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Mimicking self-similar processes
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We construct a family of self-similar Markov martingales with given marginal distributions. This construc-
tion uses the self-similarity and Markov property of a reference process to produce a family of Markov
processes that possess the same marginal distributions as the original process. The resulting processes are
also self-similar with the same exponent as the original process. They can be chosen to be martingales under
certain conditions. In this paper, we present two approaches to this construction, the transition-randomising
approach and the time-change approach. We then compute the infinitesimal generators and obtain some
path properties of the resulting processes. We also give some examples, including continuous Gaussian
martingales as a generalization of Brownian motion, martingales of the squared Bessel process, stable Lévy
processes as well as an example of an artificial process having the marginals of tκV for some symmet-
ric random variable V . At the end, we see how we can mimic certain Brownian martingales which are
non-Markovian.
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1. Introduction

Constructing martingales with given marginal distributions has been an active area of research
over the last decade (e.g. [1,2,9,10,14,15]). (Here and in the entire paper, marginal distributions
(also marginals) refer to the 1-dimensional distributions.) A condition for the existence of such
martingales is given by Kellerer [12] (see Hirsch and Roynette [11] for a new and improved
proof).

Three constructions of Markov martingales with pre-specified marginal distributions were
given by Madan and Yor [14], namely the Skorokhod embedding method, the time-changed
Brownian motion and the continuous martingale approach pioneered by Dupire [4]. Recently,
Hirsch et al. [10] gave six different methods for constructing martingales whose marginal dis-
tributions match those of a given family of probability measures. They also tackle the tedious
task of finding sufficient conditions to ensure that the chosen family is indeed increasing in the
convex order, or as they coined it, a peacock.

In this paper, we deal with a different, albeit related, scenario. We do not start with a family
of probability distributions, rather we start with a given martingale (the existence of which is
assumed) and produce a large family (as opposed to just a handful) of new martingales having
the same marginal distributions as the original process. We say that these martingales “mimic”
the original process.

This same task was undertaken in [9] for the Brownian motion. It gave rise to the papers [1,2]
and [15] (who coined the term Faked Brownian Motion). Albin [1] and Oleszkiewicz [15] an-
swered the question of the existence of a continuous martingale with Brownian marginals. How-
ever, their constructions yield non-Markov processes. Baker et al. [2] then generalised Albin’s
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construction and produced a sequence of (non-Markov) martingales with Brownian marginals.
In this paper, we extend the construction of [9] to a much larger class of processes, namely
self-similar Markov martingales.

Before formulating a solution to this problem we give a brief account on the origin and rele-
vance of the mimicking question to finance, and more specifically to option pricing; that is the
pricing of a contract that gives the holder the right to buy (or sell) the instrument (a stock) at a
future time T for a specified price K . The theoretical valuation of an option is performed in such
a way as not to allow arbitrage opportunities – arbitrage occurs when riskless trading results in
profit. The first fundamental theorem (e.g., [18], page 231) states that the absence of arbitrage in
a market with stock price St , 0 ≤ t ≤ T , is essentially equivalent to the existence of an equivalent
probability measure under which the stock price is a martingale. (Here without loss of generality,
we let the riskless interest rate be zero.) The second fundamental theorem (e.g., [18], page 232)
implies that the arbitrage-free price of an option is given by E[(ST −K)+], where the expectation
is taken under the equivalent martingale measure. In the classical model of Black and Scholes
the stock price St is given, under the martingale measure, by the exponential Brownian motion
St = S0 exp(σBt − tσ 2/2). The parameter σ is known as the volatility, and is assumed to be a
constant. The resulting expectation produces the well-known Black–Scholes formula for option
prices. However, empirical evidence shows that in order to match the Black–Scholes formula to
market prices of options one needs to vary σ . As a consequence it is natural to ask whether there
exist alternative models of stock prices that result in a prescribed option pricing formula, such as
Black–Scholes. Finally, it is easy to see that the collective knowledge of {E[(ST −K)+],K ≥ 0}
determines the distribution of ST or the marginal distribution, for example [8]. Therefore, if one
wants to keep the option prices given by the original formula but without the limitations of the
original process (such as constant volatility) one has to look for martingales (to have the model
arbitrage free) with given marginals (to keep the same option prices). This question received
much attention in the last ten years, see the pioneering work of Madan and Yor [14].

Throughout this paper, we assume that all processes are càdlàg and progressively measur-

able. We will use the notation
d= to mean equal in distribution for random variables or equal

in finite-dimensional distributions for processes, and this will be clear in the context. For a
given random measure M(dx), the measure M(c dx) for c > 0 is defined by

∫
g(x)M(c dx) =∫

g(x/c)M(dx). We will also write E[M(dx)] to mean the measure defined by
∫

g(x) ×
E[M(dx)] = E[∫ g(x)M(dx)] for any positive function g.

We start with a martingale Z which is also a Markov process, that is, for any bounded measur-
able function g, E[g(Zt )|Fs] = E[g(Zt )|Zs] for s ≤ t , where (Ft )t≥0 denotes the natural filtra-
tion of (Zt )t≥0. We aim to construct new processes that will have the same marginal distributions
as Z while retaining the martingale and Markov properties. We assume further that Z is self-

similar, that is, there exists a (strictly) positive function q(c) such that (Zct )t≥0
d= (q(c)Zt )t≥0

for all c > 0. For Z to be non-trivial and stochastically continuous at t = 0, we must have (see,
e.g., [5]) that q(c) = cκ for some κ > 0, i.e.,

(Zct )t≥0
d= (

cκZt

)
t≥0 ∀c > 0

(which implies that Z0 = 0). We then say that Z is self-similar with exponent κ , or simply,
κ-self-similar.
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Denote the transition function of Z by P(s, t, x,dy) := P(Zt ∈ dy|Zs = x) for s ≤ t . Then the
self-similarity of Z translates to the following scaling property on P :

P
(
cs, ct, cκx, cκ dy

) = P(s, t, x,dy) ∀c > 0, s ≤ t and x.

If L is the infinitesimal generator associated with P , this scaling property is equivalent to

cπcκ Lcsπc−κ = Ls, (1.1)

where πc is the operator defined by πcf (x) = f (cx). From this, we see that

Ls = s−1πs−κ L1πsκ . (1.2)

In the following, we present a mimicking scheme to the process Z by randomising the tran-
sition functions. We will see that this is equivalent to time-changing the process together with
an appropriate scaling. We then obtain some properties of the resulting processes and give some
examples.

2. Mimicking scheme

Let Z be a Markov process with transition function P , which is self-similar with exponent κ > 0.
Note that if Z is a martingale, then it has a càdlàg version; if Z is not a martingale, there are con-
ditions for a Markov process to be càdlàg. In this section, we construct new Markov processes
that possess the same marginal distributions as Z and show that the resulting processes are mar-
tingales under certain conditions.

Lemma 2.1. Let 0 < s ≤ t ≤ u. For any a, b ∈ [0,1] and a measurable set B ,∫
P(0, s,0,dx)P

(
at, t, (at/s)κx,B

) = P(0, t,0,B)

and ∫
P

(
at, t, (at/s)κx,dy

)
P

(
bu,u, (bu/t)κy,B

) = P
(
abu,u, (abu/s)κx,B

)
.

Proof. Here we prove only the second equality, the first one is proved similarly. Suppose that
a, b ∈ (0,1]. By the scaling property, we have∫

P
(
at, t, (at/s)κx,dy

)
P

(
bu,u, (bu/t)κy,B

)
=

∫
P

(
(bu/t)at, (bu/t)t, (bu/t)κ (at/s)κx, (bu/t)κ dy

)
P

(
bu,u, (bu/t)κy,B

)
=

∫
P

(
abu,bu, (abu/s)κx,dy

)
P(bu,u, y,B) = P

(
abu,u, (abu/s)κx,B

)
.

Notice that when a or b is 0, the two equalities in the lemma trivially hold true. �
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Proposition 2.1. Let (Gs,t )s≤t be a family of probability distributions on the set (0,1], where
Gs,s = δ1, the Dirac measure at 1. Suppose that for any bounded measurable function h and
s ≤ t ≤ u, we have ∫ ∫

h(ab)Gs,t (da)Gt,u(db) =
∫

h(r)Gs,u(dr). (2.1)

Then P̃ defined as follows is a transition function,

P̃ (0, t,0,dy) = P(0, t,0,dy),

P̃ (s, t, x,dy) =
∫

P
(
rt, t, (t/s)κ rκx,dy

)
Gs,t (dr), s ≤ t.

Proof. Clearly, for each (s, t, x), P̃ (s, t, x,dy) is a probability measure and for each (s, t,B),
P̃ (s, t, x,B) is measurable in x. Note also that P̃ (s, s, x,B) = δx(B). Next, using Lemma 2.1,
we obtain, for 0 < s ≤ t ≤ u,

∫
P̃ (0, t,0,dy)P̃ (t, u, y,B) = P̃ (0, u,0,B) and

∫
P̃ (s, t, x,dy)P̃ (t, u, y,B) =

∫ ∫
P

(
abu,u, (u/s)κ(ab)κx,B

)
Gs,t (da)Gt,u(db)

=
∫

P
(
ru,u, (u/s)κrκx,B

)
Gs,u(dr) = P̃ (s, u, x,B);

in other words, P̃ satisfies the Chapman–Kolmogorov equations. �

Proposition 2.2. If Gs,t depends on s and t only through t/s (i.e. Gs,t = Gt/s ), then the scaling
property of P carries over to P̃ :

P̃
(
cs, ct, cκx, cκ dy

) = P̃ (s, t, x,dy) ∀c > 0, s ≤ t and x.

Proof. This follows immediately from the definition of P̃ and the scaling of P . �

Let, for s ≤ t , Rs,t be a random variable having distribution Gs,t . Property (2.1) is equiva-
lent to the property that if, for s ≤ t ≤ u, Rs,t and Rt,u are independent random variables, then

Rs,tRt,u
d= Rs,u. Further, if we let Va,b = − lnRea,eb and write Ka,b for the distributions of Va,b

(with Ka,a = δ0), then Property (2.1) translates to the convolution identity

Ka,b ∗ Kb,c = Ka,c, a ≤ b ≤ c.

As we seek to retain the scaling property of the original process, we assume that Gs,t = Gt/s and
immediately reduce Property (2.1) to

Ka ∗ Kb = Ka+b, a, b ≥ 0.
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The family (Ka)a≥0 defines a subordinator (process with positive, independent and stationary
increments) and by Lévy–Khintchine it has Laplace transforms of the form∫

e−λvKa(dv) = exp
(−aψ(λ)

)
, λ ≥ 0.

The function ψ , known as the Laplace exponent, takes the form

ψ(λ) = βλ +
∫ ∞

0

(
1 − e−λx

)
ν(dx), (2.2)

with drift β ≥ 0 and Lévy measure ν satisfying ν({0}) = 0 and
∫ ∞

0 (1 ∧ x)ν(dx) < ∞. Con-
versely, to each ψ (i.e., to each pair (β, ν) as above) corresponds a convolution semigroup
(Ka)a≥0 and in turn a family (Gu)u≥1 which satisfies Property (2.1). For details see, for ex-
ample, [3], Section 1.2. This ensures the existence of (Gu)u≥1 and a process with transition
function P̃ .

Theorem 2.1. Let Z be a κ-self-similar Markov process. To each ψ , Laplace exponent of a
subordinator, corresponds a κ-self-similar Markov process X, starting from 0 and having the
marginals of Z. Furthermore, if Z is a martingale and ψ(κ) = κ , then X is also a martingale.

Writing in terms of Rt/s , s ≤ t , the new transition function

P̃ (s, t, x,dy) = E
[
P

(
Rt/s t, t, (t/s)

κRκ
t/sx,dy

)]
, s ≤ t

can be seen as a randomisation of P(s, t, x,dy). Furthermore, the condition on (Gt/s)s≤t for X

to be a martingale can be written as E[Rκ
t/s] = (s/t)κ .

Proof. By the Kolmogorov extension theorem, there exists a Markov process X with transition
function P̃ (s, t, x,dy). As for the martingale property, we first observe that

ψ(λ) = −1

a
ln

∫
e−λvKa(dv) = −1

a
ln

∫
rλGea (dr),

so that ψ(κ) = κ translates to uκ
∫

rκGu(dr) = 1 for u ≥ 1. Then we have∫
yP̃ (s, t, x,dy) =

∫
(t/s)κrκxGt/s(dr) = x

using the definition of P̃ and the martingale property of Z. �

The process X can also be obtained using subordination (with a suitable scaling in the state
space and an appropriate time-change). The idea of subordination was suggested by Bertoin1 in
the context of Brownian marginals. However, subordination alone (albeit with a suitable scaling
in the state space) is not sufficient. A further logarithmic change of time is needed. This naturally
creates an issue at 0. To deal with this, we follow Oleszkiewicz [15].

1Private communication.
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Proposition 2.3. Let (ζt )t≥0 be a subordinator independent of Z. Let, for a ∈ R,

X
(a)
t = tκe−κζa+ln t Zeζa+ln t , t ≥ e−a.

Then the process (X
(a)
t )t≥e−a has the same marginal distributions as (Zt )t≥e−a and there exists

a process (Xt )t≥0 such that for any a ∈ R, (Xt )t≥e−a
d= (X

(a)
t )t≥e−a . The process (Xt )t≥0 is a

κ-self-similar Markov process with transition function

Q(0, t,0,dy) = P(0, t,0,dy),

Q(s, t, x,dy) = E
[
P

(
e−ζln(t/s) t, t, (t/s)κe−κζln(t/s)x,dy

)]
, s ≤ t.

Moreover, X is a martingale provided that Z is a martingale and E[e−κζln(t/s) ] = (s/t)κ .

Proof. Since Zt(ω) is measurable in ω and right-continuous in t , it is measurable as a function
of (t,ω). Hence, for each t ≥ e−a , X

(a)
t (ω) is a random variable.

For c > 0, let Ẑs = e−κζcZseζc and ζ̂s = ζc+s − ζc , so that (Ẑs)s≥0
d= (Zs)s≥0 and (̂ζs)s≥0

d=
(ζs)s≥0. Then we have, for t ≥ e−b ≥ e−a and with c = a − b,

(
X

(a)
t

)
t≥e−b = (

tκe−κζ̂b+ln t Ẑ
êζb+ln t

)
t≥e−b

d= (
X

(b)
t

)
t≥e−b .

For e−a ≤ t1 < · · · < tn, let μt1,...,tn be the law of (X
(a)
t1

, . . . ,X
(a)
tn

). Then the measures
(μt1,...,tn )n,0<t1<···<tn are consistent and by the Kolmogorov extension theorem, there exists a
process (Xt )t>0 with finite-dimensional distributions (μt1,...,tn )n,0<t1<···<tn .

A similar argument shows that (X
(a)
ct1

, . . . ,X
(a)
ctn

)
d= cκ(X

(a)
t1

, . . . ,X
(a)
tn

), from which we deduce
that (Xt )t>0 is κ-self-similar. As such, X extends by continuity to t ≥ 0 by letting X0 = 0.
The equality of marginal distributions of X(a) and Z follows from the scaling property of Z as

X
(a)
t = tκe−κζa+ln t Zeζa+ln t

d= tκZ1
d= Zt for any fixed t ≥ e−a .

Using successively Lemmas A.3, A.4, A.2 and A.1 (see the Appendix), we see that X(a) is
Markovian. By the scaling property of P and the stationarity of subordinator ζ , we obtain, for
e−a ≤ s ≤ t , the transition function of X(a) as

Q(a)(s, t, x,dy) = P
(
X

(a)
t ∈ dy|X(a)

s = x
) = E

[
P

(
e−ζln(t/s) t, t, (t/s)κe−κζln(t/s)x,dy

)]
.

Notice that the transition function Q(a) does not depend on a and it is the same as P̃ defined
earlier with Gt/s being the distribution of exp(−ζln(t/s)). The rest of the assertions of the propo-
sition then follows immediately from Theorem 2.1. (Alternatively, we can carry out the proof
independently, without referring to P̃ , following Oleszkiewicz [15].) �

The process constructed in Proposition 2.3 is identical (in law) to the process obtained in
Theorem 2.1 with Gt/s being the distribution of exp(−ζln(t/s)), or Rt/s = exp(−ζln(t/s)).

Remark 2.1. For X to be a martingale, β in (2.2) must be at most 1, and is 1 if and only if ζt = t

(ν = 0 and ψ(λ) = λ for any λ) and X = Z.
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Remark 2.2. In Proposition 2.3, we cannot replace ζa+ln t with a two-sided subordinator ζt =
ζ 1
t 1t≥0 − ζ 2−t1t<0 for t ∈ R, where (ζ 1

t )t≥0 and (ζ 2
t )t≥0 are independent subordinators. This is

because by doing that, we will not have independent increments. In particular, since ζ0 = 0, then
for t < 0, the increment ζ0 − ζt = −ζt ∈ Gt , where Gt denotes the filtration generated by ζ .

3. Properties

In this section, we obtain the infinitesimal generators of the process X and display some of their
path properties. We will work within the martingale framework, that is, unless otherwise stated,
we will assume that our initial process Z is a martingale and we will use a subordinator ζ with
drift β , Lévy measure ν and Lapace exponent satisfying ψ(κ) = κ .

Theorem 3.1. Suppose that Z has infinitesimal generator Lt . Then the infinitesimal generator
of the process X is given by

A0f (x) = L0f (x),

Atf (x) = βLtf (x) + (1 − β)
κ

t
xf ′(x)

+ 1

t

∫
(0,∞)

∫ ∞

−∞
(
f (y) − f (x)

)
P

(
te−u, t, xe−uκ ,dy

)
ν(du), t > 0,

for f differentiable and in the domain of L.

Proof. First, from Lemma A.3, Ẑt := e−tκZet is time-homogeneous with generator L̂f (x) =
L1f (x) − κxf ′(x) and transition semigroup P̂tf (x) = ∫

f (y)P (e−t ,1, xe−tκ ,dy). Next, ap-
plying Lemma A.4, the generator of the process Z̄t := Ẑζt = e−κζt Zeζt is

L̄f (x) = βL1f (x) − κβxf ′(x) +
∫

(0,∞)

∫ (
f (y) − f (x)

)
P

(
e−u,1, xe−uκ,dy

)
ν(du).

Then, let Z̃t = eκ(t−a)Z̄t = eκ(t−a)e−κζt Zeζt and using Lemma A.2, the generator of Z̃ is

L̃tf (x) = βπe−κ(t−a)L1πeκ(t−a)f (x) + (1 − β)κxf ′(x)

+
∫

(0,∞)

∫ (
f

(
eκ(t−a)y

) − f (x)
)
P

(
e−u,1, e−κ(t−a)xe−uκ ,dy

)
ν(du),

since πe−κ(t−a)�πeκ(t−a)f (x) = �f (x) for �f (x) = xf ′(x). Finally, we time-change the process

Z̃t with a + ln t to get X
(a)
t . Thus, by Lemma A.1, the generator of X

(a)
t is

A
(a)
t f (x) = βLtf (x) + (1 − β)

κ

t
xf ′(x)

+ 1

t

∫
(0,∞)

∫ (
f (y) − f (x)

)
P

(
te−u, t, xe−uκ ,dy

)
ν(du)
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due to a change of variable, the scaling property of P and identity (1.2). The generator of Xt is
established by noting that A

(a)
t does not depend on a.

Since Z is self-similar, πcf is in the domain of L for all c > 0 whenever f is in the domain
of L. Therefore, f is in the domain of A, if f is also differentiable. �

Note that when β = 1 and ν ≡ 0, we recover the process Z and At = Lt .
For a measurable function f , if there exists a measurable function g such that for each t ,∫ t

0 |g(Xs)|ds < ∞ almost surely and f (Xt ) − f (X0) − ∫ t

0 g(Xs)ds is a martingale, then f is
said to belong to the domain of the extended infinitesimal generator of X and the extended
infinitesimal generator Asf (Xs) = g(Xs). If f (x) = x2 belongs to the domain of the extended
infinitesimal generator of X, then X has predictable quadratic variation

〈X,X〉t =
∫ t

0
Asf (Xs)ds. (3.1)

See examples in Section 4 for the computation 〈X,X〉 in some specific cases.

Proposition 3.1. Suppose that Z is continuous in probability. Then the process X is also con-
tinuous in probability, that is, for every t ,

∀c > 0, lim
s→t

P
(|Xt − Xs | > c

) = 0.

Proof. We have, for s, t ≥ e−a ,

P
(|Xt − Xs | > c

) ≤ P

(∣∣(tκe−κζa+ln t − sκe−κζa+ln s
)
Zeζa+ln t

∣∣ >
c

2

)
(3.2)

+ P

(∣∣sκe−κζa+ln s (Zeζa+ln t − Zeζa+ln s )
∣∣ >

c

2

)
.

However, the first term

P

(∣∣(tκe−κζa+ln t − sκe−κζa+ln s
)
Zeζa+ln t

∣∣ >
c

2

)

≤ P

(∣∣(tκ − sκ
)
e−κζa+ln t Zeζa+ln t

∣∣ >
c

4

)

+ P

(∣∣sκ
(
e−κζa+ln t − e−κζa+ln s

)
Zeζa+ln t

∣∣ >
c

4

)
,

which converges to 0 as s → t , since ζ is continuous in probability as a subordinator.
To deal with the last term in (3.2) we first observe that a process that is continuous in probabil-

ity does not jump at fixed points so that P(
eζa+ln t = 0) = 1. Further, since Z is also continuous
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in probability, lims→t P(|Zyt −Zys | > ε) = 0 as soon as lims→t ys = yt . Therefore, for s ≤ t +1,

lim
s→t

P

(∣∣sκe−κζa+ln s (Zeζa+ln t − Zeζa+ln s )
∣∣ >

c

2

)

≤ lim
s→t

P

(
|Zeζa+ln t − Zeζa+ln s | > c

2
(t + 1)−κ

)

= E

[
lim
s→t

P

(
|Zeζa+ln t − Zeζa+ln s | > c

2
(t + 1)−κ

∣∣Ĝt

)
1{
eζa+ln t =0}

]
= 0,

where Ĝt = σ(ζs, s ≤ a + ln t). �

Proposition 3.2. If Z is continuous in probability with finite second moments and ζ has no drift
(β = 0), then X is a purely discontinuous martingale.

Proof. Let Ut = eζa+ln t so that Xt = tκU−κ
t ZUt for t ≥ e−a . First, we observe that with probabil-

ity one, Z does not jump at Ut− if U jumps at t . Indeed, if � is a countable set of points in [0,∞),
then, as Z is continuous in probability, P(∃t ∈ � s.t. 
Zt �= 0) = 0. Let � = {t > e−a: 
Ut > 0}
and �U = U−(�) where U−

t = Ut−, then

P
(∃t > e−a s.t. 
Ut > 0,
Z(Ut−) �= 0

) = E
[
P(∃s ∈ �U s.t. 
Zs �= 0|G∞)

] = 0,

where G denotes the filtration of U . Taking a to infinity, we obtain the desired result.
To show that X is purely discontinuous, that is, 〈Xc,Xc〉t = 0, we compute the sum of the

square of jumps of X. In general, we have

E

[ ∑
e−a<s≤t

(
Xs)
2
]

= E

[ ∑
e−a<s≤t

(
Xs)
21
Us>0,
Z(Us−) �=0

]

+E

[ ∑
e−a<s≤t

(
Xs)
21
Us>0,
Z(Us−)=0

]

+E

[ ∑
e−a<s≤t

(
Xs)
21
Us=0

]
.

As Z is continuous in probability, the first term is zero due to the observation at the start of the
proof. We write l(a, t) = E[∑e−a<s≤t (
Xs)

21
Us=0] for the third term.
For the second term, we have, on the set {
Us > 0,
Z(Us−) = 0},

(
Xs)
2 = s2κ

(
U−κ

s (ZUs − Z(Us−)) + Z(Us−)

(
U−κ

s − U−κ
s−

))2

= s2κ
(
U−2κ

s (ZUs − Z(Us−))
2 + Z2

(Us−)

(
U−κ

s − U−κ
s−

)2

+ 2U−κ
s

(
U−κ

s − U−κ
s−

)
Z(Us−)(ZUs − Z(Us−))

)
.
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Let θt = E[Z2
t ]. Since Z is κ-self-similar, θt = t2κθ1. As Z is a martingale, E[Zs(Zt − Zs)] = 0

and E[(Zt − Zs)
2] = E[Z2

t ] −E[Z2
s ]. Thus, we obtain

E
[
(
Xs)

2|G∞ ∩ {
Us > 0,
Z(Us−) = 0}]
= s2κ

(
U−2κ

s (θUs − θ(Us−)) + θ(Us−)

(
U−κ

s − U−κ
s−

)2)
= 2s2κθ1

(
1 − U−κ

s Uκ
s−

)
.

Since {
Z(Us−) = 0} has probability one on the set {
Us > 0}, it follows that

E

[ ∑
e−a<s≤t

(
Xs)
21
Us>0,
Z(Us−)=0

]
= E

[ ∑
e−a<s≤t

2s2κθ1
(
1 − U−κ

s Uκ
s−

)
1
Us>0

]

= E

[ ∑
0<r≤a+ln t

2e2κ(r−a)θ1
(
1 − e−κ
ζr

)
1
ζr>0

]
.

Writing in terms of ν and ψ , and using (2.2) with ψ(κ) = κ ,

E

[ ∑
e−a<s≤t

(
Xs)
21
Us>0,
Z(Us−)=0

]
= θ1

∫ a+ln t

0
2e2κ(r−a) dr

∫
(0,∞)

(
1 − e−zκ

)
ν(dz)

= θ1
(
t2κ − e−2aκ

)
(1 − β).

Adding those three terms and taking limit as a → ∞, we have

E

[ ∑
0<s≤t

(
Xs)
2
]

= θ1t
2κ(1 − β) + lim

a→∞ l(a, t).

Since X is square integrable on any finite interval if Z has finite second moments, it has quadratic
variation with expectation E[[X,X]t ] = E[X2

t ] = E[Z2
t ] = t2κθ1. Therefore,

E
[〈
Xc,Xc

〉
t

] = E
[[X,X]t

] −E

[ ∑
0<s≤t,
Xs �=0

(
Xs)
2
]

= θ1t
2κβ − lim

a→∞ l(a, t).

Note that both E[〈Xc,Xc〉t ] and l(a, t) are non-negative. Thus, when β = 0, we must have
lima→∞ l(a, t) = 0, which gives E[〈Xc,Xc〉t ] = 0 and hence 〈Xc,Xc〉t = 0. �

4. Examples

Given any self-similar Markov martingale Z with transition function P and infinitesimal gener-
ator L, we can mimic Z as per Section 2. We construct a new Markov martingale X that has the
same marginal distributions as Z and possesses the same self-similarity Z enjoys from each ζ .
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We assume that the subordinator ζ has drift β and Lévy measure ν with Laplace exponent ψ

satisfying ψ(κ) = κ , or E[e−κζln(t/s) ] = (s/t)κ .
Examples of subordinators include Poisson process, compound Poisson process with positive

jumps, gamma process and stable subordinators. For example, we can take ζ as a Poisson process
with rate κ/(1 − exp(−κ)) to satisfy ψ(κ) = κ . In the following, we provide some examples of
mimicking with the infinitesimal generators and the predictable quadratic variations computed
explicitly to have a better understanding of the processes.

We finish this section with a discussion on modifying our construction to mimic some Brow-
nian related martingales and its limitation.

4.1. Gaussian continuous martingales

For any k ≥ 0, define the process (Zt )t≥0 by Zt = ∫ t

0 sk dBs , where (Bt )t≥0 is a Brownian mo-
tion. Note that

(Zt )t≥0
d= (B(1/(2k+1))t2k+1)t≥0.

This is a Gaussian process with zero mean and covariance function Cov(Zt ,Zt+u) = 1
2k+1 t2k+1.

It is a Markov process and also a martingale. Moreover, it is (k + 1
2 )-self-similar (κ = k + 1

2 )
since for all c > 0,

(Zct )t≥0
d= (B(1/(2k+1))c2k+1t2k+1)t≥0

d= (
ck+1/2B(1/(2k+1))t2k+1

)
t≥0

d= (
ck+1/2Zt

)
t≥0.

A key aspect of the construction in [9] is the following representation of the mimic Xt when
k = 0:

Xt = √
t/s(

√
Rs,tXs + √

s
√

1 − Rs,t ξs,t ), t ≥ s,

where Rs,t has distribution Gt/s , ξs,t is standard normal and, Rs,t , ξs,t and Xs are independent.
This representation extends to the case of other Gaussian continuous martingales. In fact, it also
extends to the case of stable processes – see Proposition 4.4.

Proposition 4.1. With κ = k + 1
2 , the mimic (Xt )t≥0 has the representation

Xt = (t/s)κ
(
Rκ

s,tXs + sκ(1 − Rs,t )
κξs,t

)
, t ≥ s > 0,

where Rs,t
d= e−ζln(t/s) , ξs,t

d= Z1 and, Rs,t , ξs,t and Xs are independent.

Proof. Since Z and ζ have independent and stationary increments, for e−a ≤ s < t ,

X
(a)
t

d= tκe−κζa+ln t Zeζa+ln s + tκe−κζa+ln t
(
eζa+ln t − eζa+ln s

)κ
ξs,t

d= (t/s)κe−κζ̂ln(t/s)X(a)
s + tκ

(
1 − e−ζ̂ln(t/s)

)κ
ξs,t ,

where ζ̂ is an independent copy of ζ , and ξs,t is a random variable distributed as Z1. Note that
this representation holds also for t = s. �
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Knowing that Z has generator Ltf (x) = 1
2 t2kf ′′(x) for t ≥ 0, we can compute the generator

of X following Theorem 3.1 and obtain, for t > 0,

Atf (x) = 1

2
βt2kf ′′(x) + (1 − β)

2k + 1

2t
xf ′(x)

+ 1

t

∫
(0,∞)

∫ ∞

−∞
(
f (y) − f (x)

)
P

(
te−u, t, xe−(k+1/2)u,dy

)
ν(du).

Taking f (x) = x2, then Equation (3.1), along with routine calculations and Equation (2.2), gives
the following result.

Proposition 4.2. The predictable quadratic variation of X is

〈X,X〉t = 1

(2k + 1)2
t2k+1ψ(2k + 1) + (

2k + 1 − ψ(2k + 1)
)∫ t

0

1

s
X2

s ds.

Since 〈Z,Z〉t = ∫ t

0 s2k ds, we can also write

〈X,X〉t = 1

2k + 1
ψ(2k + 1)〈Z,Z〉t + (

2k + 1 − ψ(2k + 1)
)∫ t

0

1

s
X2

s ds.

Remark 4.1. When k = 0, Z is a Brownian motion and our results agree with [9].

4.2. Martingale of squared Bessel process

A process (St )t≥0 is a squared Bessel process of dimension δ, for some δ ≥ 0, if it satisfies
dSt = 2

√
St dBt + δ dt , where B denotes a Brownian motion. The squared Bessel process S

started at 0 is a continuous Markov process satisfying the self-similarity with κ = 1.
Let Zt = St − δt . Then (Zt )t≥0 is a 1-self-similar Markov process and satisfies the SDE

dZt = 2
√

Zt + δt dBt .

Note that S is stochastically dominated by the square of the norm of an n-dimensional Brow-
nian motion, where n ≥ δ, thus E[St ] ≤ nt and E[〈Z,Z〉t ] ≤ 2nt2. It follows that Z is a true
martingale (see, e.g., [13], Theorem 7.35).

The infinitesimal generator of Z is Ltf (x) = 2(x + δt)f ′′(x), t ≥ 0, thus, that of X is

A0f (x) = L0f (x) = 2xf ′′(x),

Atf (x) = 2β(x + δt)f ′′(x) + 1

t
(1 − β)xf ′(x)

+ 1

t

∫
(0,∞)

∫ ∞

−∞
(
f (y) − f (x)

)
P

(
te−u, t, xe−u,dy

)
ν(du), t > 0.
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Proposition 4.3. The predictable quadratic variation of X is

〈X,X〉t = δt2ψ(2) + 4
(
ψ(2) − 1

)∫ t

0
Xs ds + (

2 − ψ(2)
)∫ t

0

1

s
X2

s ds, t ≥ 0,

where ψ is the Laplace exponent of ζ .

Proof. From dZt = 2
√

Zt + δt dBt , we have for u > 0,

Z2
t = Z2

te−u + 4
∫ t

te−u

Zs

√
Zs + δs dBs + 4

∫ t

te−u

Zs ds + 2δt2(1 − e−2u
)

and taking conditional expectation (
∫ t

0 Zs

√
Zs + δs dBs is a true martingale – see above),

E
[
Z2

t |Zte−u

] = Z2
te−u + 4t

(
1 − e−u

)
Zte−u + 2δt2(1 − e−2u

)
.

Thus, using Equation (2.2) we obtain, with f (x) = x2,

Atf (x) = 2δtψ(2) + 4x
(
ψ(2) − ψ(1)

) + 1

t
x2(2 − ψ(2)

)
.

However ψ(1) = 1. The result then follows from Equation (3.1). Note that if β = 1, ψ(λ) = λ

for any λ and we recover 〈X,X〉t = 2δt2 + 4
∫ t

0 Xs ds. �

4.3. Stable processes with 1 < α < 2

Suppose (Zt )t≥0 is an α-stable process with 1 < α < 2. Then Z is a Markov process and

(Zcαt )t≥0
d= (cZt )t≥0, ∀c > 0,

that is, Z is κ-self-similar with κ = 1
α

. It is a Lévy process with Lévy triplet (0, νZ, γ ), where

νZ(dz) = (A1z>0 + B1z<0)|z|−(α+1) dz

for some positive constants A and B . Assume that Z is a martingale, in which case the Lévy
triplet must satisfy

γ +
∫

|z|≥1
zνZ(dz) = 0.

Proposition 4.4. The mimic (Xt )t≥0 has the representation

Xt = (t/s)κ
(
Rκ

s,tXs + sκ(1 − Rs,t )
κξs,t

)
, t ≥ s,

where Rs,t
d= e−ζln(t/s) , ξs,t

d= Z1 and, Rs,t , ξs,t and Xs are independent.
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Proof. See Proposition 4.1. �

The stable process Z has infinitesimal generator

Lf (x) = γf ′(x) +
∫
R\{0}

(
f (x + y) − f (x) − yf ′(x)1D(y)

)
νZ(dy),

where D = {x: |x| ≤ 1}. To distinguish the characteristics of ζ from that of Z, we add the
subscript ζ to the drift and Lévy measure of the subordinator ζ . Then Theorem 3.1 gives the
infinitesimal generator of X for t > 0 as

Atf (x) = βζ γf ′(x) + (1 − βζ )
xκ

t
f ′(x)

+ βζ

∫
R\{0}

(
f (x + y) − f (x) − yf ′(x)1D(y)

)
νZ(dy)

+ 1

t

∫
(0,∞)

∫ ∞

−∞
(
f (w) − f (x)

)
P

(
te−u, t, xe−uκ ,dw

)
νζ (du).

4.4. Martingale with marginals tκV with V symmetric

Let V be an integrable, symmetric random variable (i.e. V
d= −V ) and (Bt )t≥0 be a Brownian

motion independent of V . Following and extending [10], page 283, for any κ let Tt = inf{u ≥
0: |Bu| = tκ} and Zt = BTt V . Then (Zt )t≥0 is a Markov martingale such that for each t ≥ 0,

Zt
d= tκV . Moreover, Z is κ-self-similar. Indeed, using the Brownian motion B

(c)
t := cBc−2t , we

have

T
(c)
t = inf

{
u ≥ 0:

∣∣B(c)
u

∣∣ = tκ
} = c2 inf

{
s ≥ 0: |Bs | = c−1tκ

} = c2Tc−1/κ t .

It follows that B
(c)

T
(c)
t

= cBc−2c2T
c−1/κ t

= cBT
c−1/κ t

and (BTct )t≥0
d= (cκBTt )t≥0. Hence,

(Zct )t≥0 = (BTct V )t≥0
d= (

cκBTt V
)
t≥0 = (

cκZt

)
t≥0.

Since Z is a Markov process with transition semigroup

P0,t f (x) =
∫

f
(
tκv

)
dF(v), t > 0,

Ps,tf (x) = 1

2

(
1 + (s/t)κ

)
f

(
(t/s)κx

) + 1

2

(
1 − (s/t)κ

)
f

(−(t/s)κx
)
, 0 < s ≤ t,

where F is the cumulative distribution function of V , it has infinitesimal generator

L0f (0) = 0,

Ltf (x) = κ

t
xf ′(x) − κ

2t
f (x) + κ

2t
f (−x), t > 0.
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Using Theorem 3.1, we obtain the infinitesimal generator of the mimic X, for t > 0,

Atf (x) = κ

t

(
xf ′(x) + 1

2
βf (−x) − 1

2
βf (x)

)

+ 1

t

∫
(0,∞)

∫ ∞

−∞
(
f (y) − f (x)

)
P

(
te−u, t, xe−κu,dy

)
ν(du).

Proposition 4.5. The predictable quadratic variation of X is

〈X,X〉t = 2κ

∫ t

0

1

s
X2

s ds, t ≥ 0.

Proof. Let f (x) = x2. Since
∫ ∞
−∞ f (y)P (te−u, t, xe−κu,dy) = Pte−u,t f (xe−κu) = x2 and

Atf (x) = 2κ
t

x2, the result follows immediately from Equation (3.1). �

Note that 〈Z,Z〉t = 2κ
∫ t

0
1
s
Z2

s ds. The predictable quadratic variations of X and Z are given
by the same functional of the process.

4.5. Extension to mimicking Brownian martingales

Now we discuss how we can (and cannot) alter our martingale condition to mimic some Brownian
related processes, including the martingales associated with the Hermite polynomials and the
exponential martingale of Brownian motion.

Consider the Hermite polynomials hn which are defined by

∑
n≥0

un

n! hn(x) = exp
(
ux − u2/2

) ∀u,x ∈R,

equivalently, hn(x) = (−1)nex2/2 dn

dxn (e−x2/2). Let

Hn(x, t) = tn/2hn(x/
√

t) ∀x ∈R, t > 0

and Hn(x,0) = xn. Then Hn(Bt , t), where B denotes a Brownian motion, is a local martingale

for every n since Hn(x, t) is space–time harmonic, that is, ∂Hn

∂t
+ 1

2
∂2Hn

∂x2 = 0.

Take n = 2, the process H2(Bt , t) = B2
t − t is Markovian and 1-self-similar, thus can be mim-

icked using our mimicking scheme with any subordinator that satisfies ψ(1) = 1.
For n ≥ 3, Hn(Bt , t) is n

2 -self-similar, but it is not Markovian (see [6]). So we are not able
to mimic this process by a direct application of the method described above. However, a slight
modification of our construction proves sufficient to achieve our aim.

Let Xt be a mimic of the Brownian motion as in Section 4.1 with k = 0, but without the
requirement that Xt be a martingale. Then we have the following result.
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Proposition 4.6. For each n, the process Hn(Xt , t) has the same marginal distributions as
Hn(Bt , t) and is a martingale if and only if ψ(n/2) = n/2, or E[e−(n/2)ζln(t/s)] = (s/t)n/2.

Proof. It is obvious that Hn(Xt , t) and Hn(Bt , t) have the same marginals. Here we prove the
martingale condition. The transition function of X is

P̃ (s, t, x,dy) =
∫

P
(
rt, t, (t/s)1/2r1/2x,dy

)
Gs,t (dr), s ≤ t,

where P is the transition function of B and Gs,t is the distribution of e−ζln(t/s) . Writing Ft as the
natural filtrations of Hn(Xt , t) and since Hn(Bt , t) is a martingale, we have

E
[
Hn(Xt , t)|Fs

] = E

[∫
Hn(y, t)P̃ (s, t,Xs,dy)

∣∣Fs

]

= E

[∫
Hn

(
(t/s)1/2r1/2Xs, rt

)
Gs,t (dr)

∣∣Fs

]
.

Using that Hn(ax, t) = anHn(x, t

a2 ) for any a > 0, we then obtain

E
[
Hn(Xt , t)|Fs

] = (t/s)n/2Hn(Xs, s)E
[
e−(n/2)ζln(t/s)

]
.

Hence, Hn(Xt , t) is a martingale if and only if E[e−(n/2)ζln(t/s) ] = (s/t)n/2. �

Therefore, in order to mimic the process Hn(Bt , t), we can mimic Bt , with the martingale re-
quirement ψ( 1

2 ) = 1
2 changed to ψ(n

2 ) = n
2 , and then apply the function Hn(x, t) to the resulting

process. It is of interest to ask whether the above trick extends to other space–time harmonic func-
tions. In particular, could this enable us to mimic the geometric Brownian motion exp(Bt − t/2).
Unfortunately, this is not the case. In fact, Hn(x, t), n ≥ 1, are the only analytic functions for
which this trick works.

Proposition 4.7. Suppose that H(x, t) = ∑∞
m,n=0 am,nx

mtn and there exists r > 1 such that∑
m,n |am,n|rm+n < ∞, in other words, H(x, t) is analytic on the set (−r, r)2. Suppose further

that H is space–time harmonic, so that H(Bt , t) is a martingale. Suppose that Xt mimics Bt with
the martingale requirement replaced with ψ(k/2) = k/2 for a positive integer k. Then H(Xt , t)

has the same marginals as H(Bt , t) and is a martingale if and only if H(x, t) = tk/2hk(x/
√

t)

where hk(x) is the kth Hermite polynomial.

Proof. For H(Xt , t) to be a martingale, we must have for any x and s ≤ t ,

H(x, s) =
∫

H(y, t)P̃ (s, t, x,dy) =
∫

H
(
(t/s)1/2r1/2x, rt

)
Gs,t (dr),
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that is, E[H(xu1/2R
1/2
u , suRu)] = H(x, s) for any x, s and u ≥ 1. Letting u = et and Vt = et−ζt ,

this is equivalent to E[H(xV
1/2
t , sVt )] = H(x, s) for all x and s, or

∞∑
m,n=0

am,nx
msn

E
[
V

n+m/2
t

] =
∞∑

m,n=0

am,nx
msn.

Therefore, for all m, n and t < 1
2 ln r , we must have am,nE[V n+m/2

t ] = am,n. Thus, either am,n =
0 or E[V n+m/2

t ] = 1.
Recall that E[V λ

t ] = E[exp(λt − λζt )] = exp(−t (ψ(λ) − λ)) and there is at most one λ satis-

fying ψ(λ) = λ. Now, choose ζt such that E[V k/2
t ] = 1 for a k ∈ N

∗. Then, for all (m,n) such
that m + 2n �= k, am,n = 0. Therefore,

H(x, s) =
�k/2�∑
n=0

ak−2n,nx
k−2nsn.

Furthermore,

H(cx, s) = ck

�k/2�∑
n=0

ak−2n,nx
k−2n

(
s/c2)n = ckH

(
x, s/c2).

By Plucińska [16] and Fitzsimmons [7], H(x,1) is the kth Hermite polynomial. �

Corollary 4.1. Let Xt be any mimic of Bt in the sense of Section 2 but without the martin-
gale requirement. Although the process exp(Xt − t/2) has the same marginal distributions as
exp(Bt − t/2), it is not a martingale unless ζt = t , in which case X = B .

Appendix

Lemma A.1. Let (Yt )t≥0 be a Markov process with infinitesimal generator At and ct be a deter-
ministic, differentiable, increasing function in t with derivative c′

t . Then the time-changed process
(Ỹt )t≥0 := (Yct )t≥0 is also a Markov process with infinitesimal generator Ãt = c′

tAct . Further-
more, if f is in the domain of A, then f is in the domain of Ã.

Proof. Let F be the filtration of Y and F̃ be the filtration of Ỹ . For any bounded measurable
function g, we have, for s ≤ t ,

E
[
g(Ỹt )|F̃s

] = E
[
g(Yct )|F̃s

] = E
[
g(Yct )|Fcs

] = E
[
g(Yct )|Ycs

] = E
[
g(Ỹt )|Ỹs

]
.

For t where the function c is strictly increasing, the infinitesimal generator of Yct is

Ãtf (x) = lim
u↓t

E[f (Ycu)|Yct = x] − f (x)

cu − ct

cu − ct

u − t
= Act f (x)c′

t .
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If cu = ct in a small neighbourhood of t , then c′
t = 0 and

Ãtf (x) = lim
u↓t

E[f (Yct )|Yct = x] − f (x)

u − t
= 0 = Act f (x)c′

t . �

Lemma A.2. Let (Yt )t≥0 be a Markov process with infinitesimal generator At and ct be a de-
terministic, differentiable function in t with derivative c′

t and ct �= 0 for any t . Then the process
(Ỹt )t≥0 := (ctYt )t≥0 is also a Markov process and has generator

Ãtf (x) = π1/ct Atπct f (x) + c′
t

ct

xf ′(x),

where πc is an operator defined by πcf (x) = f (cx). Furthermore, if πcf is in the domain of A

for any c and f is differentiable, then f is in the domain of Ã.

Proof. Let F be the filtration of Y and F̃ be the filtration of Ỹ . Let ht be a function such
that ht (x) = ctx. Since ht is one-to-one, σ(hu(Yu), u ≤ s) = σ(Yu,u ≤ s). Therefore, for any
bounded measurable function g, we have

E
[
g(Ỹt )|F̃s

] = E
[
g ◦ ht (Yt )|F̃s

] = E
[
g ◦ ht (Yt )|Fs

] = E
[
g ◦ ht (Yt )|Ys

] = E
[
g(Ỹt )|Ỹs

]
.

The infinitesimal generator of Ỹ is

Ãtf (x) = lim
u↓t

(
E

[
πcuf (Yu)

∣∣Yt = 1

ct

x

]
− πcuf

(
1

ct

x

)
+ f

(
cu

ct

x

)
− f (x)

)/
(u − t)

= Atπct f

(
1

ct

x

)
+ c′

t

ct

xf ′(x). �

Lemma A.3. Suppose (Zt )t≥0 is a κ-self-similar Markov process. Suppose P(s, t, x,dy) and
Lt are, respectively, the transition function and infinitesimal generator of Z. Let Ẑt = e−tκZet .
Then (Ẑt )t∈R is a time-homogeneous Markov process with transition semigroup

P̂tf (x) =
∫

f (y)P
(
e−t ,1, xe−tκ ,dy

)
and infinitesimal generator

L̂f (x) = L1f (x) − κxf ′(x).

Furthermore, if f is in the domain of L and differentiable, then it is in the domain of L̂.

Proof. By the scaling property of P , we have

P(Ẑt ∈ dy|Ẑs = x) = P
(
es , et , xesκ , etκ dy

) = P
(
e−(t−s),1, xe−(t−s)κ ,dy

)
.

It follows that Ẑ is time-homogeneous and P̂tf (x) = ∫
f (y)P (e−t ,1, xe−tκ ,dy). The generator

of Ẑ can be obtained by applying Lemma A.1 and Lemma A.2, and seeing that πetκ etLet πe−tκ =
L1 from Equation (1.1) with c = et and s = 1.
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Note that for all c > 0, πcf is in the domain of L by the scaling property of Z. Thus, writing
Ľ as the generator of Žt := Zet , πcf is in the domain of Ľ by Lemma A.1. �

Lemma A.4. Suppose (χt )t≥0 is a time-homogeneous Markov process with semigroup Pt and
generator L, and (ηt )t≥0 is a subordinator independent of χ with drift β and Lévy measure ν.
Set Yt = χηt . Then the process (Yt )t≥0 is a time-homogeneous Markov process with generator A

where

Af (x) = βLf (x) +
∫

(0,∞)

(
Puf (x) − f (x)

)
ν(du).

Furthermore, if f is in the domain of L, then it is in the domain of A.
If η has zero drift, then Y is a pure jump process.

Proof. See Sato [17], Theorem 32.1. �

Acknowledgements

The authors are grateful to two referees and an associate editor for their careful reading of an
earlier version of the paper and a number of suggestions and improvements.

This research was supported by the Australian Research Council Grant DP0988483 and the
first author was the recipient of a Victorian International Research Scholarship.

References

[1] Albin, J.M.P. (2008). A continuous non-Brownian motion martingale with Brownian motion marginal
distributions. Statist. Probab. Lett. 78 682–686. MR2409532

[2] Baker, D., Donati-Martin, C. and Yor, M. (2011). A sequence of Albin type continuous martingales
with Brownian marginals and scaling. In Séminaire de Probabilités XLIII. Lecture Notes in Math.
2006 441–449. Berlin: Springer. MR2790386

[3] Bertoin, J. (1999). Subordinators: Examples and applications. In Lectures on Probability Theory and
Statistics (Saint-Flour, 1997). Lecture Notes in Math. 1717 1–91. Berlin: Springer. MR1746300

[4] Dupire, B. (1994). Pricing with a smile. Risk 7 18–20.
[5] Embrechts, P. and Maejima, M. (2002). Selfsimilar Processes. Princeton Series in Applied Mathemat-

ics. Princeton, NJ: Princeton Univ. Press. MR1920153
[6] Fan, J.Y., Hamza, K. and Klebaner, F.C. (2012). On the Markov property of some Brownian martin-

gales. Stochastic Process. Appl. 122 3506–3512. MR2956114
[7] Fitzsimmons, P.J. (2001). Hermite martingales. In Séminaire de Probabilités, XXXV. Lecture Notes in

Math. 1755 153–157. Berlin: Springer. MR1837284
[8] Hamza, K. and Klebaner, F.C. (2006). On nonexistence of non-constant volatility in the Black–Scholes

formula. Discrete Contin. Dyn. Syst. Ser. B 6 829–834 (electronic). MR2223910
[9] Hamza, K. and Klebaner, F.C. (2007). A family of non-Gaussian martingales with Gaussian marginals.

J. Appl. Math. Stoch. Anal. 2007 Art. ID 92723, 19. MR2335977
[10] Hirsch, F., Profeta, C., Roynette, B. and Yor, M. (2011). Peacocks and Associated Martingales, with

Explicit Constructions. Bocconi & Springer Series 3. Milan: Springer. MR2808243

http://www.ams.org/mathscinet-getitem?mr=2409532
http://www.ams.org/mathscinet-getitem?mr=2790386
http://www.ams.org/mathscinet-getitem?mr=1746300
http://www.ams.org/mathscinet-getitem?mr=1920153
http://www.ams.org/mathscinet-getitem?mr=2956114
http://www.ams.org/mathscinet-getitem?mr=1837284
http://www.ams.org/mathscinet-getitem?mr=2223910
http://www.ams.org/mathscinet-getitem?mr=2335977
http://www.ams.org/mathscinet-getitem?mr=2808243


1360 J.Y. Fan, K. Hamza and F. Klebaner

[11] Hirsch, F. and Roynette, B. (2012). A new proof of Kellerer’s theorem. ESAIM Probab. Stat. 16 48–60.
MR2911021

[12] Kellerer, H.G. (1972). Markov-Komposition und eine Anwendung auf Martingale. Math. Ann. 198
99–122. MR0356250

[13] Klebaner, F.C. (2012). Introduction to Stochastic Calculus with Applications, 3rd ed. London: Imperial
College Press. MR2933773

[14] Madan, D.B. and Yor, M. (2002). Making Markov martingales meet marginals: With explicit con-
structions. Bernoulli 8 509–536. MR1914701

[15] Oleszkiewicz, K. (2008). On fake Brownian motions. Statist. Probab. Lett. 78 1251–1254.
MR2444313
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