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When targeting a distribution that is artificially invariant under some permutations, Markov chain Monte
Carlo (MCMC) algorithms face the label-switching problem, rendering marginal inference particularly
cumbersome. Such a situation arises, for example, in the Bayesian analysis of finite mixture models. Adap-
tive MCMC algorithms such as adaptive Metropolis (AM), which self-calibrates its proposal distribution
using an online estimate of the covariance matrix of the target, are no exception. To address the label-
switching issue, relabeling algorithms associate a permutation to each MCMC sample, trying to obtain
reasonable marginals. In the case of adaptive Metropolis (Bernoulli 7 (2001) 223–242), an online relabel-
ing strategy is required. This paper is devoted to the AMOR algorithm, a provably consistent variant of AM
that can cope with the label-switching problem. The idea is to nest relabeling steps within the MCMC al-
gorithm based on the estimation of a single covariance matrix that is used both for adapting the covariance
of the proposal distribution in the Metropolis algorithm step and for online relabeling. We compare the
behavior of AMOR to similar relabeling methods. In the case of compactly supported target distributions,
we prove a strong law of large numbers for AMOR and its ergodicity. These are the first results on the con-
sistency of an online relabeling algorithm to our knowledge. The proof underlines latent relations between
relabeling and vector quantization.

Keywords: adaptive Markov chain Monte Carlo; label-switching; stochastic approximation; vector
quantization

1. Introduction

Markov chain Monte Carlo (MCMC) is a generic approach for exploring complex probability
distributions based on sampling [24]. It has become the de facto standard tool in many applica-
tions of Bayesian inference. However, a very common situation in which MCMC algorithms face
serious difficulties is when the target posterior distribution is known to be invariant under some
permutations (or block permutations) of the variables. In that case, the difficulties are both com-
putational, as most often the MCMC algorithm fails to validly visit all the modes of the posterior,
and inferential, in particular rendering marginal posterior inference about the individual variables
particularly cumbersome [10]. In the literature, this latter difficulty is usually referred to as the
label switching problem [32]. The most well-known example of this situation is when performing
Bayesian inference in a mixture model. In this case, the mixture likelihood is invariant to permut-
ing the mixture components and, most often, the prior itself does not favor any specific ordering
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of the mixture components [9,17–19,22,31,32]. Another important example arises in signal pro-
cessing with additive decomposition models. In this case, the observed signal is represented as
the superposition of exchangeable signals, and the main goal is to recover the individual signals
or their parameters. In addition, often the number of signals also has to be determined [7,29,30].
It was observed empirically that when the dimension of the model is not known, the reversible
jump sampler [23] makes it easier to visit the multiple modes corresponding to the permutations
but, of course, marginal inference becomes harder due to the additional difficulty of associating
components between models of varying dimension.

In this contribution, we address the label switching problem in the generic case where no use-
ful external information on the target is known. This corresponds, for instance, to a posterior
distribution when neither the likelihood is assumed to have a specific form, nor the prior is cho-
sen to have conjugacy properties, which forbids the use of Gibbs sampling or other specialized
sampling strategies. We assume, however, that the target is known to be invariant under some
permutations of the parameters. This framework is typical, for instance, in experimental physics
applications where the likelihood computation is commonly deferred to a black-box numerical
code. In those cases, one cannot assume anything about the structure of the posterior or its condi-
tional distributions, except that they should be invariant to some permutations of the parameters.
We also restrict ourselves to the case where the dimension of the model is finite and known so
the parameters of the model are R

d -valued for some fixed and finite d .
Following [4], an adaptive MCMC algorithm is an algorithm which, given a family of MCMC

transition kernels (Pθ )θ∈� on a space X, produces a (X× �)-valued process ((Xn, θn))n≥0 such
that the conditional distribution of the sample Xn+1 given the past is Pθn(Xn, ·). In practice,
adaptive MCMC are MCMC algorithms that can self-calibrate their internal parameters along
the iterations in order to reach decent performance without (or with almost no) knowledge about
the target distribution, eliminating the grueling step of tuning the proposals. Adaptive MCMC
has been an active field of research in the last ten years, following the pioneering contribution of
[16] – see [3] as well as the other papers in the same special issue of Statistics and Computing,
along with [2,4,28]. Adaptive Metropolis (hereafter AM; [16]) and its variants aim at identify-
ing the unknown covariance structure of the target distribution along the run of a random walk
Metropolis–Hastings algorithm with a multivariate Gaussian proposal. The rationale behind this
approach is based on scaling results which suggest that, when d tends to +∞, the chain correla-
tion is minimized when the covariance matrix used in the proposal distribution matches, up to a
constant that depends on the dimension, the covariance matrix of the target, for a large class of
unimodal target distributions with independent marginals [25,26]. AM thus progressively adapts,
using a stochastic approximation scheme, the covariance of the proposal distribution to the esti-
mated covariance of the target.

It has been empirically observed in [5], and we provide further evidence of this fact below in
Section 2.2, that the efficiency of AM can be greatly impaired when label switching occurs. The
reason for such a difficulty is obvious: if label switching occurs, the estimated covariance matrix
no longer corresponds to the local shape of the modes of the posterior and so the exploration can
be far from optimal. In Section 2.2, we also provide some empirical evidence that off-the-shelf
solutions to the label-switching problem, such as imposing identifiability constraints or post-
processing the simulated sample, are not fully satisfactory. A key difficulty here is that most of the
approaches proposed in the literature are based on post-processing of the simulated trajectories
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after the MCMC algorithm has been fully run [17–19,22,30–32]. Unfortunately, in the case of
adaptive MCMC, post-processing cannot solve the improper exploration issue described above.
On the other hand, online relabeling algorithms [10,12,23] often require manual tuning based on,
for example, prior knowledge on the location of the redundant modes of the target. Without such
manual tuning they often yield poor samplers, as we will show it in Section 2.2.

Our main purpose in this paper is to provide a provably consistent variant of AM that can cope
with the label-switching problem. In [5], we proposed an adaptive Metropolis algorithm with
online relabeling, called AMOR, based on the original idea of [9]. The idea is to nest relabeling
steps within the MCMC algorithm based on the estimation of a single covariance matrix that is
used both for adapting the covariance of the proposal distribution used in the Metropolis algo-
rithm step and for online relabeling. Contrary to [9], the AMOR algorithm also corrects for the
relabelings using a modified acceptance ratio. Similarly to [9], though, AMOR requires to loop
over all possible relabelings of proposed points, which limits the method in practice to applica-
tions with a relatively small number of permutations. Modifications and heuristics that address
this issue are out of the scope of this paper.

In Section 2.2, we provide empirical evidence that the coupling established in AMOR be-
tween the criterion used for relabeling and the estimation of the covariance of the local modes of
the posterior is beneficial to avoid the distortion of the marginal distributions. Furthermore, the
example considered in Section 2.2 also demonstrates that the AMOR algorithm samples from
nontrivial identifiable restrictions of the posterior distribution, that is, truncations of the posterior
on regions where the posterior marginals are distinct but from which the complete posterior can
be recovered by permutation. The study of the convergence of AMOR in Section 3 reveals an
interesting connection with the problem of optimal probabilistic quantization [14], which was
implicit in earlier works on label switching. It was observed previously by [21] that some adjust-
ments to the usual theory of stochastic approximation are necessary to analyze online optimal
quantification due to the presence of points where the mean field of the algorithm is not differen-
tiable. To circumvent this difficulty, we introduce the stable AMOR algorithm, a novel variant of
the AMOR algorithm that avoids these problematic points of the parameter space. Finally, we es-
tablish consistency results for the stable AMOR algorithm, showing that it indeed asymptotically
provides samples distributed under a suitably defined restriction of the posterior distribution in
which the parameters are marginally identifiable.

The paper is organized as follows. In Section 2, we describe the stable AMOR algorithm and
compare it with alternative approaches on an illustrative example. In Section 3, we address the
convergence of the algorithm. The detailed proofs are provided in the Appendix.

2. The stable AMOR algorithm

In this section, we introduce the stable AMOR algorithm and illustrate its performance on an
artificial example.
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Algorithm 1
STABLEAMOR(π(·),X0, T , θ0 = (μ0,�0), c, (γt )t≥0, α, (Kψ)ψ≥0)

1 S ← ∅
2 ψ ← 0 � Projection counter
3 for t ← 1 to T

4 � ← c�t−1 � scaled adaptive covariance
5 X̃ ∼N (·|Xt−1,�) � proposal
6 P̃ ∼ arg minP∈P Lθt−1(P X̃) � pick an optimal permutation
7 X̃ ← P̃ X̃ � permute

8 if
π(X̃)

∑
P N (PXt−1|X̃,�)

π(Xt−1)
∑

P N (P X̃|Xt−1,�)
> U[0,1] then

9 Xt ← X̃ � accept
10 else
11 Xt ← Xt−1 � reject
12 S ← S ∪ {Xt } � update posterior sample
13 μt ← μt−1 + γt (Xt − μt−1) + αγt Pent−1,1
14 �t ← �t−1 + γt ((Xt − μt−1)(Xt − μt−1)

ᵀ − �t−1) + αγt Pent−1,2
15 if (μt ,�t ) /∈ Kψ then
16 (μt ,�t ) ← (μ0,�0) � Project back to K0
17 ψ ← ψ + 1 � Increment projection counter
18 θt ← (μt ,�t ).
19 return S

2.1. The algorithm

Let π be a density with respect to (w.r.t.) the Lebesgue measure on R
d which is invariant to the

action of a finite group P of permutation matrices, that is,

∀x ∈ R
d,∀P ∈ P, π(x) = π(Px).

Denote by C+
d the set of d × d real positive definite matrices. For θ = (μ,�) with μ ∈ R

d and
� ∈ C+

d , define Lθ :Rd → R+ by

Lθ(x) = (x − μ)T �−1(x − μ), (2.1)

and let N (·|μ,�) denote the Gaussian density with mean μ and covariance matrix �.
Let � ⊆ R

d × C+
d and (Kq)q∈N be an increasing sequence of compact subsets of � such that⋃

q∈NKq = �.
Algorithm 1 describes the pseudocode of stable AMOR [5]. Choose θ0 ∈K0.
To explain the proposal mechanism of stable AMOR, let μt−1 and �t−1 denote the sam-

ple mean and the sample covariance matrix, respectively, at the end of iteration t − 1, and let
θt−1 = (μt−1,�t−1). Let us also S denote the MCMC sample at the end of iteration t − 1. At
iteration t , a point X̃ is first drawn from a Gaussian centered at the previous state Xt−1 and with
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covariance c�t−1, where c implements the optimal scaling results in [25,26] discussed in Sec-
tion 1 (steps 4 and 5). Then in steps 6 and 7, X̃ is replaced by P̃ X̃, where P̃ is a uniform draw
over the permutations in arg minP Lθt−1(P X̃) that minimize the relabeling criterion (2.1).1 This
relabeling step makes the augmented sample S ∪ {P̃ X̃} look as Gaussian as possible among all
augmented sets S ∪ {PX̃}, P ∈ P . Formally, it can be seen as a projection onto the Voronoi cell
Vθt−1 , where

Vθ = {
x ∈ X/Lθ(x) ≤ Lθ(Px),∀P ∈ P

}
. (2.2)

Then, in steps 8 to 11, the candidate P̃ X̃ is accepted or rejected according to the usual
Metropolis–Hastings rule. The sample mean and covariance are adapted according to a Stochas-
tic Approximation (SA) scheme in steps 13 and 14; α ∈ [0,∞) and Pent,i is a penalty term used
to drive the parameters θt = (μt ,�t ) toward the set of interest �. In Section 3, we will give ex-
amples of parameter set � and penalty terms Pent,i . (γt )t≥1 is a sequence of nonnegative steps,
usually set according to a polynomial decay γt ∼ γ	t

−β for some β ∈ (1/2,1]. Finally, steps 15
to 17 are a truncation mechanism with random varying bounds to make the SA algorithm stable.
In SA procedures, such a step is a way to make the paths (θt )t≥0 bounded with probability one,
which is a required property to prove the convergence of these procedures (see, e.g., [11]). We
will provide in Section 3 sufficient conditions implying that the number of random truncations is
finite along almost all paths (θt )t≥0, thus implying that after a finite number of iterations, every-
thing happens as if steps 15 to 17 were omitted. In practice, it is often reported in the literature
that SA is stable even when these stabilization steps are omitted.

Stable AMOR is a doubly adaptive MCMC algorithm since it is adaptive both in its proposal
and relabeling mechanisms. This means that, besides the proposal distribution, its target also
changes with the number of iterations. In Section 3, we will prove that, at each iteration t , AMOR
implements a random walk Metropolis–Hastings kernel with stationary distribution πθ ∝ π1Vθ .

2.2. An illustrative example

In this section, we consider an artificial target aimed at illustrating the gap in performance be-
tween the stable AMOR algorithm and other common approaches to the label switching problem,
which are compatible with adaptive MCMC. Consider the two-dimensional p.d.f. π depicted in
Figure 1(a), which satisfies π(x) = π(Px) for P ∈ P , where

P =
{(

1 0
0 1

)
,

(
0 1
1 0

)}
.

The density π is a mixture of two densities with equal weights obtained by superposing the
Gaussian p.d.f. πSEED represented in Figure 1(b) with a symmetrized version of itself. This arti-
ficial target does not correspond to the posterior distribution in an actual inference problem. In
particular, although π itself is a mixture, it is not the posterior distribution of the parameters of
any specific mixture model. Nevertheless, it is relevant because it is permutation invariant and

1Step 6 usually boils down to selecting the permutation P̃ that minimizes Lθt−1 . In case of ties, however, P̃ should be
drawn uniformly over the set on which the minimum is achieved.
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Figure 1. Panel (a) shows the target distribution π used in Section 2.2, obtained by symmetrizing the
Gaussian πSEED shown in panel (b). πSEED has mean (0,2) and covariance matrix with diagonal (16,1) and
nondiagonal terms equal to −0.975.

the desired solution of the label switching problem is well defined: we know that, under suitable
relabeling, we can obtain univariate near-Gaussian marginals for both coordinates by recovering
the marginals of the two-dimensional Gaussian πSEED in Figure 1(b). In spite of its simplicity,
this example is challenging because the two marginals of πSEED have similar means (0 and 2)
and one has large variance, which makes them hard to separate. Given the modest dimension of
the problem, we fix the number of MCMC iterations to 20 000, of which 4000 are discarded as
burn-in. For each algorithm, we assess the quality of the relabeling strategy by looking at the
corresponding restriction π ′ of the target π , and we assess the efficiency of the sampling by plot-
ting the autocorrelation function of each sample and comparing the sample histograms with the
marginals of π ′.

The results obtained when applying AM, without any relabeling, are shown in Figure 2. The
marginal posteriors are sampled quite well (Figures 2(c) and 2(d)) and the covariance of the joint
sample (indicated by a thick ellipse Figure 2(a)) is almost symmetric. This is not surprising: the
joint distribution, although severely non-Gaussian, is unimodal, and the number of iterations is
large enough for AM to explore both the original seed πSEED and its symmetric version by fre-
quent label switching. On the other hand, the covariance of the joint distribution π (Figure 1(a))
is broader than the covariance of the seed πSEED (Figure 1(b)). This results in poor adaptive pro-
posals and slow mixing as indicated by the slight differences between the marginals and the
sample marginals, and by the autocorrelation function of the first component of the sample in
Figure 2(b). The reference (dashed line) is the autocorrelation function of an MCMC chain with
optimal covariance (proportional to the covariance of the target) targeting the single Gaussian
πSEED (Figure 1(b)).

We now consider a modified version of AM with online relabeling obtained by simply order-
ing the variables, meaning that after each proposal x = (x1, x2), the components of the proposed
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Figure 2. Results of vanilla AM on the two-dimensional target π of Figure 1. The rest of the caption is the
same for Figures 3 to 5. On panel (a), level lines of π are depicted in thin black lines; a thick ellipse centered
at the empirical mean μT of the sample S indicates the set {x : (x − μT )T �−1

T
(x − μT ) = 1}, where �T

is the sample covariance. When appropriate, the region of the space selected by (the last iteration of) the
algorithm corresponds to the unshaded background while the region not selected is shaded. On panel (b),
the autocorrelation function (ACF) of the first component of S is plotted as a solid line. The dashed line
indicates the ACF obtained when sampling from the seed Gaussian πSEED of Figure 1(b) using a random walk
Metropolis algorithm with an optimally tuned covariance matrix. Panels (c) and (d) display the histograms
of the two marginal samples. The solid curves are the marginals of π in this figure. In Figures 3 to 5, they
are the marginals of π restricted to the unshaded region selected by the algorithms.

point are permuted so that x1 ≤ x2. This strategy is known as imposing an identifiability con-
straint. It is known to perform badly when the constraint does not respect the topology of the
target [19]. The results of this approach on our illustrative example are shown in Figure 3. The
unshaded triangle in Figure 3 shows that this time the sample is restricted to a sub-region of
R

2 where the components are identifiable. Unfortunately, the marginals of π restricted to the
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Figure 3. Results of AM with online ordering constraint. For details about the plots, see the caption of
Figure 2.

unshaded triangle in Figures 3(c) and 3(d) are even more highly skewed than the marginals of
the full joint distribution π . In addition, sampling from the restricted distribution π ′ is not easier
than before indicated by the autocorrelation function in Figure 3(b).

Next, we consider the approach introduced by Celeux in [9]. Celeux’s algorithm builds on
a nonadaptive random-walk Metropolis, where online relabeling is performed in the following
way: when a point x = (x(1), x(2)) is proposed at time t , it is relabeled by

x ← arg min

{(
x(1) − μ

(1)
t

x(2) − μ
(2)
t

)T

D−1
t

(
x(1) − μ

(1)
t

x(2) − μ
(2)
t

)
,

(2.3)(
x(2) − μ

(1)
t

x(1) − μ
(2)
t

)T

D−1
t

(
x(2) − μ

(1)
t

x(1) − μ
(2)
t

)}
,
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Figure 4. Results of Celeux’s algorithm. For details about the plots, see the caption of Figure 2.

where μt = (μ
(1)
t ,μ

(2)
t ) is the empirical mean of the current sample x1:t = x1, . . . , xt and Dt is

the diagonal matrix containing the empirical variances of the coordinates of x1:t on its diagonal.
Formally, this relabeling rule is equivalent to steps 6 and 7 of Algorithm 1, but with all nondi-
agonal elements of � equal to zero. The results of Celeux’s algorithm are shown in Figure 4.
It is hard to determine precisely the formal target of the algorithm. In particular, given the non-
isotropic shape of the target, we used a non-isotropic Gaussian proposal with diagonal covariance
matrix, and while the preservation of the detailed balance condition then requires incorporating
a term into the acceptance ratio to account for the relabeling, it is absent in this approach. It is
still possible that the algorithm is approximately sampling from the restriction π ′ of π to this
unshaded area in Figure 4 (which represents the relabeling rule implemented at the end of the
run) in a certain sense. The histograms in Figures 4(c) and 4(d) are in agreement with the solid
line marginals. Certainly, there are no formal guarantees that this should happen. On the other
hand, in Section 3 we can prove the corresponding claim for the stable AMOR algorithm.
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This relabeling strategy seems to recover πSEED better than the mere ordering of coordinates as
suggested by the marginal plots in Figures 4(c) and 4(d) which are less skewed and now roughly
centered at the correct values (0 and 2, respectively). However, using a diagonal covariance Dt

also generates some distortion which results in a severely non-Gaussian, bimodal marginal in
Figure 4(c). Because of these imperfections and due to the uncorrelated proposal, the autocorre-
lation in Figure 4(b) indicates, again, a much less efficient sampling than in the case of an optimal
Metropolis chain targeting πSEED.

The significance of Celeux’s algorithm is that its adaptive relabeling rule (2.3) makes it possi-
ble to resolve the permutation invariance problem in a nontrivial way which appears to be more
adapted to the true geometry of the target. It is still not perfect, and, as suggested by [32], one
should replace the diagonal covariance matrix in (2.3) by the full covariance matrix of the sam-
ple. However, [32] explored this idea only as a post-processing approach. A severe difficulty in
this context is the computational cost: if T denotes the number of drawn samples and p is the
number of permutations to which π is invariant, the required post-processing is a combinatorial
problem with pT possible relabelings. This eventually led [32] to consider a more tractable al-
ternative instead. More importantly in our context, we have seen above (e.g., in Figure 2) that
running an adaptive MCMC on the full permutation-invariant target may result in a poor mix-
ing performance. To achieve both relevant relabeling and efficient adaptivity, the key idea of
stable AMOR is to link the covariance of the proposal distribution and the covariance used for
relabeling, which are proportional to each other in stable AMOR.

Figure 5 displays the results obtained using stable AMOR on our running example. Stable
AMOR does separate R2 in two regions that respect the topology of the target much more closely
than the approaches examined previously. Figure 5(a) indicates that the relabeled target is as
Gaussian as possible among all partitionings based on a quadratic criterion of the form (2.1). The
marginal histograms in Figures 5(c) and 5(d) now look almost Gaussian. They closely match the
marginals of both the restricted distribution π ′ and the seed distribution πSEED in Figure 1(b). Fur-
thermore, the autocorrelation function of stable AMOR (Figure 5(b)) is as good as the reference
autocorrelation function corresponding to an optimally tuned random walk Metropolis–Hastings
algorithm targeting the seed Gaussian πSEED in Figure 1(b). This perfect adaptation is possible be-
cause the sample covariance now matches the covariance of the target restricted to the unshaded
region of the plane (Figure 5(a)).

On this example, the stable AMOR algorithm thus automatically achieves, without any tuning,
a satisfactory result that cannot be obtained with any of the methods examined previously. Further
examples of the behavior of stable AMOR are given in the supplemental article [6]. We are now
ready to prove our main result which shows that, under suitable conditions, stable AMOR indeed
asymptotically samples from the target distribution restricted to a region on which the marginals
are identifiable, and that the sample mean and covariance converge to the corresponding moments
of the restricted target.

3. Convergence results

We prove the convergence of stable AMOR under the following condition on π .
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Figure 5. Results of stable AMOR. For details about the plots, see the caption of Figure 2.

Assumption 1. π is a density w.r.t. the Lebesgue measure on R
d , which is bounded and with

compact support X, and which is invariant to permutations in the group P :

∀x ∈X,∀P ∈ P, π(Px) = π(x).

This section is organized as follows. We first describe which version of the stable AMOR
algorithm we consider, and we show that it is an adaptive MCMC algorithm. We then characterize
the limiting behavior of the sequence (θt )t≥0 (see Theorem 3.2) and address a strong law of large
numbers for the samples (Xt )t≥0, as well as the ergodicity of the sampler (see Theorems 3.3 and
3.4). All proofs are given in the Appendix.

We are interested in finding a subset Vθ of X of the form (2.2) such that the cells (PVθ )P∈P
cover X. We will also ask that for any P,Q ∈ P , P �= Q, the Lebesgue measure of PVθ ∩ QVθ
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is null. Therefore, we choose the parameter set � as follows (see Lemma A.1 in the Appendix):

� = {
(μ,�) ∈R

d × C+
d /∀P ∈P∗,�−1μ �= P�−1μ

}
, (3.1)

where P∗ = P \ {Id}. The set Rd × C+
d is endowed with the scalar product 〈(a,A), (b,B)〉 =

aT b + Trace(AT B). We will use the same notation ‖ · ‖ for the norm induced by this scalar
product, for the Euclidean norm on R

d , and for the norm ‖A‖ = Trace(AT A)1/2 on d × d real
matrices.

Since we want to drive the parameter toward the set �, we address the convergence of the
stable AMOR when α > 0 and the penalty term is given by

Pent,1 = −
∑

P∈P∗

1

‖(I − P)�−1
t μt‖4

UP �−1
t μt , (3.2)

Pent,2 =
∑

P∈P∗

1

‖(I − P)�−1
t μt‖4

(
μtμ

T
t �−1

t UP + UP �−1
t μtμ

T
t

)
, (3.3)

where UP = (I − P)T (I − P). For the stabilization step, we consider the sequence of compact
sets (Kδq )q≥0 where

Kδ =
{
(μ,�) ∈ � : inf

P∈P∗
∥∥(I − P)�−1μ

∥∥≥ δ
}
, (3.4)

and (δq)q≥0 is any decreasing positive sequence such that limq→∞ δq = 0 and Kδ0 is not empty.
Stable AMOR can be cast into the family of adaptive MCMC algorithms, in which the updating

rule of the design parameter relies on a stochastic approximation scheme. Adaptive MCMC can
be described as follows: given a family of transition kernels (Pθ )θ∈�, the algorithm produces a
(X × �)-valued process ((Xt , θt ))t≥0 such that the conditional distribution of Xt given its past
history X1, . . . ,Xt−1 is given by the transition kernel Pθt−1(Xt−1, ·). This algorithm is designed
so that when t tends to infinity, the distribution of Xt converges to the invariant distribution
of the kernel Pθt . Sufficient conditions for the convergence of such adaptive procedures were
recently proposed by [13,27]. In particular, [27] provided sufficient conditions in terms of the so-
called containment condition and diminishing adaptation. Furthermore, [13] showed that when
each transition kernel Pθ has its own invariant distribution πθ , an additional condition on the
convergence of these distributions is also required. We prove below that in our settings, each
transition kernel of stable AMOR has its own invariant distribution; and this additional condition
is satisfied as soon as (θt )t≥0 converges almost surely. In order to establish this property, we will
resort to convergence results for stochastic approximation algorithms.

As a preliminary step for the convergence of stable AMOR, the stability and the convergence
of the design parameter sequence (θt )t≥0 is established. Sufficient conditions for the convergence
of stochastic approximation procedures rely on the existence of a (sufficiently regular) Lyapunov
function on �, on the behavior of the mean field at the boundary of the parameter set �, and on
the magnitude of the step-size sequence (γt )t≥0.

The compactness assumption (Assumption 1) makes it simpler to analyze the limiting behav-
ior of the algorithm. The noncompact case is far more technical and will not be addressed in
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this paper; see, e.g., [13] (respectively [1], Section 3) for examples of convergence of adaptive
MCMC (respectively a stochastic approximation procedure) when the support of π is not com-
pact (respectively when the controlled Markov chain dynamics is not compactly supported).

Let us prove that stable AMOR is an adaptive MCMC algorithm. For any θ ∈ �, define the
transition kernel Pθ on (X,X ) by

Pθ(x,A) =
∫

A∩Vθ

αθ (x, y)qθ (x, y)dy + 1A(x)

∫
Vθ

(
1 − αθ (x, z)

)
qθ (x, z)dz, (3.5)

where Vθ is given by (2.2),

αθ (x, y) = 1 ∧ π(y)qθ (y, x)

π(x)qθ (x, y)
(3.6)

and

qθ (x, y) =
∑
P∈P

N (Py|x, c�). (3.7)

For θ ∈ �, define also

πθ = |P|1Vθ π. (3.8)

The following proposition shows that qθ (x, ·) is a density on Vθ and, the distribution πθ given
by (3.8) is invariant for the transition kernel Pθ . It also establishes that stable AMOR is an
adaptive MCMC algorithm: given (Xt−1, θt−1), Xt is obtained by one iteration of a random-
walk Metropolis–Hastings algorithm with proposal qθt−1 and invariant distribution πθt−1 .

Proposition 3.1. Under Assumption 1, the following assertions hold:

(1) For any θ ∈ � and x ∈X,
∫
Vθ

qθ (x, y)dy = 1.
(2) For any θ ∈ �, πθPθ = πθ and for any x ∈ Vθ , Pθ(x,Vθ ) = 1.
(3) Let (θt ,Xt )t≥0 be given by Algorithm 1. Conditionally on σ(X0, θ0,X1, θ1, . . . ,Xt−1,

θt−1), the distribution of Xt is Pθt−1(Xt−1, ·).
Note that the proof of Proposition 3.1 is independent of the update scheme of (θt )t≥0, which

makes the proposition valid whatever the choice of α Pent,i .
Denote by Sd the set of d × d symmetric real matrices. Let α > 0 be fixed and define H :X×

� → R
d × Sd by

H(x, θ) = (
Hμ(x, θ),H�(x, θ)

)
(3.9)

where

Hμ(x, θ) = x − μ − α
∑

P∈P∗

1

‖(I − P)�−1μ‖4
UP �−1μ,

H�(x, θ) = (x − μ)(x − μ)T − �

+ α
∑

P∈P∗

1

‖(I − P)�−1μ‖4

(
μμT �−1UP + UP �−1μμT

)
.
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Let

μπθ =
∫

xπθ (x)dx, (3.10)

�πθ =
∫

(x − μπθ )(x − μπθ )
T πθ (x)dx, (3.11)

be the expectation and covariance matrix of πθ , respectively. Define the mean field h :� →
R

d × Sd by

h(θ) = (
hμ(θ), h�(θ)

)
, (3.12)

where

hμ(θ) = μπθ − μ − α
∑

P∈P∗

1

‖(I − P)�−1μ‖4
UP �−1μ,

h�(θ) = �πθ − � + (μπθ − μ)(μπθ − μ)T

+ α
∑

P∈P∗

1

‖(I − P)�−1μ‖4

(
μμT �−1UP + UP �−1μμT

)
.

The key ingredient for the proof of the convergence of the sequence (θt )t≥0 is the existence of a
Lyapunov function w for the mean field h: we prove in the Appendix (see Lemma A.2) that the
function w :� →R+, defined by

w(θ) = −
∫

logN (x|θ)πθ (x)dx + α

2

∑
P∈P∗

1

‖(I − P)�−1μ‖2
, (3.13)

is continuously differentiable on � and satisfies 〈∇w,h〉 ≤ 0. In addition, 〈∇w(θ),h(θ)〉 = 0 if
and only if θ is in the set

L = {
θ ∈ � :h(θ) = 0

}= {
θ ∈ � :∇w(θ) = 0

}
. (3.14)

The convergence of the sequence (θt )t≥0 is proved by verifying the sufficient conditions for the
convergence of the stochastic approximation for Lyapunov stable dynamics given in [1]. The
first step is to prove that the sequence is bounded with probability one: we prove that, almost
surely, the number of projections ψ is finite so that the projection mechanism (steps 15 to 17
in Algorithm 1) never occurs after a (random) finite number of iterations. We then prove the
convergence of the stable sequence. To achieve that goal, following the same lines as in [1], we
make the following assumption.

Assumption 2. Let L be given by (3.14). There exists M	 > 0 such that L ⊂ {θ : w(θ) ≤ M	},
and w(L) has an empty interior.

For x ∈ R
d and A ⊂ R

d , define d(x,A) = infa∈A ‖x − a‖. The following result is proved in
the Appendix.
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Theorem 3.2. Let β ∈ (1/2,1] and γ	 > 0. Let (θt )t≥0 be the sequence produced by Algorithm
1 with α > 0, the penalty term given by (3.2) and (3.3), the compact sets Kδ given by (3.4) and
γt ∼ γ	t

−β when t → +∞. Under Assumptions 1 and 2,

(1) The sequence (θt )t≥0 is stable: almost surely, there exist M > 0 and t	 > 0 such that for
any t ≥ t	, θt ∈ {θ ∈ � :w(θ) ≤ M}. In addition, the number of projections is finite almost
surely.

(2) Almost surely, (w(θt ))t converges to w	 ∈ w(L) and lim supt d(θt ,Lw	) → 0 where Lw	 =
{θ ∈ L,w(θ) = w	}.

Theorem 3.2 states the convergence of (θt )t≥0 to the set L of the zeros of h; note that this set
neither depends on the initial values (θ0,X0) nor on other design parameters. In our experiments,
we always observed pointwise convergence. This is a hint that, in practice, L does not contain
accumulation points. We now state a strong law of large numbers for the samples (Xt )t≥0.

Theorem 3.3. Let β ∈ (1/2,1], γ	 > 0, and θ	 ∈ L. Let (Xt , θt )t≥0 be the sequence generated
by Algorithm 1 with α > 0, the penalty term given by (3.2) and (3.3), the compact sets Kδ given
by (3.4) and γt ∼ γ	t

−β when t → +∞. Under Assumptions 1 and 2, on the set {limt θt = θ	},
almost surely,

lim
T →∞

1

T

T∑
t=1

f (Xt ) = πθ	(f ),

for any bounded function f .

It is easily checked (by using Lemma A.1) that, when the function f is invariant to permuta-
tions in the group P , πθ (f ) = π(f ) for any θ ∈ �. A careful reading of the proof of this theorem
(see the remark in Section A.6) shows that for such a function f , when the sequence (θt )t≥0 is
stable but does not necessarily converge, it holds, almost surely,

lim
T →∞

1

T

T∑
t=1

f (Xt ) = π(f ).

Finally, Theorem 3.4 yields the ergodicity of stable AMOR.

Theorem 3.4. Let β ∈ (1/2,1], γ	 > 0, and θ	 ∈ L. Let (Xt , θt )t≥0 be the sequence generated
by Algorithm 1 with γt ∼ γ	t

−β when t → +∞. Under Assumptions 1 and 2,

lim
t→∞ sup

‖f ‖∞≤1

∣∣∣E[f (Xt )1limq θq=θ	

]− πθ	(f )P
(

lim
q

θq = θ	
)∣∣∣= 0.

Here again, a careful reading of the proof shows that when f is invariant to permutations in
the group P , we have (see the Remark in Section A.7)

lim
t→∞

∣∣E[f (Xt )
]− π(f )

∣∣= 0.
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The expression (3.13) of w provides insight into the links between relabeling and vector quan-
tization [14]. The first term is similar to a distortion measure in vector quantization as noted
in [5]. It can also be seen as the cross-entropy between πθ and a Gaussian with parameters θ .
The second term in (3.13) is similar to a barrier penalty in continuous optimization [8]. From
this perspective, Algorithm 1 can be seen as a constrained optimization procedure that mini-
mizes the cross-entropy. In that sense, if θ	 denotes a solution to this optimization problem, the
relabeled target πθ	 ∝ 1Vθ	 π is the restriction of π to one of its symmetric modes Vθ	 that looks
as Gaussian as possible among all such restrictions.

Vector quantization algorithms have already been investigated using stochastic approximation
tools [21]. However, stability was guaranteed in previous work by making strong assumptions on
the trajectories of the process (θt )t≥0, such as in [21], Theorem 32; see also [21], Results 33–37
and Remark 38. These assumptions ensure that (θt ) stays asymptotically away from sets where
the function used elsewhere as a Lyapunov function is not differentiable. In this paper, we adopt
a different strategy by introducing the modifications of the stable AMOR algorithm and adding a
barrier term in the definition of our Lyapunov function (3.13) that penalizes these sets. One of the
contributions of this paper is to show that this penalization strategy leads to a stable algorithm,
without requiring any strong assumption on (θt ).

4. Conclusion

We illustrated stable AMOR, an adaptive Metropolis algorithm with online relabeling and proved
that a strong law of large numbers holds for this sampler. The stable version of AMOR, given
in Algorithm 1, coincides with AMOR (proposed in [5]) when the penalty coefficient α is set to
zero and no reprojection is performed. In practice, we observed that stable AMOR is very robust
to the choice of α. Figure 6 illustrates this robustness on the toy example of Section 2.2.

Figure 6. Results of stable AMOR on the toy example of Section 2.2, with δq = 10−22−q , and α = 10−3

(left) and α = 1 (right).



1320 Bardenet, Cappé, Fort and Kégl

Our algorithm adapts both its proposal and its target on the fly, which makes it a turn-key
algorithm. Our results lead to a sound characterization of the target of stable AMOR that does not
depend on the initialization of the algorithm nor on the user. This is the first theoretical analysis
of an online relabeling algorithm to our knowledge. The proof further shows how relabeling
is related to vector quantization. Unlike previous work on stochastic approximation schemes for
vector quantization, we make no strong assumptions on the trajectories of the process considered,
rather, we ensure that the appropriate constraint is satisfied by introducing penalization directly
into the stochastic approximation framework.

We now examine possible directions for future work. First, following our analysis in Section 3,
the question of the control of the convergence of stable AMOR arises, and proving a central limit
theorem would be a natural next step. Second, the online nature of stable AMOR makes it cheaper
than its post-processing counterpart, but it still requires to sweep over all elements of P at each
iteration. This is prohibitive in problems with large |P|, such as additive models with a large num-
ber of components. In future work, we will concentrate on algorithmic modifications to reduce
this cost, potentially inspired by probabilistic relabeling algorithms [17,31], while conserving
our theoretical results. Third, we are interested in extending stable AMOR to trans-dimensional
problems, such as mixtures with an unknown number of components. Reversible jump MCMC
(RJMCMC; [15]) also suffers from label-switching and inferential difficulties. We will study
algorithms that combine RJMCMC and stable AMOR.

Appendix: Proofs

Throughout the proof, let π > 0 be such that

x ∈X ⇒ ‖x‖ ≤ π. (A.1)

For any function f : D → R, we will denote by ‖f ‖∞ = supx∈D |f (x)|.

A.1. Preliminary results

We restate (with a slight adaptation) Lemma 1 of the supplementary material from [5] that we
will use extensively.

Lemma A.1. Let θ ∈ �.

(1) The sets {PVθ ,P ∈ P} cover X, and for any P,Q ∈ P such that P �= Q, the Lebesgue
measure of PVθ ∩ QVθ is zero.

(2) Let λ be a measure on (X,X ) with a density w.r.t. the Lebesgue measure. Furthermore,
let λ be such that for any A ∈ X and P ∈ P , λ(PA) = λ(A). Then λ(Vθ ) = λ(X)/|P|.

Proof. The proof is along the lines of Lemma 1 of the supplementary material in [5], and it is
thus omitted. It can be found in the supplemental article to the present paper [6]. �
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A.2. Proof of Proposition 3.1

(1) By the definition (3.1) of � and Lemma A.1, ∀θ ∈ �,x ∈X, it holds that∫
Vθ

qθ (x, y)dy =
∑
P∈P

∫
Vθ

N (Py|x, c�)dy = 1.

(2) Let (Xt )t≥0 and (θt )t≥0 be the random processes defined by Algorithm 1. Let Ft =
σ(X0, θ0, . . . ,Xt , θt ). We prove that for any measurable positive function f ,

E
[
f (Xt )|Ft−1

]=
∫

f (xt )Pθt−1(Xt−1, xt )dxt , w.p.1.

Let f be measurable and positive. Let (P̃ , X̃) be the r.v. defined by steps 5 and 6. Let U be a
uniform r.v. independent of σ(X0, θ0, . . . ,Xt−1, θt−1, P̃ , X̃). By construction, it holds that

E
[
f (Xt )|Ft−1

] = E
[
f (P̃ X̃)

(
1 − αθt−1(Xt−1, P̃ X̃)

)|Ft−1
]

(A.2)
+ f (Xt−1)E

[(
1 − αθt−1(Xt−1, P̃ X̃)

)|Ft−1
]
.

Now note that the projection mechanism (steps 15 to 17 of Algorithm 1) guarantees that θt−1 ∈
� with probability 1. By Lemma A.1, θ ∈ � implies X =⋃

P (PVθ ) and

∀P,Q ∈P such that P �= Q,Leb(PVθ ∩ QVθ) = 0.

Thus, for any measurable and bounded function ϕ :X× � →R, we have∫
X

ϕ(x, θ)dx =
∑
Q∈P

∫
QVθ∩(∪R �=QRVθ )c

ϕ(x, θ)dx.

Applying this decomposition to the second term in the RHS of (A.2) yields

E
[
f (P̃ X̃)1

U≤αθt−1 (Xt−1,P̃ X̃)
|Ft−1

]
=
∑
P∈P

∫
h(Px)

1

N(x, θt−1)
1Vθt−1

(Px)N (x|Xt−1, c�t−1)dx

=
∑

P,Q∈P

∫
QVθt−1∩(

⋃
R �=Q RVθt−1 )c

h(Px)
1

N(x, θt−1)
1Vθt−1

(Px)N (x|Xt−1, c�t−1)dx,

where N(x, θ) = |{Q ∈P/Qx ∈ Vθ }|. Using Lemma A.1 again,

θ ∈ �, x /∈
⋃

P �=Q

(PVθ ∩ QVθ) ⇒ N(x, θ) = 1,
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and thus

E
[
f (P̃ X̃)1

U≤αθt−1 (Xt−1,P̃ X̃)
|Ft−1

] =
∑
P∈P

∫
h(y)1Vθt−1

(y)N
(
P −1y|Xt−1, c�t−1

)
dy

=
∫

Vθt−1

h(y)qθt−1(Xt−1, y)dy,

where in the last step we used the fact that P is a group. Similarly,

E
[(

1 − αθt−1(Xt−1, P̃ X̃)
)|X0, θ0, . . . ,Xt−1, θt−1

]
=
∫

Vθt−1

(
1 − αθt−1(Xt−1, y)

)
qθt−1(Xt−1, y)dy;

and this concludes the proof.
(3) This proof amounts to check the classical detailed balance condition [24], and it is thus

omitted. It is included in the supplemental article [6].

A.3. The Lyapunov function

Lemma A.2 establishes the existence of a Lyapunov function for the mean field h given by (3.12).

Lemma A.2. Under Assumption 1, the mean field h is continuous on �, the function w defined
by (3.13) is C1 on � and

(1) ∇μw(θ) = −�−1hμ(θ) and ∇�w(θ) = − 1
2�−1h�(θ)�−1.

(2) 〈∇w(θ),h(θ)〉 ≤ 0 on � and 〈∇w(θ),h(θ)〉 = 0 iff θ ∈ L.
(3) For any M > 0, the level set

WM = {
θ ∈ � :w(θ) ≤ M

}
(A.3)

is a compact subset of �, and there exist δ1, δ2 > 0 such that

inf
θ∈WM

inf
P∈P∗

∥∥(I − P)�−1μ
∥∥≥ δ1 (A.4a)

and

inf
θ∈WM

λmin(�) ≥ δ2, (A.4b)

where λmin(�) denotes the minimal eigenvalue of the real symmetric matrix �.

Remark A.3. As a consequence of Lemma A.2, observe that for any M > 0, there exists δ > 0
such that WM ⊆Kδ , where Kδ is defined in (3.4).
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Proof. (Continuity of h.) This proof is a straightforward application of Lebesgue’s dominated
convergence theorem, and it is thus omitted. It is included in the supplemental article, a link to
which can be found at the end of this paper [6].

(w is C1 on �.) It is shown in [5], Proposition 3 of the supplementary material, that the first
term in the RHS of (3.13) is continuously differentiable on �. Since ‖(I − P)�−1μ‖ �= 0 for
any P ∈P∗ and (μ,�) ∈ �, the second term in the RHS of (3.13) is continuously differentiable
on �. By [5], Proposition 3 of the supplementary material, it holds for any θ = (μ,�) ∈ � that

∇μw(θ) = −�−1(μπθ − μ) + α
∑
P

1

‖(I − P)�−1μ‖4
�−1UP �−1μ

= −�−1hμ(θ),

∇�w(θ) = −1

2
�−1(�πθ − � + (μ − μπθ )(μ − μπθ )

T
)
�−1

− α

2

∑
P

1

‖(I − P)�−1μ‖4
�−1(μμT �−1UP

)
�−1 + UP �−1μμT

= −1

2
�−1h�(θ)�−1.

Hence, upon noting that h�(θ) and �−1 are symmetric,

〈∇w(θ),h(θ)
〉 = −hμ(θ)T �−1hμ(θ) − 1

2 Trace
(
�−1h�(θ)�−1h�(θ)

)
= −hμ(θ)T �−1hμ(θ) − 1

2 Trace
(
�−1/2h�(θ)�−1h�(θ)�−1/2).

The first term of the RHS is negative since � ∈ C+
d and the second term is negative since

(A,B) �→ Trace(AT B) is a scalar product. Therefore, 〈∇w(θ),h(θ)〉 ≤ 0 with equality if and
only if f θ ∈ L.

(WM is compact.) We prove (A.4a). By the definition (3.13) of w, for any θ ∈WM , we have

−
∫

logN (x|θ)πθ (x)dx + α

2

∑
P∈P∗

1

‖(I − P)�−1μ‖2
≤ M.

In particular, the first term in the LHS is a cross-entropy, and it is thus nonnegative (alternatively,
see [5], Proposition 1 of the supplementary material). Consequently, for any θ ∈WM , we have

∑
P∈P∗

1

‖(I − P)�−1μ‖2
≤ 2M

α
.

This yields ‖(I − P)�−1μ‖2 ≥ α
2M

for any P ∈ P∗, thus concluding the proof of (A.4a).
We now prove (A.4b). Let θ = (μ,�) ∈ WM . Denote by (λi(�))i≤d the eigenvalues of �.

Since � is symmetric, there exist d ×d matrices Qθ,�θ such that � = Qθ�θQ
T
θ , Qθ is orthog-
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onal, and �θ = diag(λi(�)). Then

2M ≥ 2w(θ) ≥ −2
∫

logN (x|θ)πθ (x)dx

= d log(2π) + log det� + (μπθ − μ)T �−1(μπθ − μ) + Trace
(
�−1�πθ

)
(A.5)

≥
d∑

i=1

logλi(θ) + 0 + Trace
(
�−1�πθ

)
.

Set bi(θ) = (QT
θ �πθ Qθ)ii . Then

Trace
(
�−1�πθ

)= Trace
(
Qθ�

−1
θ QT

θ �πθ

)= Trace
(
QT

θ �πθ Qθ�
−1
θ

)=
d∑

i=1

bi(θ)

λi(θ)
. (A.6)

Therefore, for any θ ∈WM ,

d∑
i=1

logλi(θ) + bi(θ)

λi(θ)
≤ 2M. (A.7)

We now prove that for any i, infWM
bi > 0. This property, combined with (A.7), will conclude

the proof of (A.4b). Let ε > 0 be such that 2dε‖π‖∞d−1
π < |P|, and for v ∈ {x ∈R

d :‖x‖ = 1},
let

Bv
ε (θ) = {

x ∈ Supp(π) ∩ Vθ :
∣∣〈x − μπθ , v〉∣∣≤ ε

}
. (A.8)

Note that by Assumption 1,

π
(
Bv

ε (θ)
)≤ ‖π‖∞ Leb

(
Bv

ε (θ)
)≤ 2dε‖π‖∞d−1

π .

Then, by definition of ε,

π
(
Vθ \ Bv

ε (θ)
)≥ |P| − 2dε‖π‖∞d−1

π > 0. (A.9)

Now, if (ei) denotes the canonical basis of Rd , then

bi(θ) = |P|eT
i QT

θ

(∫
Vθ

(x − μπθ )(x − μπθ )
T π(x)dx

)
Qθei

= |P|
∫

Vθ

(Qθei)
T (x − μπθ )(x − μπθ )

T Qθeiπ(x)dx

= |P|
∫

Vθ

〈x − μπθ ,Qθei〉2π(x)dx (A.10)

≥ |P|
∫

Vθ\BQθ ei
ε (θ)

〈x − μπθ ,Qθei〉2π(x)dx

≥ ε2|P|π(Vθ \ BQθei
ε (θ)

)
,
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where the last inequality follows from the definition (A.8) of B
Qθei
ε (θ). Thus, by (A.9), bi(θ) is

bounded away from zero on WM .
As w is continuous on �, {θ ∈ �,w(θ) ≤ M} is closed. From (A.4b), (A.5) and Assumption 1,

μ �→ (μπθ − μ)T �−1(μπθ − μ) is bounded on WM . In addition, (A.5), (A.6) and (A.10) imply
that � �→ log det� is bounded on WM . These properties combined with (A.4b) imply that WM

is bounded. Hence, WM is compact. �

A.4. Regularity in θ of the Poisson solution

Lemma A.4.

(1) For any M > 0, there exists ρ ∈ (0,1) such that for any x ∈ X and any θ ∈ WM ,
‖P n

θ (x, ·) − πθ‖TV ≤ 2(1 − ρ)n.
(2) Under Assumption 1, for any θ ∈ �, there exists a solution Ĥθ of the Poisson equation,

that is, Ĥθ − PθĤθ = H(·, θ) − πθH(·, θ). Furthermore, for any M > 0,

sup
θ∈WM

sup
x∈X

∣∣Ĥθ (x)
∣∣< ∞. (A.11)

Proof. (1) It is sufficient to prove that there exists ρ ∈ (0,1) such that for any x ∈X and θ ∈ WM ,
Pθ(x, ·) ≥ ρπθ (see, e.g., [20], Theorem 16.2.4). By (3.5), for any x ∈ X and A ∈ X , Pθ(x,A) ≥∫
A∩Vθ

αθ (x, y)qθ (x, y)dy. By Lemma A.2, there exists a > 0 such that for any (μ,�) ∈ WM ,
any m,z ∈ X, and any P ∈ P , we have N (P z|m,�) ≥ a. Thus, for any θ ∈ WM and y ∈ Vθ , it
holds that

αθ (x, y)qθ (x, y)1Vθ (y) ≥ a|P|
(

1 ∧ π(y)

π(x)

)
1Vθ (y) ≥ a

‖π‖∞
πθ (y). (A.12)

Thus, we have Pθ(x, ·) ≥ ρπθ for any x ∈X and θ ∈ WM with ρ = a/‖π‖∞.
(2) By item (1),

Ĥθ (x) =
∑
n

P n
θ

(
H(x, θ) − πθ

(
H(·, θ)

))
exists and solves the Poisson equation. (A.11) trivially follows from item (1). �

Lemma A.5. Let M > 0 and κ ∈ (0,1/2). Under Assumption 1, there exists C > 0 such that for
any θ ∈WM and θ ′ ∈ �, it holds that

Leb(Vθ \ Vθ ′) ≤ C
∥∥θ − θ ′∥∥1−2κ

, (A.13)

where Leb(A) denotes the Lebesgue measure of the set A.

Proof. We prove that there exist C̄, h̄ > 0, such that for any θ ∈ WM and any θ ′ ∈ � such that
‖θ − θ ′‖ ≤ h̄, Leb(Vθ \ Vθ ′) ≤ C̄‖θ − θ ′‖1−2κ . Note that since Vθ ⊂ X and since X is bounded,
there exists Č > 0 such that Leb(Vθ \Vθ ′) ≤ Č. Therefore, (A.13) holds with C = C̄ ∨ Č/h̄1−2κ .
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By Lemma A.2, w is uniformly continuous on WM+1, and there exists h0 > 0 small enough
for which[

θ ∈ WM,θ ′ ∈ �,
∥∥θ − θ ′∥∥< h0

]⇒ ∀u ∈ [0,1], θ + u
(
θ ′ − θ

) ∈ WM+1. (A.14)

Let h̄ ≤ h0. Let θ = (μ,�) ∈ WM and θ ′ �= θ such that ‖θ − θ ′‖ ≤ h̄.
By definition of the set Vϑ , for any x ∈ Vθ \ Vθ ′ , there exists P ∈ P∗ such that Lθ ′(x) −

Lθ ′(P T x) > 0 and Lθ(x) − Lθ(P
T x) ≤ 0. Since ϑ �→ Lϑ(x) − Lϑ(P T x) is continuous

on WM+1, there exists u ∈ [0,1] depending on x, θ, θ ′, and P such that Lθ+u(θ ′−θ)(x) −
Lθ+u(θ ′−θ)(P

T x) = 0. Therefore,

Vθ \ Vθ ′ ⊂
⋃

P∈P∗
VP ,

where

VP =
⋃

u∈[0,1]
Z
(
Lθ+u(θ ′−θ)(·) − Lθ+u(θ ′−θ)

(
P T ·))∩X; (A.15)

and Z(f ) denotes the zeros of the function f . The proof proceeds by showing that for any
P ∈P∗, VP is included in a measurable set with measure O(‖θ − θ ′‖1−2κ).

Let P ∈ P∗. Let B(0,π) = {y ∈ R
d :‖y‖ ≤ π }, where π is defined by A.1. For any

x ∈ B(0,π), define

lθ (x) = 2μT �−1(I − P T
)
x,

qθ (x) = xT
(
�−1 − P�−1P T

)
x,

Bθ,θ ′ = {
x ∈ B(0,π) :

∣∣lθ (x)
∣∣≤ ∥∥θ − θ ′∥∥κ}

.

Denote by S the unit sphere {x ∈ R
d/‖x‖ = 1}. Let u ∈ [0,1] and tv ∈ Z(Lθ+u(θ ′−θ)(·) −

Lθ+u(θ ′−θ)(P
T ·)) ∩X where t ∈ [0,π ] and v ∈ S. Upon noting that for any ϑ ∈ WM+1,

Lϑ(tv) − Lϑ

(
tP T v

)= t
(
qϑ(v)t − lϑ (v)

)
, (A.16)

we consider several cases:

(i) tv ∈ Bθ,θ ′ .
(ii) tv /∈ Bθ,θ ′ and qθ+u(θ ′−θ)(v) = 0. Then, by (A.16), lθ+u(θ ′−θ)(tv) = 0 which implies that

tv ∈ Bθ,θ ′ . This yields a contradiction.
(iii) tv /∈ Bθ,θ ′ and qθ+u(θ ′−θ)(v) �= 0. Then t �= 0 and, by (A.16),

t = lθ+u(θ ′−θ)(v)

qθ+u(θ ′−θ)(v)
. (A.17)

Since we assumed t ∈ [0,π ], this ratio is positive. In order to characterize the point tv,
additional notations are required. First, note that by Lemma A.2, there exists C1 > 0 such
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that for any θ̃ = (μ̃, �̃) ∈WM+1,

‖θ̃ − θ‖ ≤ h0 ⇒ ∥∥�̃−1 − �−1
∥∥≤ C1‖�̃ − �‖.

Thus, there exists C2 > 0 such that for any θ̃ ∈ WM+1, ‖θ̃ − θ‖ ≤ h0, and for any x ∈
B(0,π),∣∣lθ̃ (x) − lθ (x)

∣∣ = 2
∣∣μT

[
�̃−1 − �−1](I − P T

)
x + (μ̃ − μ)T �̃−1(I − P T

)
x
∣∣

(A.18)
≤ C2‖θ̃ − θ‖.

Note that since x,μ ∈ B(0,π), C2 does not depend on x and θ . Similarly, there exists
C3 > 0 such that for x ∈ B(0,π) and θ̃ ∈ WM+1 satisfying ‖θ̃ − θ‖ ≤ h0,∣∣qθ̃ (x) − qθ (x)

∣∣≤ C3‖θ̃ − θ‖. (A.19)

We can assume without loss of generality that h̄ is small enough so that∥∥θ − θ ′∥∥≤ h̄ ⇒ ∥∥θ − θ ′∥∥κ − (C2 + 2C3π)
∥∥θ − θ ′∥∥≥ 1

2

∥∥θ − θ ′∥∥κ
. (A.20)

We now distinguish three subcases.
(a) v ∈ Bθ,θ ′ .
(b) v /∈ Bθ,θ ′ and qθ (v) �= 0. Since t ∈ [0,π ], (A.17) implies that |qθ+u(θ ′−θ)(v)| ≥

|lθ+u(θ ′−θ)(v)|/π . Since v /∈ Bθ,θ ′ , |lθ (v)| ≥ ‖θ − θ ′‖κ and by using (A.18),

|lθ+u(θ ′−θ)| ≥
∣∣lθ (v)

∣∣− ∣∣lθ+u(θ ′−θ) − lθ (v)
∣∣≥ ∥∥θ − θ ′∥∥κ − C2

∥∥θ − θ ′∥∥.
Hence, it holds that |qθ+u(θ ′−θ)(v)| ≥ (‖θ − θ ′‖κ −C2‖θ − θ ′‖)/π , and, by (A.19),
we have |qθ (v)| ≥ |qθ+u(θ ′−θ)(v)| − C3‖θ − θ ′‖. These inequalities together with
(A.18) and (A.20) lead to∣∣∣∣t − lθ (v)

qθ (v)

∣∣∣∣=
∣∣∣∣ lθ+u(θ ′−θ)(v)

qθ+u(θ ′−θ)(v)
− lθ (v)

qθ (v)

∣∣∣∣≤ C4
∥∥θ − θ ′∥∥1−2κ

,

for some C4 > 0.
(c) v /∈ Bθ,θ ′ and qθ (v) = 0. Then by (A.18) and (A.19),

t ≥ ‖θ − θ ′‖κ − C2‖θ − θ ′‖
C3‖θ − θ ′‖ ≥ 2π,

which is in contradiction with the assumption that t ≤ π .

As a conclusion, we have just proved that VP is included in the union of three sets defined by
Bθ,θ ′ (case (i)), by {tv : t ∈ [0,π ], v ∈ S∩ Bθ,θ ′ } (case (iii)(a)), and by{

tv : v ∈ S, v /∈ Bθ,θ ′ , qθ (v) �= 0,0 ≤ t ≤ π,

∣∣∣∣t − lθ (v)

qθ (v)

∣∣∣∣≤ C4
∥∥θ − θ ′∥∥1−2κ

}

(case (iii)(c)). This concludes the first step.
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The second step consists in computing an upper bound for the Lebesgue measure of each
of these three sets. For simplifying the presentation, we detail the case d = 2 and use polar
coordinates (ρ,φ); the argument remains valid when d > 2 using generalized spherical coor-
dinates. Define tθ (φ) = lθ (eiφ)/qθ (eiφ). Rephrasing the conclusion of the first step, we have
VP ⊂⋃3

�=1 V
(�)
P with

V(1)
P = Bθ,θ ′ ,

V(2)
P = {

(ρ,φ)/ρ ∈ [0,π ], eiφ ∈ Bθ,θ ′
}
,

V(3)
P = {

(ρ,φ)/eiφ /∈ Bθ,θ ′ , qθ

(
eiφ) �= 0,0 ≤ ρ ≤ π,

∣∣ρ − tθ (φ)
∣∣≤ C4

∥∥θ − θ ′∥∥1−2κ}
.

These sets are Borel sets. By definition of WM , lθ is not identically zero, and thus

Leb
(
V(1)

P

)= Leb(Bθ,θ ′) ≤ 2π

‖θ − θ ′‖1−2κ

‖2μt�−1(I − P T )‖ ≤ C5
∥∥θ − θ ′∥∥1−2κ

for some C5 > 0 as a consequence of Lemma A.2. For V(2)
P , note that it is upper bounded by the

reunion of the two circular sectors in bold lines in Figure 7. This area is easily bounded by the

Figure 7. Bounding the measure of the set V(2)
P

.
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area of the outer rectangle, which is proportional to ‖θ − θ ′‖1−2κ . Finally,

Leb
(
V(3)

P

)=
∫ 2π

0

[
ρ2

2

]π∧(tθ (φ)+C4‖θ−θ ′‖1−2κ )

0∨(tθ (φ)−C4‖θ−θ ′‖1−2κ )

1qθ (eiφ)�=0 dφ.

We can assume without loss of generality that h̄ is small enough so that 2C4h̄
1−2κ < π . There-

fore, we can partition [0,2π] =A∪B ∪ C, where

A = {
φ ∈ [0,2π]/tθ (φ) − C4

∥∥θ − θ ′∥∥1−2κ ≥ 0 and tθ (φ) + C4
∥∥θ − θ ′∥∥1−2κ ≤ π

}
,

B = {
φ ∈ [0,2π]/tθ (φ) − C4

∥∥θ − θ ′∥∥1−2κ ≥ 0 and tθ (φ) + C4
∥∥θ − θ ′∥∥1−2κ ≥ π

}
,

C = {
φ ∈ [0,2π]/tθ (φ) − C4

∥∥θ − θ ′∥∥1−2κ ≤ 0 and 0 ≤ tθ (φ) + C4
∥∥θ − θ ′∥∥1−2κ ≤ π

}
.

This yields

Leb
(
V(3)

P

) ≤ 2C4

∫
A

tθ (φ)
∥∥θ − θ ′∥∥1−2κ dφ + 1

2

∫
B

(
2

π − (
tθ (φ) − C4

∥∥θ − θ ′∥∥1−2κ)2)dφ

(A.21)

+ 1

2

∫
C

(
tθ (φ) + C4

∥∥θ − θ ′∥∥1−2κ)2 dφ

≤ C6
∥∥θ − θ ′∥∥1−2κ

, (A.22)

for some C6 > 0, since on A, 0 ≤ tθ (φ) ≤ π , on B, (tθ (φ) − C4‖θ − θ ′‖1−2κ )2 ≥ (π −
2C4‖θ − θ ′‖1−2κ )2, and on C, |tθ (φ)| ≤ C4‖θ − θ ′‖1−2κ .

This concludes the proof. �

Lemma A.6 (Regularity in θ of the invariant distribution πθ ). Let M > 0 and κ ∈ (0,1/2).
Under Assumption 1, there exists C > 0 such that for any θ ∈WM and θ ′ ∈ �,

‖πθ − πθ ′ ‖TV ≤ C
∥∥θ − θ ′∥∥1−2κ

.

Proof. By definition of the total variation,

‖πθ − πθ ′ ‖TV ≤ |P|(π(Vθ \ Vθ ′) + π(Vθ ′ \ Vθ)
)
.

Since

Vθ ′ \ Vθ = Vθ \ (Vθ ∩ Vθ ′), Vθ \ Vθ ′ = Vθ \ (Vθ ∩ Vθ ′),

it holds that

π(Vθ ′ \ Vθ) = 1

|P| − π(Vθ ∩ Vθ ′) = π(Vθ \ Vθ ′),

where we used Lemma A.1. Then, by Assumption 1 and Lemma A.5, there exists C > 0 such
that for any θ ∈WM and θ ′ ∈ �,

‖πθ − πθ ′ ‖TV ≤ 2‖π‖∞ Leb(Vθ \ Vθ ′) ≤ C
∥∥θ − θ ′∥∥1−2κ

. �
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Lemma A.7 (Regularity in θ of the kernels Pθ ). Let M > 0 and κ ∈ (0,1/2). Under Assump-
tion 1, there exists C > 0 such that for any θ ∈WM and θ ′ ∈ WM+1,∥∥Pθ(x, ·) − Pθ ′(x, ·)∥∥TV ≤ C

∥∥θ − θ ′∥∥1−2κ
.

Proof. From the definition of the transition kernel Pθ , we have∣∣Pθf (x) − Pθ ′f (x)
∣∣

≤
∣∣∣∣
∫

f (y)
(
αθ (x, y)qθ (x, y)1Vθ (y) − αθ ′(x, y)qθ ′(x, y)1Vθ ′ (y)

)
dy

∣∣∣∣
+ ∣∣f (x)

∣∣∣∣∣∣
∫ (

αθ ′(x, y)qθ ′(x, y)1Vθ ′ (y) − αθ (x, y)qθ (x, y)1Vθ (y)
)

dy

∣∣∣∣ (A.23)

≤ 2‖f ‖∞
∫ ∣∣αθ (x, y)qθ (x, y)1Vθ (y) − αθ ′(x, y)qθ ′(x, y)1Vθ ′ (y)

∣∣dy

= 2‖f ‖∞
4∑

i=1

i
θ,θ ′(x),

where

1
θ,θ ′(x) =

∫
Aθ (x)∩Aθ ′ (x)

∣∣αθ (x, y)qθ (x, y)1Vθ (y) − αθ ′(x, y)qθ ′(x, y)1Vθ ′ (y)
∣∣dy,

2
θ,θ ′(x) =

∫
Rθ (x)∩Rθ ′ (x)

∣∣αθ (x, y)qθ (x, y)1Vθ (y) − αθ ′(x, y)qθ ′(x, y)1Vθ ′ (y)
∣∣dy,

3
θ,θ ′(x) =

∫
Aθ (x)∩Rθ ′ (x)

∣∣αθ (x, y)qθ (x, y)1Vθ (y) − αθ ′(x, y)qθ ′(x, y)1Vθ ′ (y)
∣∣dy,

4
θ,θ ′(x) =

∫
Rθ (x)∩Aθ ′ (x)

∣∣αθ (x, y)qθ (x, y)1Vθ (y) − αθ ′(x, y)qθ ′(x, y)1Vθ ′ (y)
∣∣dy

and

Aθ (x) = {
y :αθ (x, y) = 1

}
, Rθ (x) = {

y :αθ (x, y) < 1
}
.

We now upper bound each term

1
θ,θ ′(x) =

∫
Aθ (x)∩Aθ ′ (x)

∣∣∣∣∑
Q∈P

(
1Vθ (y)N (Qy|x,�) − 1Vθ ′ (y)N

(
Qy|x,�′))∣∣∣∣dy

≤
∫ ∣∣1Vθ (y) − 1Vθ ′ (y)

∣∣ ∑
Q∈P

N (Qy|x,�) (A.24)

+ 1Vθ ′ (y)
∑
Q∈P

∣∣N (Qy|x,�) −N
(
Qy|x,�′)∣∣dy.
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By Lemma A.2, there exist a, b > 0 such that for any θ ∈WM+1, m,z ∈X, and Q ∈P , we have

a ≤ N (Qz|m,c�) ≤ b, (A.25)

so that the first term in the RHS of (A.24) is bounded by∫ ∣∣1Vθ (y) − 1Vθ ′ (y)
∣∣ ∑
Q∈P

N (Qy|x,�)dy ≤ |P|b
∫ ∣∣1Vθ (y) − 1Vθ ′ (y)

∣∣dy

= |P|b
∫ (

1Vθ \Vθ ′ (y) + 1Vθ ′ \Vθ (y)
)

dy

≤ C
∥∥θ − θ ′∥∥1−2κ

,

where we used Lemma A.5. Let us now consider the second term of the right-hand side of (A.24).
Using the uniform continuity of w on WM+1 (see Lemma A.2), there exists h̄ small enough such
that

θ ∈WM, ‖h‖ < h̄ ⇒ θ + h ∈WM+1. (A.26)

For any θ ∈WM , θ ′ ∈WM+1 such that ‖θ − θ ′‖ ≥ h̄, there exists C1 such that∑
Q∈P

∣∣N (Qy|x,�) −N
(
Qy|x,�′)∣∣dy ≤ C1

∥∥θ − θ ′∥∥1−2κ
.

Assume now that θ ∈ WM , θ ′ ∈WM+1 and ‖θ − θ ′‖ < h̄. Denote by

�t = (1 − t)� + t�′. (A.27)

By (A.26) and (A.4b), �−1
t exists and supt≤1,θ∈WM,θ ′∈WM+1

‖�−1
t ‖ < ∞. We can then write

∣∣N (Qy|x,�) −N
(
Qy|x,�′)∣∣ = ∫ 1

0
N (Qy|x,�t )

∣∣∣∣ d

dt
logN (Qy|x,�t )

∣∣∣∣dt

(A.28)

≤ b

∫ 1

0

∣∣∣∣ d

dt
logN (Qy|x,�t )

∣∣∣∣dt.

In addition, by Assumption 1, there exists C2 such that∣∣∣∣ d

dt
logN (Qy|x,�t )

∣∣∣∣= ∣∣(x − Qy)T �−1
t

(
�′ − �

)
�−1

t (x − Qy)
∣∣≤ C2

∥∥θ − θ ′∥∥. (A.29)

We thus have proved that[
θ ∈WM,θ ′ ∈ WM+1,

∥∥θ − θ ′∥∥< h̄
]⇒ ∣∣N (Qy|x,�) −N

(
Qy|x,�′)∣∣≤ C

∥∥θ − θ ′∥∥.
Therefore, it is established that ‖1

θ,θ ′ ‖∞ ≤ C‖θ − θ ′‖1−2κ .
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Let us consider the second term 2
θ,θ ′(x) in the RHS of (A.23). Note first that if x ∈ X and

y ∈Rθ (x) ∩Rθ ′(x), then by (A.25), π(y)/π(x) ≤ b/a, so

2
θ,θ ′(x) =

∫
Rθ (x)∩Rθ ′ (x)

π(y)

π(x)

∣∣∣∣∑
Q∈P

(
1Vθ (y)N (Qx|y,�) − 1Vθ ′ (y)N

(
Qx|y,�′))∣∣∣∣dy

≤ b

a

∫
Rθ (x)∩Rθ ′ (x)

∣∣∣∣∑
Q∈P

(
1Vθ (y)N (Qx|y,�) − 1Vθ ′ (y)N

(
Qx|y,�′))∣∣∣∣dy.

Therefore, repeating the above discussion for the bound of 1
θ,θ ′(x), it is established that

‖2
θ,θ ′ ‖∞ ≤ C‖θ − θ ′‖1−2κ .

To deal with 3
θ,θ ′(x), first observe that there exists C > 0 such that for any θ ∈ WM , θ ′ ∈

WM+1, and x, y ∈ X, we have∣∣∣∣qθ (y, x)

qθ (x, y)
− qθ ′(y, x)

qθ ′(x, y)

∣∣∣∣≤ C
∥∥θ − θ ′∥∥, (A.30)

because of (3.7), (A.25) and the above discussion for the upper bound of 1
θ,θ ′(x). Now let

y ∈Aθ (x) ∩Rθ ′(x), then we have

π(y)qθ ′(y, x)

π(x)qθ ′(x, y)
≤ 1 ≤ π(y)qθ (y, x)

π(x)qθ (x, y)
,

which, combined with (A.30), yields

1 − C
π(y)

π(x)

∥∥θ − θ ′∥∥≤ π(y)qθ ′(y, x)

π(x)qθ ′(x, y)
≤ 1.

Thus,

3
θ,θ ′(x) =

∫
Aθ (x)∩Rθ ′ (x)

∣∣∣∣qθ (x, y)1Vθ (y) − π(y)qθ ′(y, x)

π(x)qθ ′(x, y)
qθ ′(x, y)1Vθ ′ (y)

∣∣∣∣dy

≤
∫ (∣∣qθ (x, y)1Vθ (y) − qθ ′(x, y)1Vθ ′ (y)

∣∣
∨ · · · ∨

∣∣∣∣qθ (x, y)1Vθ (y) − qθ ′(x, y)1Vθ ′ (y)

+ C
π(y)

π(x)

∥∥θ − θ ′∥∥qθ ′(x, y)1Vθ ′ (y)

∣∣∣∣
)

dy.

Therefore, it is established that ‖3
θ,θ ′‖∞ ≤ C‖θ − θ ′‖1−2κ .

The upper bound of 4
θ,θ ′(x) is similar, and thus its proof is omitted. �
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Lemma A.8 (Regularity in θ of the solution of the Poisson equation). Let M > 0 and κ ∈
(0,1/2). Under Assumption 1, there exists C > 0 such that for any θ ∈ WM and θ ′ ∈WM+1,

‖PθĤθ − Pθ ′Ĥθ ′ ‖∞ ≤ C
∥∥θ − θ ′∥∥1−2κ

.

Proof. We recall the following result, proved in [13], Lemma 5.5, page 24: there exists C > 0
such that for any θ ∈WM , θ ′ ∈ WM+1, and x ∈X,

‖PθĤθ − Pθ ′Ĥθ ′ ‖∞
≤ C

∥∥H(·, θ) − H
(·, θ ′)∥∥∞ (A.31)

+ C sup
θ∈WM

∥∥H(·, θ)
∥∥∞
{
‖πθ − πθ ′ ‖TV + sup

x∈X

∥∥Pθ(x, ·) − Pθ ′(x, ·)∥∥TV

}
.

Here, supθ∈WM
‖H(·, θ)‖∞ is finite by Lemma A.2. Now, by Lemma A.2 again, there exists

C > 0 such that for any θ ∈WM and θ ′ ∈WM+1,∥∥H(·, θ) − H
(·, θ ′)∥∥∞ ≤ C

∥∥θ − θ ′∥∥.
The upper bounds for the two last terms in the RHS of (A.31) result from Lemmas A.6 and A.7,
respectively. �

A.5. Proof of Theorem 3.2

We start by proving two lemmas.

Lemma A.9. Let (γt )t>0 be a sequence such that
∑

t γ
2
t < ∞,

∑
t |γt+1 − γt | < ∞, and∑

t γ
2(1−κ)
t < ∞ for some κ ∈ (0,1/2). Denote by ψt the value of the projection counter at

the end of iteration t , in Algorithm 1. Let (θt ,Xt )t≥0 be the sequence generated by Algorithm 1.
Under Assumptions 1 and 2, for any M > 0,

lim
L→+∞ sup

�≥1

∥∥∥∥∥
(

L+�∏
k=L

1θk∈WM
1ψk+1=ψk

)
L+�∑
k=L

γk+1
(
H(Xk+1, θk) − h(θk)

)∥∥∥∥∥= 0 w.p.1, (A.32)

where H , h, w and WM are given by (3.9), (3.12), (3.13) and (A.3), respectively.

Proof. The proof is adapted from Theorem 2.7 in [13], and it is thus omitted. It can be found in
the supplemental article [6]. �

Lemma A.10. Let M ∈ (0,M	) and set

�M
M	

= {
θ ∈ � :M	 ≤ w(θ) ≤ M

}
, ι = inf

θ∈�M
M	

∣∣〈∇w(θ),h(θ)
〉∣∣.
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Under Assumptions 1 and 2, there exist δ ∈ (0, ι) and λ,β > 0 such that

(A) u ∈WM	,0 ≤ γ ≤ λ,‖ξ‖ ≤ β ⇒ w(u + γ h(u) + γ ξ) ≤ M , and
(B) u ∈ �M

M	
,0 ≤ γ ≤ λ,‖ξ‖ ≤ β ⇒ w(u + γ h(u) + γ ξ) < w(u) − γ δ.

Proof. The proof is adapted from Lemma 2.1 in [1], and it is thus omitted. It can be found in the
supplemental article [6]. �

Proof of item (1) in Theorem 3.2. Let M > M	, let q (depending on M) be such that (see
Remark A.3)

WM ⊂WM+2 ⊆Kδq , (A.33)

and let θ0 ∈ WM . Let λ,β be given by Lemma A.10. By Lemma A.2, w and h are uniformly
continuous on WM+1, and there exists η > 0 such that

x ∈ WM, ‖x − y‖ < η ⇒ ∣∣w(x) − w(y)
∣∣< 1 and

∥∥h(x) − h(y)
∥∥< β. (A.34)

By Lemma A.9, there exists an almost surely finite r.v. N such that w.p.1.,

n ≥ N ⇒ γn

(
1 + sup

x∈X,θ∈WM

∥∥H(x, θ)
∥∥)< λ ∧ η (A.35)

and

sup
�≥1

(
N+�∏
i=N

1θi∈WM+11ψi+1=ψi

)∥∥∥∥∥
N+�∑
i=N

γi+1
(
H(Xi+1, θi) − h(θi)

)∥∥∥∥∥< η. (A.36)

The proof is by contradiction. Denote by ψt the number of projections at the end of iteration t .
We assume that P(limt ψt = +∞) > 0. We can assume without loss of generality that

w(θN) ≤ M, ψN ≥ q

on the set {limt ψt = +∞}. Define the sequence (θ ′
N+k)k≥0 as

θ ′
N = θN and θ ′

N+k+1 = θ ′
N+k + γN+k+1h(θN+k).

We prove by induction on k that for any k ≥ 0, on the set {limt ψt = +∞},

θ ′
N+k ∈WM, θN+k ∈WM+1,

∥∥θ ′
N+k − θN+k

∥∥< η, ψN+k+1 = ψN+k.

The case k = 0 is trivial since θ ′
N = θN ∈ WM and by using (A.34), (A.35) and (A.33) on the set

{limt ψt = +∞}. Assume this property holds for k ∈ {0,1, . . . , �}. Then we have

θ ′
N+�+1 = θ ′

N+� + γN+�+1h
(
θ ′
N+�

)+ γN+�+1
(
h(θN+�) − h

(
θ ′
N+�

))
.
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Since ‖θ ′
N+� − θN+�‖ < η and θ ′

N+� is in WM , we have ‖h(θ ′
N+�) − h(θN+�)‖ < β . Since

γN+�+1 < λ by (A.35), we can apply Lemma A.10 to obtain θ ′
N+�+1 ∈ WM . In addition,

θ ′
N+�+1 − θN+�+1 =

N+�∑
i=N

γi+1
(
H(Xi+1, θi) − h(θi)

)
1ψi+1=ψi

+
N+�∑
i=N

(
γi+1h(θi) + θi − θ0

)
1ψi+1 �=ψi

=
(

N+�∏
i=N

1θi∈WM+1

)
N+�∑
i=N

γi+1
(
H(Xi+1, θi) − h(θi)

)
1ψi+1=ψi

,

where we used the induction assumption in the last equality. From (A.34) and (A.36), this yields
‖θ ′

N+�+1 − θN+�+1‖ < η and w(θN+�+1) ≤ M + 1. Finally by (A.34), equations (A.35) and
(A.33) imply that on the set {limt ψt = +∞}

θN+� + γN+�+1H(XN+�+1, θN+�) ∈ WM+2 ⊂KψN+�
,

that is, ψN+�+1 = ψN+�. This concludes the induction.
As a consequence of this induction, we have ψN+� = ψN for any � ≥ 0 on the set {limt ψt =

+∞} which is a contradiction.
Proof of item (2) in Theorem 3.2. The proof is along the same lines as the proof of Theorem 2.3

of [1], page 5, and is thus omitted.

A.6. Proof of Theorem 3.3

The proof consists in checking the conditions of [13], Corollary 2.8. Let f be a measurable
bounded function.

By Lemma A.4, (i) there exists a measurable function f̂θ such that f̂θ −Pθ f̂θ = f −πθf ; and
(ii) for any compact set WM , there exists L (depending upon M) such that

∀θ ∈WM,x ∈ X,
∣∣f̂θ (x)

∣∣≤ L.

By Theorem 3.2, P(�M) ↑ 1 when M tends to infinity where

�M =
⋂
t≥0

{θt ∈WM}. (A.37)

Therefore, in order to apply [13], Corollary 2.8, we only have to prove that almost surely,∑
k

k−1 sup
x∈X

∥∥Pθk
(x, ·) − Pθk−1(x, ·)∥∥TV1�M

< ∞, (A.38)

lim
t

πθt (f )1�M
= πθ	(f )1�M

. (A.39)
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By Lemma A.7, there exists C and κ ∈ (0,1/2) such that

sup
x∈X

∥∥Pθk
(x, ·) − Pθk−1(x, ·)∥∥TV1�M

≤ C‖θk − θk−1‖1−2κ .

In addition, by Theorem 3.2, there exists a random variable K , almost surely finite, such that for
any k ≥ K ,

‖θk − θk−1‖1�M
≤ γk sup

θ∈WM,x∈X

∣∣H(x, θ)
∣∣.

This yields

∑
k≥K

k−1 sup
x∈X

∥∥Pθk
(x, ·) − Pθk−1(x, ·)∥∥TV1�M

≤ C
∑
k≥K

k−1γ 1−2κ
k ,

for some constant C > 0. This concludes the proof of (A.38). The limit (A.39) is a consequence
of Lemma A.6.

Remark. Note that in the proof above we use that the number of random truncations is finite al-
most surely (when claiming that limM P(�M) ↑ 1) but only use the convergence of the sequence
(θt )t≥0 in order to establish (A.39). When f is such that πθ (f ) = π(f ) for any θ ∈ � (for ex-
ample when f is symmetric with respect to permutations), then (A.39) holds even if (θt )t≥0 does
not converge.

A.7. Proof of Theorem 3.4

Let f be a measurable function such that ‖f ‖∞ ≤ 1 and set

It (f ) = ∣∣E[f (Xt )1B

]− πθ	(f )P(B)
∣∣= ∣∣E[(f (Xt ) − πθ	(f )

)
1B

]∣∣,
where B = {limq θq = θ	}. Let ε > 0. We prove that there exists Tε such that for all t ≥ Tε ,
sup{f :‖f ‖∞≤1} It (f ) ≤ 4ε. Choose κ ∈ (0,1/2) and δ > 0 such that

CM	+1δ
1−2κ ≤ ε, (A.40)

where M	 and CM	 are defined in Assumption 2 and in Lemma A.6, respectively. Choose rε such
that

2(1 − ρM	+1)
rε ≤ ε, (A.41)

where ρM	+1 is defined in Lemma A.4. By uniform continuity of w on WM	+2, assume finally δ

is small enough that

θ ∈ WM	+1, θ
′ ∈ �,

∥∥θ − θ ′∥∥≤ δ ⇒ ∣∣w(θ) − w
(
θ ′)∣∣≤ 1

rε + 1
. (A.42)
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There exists T 1
ε such that for any t ≥ T 1

ε ,

P

(∥∥θt−rε − θ	
∥∥≤ δ, lim

q
θq = θ	

)
≤ ε/2.

Hence, for any t ≥ T 1
ε , It (f ) ≤∑3

i=1 I i
t (f ) + ε, where

I 1
t (f ) = ∣∣E[(f (Xt ) − P

rε
θt−rε

f (Xt−rε )
)
1‖θt−rε −θ	‖≤δ

]∣∣, (A.43)

I 2
t (f ) = ∣∣E[(P rε

θt−rε
f (Xt−rε ) − πθt−rε

(f )
)
1‖θt−rε −θ	‖≤δ

]∣∣, (A.44)

I 3
t (f ) = ∣∣E[(πθt−rε

(f ) − πθ	(f )
)
1‖θt−rε −θ	‖≤δ

]∣∣. (A.45)

We first upper bound I 1
t (f ). For θ, θ ′ ∈ �, let

D
(
θ, θ ′)= sup

x∈X

∥∥Pθ(x, ·) − Pθ ′(x, ·)∥∥TV.

Applying [4], Proposition 1.3.1, it comes for any t ≥ T 1
ε ,

I 1
t ≤ E

[
2 ∧

rε−1∑
j=1

D(θt−rε+j , θt−rε )1‖θt−rε −θ	‖≤δ

]

≤ E

[
2 ∧

rε−1∑
j=1

(rε − j)D(θt−rε+j , θt−rε+j−1)1‖θt−rε −θ	‖≤δ

]
,

where we used that for any q, � > 0 D(θq+�, θq) ≤∑�
j=1 D(θq+j , θq+j−1). By Theorem 3.2,

the random iteration number τψ where the last projection occurs in Algorithm 1 is finite with
probability one. Let then Mε be such that 2P(τψ ≥ Mε) ≤ ε/2, so that

I 1
t (f ) ≤ E

[
2 ∧

rε−1∑
j=1

(rε − j)D(θt−rε+j , θt−rε+j−1)1‖θt−rε −θ	‖≤δ1τψ≤Mε

]
+ ε

2
.

Let now T 2
ε ≥ T 1

ε ∨ (Mε + rε) be such that

t ≥ T 2
ε ⇒ γt sup

x∈X,θ∈WM	+2

∥∥H(x, θ)
∥∥≤ δ.

Then, by recurrence and using (A.42), we obtain that on {‖θt−rε − θ	‖ ≤ δ}, θt−rε+j ∈ WM	+1

for all 0 ≤ j ≤ rε . By Lemma A.7, this yields for any t ≥ T 2
ε

I 1
t (f ) ≤ CM	+1

[
sup

x∈X,θ∈WM	+2

∥∥H(x, θ)
∥∥]1−2κ

rε−1∑
j=1

(rε − j)γ 1−2κ
t−rε+j + ε

2
,
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and there exists T 3
ε ≥ T 2

ε such that t ≥ T 3
ε ⇒ sup{f :‖f ‖∞≤1} I 1

t (f ) ≤ ε.
We now consider I 2

t (f ); it holds

I 2
t ≤ E

[∥∥P rε
θt−rε

(Xt−rε , ·) − πθt−rε

∥∥
TV1‖θt−rε −θ	‖≤δ

]
.

By (A.42), ‖θt−rε − θ	‖ ≤ δ ⇒ θt−rε ∈ WM	+1 and thus, applying Lemma A.4 and (A.41)

sup
{f :‖f ‖∞≤1}

I 2
t (f ) ≤ 2(1 − ρM	+1)

rε ≤ ε.

The derivation of the upper bound of I 3
t is similar to that of I 2

t , with Lemma A.4 replaced by
Lemma A.6 and uses (A.40). Details are omitted.

Remark. The proof above can be easily adapted (details are omitted) to address the case when
(i) (θt )t≥0 is stable but does not necessarily converges, and (ii) the function f is bounded and
satisfies πθ (f ) = π(f ) for any θ ∈ �. The main ingredients for this extension are to replace
1B with the constant function 1, and to replace the set {‖θt−rε − θ	‖ ≤ δ} with {θt−rε ∈ WM	}.
Since the sequence is stable, limM P(�M) ↑ 1 where �M is given by (A.37). M	 is chosen so
that E[|f (Xt ) − π(f )|1�M	

] ≤ ε. We then obtain, for such a function f ,

lim
t→∞E

[
f (Xt )

]= π(f ).
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