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the Markov property of the de Wijs process
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Dynkin’s (Bull. Amer. Math. Soc. 3 (1980) 975–999) seminal work associates a multidimensional transient
symmetric Markov process with a multidimensional Gaussian random field. This association, known as
Dynkin’s isomorphism, has profoundly influenced the studies of Markov properties of generalized Gaussian
random fields. Extending Dykin’s isomorphism, we study here a particular generalized Gaussian Markov
random field, namely, the de Wijs process that originated in Georges Matheron’s pioneering work on mining
geostatistics and, following McCullagh (Ann. Statist. 30 (2002) 1225–1310), is now receiving renewed
attention in spatial statistics. This extension of Dynkin’s theory associates the de Wijs process with the
(recurrent) Brownian motion on the two dimensional plane, grants us further insight into Matheron’s kriging
formula for the de Wijs process and highlights previously unexplored relationships of the central Markov
models in spatial statistics with Markov processes on the plane.

Keywords: additive functions; Brownian motion; intrinsic autoregressions; kriging; potential kernel;
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1. Introduction

After originating in the pioneering work of Georges Matheron, the de Wijs process enjoyed a
significant and extensive role in early geostatistical literature [6,19,26,28]. McCullagh’s [30]
recent work has revived interest in the de Wijs process, both theoretically and in a growing
range of applications in spatial statistics; see, for example, [4,5,8–10,13,31,34–36]. In particular,
Mondal [34] and Besag and Mondal [5] established a connection between Gaussian Markov
random fields on two-dimensional lattices and the de Wijs process on the Euclidean plane, which
emerges as a scaling limit of the former. McCullagh and Clifford [31] analyzed agricultural
uniformity trials using a spatial formulation that is based on the de Wijs process and a Gaussian
white noise random field. See also the related work by Clifford [8,9], Clifford et al. [10]. Mondal
[35] considers the exponential functional of the de Wijs process to construct a generalized Cox
process to study disease mappings. Mondal [36] indicates a link between the de Wijs process and
Tobler’s [52] pycnoplylectic interpolation based on the Laplace splines. Dutta and Mondal [13]
make explicit use of the connection between intrinsic autoregressions and the de Wijs process
and provide approximate matrix free computations for residual maximum likelihood methods for
the latter. Furthermore, outside the statistics literature, the de Wijs process appears to originate
separately in quantum physics and statistical mechanics as the massless case of the free Gaussian
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field; see, for example, Chapters 6 and 7 of [17], and in recent probability literature, this massless
case has become a subject of intense study; see, for example, [21,48].

Technically, the de Wijs process is a generalized Gaussian random field ([16], Chapter III),
whose index set is a certain class of contrasts, that is, non-atomic signed Borel measures on the
Euclidean plane with zero total mass. This process corresponds to the logarithmic variogram
model and is a generalization of the Brownian motion in two dimensions. It acquires Markov
and conformal invariance properties [30,31] and is first-order intrinsic in the sense of [55] and
[12]. The Markov property of the de Wijs process was already known to Matheron [27,28], who
viewed it from the perspective of kriging predictions. Consider a mean zero Gaussian random
field {U(x) :x ∈ R2}. Let B denote a closed contour in R2. It is natural to call the random
field Markov if its values along the curve B determine the ordinary kriging predictor for the
value U(x0) at a point x0 in the interior of B , given its values on and in the exterior of B . This
Markovian characterization leads to a kriging predictor for the random variable U(x0) that takes
the form of a contour integral

E
(
U(x0) | U(x), x ∈ B

) =
∫

B

v(x, x0)U(x)dx,

where the coefficient function v(x, x0), x ∈ B is such that
∫

B

v(x, x0)dx = 1,

∫
B

v(x, x0) cov
(
U(x),U

(
x′))dx = cov

(
U(x0),U

(
x′)) (1.1)

for every point x′ on B . When {U(x) :x ∈R2} is stationary and isotropic, Matheron [27] deduces
that it is Markov if and only if

cov
(
U(x),U(0)

) ∝ K0
(
a‖x‖), (1.2)

where K0 is the Bessel function of order zero and a is a positive constant. Matheron further notes
that his derivations remain intact for the limiting case a ↓ 0 that corresponds to the logarithmic
covariance, cov(U(x),U(0)) = − log(‖x‖) and thus provides the Markovian characterization of
the de Wijs process. However, the respective random fields exist as generalized processes only,
and the details of a formal argument go beyond the above kriging formula.

This paper calls attention to the work of Dynkin [14] to present a mathematical formalism
to describe the above kriging formula of the de Wijs process, and to connect the field of spa-
tial statistics to the vast, and hitherto unutilized, probabilistic literature on the Markov property
of generalized random fields. This body of literature constitutes a fascinating part of probabil-
ity, much of which emerged in the wake of [24] and [32]. This corpus notably includes [14,15,
18,20,22,25,33,38,39,42–45,47,53,54] and the references therein. In many of these works, sev-
eral notions of Markovianity for generalized Gaussian random fields have emerged and their
interrelations and their connections to various related concepts often form a good part of their
understanding. For example, a homogeneous and isotropic generalized Gaussian random field
whose spectral density is inversely proportional to an even polynomial of the frequencies satis-
fies a Markov property in the sense of Holley and Stroock but may not be Markov in the sense
of Wong. It is interesting to note that Nelson’s [38] construction of the free Markov field on the
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plane actually corresponds to the generalized Gaussian random field with covariance given in
(1.2). Using a slightly different notion of Markovianity, Wong [54] arrives, much earlier than
Nelson, at the conclusion that the only generalized Gaussian Markov random field again has co-
variance (1.2). Kallianpur and Mandrekar [20], on the other hand, investigate Markov properties
of a generalized Gaussian random field in conjunction with its dual random field. Ekhaguere [15]
later provides links between the Markov property due to Nelson [38] and that due to Wong [54].
In contrast, Dynkin’s [14] famous work marks an important departure from these earlier studies.
In his study, covariances of a generalized Gaussian random field are assumed to arise from the
Green function of a symmetric multidimensional Markov process, and the Markov property of
this generalized Gaussian random field is then derived from the path properties of the multidi-
mensional Markov process. Thus, for example, the Markov property of (1.2) can be understood
in the context of the Markov property of an exponentially killed Brownian motion on the plane.
Here our focus is on the limiting case, namely, the de Wijs process. Although its Markov property
can be investigated using the work of Nelson or Wong (e.g., by modifying Theorem 1.5 of [18] or
by including the case α = 0 in Wong’s [54] Theorem 2), we take up Dynkin’s approach primarily
because it provides a precise and computable description of the boundary condition in the krig-
ing formula, and connects closely with Matheron’s work. We also piece together many scattered
results and extend some known ones to provide this new addition to the body of literature that,
respectively, followed Dynkin’s and Matheron’s works.

The remainder of the paper is structured as follows. Section 2 introduces the de Wijs process as
a homogeneous, isotropic and self-similar generalized Gaussian random field. Section 3 explores
the association of this process with Brownian motion. Here we show that the covariance formula
of the de Wijs process can be written explicitly in terms of an additive function of the Brownian
motion. Section 4 studies the Markov property of the de Wijs process by extending the work
of Dynkin [14]. Here our main result, namely Theorem 4.1, provides a new interpretation of
Matheron’s kriging formula in terms of the hitting probabilities of the Brownian motion and
as a generalization of the Dirichlet problem. Section 5 focuses on the practical relevance of
Matheron’s kriging formula. It also considers the relevance of Dynkyn’s isomorphisms in lattice
approximations of the de Wijs process and concludes with a discussion on the screening effect
in kriging.

2. De Wijs process

In this paper, a generalized random field on the Euclidean plane R2 is a stochastic process
{Zσ :σ ∈ M} indexed by a vector space M of non-atomic signed Borel measures on the plane
that have total mass zero. We view Z to be a linear functional from the vector space M to the
real numbers such that

Zbσ+dν = bZσ + dZν for all σ, ν ∈ M, and for all b, d ∈R.

We think of the random variable Zσ as a spatial contrast; for instance, if two plots have unit area
and σ has a Lebesgue density that is proportional to the difference of the respective indicator
functions, then Zσ might represent the difference of crop yields on these plots.
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The generalized random field {Zσ :σ ∈ M} is said to be homogeneous if its distribution re-
mains invariant to planar translations, and isotropic if its distribution remains invariant to planar
rotations. Furthermore, such a homogeneous isotropic generalized random field is Gaussian if
all finite dimensional marginal distributions are multivariate normal with EZσ = 0 and

cov(Zσ ,Zν) = −
∫ ∫

ϕ
(‖x − y‖)σ(dx)ν(dy) (2.1)

for some real-valued function ϕ and all non-atomic signed measures σ, ν ∈ M. Note that in the
above covariance formula we can add to ϕ(‖x − y‖) a function f1(x) + f2(y) without affecting
the integral, and so ϕ actually belongs to a suitable quotient space (modulo the infinite dimen-
sional subspace of additive functions). In subsequent discussions, we will be implicit about this
equivalence relation in the description of ϕ. The function

c(x) = ϕ
(‖x‖), x ∈R2

is then called the generalized variogram or −c(x) the generalized covariance function of the
generalized random field. Let σ̂ and ν̂ denote the Fourier transforms of σ and ν. We can then
write (2.1) as

cov(Zσ ,Zν) =
∫

σ̂ (x)ν̂(x)S(dx) (2.2)

for a certain non-negative tempered measure S which is called the spectral measure of the gener-
alized random field ([16], page 264). If the spectral measure is absolutely continuous with respect
to the Lebesgue measure on R2, its Lebesgue density s(x), x ∈ R2 is called the spectral density.
Under slight regularity conditions, the generalized covariance function c and the spectral density
s are Fourier transforms of each other.

Specifically, consider M to be the space of signed Borel measures σ on the Euclidean plane
R2 that satisfy ∫ ∫ ∣∣log

(‖x − y‖)∣∣|σ |(dx)|σ |(dy) < ∞ (2.3)

and have total mass zero. The de Wijs process is then the homogeneous, isotropic and self-similar
generalized Gaussian random field (i.e., its distribution also remains invariant to changes of scale)
on R2 with index set M such that EZσ = 0 and

cov(Zσ ,Zν) = 〈σ, ν〉M = −
∫ ∫

log
(‖x − y‖)σ(dx)ν(dy) (2.4)

for all signed measures σ, ν ∈ M. Note that M has an inner product space structure with inner
product 〈σ, ν〉M and norm

‖σ‖M = 〈σ,σ 〉1/2
M .

Indeed, Corollary 2.5 of [29] implies that M is a vector space, and by Corollary 2.4 and Re-
mark 3.3 in the same reference ‖σ‖M ≥ 0 with equality if and only if σ vanishes identically.
The positive definiteness of the covariance matrices associated with the de Wijs structure (2.4)
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is an immediate consequence of the Gram matrix property. Thus, the de Wijs process has loga-
rithmic variogram; that is, the representation (2.1) holds with the generalized variogram function
c(x) = ϕ(‖x‖) = log‖x‖ for x ∈R2, and its spectral density is

s(x) = 1

2π‖x‖2
, x ∈ R2.

3. Association with Brownian motion

We set T = [0,∞) for consistency in what follows and let {Wt, t ∈ T } be the Brownian mo-
tion on the two-dimensional Euclidean plane. Thus, with probability 1, the function t → W(t) is
continuous in t , the components of the increment Wt+u − Wu are independent Gaussian random
variables each with mean 0 and variance t , and the process {Wt, t ∈ T } has stationary and inde-
pendent increments. For every x on the plane, let Px denote the probability law of {Wt, t ∈ T }
starting at x and let Ex be its expectation under Px . For every t ∈ T , let the sub-σ -field Ft consist
of events observable up to time t , which is the minimum σ -field generated by {Wu : 0 ≤ u ≤ t}.
Define F∞ to be the minimum σ -field containing

⋃
t∈T Ft . The Markov property of the Brow-

nian motion asserts that the conditional law of {Wt, t ≥ u} given {Wt,0 ≤ t ≤ u} depends on W

only through Wu. In other words,

Ex(FJ ) = Ex(FEWuJ )

for every x on the plane, every Fu measurable positive function F and every measurable function
J that depend only on {Wt, t ≥ u}. In particular, the expectation is calculated first with respect to
the conditional law of {Wt, t ≥ u} given {Wt,0 ≤ t ≤ u}, and then with respect to the marginal
law of {Wt,0 ≤ t ≤ u}. An important generalization of the Markov property is the strong Markov
property. When τ is a stopping time, define the stopping field Fτ to be the σ -algebra consisting
of all events A ∈ F∞ such that A∩{τ ≤ t} ∈ Ft for every t ≥ 0. Then the strong Markov property
implies that

Ex(FJ ) = Ex(FEWτ J )

for every x on the plane, every stopping time τ , every Fτ measurable positive function F and
every measurable function J that depends on {Wt, t ≥ τ }.

Next we define the Green function of the Brownian motion {Wt, t ∈ T }. Typically, the Green
function is defined for a transient Markov process as the time integral of its transition probability
density function, and Dynkin’s theory is essentially based on the fact that the Green function of
a transient symmetric Markov process can be interpreted as the covariance of a centered Gaus-
sian process. However, the Brownian motion on the plane is recurrent and hence its transition
probability density function

pt (x, y) = (2πt)−1 exp

{
− 1

2t
‖y − x‖2

}

is not integrable with respect to t . Thus, we need a modification that will allow us to define the
Green function of the Brownian motion and extend Dynkin’s result in a straightforward fashion.
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To this end, we fix a point x0 on the unit circle and consider qt (x, y) = pt (0, y − x) − pt (0, x0).
We then apply the definition of Port and Stone ([40], page 70) and obtain the Green function or
the potential kernel of {Wt, t ∈ T } as

g(x, y) =
∫ ∞

0
qt (x, y)dt = −π−1 log‖y − x‖. (3.1)

The choice of x0 will not matter, as we shall see in what follows.
However, note that the covariances of the de Wijs process now satisfy the relationship

cov(Zσ ,Zν) = 〈σ, ν〉M =
∫ ∫

πg(x, y)σ (dx)ν(dy).

Thus, we say that the above relationship associates the de Wijs process with the Brownian motion
{Wt, t ∈ T }, opening an avenue for exploring the properties of the former from those of the latter.
For every ν ∈M, we now get

∫
qt (x, y)ν(dy) =

∫
pt(x, y)ν(dy) − pt

(
0,‖x0‖

)∫
ν(dy) =

∫
pt(x, y)ν(dy)

and therefore ∫
g(x, y)ν(dy) =

∫ ∫
pt (x, y)ν(dy)dt.

In other words, the term involving x0 disappears from the right-hand side of the previous
equation. Consequently, when ν is absolutely continuous with the Radon–Nykodyn derivative
ν(dy) = ρ(y)dy, the above equation becomes

∫
g(x, y)ν(dy) = Ex

∫
ρ(Wt)dt.

Now equation (3.1) can be identified with 〈σ, ν〉M = πEσ

∫
ρ(Wt)dt , where Eσ is the expecta-

tion under the probability law of {Wt, t ∈ T } with initial signed measure σ ; that is,

Eσ

∫
ρ(Wt)dt =

∫
Ex

∫
ρ(Wt)dt σ (dx).

We can thus define the additive function of the Brownian motion by the measure

Aν(Q) =
∫

Q

ρ(Wt)dt (3.2)

that satisfies the property that, for every interval I = (s, u) with s < u, Aν(I) is a functional of
{Wt, t ∈ I }, and

cov(Zσ ,Zν) = 〈σ, ν〉M = πEσ Aν(T ). (3.3)

The collection of all signed measures ν ∈ M that are absolutely continuous forms a dense sub-
space of M. By passage to limit, it then follows that for every ν ∈ M there exists an additive
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functional of the Brownian motion such that the above equation holds. In addition, the strong
Markov property of the Brownian motion takes the following form

Eσ FAν(τ + Q) = Eσ FEWτ Aν(Q) (3.4)

for every σ, ν ∈ M, for every Borel subset Q of T , and for every τ and F as defined earlier. The
strengthened relationship that emerges from equation (3.3) in conjunction with equation (3.4)
now paves the way to use the Brownian paths to study the properties of the de Wijs process.

4. Markov property of the de Wijs process

As in Section 1, take B to be a simple closed contour on the plane. Then B divides the entire
plane into two components, namely, the bounded interior and the unbounded exterior. Let BI

denote the open interior of B with closure B̄I. Similarly, let BE be the open exterior of B with
closure B̄E. Our first task is to describe the values of the de Wijs process on the boundary B , and
on the inside and the outside of B (e.g., on sets BI and B̄E). To this end, there are two approaches.
The first approach is due to [39]. Here we describe the values of the de Wijs process on an open
set G by the minimum sigma field AG generated by all Zσ such that σ ∈ M and support of σ

is compactly contained in G. Then, for any closed set C the values of the de Wijs process is
described by the sigma field

AC =
⋂

G⊃C

AG,

where the intersection is taken over all open sets G that contain C. Thus, ABI , AB̄E
and AB rep-

resent the values of the de Wijs process on the inside, outside and on the boundary, respectively,
and the Markov property of the de Wijs process asserts that, for any σ ∈ M with support of σ

compactly contained in BI,

E(Zσ |AB̄E
) = E(Zσ |AB)

almost surely in the probability distribution of the de Wijs process. Note that, by construction, the
minimum sigma fields AB̄E

and AB contains neighborhood information, not just the information
on the set. The second approach adopted by Dynkin [14] is a simplified version of the above and
goes as follows. For a close set C, we define MC to be the set of signed Borel measures σ ∈ M
that do not charge on its complement. Then, following [14], the minimum sigma field generated
by the collection of random variables {Zσ :σ ∈ MC} describes the values of the de Wijs process
on the C. The Markov property is described in the usual fashion, namely, the values on the inside
(B̄I) and the outside (B̄E) of B are conditionally independent given the values on B . This leads
to the following theorem.

Theorem 4.1. Let D be any closed set on the plane with a simply connected open interior, and
let τD be the first hitting time of D by the Brownian motion {Wt, t ∈ T } starting at x on the
plane. Denote by Vx the probability measure of WτD

conditioned on W0 = x. For any initial
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signed measure σ ∈ M which does not charge on the set D, identify σD with the signed measure
induced by Wt at the first hitting time of D; that is,

σD(G) =
∫

Px(WτD
∈ G)σ(dx) =

∫
Vx(G)σ(dx)

for all Borel subsets G on the plane. Then the conditional expectation of Zσ , given the values of
the de Wijs process on D, is identical to ZσD

. In other words,

E
(
Zσ |{Zν, ν ∈ MD}) = ZσD

. (4.1)

Before we turn to the proof, let us first see how Matheron’s kriging formula enters into the
above theorem. Equation (4.1) implies that for all σ ∈M and ν ∈MD

EZσ Zν = EZσD
Zν.

Hence, formula (2.4) applies. This along with the definition of σD produces the identity

∫ ∫
log

(‖x − y‖)σ(dx)ν(dy) =
∫ ∫ ∫

log
(‖x′ − y‖)Vx

(
dx′)σ(dx)ν(dy)

for all σ ∈ M and ν ∈ MD . Consequently, if x is in the interior of boundary B , we have

∫
B

Vx

(
dx′) = 1, log

(‖x − y‖) =
∫

B

log
(‖x′ − y‖)Vx

(
dx′)

for every point y on B . In short, the coefficient function v(x′, x0) in Matheron’s kriging formula
(1.1) is the derivative of Vx0 at x′, and thus corresponds to the probability density function of the
Brownian motion at the first hitting time τD , a crucial fact that has arguably been missing from
the geostatistitical literature. Furthermore, in order for Z to be a linear functional from the vector
space M to the real numbers, we can imagine Zσ as an integral of the form

∫
Zxσ(dx), where

the notation Zx suggests a point-wise intrinsic process with var(Zx − Zx′) = − log(‖x − x′‖).
This very imagination of a point-wise Zx allows us to describe Ẑx = ∫

B
Zx′Vx(dx′) as the kriged

value of Zx , for an x in the interior of B . We can take this point further, and even describe the
kriging formula from a different angle. First, let ∇ denote the Laplace operator on the plane. If ν

is twice differentiable, Theorem 3 of [41], page 525, implies

−2π〈σ,∇ν〉M =
∫

σ(x)ν(x)dx, (4.2)

which surprisingly asserts that ∇Zx and Zx′ behave as two mean zero uncorrelated Gaussian
random variables for x �= x′, and in turn, suggests that the kriged values of ∇Zx on the interior
of B are all zero. An interchange of the Laplace operator and the conditional expectation on Zx

then produce

∇Ẑx = 0
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on the interior of B , implying that the kriging problem is a generalization of the Dirichlet prob-
lem in mathematics. Indeed, the probability literature reaffirms that the boundary values of the
Brownian motion at first hitting time solve the standard version of the Dirichlet problem and
therefore the Matheron’s kriging formula (1.1) can be seen as a generalization. For significance
of the Dirichlet problem in recent spatial statistics, we refer to the discussion in [30]. We now
return to the proof of the theorem.

Proof of Theorem 4.1. First, we verify that σD ∈MD . As a first step, we argue that σD belongs
to M. Since

∫
σD(dx) = ∫

σ(dx) = 0, σD represents a signed Borel measure with total mass
zero. Now, for a non-negative measure μ for which the integral hμ(x) = ∫

g(x, y)μ(dy) is finite
for every x, the results of [7], pages 193–194, give the identity

hμ(x) − Exhμ(Wt) =
∫

g(x, y)μ(dy) − Ex

∫
g(Wt , y)μ(dy) =

∫ ∫ t

0
ps(x, y)ds μ(dy) ≥ 0.

Consequently, hμ defines an excessive measure, and hμ(x) ≥ Exhμ(Wt). Hence, the choices
μ = ν+ and μ = ν− yield

hν+(x) ≥ Exhν+(Wt), hν−(x) ≥ Exhν−(Wt).

It then follows that

〈
σ+

D ,ν+〉
M = πEσ+hν+(WτD

) ≤ π

∫
hν+(x)σ+(dx) = 〈

σ+, ν+〉
M,

and, after repeating the same argument, 〈σ−
D ,ν−〉M ≤ 〈σ−, ν−〉M and so on. Thus,

〈
σ+

D ,ν
〉
M ≤ ∣∣〈σ+, ν+〉

M
∣∣ + ∣∣〈σ+, ν−〉

M
∣∣,

and a similar upper bound exists for 〈σ−
D ,ν〉M. The above bounds imply

〈σD,σD〉M ≤ ∣∣〈σ+, σ+〉
M

∣∣ + 2
∣∣〈σ+, σ−〉

M
∣∣ + ∣∣〈σ−, σ−〉

M
∣∣,

which ensures that σD ∈M. Now D is a closed set with a simply connected open interior and so
we get

|σD|(Dc
) =

∫
Px(WτD

/∈ D)|σ |(dx) = 0.

Therefore, σD belongs to MD . Next, we establish that

EZσ Zν = EZσD
Zν ∀ν ∈ MD.

Since σD is a measure that satisfies the relation σD(G) = Eσ (1G(WτD
)), for all Borel subsets G

of the plane, integrals with respect to σD can be defined as appropriate expected values of the
functions of WτD

. In particular, for any element f of an appropriate class of functions, such an
integral will satisfy ∫

f (x)σD(dx) = Eσ f (WτD
).
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Now take f (x) = ExAν(T ). Then, the definition of the additive function asserts that EZσD
Zν =

πEσD
Aν(T ), but the above equation also implies

EσD
Aν(T ) =

∫
ExAν(T )σD(dx) =

∫
f (x)σD(dx) = Eσ f (WτD

) = Eσ EWτD
Aν(T ).

Consequently, the strong Markov property of the Brownian motion in equation (3.4) applies, and
we obtain

EσD
Aν(T ) = Eσ Aν(τD + T ).

Since τD is the first hitting time of D, the path of the Brownian motion up to but not including
time τD lies entirely within the complement of D. However, the signed measure ν concentrates
on D making it imminent that Eσ Aν((0, τD)) = 0. And, therefore

cov(ZσD
,Zν) = πEσD

Aν(T ) = πEσ Aν(τD + T ) = πEσ Aν(T ) = cov(Zσ ,Zν).

This completes the proof. �

Interestingly, when values are known along a straight line or on a circle, the analytic formulas
for the coefficient function v(x, x0) are available in closed form, making it possible to apply
Theorem 4.1 directly to calculate relevant kriging predictions. For an example, when B is the
unit circle, v(x, x0) becomes the Poisson kernel

v(x, x0) = 1

2π

1 − ‖x0‖2

‖x − x0‖2
, ‖x‖ = 1,‖x0‖ < 1. (4.3)

Furthermore, when the boundary set B is the y-axis, we refer to [27] for a formula for the
corresponding coefficient function v(x, x0).

Finally, we can also discuss predictions for functionals of the values of the de Wijs process
inside the boundary B (e.g., f (Zσ ) for some suitable function f ), given {Zν :ν ∈ MD}, but this
would require a knowledge of Wick products and Fock spaces and is beyond the scope of this
paper.

5. Discussion

In practice, we only select finitely many regular or irregularly distributed sampling locations and
observe process values as aggregates or averages over certain non-empty regular or irregular re-
gions around those sampling locations. In both instances there are certain limitations in applying
Matheron’s kriging formula directly. For example, if we observe only finitely many data values
on the unit circle, we won’t be able to apply the exact kriging formula in (4.3). Similarly, when
the de Wijs process is used as a statistical model for aggregates or averages of spatial variables
over non-empty regions in the two-dimensional plane, we simply lose the Markov property be-
cause of aggregations or averaging. Examples include agricultural field trials where the variable
of interest is the crop yield over plots, or disease mapping where the spatial variable of interest
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is considered a stochastically degraded version of an underlying unobserved spatial component
such as the log relative risk of non-infectious diseases over a geographic region.

However, certain discrete approximations are possible, and, in fact, it is the discrete approx-
imations of the de Wijs process that have played a major role in spatial statistics in the past
thirty years; see, for example, [2,3,23], many subsequent papers, and the books by Cressie [11],
Banerjee et al. [1] and Rue and Held [46]. These discrete approximations form a subclass of
Gaussian Markov random fields on regular and irregular lattices and have lattice graph Lapla-
cians as their precision (i.e., inverse of ‘covariance’) matrix. The nature of these approximations
become clearer when we also note that the log function (i.e., the generalized covariance of the de
Wijs process) is the inverse of the Laplacian on the plane. Interestingly, these Gaussian random
fields are also associated with the random walks on the lattice graph, as the De Wijs process is
with the Browning motion on the plane. As a concrete example, the first order symmetric in-
trinsic autoregressions on the two dimensional integer lattice Z2 [5,34] is associated with the
simple random walk on Z2. Thus Dynkin’s theory also applies here and we can obtain the coef-
ficient function of a corresponding kriging problem on the discrete lattice Z2 from probabilities
of the simple random walk at the first hitting time. To summarize, the diagram in Figure 1 lists a
few important spatial Gaussian Markov models and the associated two-dimensional Markov pro-
cesses. The top part of this diagram notes the lattice Gaussian Markov random fields along with
the spectral densities and, in brackets, the associated lattice Markov processes. The bottom part
of the diagram provides limiting continuum Gaussian Markov random fields with corresponding
spectral densities and, in brackets, the associated Markov processes. These continuum random
fields arise as the scaling limits of corresponding lattice Markov fields from the top part of the
diagram; see [37] and [5] for details.

Another interesting point is that aggregates or averages of the de Wijs process retain an ap-
proximate Markov property that is known as the screening effect in geostatistics [6,50]. To give a
very simple example, we consider a regular lattice in the two-dimensional plane. Let Xs,t denote
the average value of the spatial variable of interest over the unit square whose center has integer
coordinate (s, t) in the Euclidean plane. Given a realization XS,T of Xs,t for s, t = −8, . . . ,8 but

Stationary autoregression on Z2

s(ω,η) = [1 − β + β{sin2( 1
2 ω) + sin2( 1

2 η)}]−1

(Simple random walk with
geometric holding times)

.......................................
β → 1

>

Intrinsic autoregression Z2

s(ω,η) = (sin2( 1
2 ω) + sin2( 1

2 η))−1

(Simple random walk)

Generalized Ornstein–Uhlenbeck process
s(ω,η) = (α2 + ω2 + η2)−1

(Brownian motion with
exponential holding times)

β → 1

∨

.............

..........................................................
α → 0

>

De Wijs process
s(ω,η) = (ω2 + η2)−1

(Brownian motion)

∨

.............

Figure 1. Limit diagram for Gaussian Markov random fields and associated Markov processes. Here
0 ≤ β < 1 and α > 0.
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Table 1. Numerical values of the coefficients ωs,t in the ordinary kriging predictor (5.1) under the regular-
ized de Wijs process

t

s 1 2 3 4 5 6 7 8

0 0.342 −0.075 0.017 −0.004 0.001 0.000 0.000 0.000
1 −0.032 −0.001 0.002 −0.001 0.000 0.000 0.000 0.000
2 0.002 −0.001 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000
7 0.000 0.000
8 0.000

excluding X0,0, we can employ exact variogram computations [8,34] to find the coefficients ωs,t

in the conditional expectation or ordinary kriging predictor [49]

E
(
X0,0|XS,T

) =
∑

ωs,tXs,t (5.1)

under the regularized de Wijs process. The sum on the right-hand extends over the aforemen-
tioned index set and the ordinary kriging coefficients ωs,t add up to 1. Table 1 shows the nu-
merical values of ωs,t to three decimals; in view of symmetries only 44 of the 172 − 1 = 288
coefficients need to be shown. The screening effect is prominent here in that the immediately
neighboring cells dominate, with very few of the remaining cells receiving non-negligible ordi-
nary kriging coefficients. However, it is not known to me if ωs,t can be interpreted in a meaningful
way using certain probability calculations of the Brownian motions, but here one can further try
to derive analytic form of ωs,t for an infinite lattice from the spectral density form of Xu,v . The
same applies for aggregates or averages of the first-order intrinsic autoregression. In general, it
would be interesting to know if one can better understand such an approximate Markov property.

Some future directions can be added to this work. For example, the work of [51] provides
links between Dynkin’s isomorphisms and constructions of statistical designs. Generalizations
of Tjur’s work in the context of spatial designs would be an interesting matter for future study.
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