] and Fasen [10]. The extremes
of the GARCH(1,1) process were investigated in Mikosch and Stărică [21]. The classical work
on the extremes of dependent sequences is Leadbetter et al. [20]; in some cases this clustering of
the extremes can be characterized through the extremal index (introduced, originally, in Leadbet-
ter [19]). The latter is a number 0 ≤ θ ≤ 1. Suppose that a stationary sequence (X1,X2, . . .) has
this index, and let (X̃1, X̃2, . . .) be an i.i.d. sequence with the same one-dimensional marginal
distributions as (X1,X2, . . .). If (1.1) and (1.2) hold for the i.i.d. sequence, then the correspond-

ing limits will satisfy Ỹ
d= Ỹ (1), but the limit in (1.1) for the dependent sequence (X1,X2, . . .)

will satisfy Y
d= Ỹ (θ). In particular, the limit will be equal to zero if the extremal index is equal

to zero. This case can be viewed as that of long range dependence in the extremes, and it has
been mostly neglected by the extreme value community. Long range dependence is, however, an
important phenomenon in its own right, and in this paper we take a step towards understanding
how long range dependence affects extremes.

A random variable X is said to have a regularly varying tail with index −α for α > 0 if

P(X > x) = x−αL(x), x > 0,

where L is a slowly varying at infinity function, and the distribution of any such random variable
is in the max-domain of attraction of the Fréchet distribution with the same parameter α; see, for
example, Resnick [27]. Recall that the Fréchet law Fα,σ on (0,∞) with the tail index α and scale
σ > 0 satisfies

Fα,σ (x) = exp
{−σαx−α

}
, x > 0. (1.3)

Sometimes the term α-Fréchet is used. In this paper, we discuss the case of regularly varying
tails and the resulting limits in (1.2). The limits obtained in this paper belong to the family of the
so-called Fréchet processes, defined below. We would like to emphasize that, even for stationary
sequences with regularly varying tails, non-Fréchet limits may appear in (1.2). We are postponing
a detailed discussion of this point to a future publication.

A stochastic process (Y (t), t ∈ T ) (on an arbitrary parameter space T ) is called a Fréchet pro-
cess if for all n ≥ 1, a1, . . . , an > 0 and t1, . . . , tn ∈ T , the weighted maximum max1≤j≤n ajY (tj )

follows a Fréchet law as in (1.3). The best known Fréchet process is the extremal Fréchet process
obtained in the scheme (1.2) starting with an i.i.d. sequence with regularly varying tails. The
extremal Fréchet process (Y (t), t ≥ 0) has finite-dimensional distributions defined by(

Y(t1), Y (t2), . . . , Y (tn)
) d= (

X
(1)

α,t
1/α
1

,max
(
X

(1)

α,t
1/α
1

,X
(2)

α,(t2−t1)
1/α

)
, . . . ,

(1.4)
max

(
X

(1)

α,t
1/α
1

,X
(2)

α,(t2−t1)
1/α , . . . ,X

(n)

α,(tn−tn−1)
1/α

))
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for all n and 0 ≤ t1 < t2 < · · · < tn. The different random variables in the right-hand side of (1.4)
are independent, with X

(k)
α,σ having the Fréchet law Fα,σ in (1.3), for any k = 1, . . . , n. The sta-

tionarity and independence of the max-increments of the extremal Fréchet processes make it sim-
ilar to the better known Lévy processes which have stationary and independent sum-increments.
The structure of general Fréchet processes has been extensively studied in the last several years.
These processes were introduced in Stoev and Taqqu [39], and their representations (as a part
of a much more general context) were studied in Kabluchko and Stoev [14]. Stationary Fréchet
processes (in particular, their ergodicity and mixing) were discussed in Stoev [38], Kabluchko
et al. [13] and Wang and Stoev [41].

In this paper, we concentrate on the maxima of stationary α-stable processes with 0 < α < 2.
Recall that a random vector X in Rd is called α-stable if for any A and B > 0 we have

AX(1) + BX(2) d= (
Aα + Bα

)1/αX + y,

where X(1) and X(2) are i.i.d. copies of X, and y is a deterministic vector (unless X is determin-
istic, necessarily, 0 < α ≤ 2). A stochastic process (X(t), t ∈ T ) is called α-stable if all of its
finite-dimensional distributions are α-stable. We refer the reader to Samorodnitsky and Taqqu
[36] for information on α-stable processes. When α = 2, an α-stable process is Gaussian, while
in the case 0 < α < 2, both the left and the right tails of a (nondegenerate) α-stable random
variable X are (generally) regularly varying with exponent α. That is,

P(X > x) ∼ c+x−α, P (X < −x) ∼ c−x−α as x → ∞
for some c+, c− ≥ 0, c+ + c− > 0. That is, if (X1,X2, . . .) is an i.i.d. sequence of α-stable
random variables, then the i.i.d. sequence (|X1|, |X2|, . . .) satisfies (1.1) and (1.2) with an = n1/α

(and bn = 0), n ≥ 1. Of course, we are not planning to study the extrema of an i.i.d. α-stable
sequence. Instead, we will study the maxima of (the absolute values of) a stationary α-stable
process. The reason we have chosen to work with stationary α-stable processes is that their
structure is very rich, and is also relatively well understood. This will allow us to study the effect
of that structure on the limit theorems (1.1) and (1.2). We are specifically interested in the long
range dependent case, corresponding to the zero value of the extremal index.

The structure of stationary symmetric α-stable (SαS) processes has been clarified in the last
several years in the works of Jan Rosiński; see, for example, Rosiński [30,31]. The integral
representation of such a process can be chosen to have a very special form. The class of stationary
SαS processes we will investigate requires a representation slightly more restrictive than the one
generally allowed. Specifically, we will consider discrete-time stationary processes of the form

Xn =
∫

E

f ◦ T n(x)dM(x), n = 1,2, . . . , (1.5)

where M is a SαS random measure on a measurable space (E,E) with a σ -finite infinite con-
trol measure μ. The map T :E → E is a measurable map that preserves the measure μ. Further,
f ∈ Lα(μ). See Samorodnitsky and Taqqu [36] for details on α-stable random measures and inte-
grals with respect to these measures. It is elementary to check that a process with a representation
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(1.5) is, automatically, stationary. Recall that any stationary SαS process has a representation of
the form:

Xn =
∫

E

fn(x)dM(x), n = 1,2, . . . , (1.6)

with

fn(x) = an(x)

(
dμ ◦ T n

dμ
(x)

)1/α

f ◦ T n(x), x ∈ E (1.7)

for n = 1,2, . . . , where T :E → E is a one-to-one map with both T and T −1 measurable, map-
ping the control measure μ into an equivalent measure, and the sequence (an) takes values ±1
(and has the so-called cocycle property). Here M is SαS (and f ∈ Lα(μ)). See Rosiński [30].

In (1.5) we assume, however, that map T is measure preserving. The main reason is that the
ergodic-theoretical notions we are using have been developed for measure preserving maps. In-
deed, it has been observed that the ergodic-theoretical properties of the map T , either in (1.5) or
in (1.7), have a major impact on the memory of a stationary α-stable process. See, for example,
Surgailis et al. [40], Samorodnitsky [33,34], Roy [32], Resnick and Samorodnitsky [25], Owada
and Samorodnitsky [24], Owada [23]. The most relevant for this work is the result of Samorod-
nitsky [33], who proved that, if the map T in (1.5) or in (1.7) is conservative, then using the
normalization an = n1/α (bn = 0) in (1.1), as indicated by the marginal tails, produces the zero
limit, so the partial maxima grow, in this case, strictly slower than at the rate of n1/α . On the other
hand, if the map T is not conservative, then the normalization an = n1/α in (1.1) is the correct
one, and it leads to a Fréchet limit (we will survey the ergodic-theoretical notions in the next
section). Therefore, the extrema of SαS processes corresponding to conservative flows cluster so
much that the sequence of the partial maxima grows at a slower rate than that indicated by the
marginal tails. This case can be thought of as indicating long range dependence. It is, clearly,
inconsistent with a positive extremal index.

The Fréchet limit obtained in (1.1) by Samorodnitsky [33] remains valid when the map T

is conservative (but with the normalization of a smaller order than n1/α), as long as the map
T satisfies a certain additional assumption. If one views the stationary α-stable process as a
natural function of the Poisson points forming the random measure M in (1.6) then, informally,
this assumption guarantees that only the largest Poisson point contributes, distributionally, to the
asymptotic behaviour of the partial maxima of the process. In this paper, we restrict ourselves to
this situation as well. However, we will look at the limits obtained in the much more informative
functional scheme (1.2). In this paper, the assumption on the map T will be expressed in terms of
the rate of growth of the so-called wandering rate sequence, which we define in the sequel. We
would like to emphasize that, when this wandering rate sequence grows at a rate slower than the
one assumed in this paper, new phenomena seem to arise. Multiple Poisson points may contribute
to the asymptotic distribution of the partial maxima, and non-Fréchet limit may appear in (1.2).
We leave a detailed study of this to a subsequent work.

In the next section, we provide the elements of the infinite ergodic theory needed for the rest
of the paper. In Section 3 we introduce a new notion, that of a process with stationary max-
increments. It turns out that the possible limits in the functional maxima scheme (1.2) (with
bn = 0) are self-similar with stationary max-increments. We discuss the general properties of
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such processes and then specialize to the concrete limiting process we obtain in the main result
of the paper, stated and proved in Section 4.

2. Ergodic theoretical notions

In this section, we present some basic notation and notions of, mostly infinite, ergodic theory
used in the sequel. The main references are Krengel [15], Aaronson [2], and Zweimüller [43].

Let (E,E,μ) be a σ -finite, infinite measure space. We will say that A = B mod μ if A,B ∈ E
and μ(A�B) = 0. For f ∈ L1(μ) we will often write μ(f ) for the integral

∫
f dμ.

Let T :E → E be a measurable map preserving the measure μ. The sequence (T n) of iterates
of T is called a flow, and the ergodic-theoretical properties of the map and the flow are identified.
A map T is called ergodic if any T -invariant set A (i.e., a set such that T −1A = A mod μ) is
trivial, that is, it satisfies μ(A) = 0 or μ(Ac) = 0. A map T is said to be conservative if

∞∑
n=1

1A ◦ T n = ∞ a.e. on A

for any A ∈ E , 0 < μ(A) < ∞; if T is also ergodic, then the restriction “on A” is not needed.
The conservative part of a measure-preserving T is the largest T -invariant subset C of E such

that the restriction of T to C is conservative. The set D = E \ C is the dissipative part of T (and
the decomposition E = C ∪ D is called the Hopf decomposition of T ).

The dual operator T̂ :L1(μ) → L1(μ) is defined by

T̂ f = d(νf ◦ T −1)

dμ
, f ∈ L1(μ), (2.1)

where νf is the signed measure νf (A) = ∫
A

f dμ, A ∈ E . The dual operator satisfies the duality
relation ∫

E

T̂ f · g dμ =
∫

E

f · g ◦ T dμ (2.2)

for f ∈ L1(μ), g ∈ L∞(μ). Note that (2.1) makes sense for any nonnegative measurable function
f on E, and the resulting T̂ f is again a nonnegative measurable function. Furthermore, (2.2)
holds for arbitrary nonnegative measurable functions f and g.

A conservative, ergodic and measure preserving map T is said to be pointwise dual ergodic, if
there exists a normalizing sequence an ↗ ∞ such that

1

an

n∑
k=1

T̂ kf → μ(f ) a.e. for every f ∈ L1(μ). (2.3)

The property of pointwise dual ergodicity rules out invertibility of the map T . Since the measure
μ is infinite, choosing a nonnegative function f and using Fatou’s lemma shows that only rates
an = o(n) are possible in pointwise dual ergodicity. Intuitively, as will be seen in (2.6) below, the
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longer time it takes the trajectory of a point under the map T to return to a set of a finite positive
measure, the smaller is the normalizing sequence (an).

Sometimes we require that for some functions the above convergence takes place uniformly
on a certain set. A set A ∈ E with 0 < μ(A) < ∞ is said to be a uniform set for a conservative,
ergodic and measure preserving map T , if there exist a normalizing sequence an ↗ ∞ and a
nontrivial nonnegative measurable function f ∈ L1(μ) (nontriviality means that f is different
from zero on a set of positive measure) such that

1

an

n∑
k=1

T̂ kf → μ(f ) uniformly, a.e. on A. (2.4)

If (2.4) holds for f = 1A, the set A is called a Darling–Kac set. A conservative, ergodic and
measure preserving map T is pointwise dual ergodic if and only if T admits a uniform set; see
Proposition 3.7.5 in Aaronson [2]. In particular, it is legitimate to use the same normalizing
sequence (an) both in (2.3) and (2.4).

Let A ∈ E with 0 < μ(A) < ∞. The frequency of visits to the set A along the trajectory (T nx),
x ∈ E, is naturally related to the wandering rate sequence

wn = μ

(
n−1⋃
k=0

T −kA

)
. (2.5)

If we define the first entrance time to A by

ϕA(x) = min
{
n ≥ 1 :T nx ∈ A

}
(notice that ϕA < ∞ a.e. on E since T is conservative and ergodic), then wn ∼ μ(ϕA < n) as
n → ∞. Since T is also measure preserving, we have μ(A ∩ {ϕA > k}) = μ(Ac ∩ {ϕA = k})
for k ≥ 1 (see, e.g., Zweimüller [43]). Therefore, alternative expressions for the wandering rate
sequence are

wn = μ(A) +
n−1∑
k=1

μ
(
Ac ∩ {ϕA = k}) =

n−1∑
k=0

μ
(
A ∩ {ϕA > k}).

Suppose now that T is a pointwise dual ergodic map, and let A be a uniform set for T . It turns
out that, under an assumption of regular variation, there is a precise connection between the
wandering rate sequence (wn) and the normalizing sequence (an) in (2.3) and (2.4). Specifically,
let RVγ represent the class of regularly varying at infinity sequences (or functions, depending on
the context) of index γ . If either (wn) ∈ RVβ or (an) ∈ RV1−β for some β ∈ [0,1], then

an ∼ 1

	(2 − β)	(1 + β)

n

wn

as n → ∞. (2.6)

Proposition 3.8.7 in Aaronson [2] gives one direction of this statement, but the argument is easily
reversed. The normalizing sequence (an) and the wandering rate sequence (wn) are both related
to the frequency with which a uniform set A is visited along the trajectory (T nx) that starts in A.
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We finish this section with a statement on distributional convergence of the partial maxima for
pointwise dual ergodic flows. It will be used repeatedly in the proof of the main theorem. For a
measurable function f on E define

Mn(f )(x) = max
1≤k≤n

∣∣f ◦ T k(x)
∣∣, x ∈ E,n ≥ 1.

The proposition below involves weak convergence in the space D[0,∞) equipped with two
different topologies, the Skorohod J1-topology and the Skorohod M1-topology, introduced in
Skorohod [37]. The details could be found, for instance, in Billingsley [4] (for the J1-topology),
and in Whitt [42] (for the M1-topology). See also Remark 2.2.

In the sequel, we will use the convention maxk∈K bk = 0 for a nonnegative sequence (bn), if
K =∅.

Proposition 2.1. Let T be a pointwise dual ergodic map on a σ -finite, infinite, measure space
(E,E,μ). We assume that the normalizing sequence (an) is regularly varying with exponent
1 − β for some 0 < β ≤ 1. Let A ∈ E , 0 < μ(A) < ∞, be a uniform set for T . Define a proba-
bility measure on E by μn(·) = μ(· ∩ {ϕA ≤ n})/μ({ϕA ≤ n}). Let f :E → R be a measurable
bounded function supported by the set A, that is, supp(f ) ⊂ A. Let ‖f ‖∞ = inf{M : |f (x)| ≤
M a.e. on A}. Then(

M�nt�(f ),0 ≤ t ≤ 1
)

(2.7)
⇒ ‖f ‖∞(1{Vβ≤t},0 ≤ t ≤ 1) in the M1-topology on D[0,1],

where the law of the left-hand side is computed with respect to μn, and Vβ is a random variable
defined on a probability space (
′,F ′,P ′) with P ′(Vβ ≤ x) = xβ , 0 < x ≤ 1. If f = 1A, then
the convergence above takes place in the J1-topology as well.

Remark 2.2. It is not difficult to see why the weak convergence in (2.7) holds in the J1-topology
for indicator functions, but only in the M1-topology in general. Indeed, for functions f other than
the indicator function, the limiting value of ‖f ‖∞ may have an asymptotically non-vanishing
probability of being reached in multiple closely placed steps, which precludes the J1-tightness,
since the J1-modulus does not become small; see, for example, Theorem 13.2 in Billingsley [4].
One can easily construct (very general) examples of situations in which this can be made precise.
On the other hand, if f = 1A, then the limiting value is reached by a single jump, matching the
single jump in the limiting process, which gives convergence in the J1-topology.

Proof of Proposition 2.1. For 0 < ε < 1, let Aε = {x ∈ A : |f (x)| ≥ (1 − ε)‖f ‖∞}. Note that
each Aε is uniform since A is uniform. Clearly,

(1 − ε)‖f ‖∞1{ϕAε (x)≤nt} ≤ M�nt�(f )(x) ≤ ‖f ‖∞1{ϕA(x)≤nt} μ-a.e.

for all n ≥ 1 and 0 ≤ t ≤ 1. Since for monotone functions weak convergence in the M1-topology
is implied by convergence in finite-dimensional distributions (see, e.g., Proposition 2 in Avram
and Taqqu [3]), we can use Theorem 3.2 in Billingsley [4] in a finite-dimensional situation. The
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statement of the proposition will follow once we show that, for a uniform set B (which could
be either A or Aε) the law of ϕB/n under μn converges to the law of Vβ . Let (w

(B)
n ) be the

corresponding wandering rate sequence. Since (2.6) holds for (w
(B)
n ) with the same normalizing

constants (an), we know that w
(B)
n ∼ w

(A)
n := wn as n → ∞. Therefore,

μn

(
ϕB

n
≤ x

)
= μ(ϕB ≤ �nx�)

μ(ϕA ≤ n)
∼ w

(B)
�nx�
wn

→ xβ

for all 0 < x ≤ 1, because the wandering rate sequence (wn) is regularly varying with index β

by (2.6).
Next, suppose that f (x) = 1A(x). In this case, M�nt�(1A)(x) = 1{ϕA(x)≤nt}. An application of

the Skorohod embedding theorem tells us that on some common probability space, the time of
the jump of the process 1{ϕA(·)≤nt} converges a.s. to the time of the jump of the process 1{Vβ≤t}.
This, in turn, implies a.s. convergence of these processes in the space D[0,1] in the J1-topology,
hence their weak convergence in that topology. �

3. Self-similar processes with stationary max-increments

The limiting process obtained in the next section shares with any possible limits in the functional
maxima scheme (1.2) (with bn = 0) two very specific properties, one of which is classical, and the
other is less so. Recall that a stochastic process (Y (t), t ≥ 0) is called self-similar with exponent
H of self-similarity if for any c > 0(

Y(ct), t ≥ 0
) d= (

cH Y (t), t ≥ 0
)

in the sense of equality of finite-dimensional distributions. The best known classes of self-similar
processes arise in various versions of a functional central limit theorem for stationary processes,
and they have an additional property of stationary increments. Recall that a stochastic process
(Y (t), t ≥ 0) is said to have stationary increments if for any r ≥ 0(

Y(t + r) − Y(r), t ≥ 0
) d= (

Y(t) − Y(0), t ≥ 0
); (3.1)

see, for example, Embrechts and Maejima [9] and Samorodnitsky [35]. In the context of the
functional limit theorem for the maxima (1.2), a different property appears.

Definition 3.1. A stochastic process (Y (t), t ≥ 0) is said to have stationary max-increments if
for every r ≥ 0, there exists, perhaps on an enlarged probability space, a stochastic process
(Y (r)(t), t ≥ 0) such that (

Y (r)(t), t ≥ 0
) d= (

Y(t), t ≥ 0
)
,

(3.2)(
Y(t + r), t ≥ 0

) d= (
Y(r) ∨ Y (r)(t), t ≥ 0

)
.



Limit theory for partial maxima 1583

Notice the analogy between the definition (3.1) of stationary increments (when Y(0) = 0) and
Definition 3.1. Since the operations of taking the maximum is not invertible (unlike summation),
the latter definition, by necessity, is stated in terms of existence of the max-increment process
(Y (r)(t), t ≥ 0).

Theorem 3.2. Let (X1,X2, . . .) be a stationary sequence. Assume that for some sequence
an → ∞, and a stochastic process (Y (t), t ≥ 0) such that P(Y (t) = Y(1)) < 1 for t �= 1,(

1

an

M�nt�, t ≥ 0

)
⇒ (

Y(t), t ≥ 0
)

in terms of convergence of finite-dimensional distributions. Then (Y (t), t ≥ 0) is self-similar
with exponent H > 0 of self-similarity, and has stationary max-increments. Furthermore,
(Y (t), t ≥ 0) is continuous in probability. The sequence (an) is regularly varying with index H .

Proof. The facts that the limiting process (Y (t), t ≥ 0) is self-similar with exponent H ≥ 0 of
self-similarity, and that the sequence (an) is regularly varying with index H , follow from the
Lamperti theorem; see Lamperti [17], or Theorem 2.1.1 in Embrechts and Maejima [9]. The case
H = 0 is ruled out by the assumption that P(Y (t) = Y(1)) < 1 for t �= 1. Lamperti’s theorem is
usually stated and proved in the context of convergence in the situation when the time is scaled by
a parameter converging to infinity along the real values, whereas in our situation the time scaling
converges to infinity along a discrete sequence of the integers. However, it is easy to check that
for maxima of stationary processes convergence along a discrete sequence provides the same
information as convergence along all real values. Note, further, that for every 0 ≤ t1 < t2 and n

large enough,

1

an

(M�nt2� − M�nt1�) ≤ 1

an

max
nt1<i≤nt2

Xi

st≤ 1

an

M�2n(t2−t1)�

by the stationarity. Taking weak limits, we see that the difference Y(t2) − Y(t1) is nonnegative
and bounded stochastically by Y(2(t2 − t1)). Therefore, it follows from the self-similarity of
(Y (t), t ≥ 0) that it is continuous in probability.

We check now the stationarity of the max-increments of the limiting process. Let r > 0, and
ti > 0, i = 1, . . . , k, some k ≥ 1. Write

1

an

M�n(ti+r)� = 1

an

M�nr�
∨ 1

an

max
nr<j≤n(ti+r)

Xj , i = 1, . . . , k. (3.3)

By the assumption of the theorem and stationarity of the process (X1,X2, . . .),

1

an

M�nr� ⇒ Y(r),

(
1

an

max
nr<j≤n(ti+r)

Xj , i = 1, . . . , k

)
⇒ (

Y(t1), . . . , Y (tk)
)

as n → ∞. Since every weakly converging sequence is tight, and a sequence with tight marginals
is itself tight, we conclude that(

1

an

M�nr�,
(

1

an

max
nr<j≤n(ti+r)

Xj , i = 1, . . . , k

))
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is a tight sequence. This tightness means that for every sequence nm → ∞ there is a subsequence

nm(l) → ∞ and a k-dimensional random vector (Y (r)(t1), . . . , Y
(r)(tk))

d= (Y (t1), . . . , Y (tk))

such that as l → ∞,(
1

anm(l)

M�nm(l)r�,
(

1

anm(l)

max
nm(l)r<j≤nm(l)(ti+r)

Xj , i = 1, . . . , k

))
⇒ (

Y(r),
(
Y (r)(t1), . . . , Y

(r)(tk)
))

.

Let now τi , i = 1,2, . . . be an enumeration of the rational numbers in [0,∞). A diagonaliza-
tion argument shows that there is a sequence nm → ∞ and a stochastic process (Y (r)(τi), i =
1,2, . . .) with (Y (r)(τi), i = 1,2, . . .)

d= (Y (τi), i = 1,2, . . .) such that(
1

anm

M�nmr�,
(

1

anm

max
nmr<j≤nm(τi+r)

Xj , i = 1,2, . . .

))
(3.4)

⇒ (
Y(r),

(
Y (r)(τi), i = 1,2, . . .

))
in finite-dimensional distributions, as m → ∞. We extend the process Y (r) to the entire positive
half-line by setting

Y (r)(t) = 1

2

(
lim

τ↑t, rational
Y (r)(τ ) + lim

τ↓t, rational
Y (r)(τ )

)
, t ≥ 0.

The continuity in probability implies that this process is a version of (Y (t), t ≥ 0). This continuity
in probability, (3.4) and monotonicity imply that as m → ∞,(

1

anm

M�nmr�,
(

1

anm

max
nmr<j≤nm(t+r)

Xj , t ≥ 0

))
⇒ (

Y(r),
(
Y (r)(t), t ≥ 0

))
(3.5)

in finite-dimensional distributions. Now the stationarity of max-increments follows from (3.3),
(3.5) and continuous mapping theorem. �

Remark 3.3. Self-similar processes with stationary max-increments arising in a functional max-
ima scheme (1.2) are close in spirit to the stationary self-similar extremal processes of O’Brien
et al. [22], while extremal processes themselves are defined as random sup measures. A random
sup measure is, as its name implies, indexed by sets. They also arise in a limiting maxima scheme
similar to (1.2), but with a stronger notion of convergence. Every stationary self-similar extremal
processes trivially produces a self-similar process with stationary max-increments via restriction
to sets of the type [0, t] for t ≥ 0, but the connection between the two objects remains unclear.
Our limiting process in Theorem 4.1 below can be extended to a stationary self-similar extremal
processes, but the extension is highly nontrivial, and will not be pursued here.

It is not our goal in this paper to study in details the properties of self-similar processes with
stationary max-increments, so we restrict ourselves to the following basic result.
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Proposition 3.4. Let (Y (t), t ≥ 0) be a nonnegative self-similar process with stationary max-
increments, and exponent H of self-similarity. Suppose (Y (t), t ≥ 0) is not identically zero. Then
H ≥ 0, and the following statements hold.

(a) If H = 0, then Y(t) = Y(1) a.s. for every t > 0.
(b) If 0 < EY(1)p < ∞ for some p > 0, then H ≤ 1/p.
(c) If H > 0, (Y (t), t ≥ 0) is continuous in probability.

Proof. By the stationarity of max-increments, Y(t) is stochastically increasing with t . This im-
plies that H ≥ 0.

If H = 0, then Y(n)
d= Y(1) for each n = 1,2 . . . . We use (3.2) with r = 1. Using t = 1 we see

that, in the right-hand side of (3.2), Y(1) = Y (1)(1) a.s. Since Y (1)(n) ≥ Y (1)(1) a.s., we conclude,
using t = n in the right-hand side of (3.2), that Y(1) = Y (1)(n) a.s. for each n = 1,2, . . . . By
monotonicity, we conclude that the process (Y (1)(t), t ≥ 0), hence also the process (Y (t), t ≥ 0),
is a.s. constant on [1,∞) and then, by self-similarity, also on (0,∞).

Next, let p > 0 be such that 0 < EY(1)p < ∞. It follows from (3.2) with r = 1 that

2H Y(1)
d= Y(2)

d= max
(
Y(1), Y (1)(1)

)
.

Therefore,

2pH EY(1)p = EY(2)p = E
[
Y(1)p ∨ Y (1)(1)p

] ≤ 2EY(1)p.

This means that pH ≤ 1.
Finally, we take arbitrary 0 < s < t . We use (3.2) with r = s. For every η > 0,

P
(
Y(t) − Y(s) > η

) = P
(
Y(s) ∨ Y (s)(t − s) − Y(s) > η

)
≤ P

(
Y (s)(t − s) > η

) = P
(
(t − s)H Y (1) > η

)
.

Hence, continuity in probability. �

We now introduce a crucial object for the subsequent discussion, which is the limiting process
obtained in the main limit theorem of Section 4. It has a somewhat deceptively simple represen-
tation that we presently describe.

Let α > 0, and consider the extremal Fréchet process Zα(t), t ≥ 0, defined in (1.4), with the
scale σ = 1. For 0 < β < 1, we define a new stochastic process by

Zα,β(t) = Zα

(
tβ

)
, t ≥ 0. (3.6)

We will refer to this process as the time scaled extremal Fréchet process.
The next proposition places this process in the general framework introduced earlier in this

section.

Proposition 3.5. The process Zα,β in (3.6) is self-similar with H = β/α and has stationary
max-increments.
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Proof. Since the extremal Fréchet process is self-similar with H = 1/α, it is immediately seen
that the process Zα,β is self-similar with H = β/α.

To show the stationarity of max-increments, we start with a useful representation of the ex-
tremal Fréchet process Zα(t), t ≥ 0 in terms of the points of a Poisson random measure. Let
((jk, sk)) be the points of a Poisson random measure on R

2+ with mean measure ρα × λ, where
ρα(x,∞) = x−α , x > 0 and λ is the Lebesgue measure on R+. Then an elementary calculation
shows that (

Zα(t), t ≥ 0
) d= (

sup{jk : sk ≤ t}, t ≥ 0
)
.

Therefore, (Zα,β(t), t ≥ 0)
d= (Uα,β(t), t ≥ 0), where

Uα,β(t) = sup
{
jk : sk ≤ tβ

}
, t ≥ 0. (3.7)

Given r > 0, we define

U
(r)
α,β(t) = sup

{
jk : (t + r)β − tβ ≤ sk ≤ (t + r)β

}
.

Since 0 < β < 1, we have(
(t1 + r)β − t

β

1 , (t1 + r)β
) ⊂ (

(t2 + r)β − t
β

2 , (t2 + r)β
)

for 0 ≤ t1 < t2. The nested nature of these sets implies that(
U

(r)
α,β(t), t ≥ 0

) d= (
Uα,β(t), t ≥ 0

)
,

because only the obvious equality of the one-dimensional distributions must be checked. Fur-
thermore, since (t + r)β − tβ ≤ rβ , we see that

Uα,β(t + r) = Uα,β(r) ∨ U
(r)
α,β(t) for all t ≥ 0.

This means that the process Uα,β has stationary max-increments and, hence, so does the pro-
cess Zα,β . �

Note that the max-increment process (U
(r)
α,β(t)) in the proof of Proposition 3.5 is not inde-

pendent of the random variable Uα,β(r) if β < 1. The case β = 1 corresponds to the extremal
Fréchet process, whose max-increments are both stationary and independent.

It is interesting to note that, by part (b) of Proposition 3.4, any H -self-similar process with sta-
tionary max-increments and α-Fréchet marginals, must satisfy H ≤ 1/α. The exponent H = β/α

with 0 < β ≤ 1 of the process Zα,β (with β = 1 corresponding to the extremal Fréchet process
Zα) covers the entire interval (0,1/α]. Therefore, the upper bound of part (b) of Proposition 3.4
is, in general, the best possible.

We finish this section by mentioning that an immediate conclusion from (3.7) is the following
representation of the time scaled extremal Fréchet process Zα,β on the interval [0,1]:

(
Zα,β(t),0 ≤ t ≤ 1

) d=
( ∞∨

j=1

	
−1/α
j 1{Vj ≤t},0 ≤ t ≤ 1

)
, (3.8)



Limit theory for partial maxima 1587

where 	j , j = 1,2, . . . , are arrival times of a unit rate Poisson process on (0,∞), and (Vj ) are
i.i.d. random variables with P(V1 ≤ x) = xβ , 0 < x ≤ 1, independent of (	j ).

4. A functional limit theorem for partial maxima

In this section, we state and prove our main result, a functional limit theorem for the partial
maxima of the discrete-time stationary process X = (X1,X2, . . .) given in (1.5). Recall that T

is a conservative, ergodic and measure preserving map on a σ -finite, infinite, measure space
(E,E,μ). We will assume that T is a pointwise dual ergodic map with normalizing sequence
(an) that is regularly varying with exponent 1 − β; equivalently, the wandering sequence (wn)

in (2.5) is assumed to be regularly varying with exponent β . Crucially, we will assume that
1/2 < β < 1. See Remark 4.3 after the proof of Theorem 4.1 below.

Define

bn =
(∫

E

max
1≤k≤n

∣∣f ◦ T n(x)
∣∣αμ(dx)

)1/α

, n = 1,2, . . . . (4.1)

The sequence (bn) is known to play an important role in the rate of growth of partial maxima of
an α-stable process of the type (1.5). It also turns out to be a proper normalizing sequence for our
functional limit theorem. In Samorodnitsky [33] it was shown that, for a canonical kernel (1.7),
if the map T is conservative, then the sequence (bn) grows at a rate strictly slower than n1/α . The
extra assumptions imposed in the current paper will guarantee a more precise statement. We will
prove that, in fact, (bn) ∈ RVβ/α and, more specifically,

lim
n→∞

bα
n

wn

= ‖f ‖∞ (4.2)

(where (wn) is the wandering sequence). This fact has an interesting message, because it explic-
itly shows that the rate of growth of the partial maxima is determined both by the heaviness of
the marginal tails (through α) and by the length of memory (through β). Such a precise measure
of the length of memory is not present in Samorodnitsky [33].

In contrast, if the map T has a nontrivial dissipative component, then the sequence (bn) grows
at the rate n1/α , and so do the partial maxima of the stationary SαS process; see Samorod-
nitsky [33]. This is the limiting case of the setup in the present paper, as β gets closer to 1.
Intuitively, the smaller is β , the longer is the memory in the process.

The basic idea in the proof of our main result, Theorem 4.1 below, is similar to the idea in the
proof of Theorems 3.1 and 4.1 in Samorodnitsky [33] and is based on a Poisson representation
of the process and a “single jump” property; see Remark 4.3.

We recall the tail constant of an α-stable random variable given by

Cα =
(∫ ∞

0
x−α sinx dx

)−1

=
{

(1 − α)/
(
	(2 − α) cos(πα/2)

)
if α �= 1,

2/π if α = 1;

see Samorodnitsky and Taqqu [36].
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Theorem 4.1. Let T be a conservative, ergodic and measure preserving map on a σ -finite infi-
nite measure space (E,E,μ). Assume that T is a pointwise dual ergodic map with normalizing
sequence (an) ∈ RV1−β , 0 ≤ β ≤ 1. Let f ∈ Lα(μ) ∩ L∞(μ), and assume that f is supported
by a uniform set A for T , that is, supp(f ) ⊂ A. Let α > 0. Then the sequence (bn) in (4.1)
satisfies (4.2).

Assume now that 0 < α < 2 and 1/2 < β < 1. If M is a SαS random measure on (E,E) with
control measure μ, then the stationary SαS process X given in (1.5) satisfies(

1

bn

max
1≤k≤�nt�

|Xk|, t ≥ 0

)
⇒ (

C1/α
α Zα,β(t), t ≥ 0

)
in D[0,∞) (4.3)

in the Skorohod M1-topology. Moreover, if f = 1A, then the above convergence occurs in the
Skorohod J1-topology as well.

Remark 4.2. The functional limit theorem in Theorem 4.1 above, once again, involves weak
convergence in two different topologies, that is, the Skorohod J1-topology and the Skorohod
M1-topology. The issue is similar to that in Proposition 2.1; see Remark 2.2.

Proof of Theorem 4.1. We start with verifying (4.2). Obviously,

bα
n ≤ ‖f ‖∞μ(ϕA ≤ n),

and, recalling that wn ∼ μ(ϕA ≤ n), we get the upper bound

lim sup
n→∞

bα
n

wn

≤ ‖f ‖∞.

On the other hand, take an arbitrary ε ∈ (0,‖f ‖∞). The set

Bε = {
x ∈ A :

∣∣f (x)
∣∣ ≥ ‖f ‖∞ − ε

}
is a uniform set for T . A lower bound for bα

n is obtained via the obvious inequality

bα
n ≥ (‖f ‖∞ − ε

)
μ

(
n⋃

j=1

T −jBε

)
.

Indeed, let (w
(ε)
n ) be the corresponding wandering rate sequence to the set Bε . As argued in

Proposition 2.1, we know that wn ∼ w
(ε)
n ∼ μ(ϕBε ≤ n). Therefore,

lim inf
n→∞

bα
n

wn

= lim inf
n→∞

bα
n

μ(ϕBε ≤ n)
≥ ‖f ‖∞ − ε.

Letting ε → 0, we obtain (4.2).
Suppose now that 0 < α < 2 and 1/2 < β < 1. We continue with proving convergence in the

finite-dimensional distributions in (4.3). Since for random elements in D[0,∞) with nondecreas-
ing sample paths, weak convergence in the M1-topology is implied by the finite-dimensional
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weak convergence, this will also establish (4.3) in the sense of weak convergence in the M1-
topology.

Fix 0 = t0 < t1 < · · · < td , d ≥ 1. We may and will assume that td ≤ 1. We use a series
representation of the random vector (X1, . . . ,Xn): with fk = f ◦ T k , k = 1,2, . . . ,

(Xk, k = 1, . . . , n)
d=

(
bnC

1/α
α

∞∑
j=1

εj	
−1/α
j

fk(U
(n)
j )

max1≤i≤n |fi(U
(n)
j )|

, k = 1, . . . , n

)
. (4.4)

Here (εj ) are i.i.d. Rademacher random variables (symmetric random variables with values ±1),

(	j ) are the arrival times of a unit rate Poisson process on (0,∞), and (U
(n)
j ) are i.i.d. E-valued

random variables with the common law ηn defined by

dηn

dμ
(x) = 1

bα
n

max
1≤k≤n

∣∣fk(x)
∣∣α, x ∈ E. (4.5)

The sequences (εj ), (	j ), and (U
(n)
j ) are taken to be independent. We refer to Section 3.10

of Samorodnitsky and Taqqu [36] for series representations of α-stable random vectors. The
representation (4.4) was also used in Samorodnitsky [33], and the argument below is structured
similarly to the corresponding argument ibid.

The crucial consequence of the assumption 1/2 < β < 1 is that, in the series representa-
tion (4.4), only the largest Poisson jump will play an important role. It is shown in Samorodnitsky
[33] that, under the assumptions of Theorem 4.1, for every η > 0,

ϕn(η) ≡ P

(
n⋃

k=1

{
	

−1/α
j

|fk(U
(n)
j )|

max1≤i≤n |fi(U
(n)
j )|

> η

(4.6)

for at least 2 different j = 1,2, . . .

})
→ 0

as n → ∞.
We will proceed in two steps. First, we will prove that( ∞∨

j=1

	
−1/α
j

max1≤k≤�nti� |fk(U
(n)
j )|

max1≤k≤n |fk(U
(n)
j )|

, i = 1, . . . , d

)
(4.7)

⇒ (
Zα,β(ti), i = 1, . . . , d

)
in R

d+.

Next, we will prove that, for fixed λ1, . . . , λd > 0, for every 0 < δ < 1,

P
(
b−1
n max

1≤k≤�nti�
|Xk| > λi, i = 1, . . . , d

)
(4.8)

≤ P

(
C1/α

α

∞∨
j=1

	
−1/α
j

max1≤k≤�nti� |fk(U
(n)
j )|

max1≤k≤n |fk(U
(n)
j )|

> λi(1 − δ), i = 1, . . . , d

)
+ o(1)
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and that

P
(
b−1
n max

1≤k≤�nti�
|Xk| > λi, i = 1, . . . , d

)
(4.9)

≥ P

(
C1/α

α

∞∨
j=1

	
−1/α
j

max1≤k≤�nti� |fk(U
(n)
j )|

max1≤k≤n |fk(U
(n)
j )|

> λi(1 + δ), i = 1, . . . , d

)
+ o(1).

Since the Fréchet distribution is continuous, the weak convergence(
b−1
n max

1≤k≤�nti�
|Xk|, i = 1, . . . , d

)
⇒ (

Zα,β(ti), i = 1, . . . , d
)

in R
d+

will follow by taking δ arbitrarily small.
We start with proving (4.7). For n = 1,2, . . . , Nn = ∑∞

j=1 δ
(	j ,U

(n)
j )

is a Poisson random mea-

sure on (0,∞)×⋃n
k=1 T −kA with mean measure λ×ηn. Define a map Sn :R+×⋃n

k=1 T −kA →
R

d+ by

Sn(r, x) = r−1/α
(
Mn(f )(x)

)−1(
M�nt1�(f )(x), . . . ,M�ntd�(f )(x)

)
, r > 0, x ∈

n⋃
k=1

T −kA.

Then, for λ1, . . . , λd > 0,

P

( ∞∨
j=1

	
−1/α
j

max1≤k≤�nti� |fk(U
(n)
j )|

max1≤k≤n |fk(U
(n)
j )|

≤ λi, i = 1, . . . , d

)

= P
[
Nn

(
S−1

n

(
(0, λ1] × · · · × (0, λd ])c) = 0

]
= exp

{−(λ × ηn)
(
S−1

n

(
(0, λ1] × · · · × (0, λd ])c)}

= exp

{
−(λ × ηn)

{
(r, x) :

d∨
j=1

λ−α
j

(M�ntj �(f )(x))α

(Mn(f )(x))α
> r

}}

= exp

{
−b−α

n

∫
E

d∨
j=1

λ−α
j M�ntj �(f )α dμ

}
.

We use (4.2) and the weak convergence in Proposition 2.1 to obtain

b−α
n

∫
E

d∨
j=1

λ−α
j M�ntj �(f )α dμ ∼ ‖f ‖−1∞

∫
E

d∨
j=1

λ−α
j M�ntj �(f )α dμn

→
∫


′

d∨
j=1

λ−α
j 1{Vβ≤tj } dP ′ =

d∑
i=1

(
t
β
i − t

β

i−1

)( d∧
j=i

λj

)−α

.
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Therefore,

P

( ∞∨
j=1

	
−1/α
j

max1≤k≤�nti� |fk(U
(n)
j )|

max1≤k≤n |fk(U
(n)
j )|

≤ λi, i = 1, . . . , d

)

→ exp

{
−

d∑
i=1

(
t
β
i − t

β

i−1

)( d∧
j=i

λj

)−α}
= P

(
Zα,β(ti) ≤ λi, i = 1, . . . , d

)
.

The claim (4.7) has, consequently, been proved.
We continue with the statements (4.8) and (4.9). Since the arguments are very similar, we only

prove (4.8). Let K ∈N and 0 < ε < 1 be constants so that

K + 1 >
4

α
and δ − εK > 0.

Then

P
(
b−1
n max

1≤k≤�nti�
|Xk| > λi, i = 1, . . . , d

)

≤ P

(
C1/α

α

∞∨
j=1

	
−1/α
j

max1≤k≤�nti� |fk(U
(n)
j )|

max1≤k≤n |fk(U
(n)
j )|

> λi(1 − δ), i = 1, . . . , d

)

+ ϕn

(
C−1/α

α ε min
1≤i≤d

λi

)
+

d∑
i=1

ψn(λi, ti),

where

ψn(λ, t) = P

(
C1/α

α max
1≤k≤�nt�

∣∣∣∣∣
∞∑

j=1

εj	
−1/α
j

fk(U
(n)
j )

max1≤i≤n |fi(U
(n)
j )|

∣∣∣∣∣ > λ,

C1/α
α

∞∨
j=1

	
−1/α
j

max1≤k≤�nt� |fk(U
(n)
j )|

max1≤k≤n |fk(U
(n)
j )|

≤ λ(1 − δ), and for each m = 1, . . . , n,

C1/α
α 	

−1/α
j

|fm(U
(n)
j )|

max1≤i≤n |fi(U
(n)
j )|

> ελ for at most one j = 1,2, . . .

)
.

By (4.6), it is enough to show that

ψn(λ, t) → 0 (4.10)

for all λ > 0 and 0 ≤ t ≤ 1.
For every k = 1,2, . . . , n, the Poisson random measure represented by the points(

εj	
−1/α
j fk

(
U

(n)
j

)(
max

1≤i≤n

∣∣fi

(
U

(n)
j

)∣∣)−1
, j = 1,2, . . .

)
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has the same mean measure as that represented by the points

(
εj	

−1/α
j ‖f ‖αb−1

n , j = 1,2, . . .
)
,

where ‖f ‖α = (
∫
E

|f |α dμ)1/α . In fact, the common mean measure assigns the value x−α‖f ‖α
α/2

to the sets (x,∞) and (−∞,−x) for every x > 0. Therefore, these two Poisson random measures
coincide distributionally. We conclude that the probability in (4.10) is bounded by

�nt�∑
k=1

P

(
C1/α

α

∣∣∣∣∣
∞∑

j=1

εj	
−1/α
j

fk(U
(n)
j )

max1≤i≤n |fi(U
(n)
j )|

∣∣∣∣∣ > λ,

C1/α
α

∞∨
j=1

	
−1/α
j

fk(U
(n)
j )

max1≤i≤n |fi(U
(n)
j )|

≤ λ(1 − δ),

C1/α
α 	

−1/α
j

|fk(U
(n)
j )|

max1≤i≤n |fi(U
(n)
j )|

> ελ for at most one j = 1,2, . . .

)

= �nt�P
(

C1/α
α

∣∣∣∣∣
∞∑

j=1

εj	
−1/α
j

∣∣∣∣∣ > λ‖f ‖−1
α bn,C

1/α
α

∞∨
j=1

	
−1/α
j ≤ λ(1 − δ)‖f ‖−1

α bn,

C1/α
α 	

−1/α
j > ελ‖f ‖−1

α bn for at most one j = 1,2, . . .

)

≤ nP

(
C1/α

α

∣∣∣∣∣
∞∑

j=K+1

εj	
−1/α
j

∣∣∣∣∣ > (δ − εK)λ‖f ‖−1
α bn

)

≤ n‖f ‖4
αC

4/α
α

(δ − εK)4λ4b4
n

E

∣∣∣∣∣
∞∑

j=K+1

εj	
−1/α
j

∣∣∣∣∣
4

.

Due to the choice K + 1 > 4/α,

E

∣∣∣∣∣
∞∑

j=K+1

εj	
−1/α
j

∣∣∣∣∣
4

< ∞;

see Samorodnitsky [33] for a detailed proof. Since n/b4
n → 0 as n → ∞, (4.10) follows.

Suppose now that f = 1A. In that case, the probability measure ηn defined in (4.5) coin-
cides with the probability measure μn of Proposition 2.1. In order to prove weak convergence
in the J1-topology, we will use a truncation argument. We may and will restrict ourselves to
the space D[0,1]. Let K = 1,2, . . . . First of all, we show, in the notation of (3.8), the conver-
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gence (
C1/α

α max
1≤k≤�nt�

∣∣∣∣∣
K∑

j=1

εj	
−1/α
j 1A ◦ T k

(
U

(n)
j

)∣∣∣∣∣,0 ≤ t ≤ 1

)
(4.11)

⇒
(

C1/α
α

K∨
j=1

	
−1/α
j 1{Vj ≤t},0 ≤ t ≤ 1

)

in the J1-topology on D[0,1]. Indeed, by (4.6), outside of an event of asymptotically vanishing
probability, the process in the left-hand side of (4.11) is

(
C1/α

α

K∨
j=1

	
−1/α
j max

1≤k≤�nt�
1A ◦ T k

(
U

(n)
j

)
,0 ≤ t ≤ 1

)
. (4.12)

By Proposition 2.1, we can put all the random variables involved on the same probability space
so that the time of the single step in the j th term in (4.12) converges a.s. for each j = 1, . . . ,K

to Vj . Then, trivially, the process in (4.12) converges a.s. in the J1-topology on D[0,1] to
the process in the right-hand side of (4.11). Therefore, the weak convergence in (4.11) fol-
lows.

Next, we note that in the J1-topology on the space D[0,1],(
C1/α

α

K∨
j=1

	
−1/α
j 1{Vj ≤t},0 ≤ t ≤ 1

)

→
(

C1/α
α

∞∨
j=1

	
−1/α
j 1{Vj ≤ti }0 ≤ t ≤ 1

)
as K → ∞ a.s.

This is so because, as K → ∞,

sup
0≤t≤1

( ∞∨
j=1

	
−1/α
j 1{Vj ≤t} −

K∨
j=1

	
−1/α
j 1{Vj ≤t}

)

≤ 	
−1/α

K+1 → 0 a.s.

According to Theorem 3.2 in Billingsley [4], the J1-convergence in (4.3) will follow once we
show that

lim
K→∞ lim sup

n→∞
P

(
max

1≤k≤n

∣∣∣∣∣
∞∑

j=K+1

εj	
−1/α
j 1A ◦ T k

(
U

(n)
j

)∣∣∣∣∣ > ε

)
= 0
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for every ε > 0. Write

P

(
max

1≤k≤n

∣∣∣∣∣
∞∑

j=K+1

εj	
−1/α
j 1A ◦ T k

(
U

(n)
j

)∣∣∣∣∣ > ε

)

≤
∫ (ε/2)−α

0
e−x xK−1

(K − 1)! dx

+
∫ ∞

(ε/2)−α

e−x xK−1

(K − 1)!

× P

(
max

1≤k≤n

∣∣∣∣∣
∞∑

j=1

εj (	j + x)−1/α1A ◦ T k
(
U

(n)
j

)∣∣∣∣∣ > ε

)
dx.

Clearly, the first term vanishes when K → ∞. Therefore, it is sufficient to show that for every
x ≥ (ε/2)−α ,

P

(
max

1≤k≤n

∣∣∣∣∣
∞∑

j=1

εj (	j + x)−1/α1A ◦ T k
(
U

(n)
j

)∣∣∣∣∣ > ε

)
→ 0 (4.13)

as n → ∞.
To this end, choose L ∈N and 0 < ξ < 1/2 so that

L + 1 >
4

α
and

1

2
− ξL > 0. (4.14)

By (4.6), we can write

P

(
max

1≤k≤n

∣∣∣∣∣
∞∑

j=1

εj (	j + x)−1/α1A ◦ T k
(
U

(n)
j

)∣∣∣∣∣ > ε

)

≤ P

(
max

1≤k≤n

∣∣∣∣∣
∞∑

j=1

εj (	j + x)−1/α1A ◦ T k
(
U

(n)
j

)∣∣∣∣∣ > ε, and for each m = 1, . . . , n, (4.15)

(	j + x)−1/α1A ◦ T m
(
U

(n)
j

)
> ξε for at most one j = 1,2, . . .

)
+ o(1).

Notice that for every k = 1, . . . , n, the Poisson random measure represented by the points(
εj (	j + x)−1/α1A ◦ T k

(
U

(n)
j

)
, j = 1,2, . . .

)
is distributionally equal to the Poisson random measure represented by the points(

εj

(
bα
nμ(A)−1	j + x

)−1/α
, j = 1,2, . . .

)
.
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Therefore, the first term on the right-hand side of (4.15) can be bounded by

n∑
k=1

P

(∣∣∣∣∣
∞∑

j=1

εj (	j + x)−1/α1A ◦ T k
(
U

(n)
j

)∣∣∣∣∣ > ε,

(	j + x)−1/α1A ◦ T k
(
U

(n)
j

)
> ξε for at most one j = 1,2, . . .

)

= nP

(∣∣∣∣∣
∞∑

j=1

εj

(
bα
nμ(A)−1	j + x

)−1/α

∣∣∣∣∣ > ε,

(
bα
nμ(A)−1	j + x

)−1/α
> ξε for at most one j = 1,2, . . .

)

≤ nP

(∣∣∣∣∣
∞∑

j=L+1

εj

(
bα
nμ(A)−1	j + x

)−1/α

∣∣∣∣∣ >

(
1

2
− ξL

)
ε

)
.

In the last step we used the fact that, for x ≥ (ε/2)−α , the magnitude of each term in the
infinite sum does not exceed ε/2. By the contraction inequality for Rademacher series (see, e.g.,
Proposition 1.2.1 of Kwapień and Woyczyński [16]),

nP

(∣∣∣∣∣
∞∑

j=L+1

εj

(
bα
nμ(A)−1	j + x

)−1/α

∣∣∣∣∣ >

(
1

2
− ξL

)
ε

)

≤ 2nP

(∣∣∣∣∣
∞∑

j=L+1

εj	
−1/α
j

∣∣∣∣∣ >

(
1

2
− ξL

)
εμ(A)−1/αbn

)
.

As before, by Markov’s inequality and using the constraints of the constants L ∈ N and 0 < ξ <

1/2 given in (4.14),

2nP

(∣∣∣∣∣
∞∑

j=L+1

εj	
−1/α
j

∣∣∣∣∣ >

(
1

2
− ξL

)
εμ(A)−1/αbn

)

≤ 2nμ(A)4/α

(2−1 − ξL)4ε4b4
n

E

∣∣∣∣∣
∞∑

j=L+1

εj	
−1/α
j

∣∣∣∣∣
4

→ 0

as n → ∞ and, hence, (4.13) follows. �

Remark 4.3. The crucial point in the proof of the theorem is the “single Poisson jump property”
(4.6) that shows that, essentially, a single Poisson point of the type 	

−1/α
j plays the decisive role

in determining the size of a partial maximum. This enabled us to show that the normalized partial
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maxima converge to the first Poisson point 	
−1/α

1 (which, of course, has exactly the standard
α-Fréchet law). We can guarantee the “single Poisson jump property” in the case 1/2 < β < 1.
On the other hand, in the range 0 < β < 1/2, the condition (4.6) is no longer valid. We believe
that the limiting process will involve a finite, but random, number of the Poisson points of the
type 	

−1/α
j . This will preclude a limiting Fréchet law. The details of this are still being worked

out, and will appear in a future work. In the boundary case β = 1/2, the statement (4.3) still holds
under certain additional conditions. This is the case, for example, for the Markov shift operators
presented at the end of the paper. See also Example 5.3 in Samorodnitsky [33].

Remark 4.4. There is no doubt that the convergence result in Theorem 4.1 can be extended to
more general infinitely divisible random measures M in (1.5), under appropriate assumptions of
regular variation of the Lévy measure of M and integrability of the function f . In particular,
regardless of the size of α > 0, the time scaled extremal Fréchet processes Zα,β are likely to
appear in the limit in (4.3). Furthermore, the symmetry of the process X has very little to do with
the limiting distribution of the partial maxima. For example, a straightforward symmetrization
argument allows one to extend (4.3) to skewed α-stable processes, at least in the sense of con-
vergence of finite-dimensional distributions. The reason we decided to restrict the presentation
to the symmetric stable case had to do with a particularly simple form of the series represen-
tation (4.4) available in this case. This has allowed us to avoid certain technicalities that might
have otherwise blurred the main message, which is the effect of memory on the functional limit
theorem for the partial maxima.

One can obtain concrete examples of the situations in which the result of Theorem 4.1 ap-
plies by taking, for instance, one of the variety of pointwise dual ergodic operators provided in
Aaronson [1] and Zweimüller [43], and embedding them into the integral form of stationary SαS
processes. We conclude the current paper by mentioning the example of a flow generated by a
null recurrent Markov chain. This example appears in Samorodnitsky [33], Owada and Samorod-
nitsky [24], and Owada [23] as well.

Consider an irreducible null recurrent Markov chain (xn, n ≥ 0) defined on an infinite count-
able state space S with the transition matrix (pij ). Let (πi, i ∈ S) be its unique (up to constant
multiplication) invariant measure with πi0 = 1 for some fixed state i0 ∈ S. Note that (πi) is nec-
essarily an infinite measure. Define a σ -finite and infinite measure on (E,E) = (SN,B(SN)) by

μ(B) =
∑
i∈S

πiPi(B), B ⊆ S
N,

where Pi(·) denotes the probability law of (xn) starting in state i ∈ S. Let

T (x0, x1, . . .) = (x1, x2, . . .)

be the usual left shift operator on S
N. Then T preserves μ. Since the Markov chain is irreducible

and null recurrent, T is conservative and ergodic (see Harris and Robbins [12]).
We consider the set A = {x ∈ SN :x0 = i0} with the fixed state i0 ∈ S chosen above. Since

T̂ k1A(x) = Pi0(xk = i0) for x ∈ A
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is constant on A (see Section 4.5 in Aaronson [2]), we can choose as the normalizing sequence
an = ∑n

k=1 Pi0(xk = i0), and see that the expression a−1
n

∑n
k=1 T̂ k1A(x) is identically equal

to 1 = μ(A) on A. Therefore, the map T is pointwise dual ergodic, and the Darling–Kac set
condition, in fact, reduces to a simple identity. Let

ϕA(x) = min{n ≥ 1 :xn ∈ A}, x ∈ S
N

be the first entrance time, and assume that

n∑
k=1

Pi0(ϕA ≥ k) ∈ RVβ (4.16)

for some β ∈ (1/2,1). Two equivalent conditions to (4.16) are given in Resnick et al. [26]. Note
that the exponent of regular variation β controls how frequently the Markov chain returns to A.
Since μ(ϕA = k) = Pi0(ϕA ≥ k) for k ≥ 1 (see Lemma 3.3 in Resnick et al. [26]), we have

wn ∼ μ(ϕA ≤ n) ∈ RVβ.

Then all of the assumptions of Theorem 4.1 are satisfied for any f ∈ Lα(μ) ∩ L∞(μ), sup-
ported by A.
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