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We consider a stochastic process Y defined by an integral in quadratic mean of a deterministic function f

with respect to a Gaussian process X, which need not have stationary increments. For a class of Gaussian
processes X, it is proved that sums of properly weighted powers of increments of Y over a sequence of
partitions of a time interval converge almost surely. The conditions of this result are expressed in terms
of the p-variation of the covariance function of X. In particular, the result holds when X is a fractional
Brownian motion, a subfractional Brownian motion and a bifractional Brownian motion.
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1. Introduction

Let X = {X(t) : t ∈ [0, T ]} be a Gaussian process and let f : [0, T ] → R be a real-valued function
for some 0 < T < ∞. We consider a stochastic process Y = {Y(t) : t ∈ [0, T ]}, given by an
integral

Y(t) = q.m.

∫ t

0
f dX, 0 ≤ t ≤ T , (1)

defined as a limit of Riemann–Stieltjes sums converging in quadratic mean. According to the
main result of this paper (Theorem 21), under suitable hypotheses on the covariance of X and
the p-variation of f , there exists a stochastic process Y defined by (1) and with probability one

lim
n→∞

mn∑
i=1

|Y(tni ) − Y(tni−1)|r
[ρ(tni − tni−1)]r

(
tni − tni−1

) = E|η|r
∫ T

0
|f |r , (2)

where η is a standard normal random variable, ρ is a function equivalent to (E[X(s + ·) −
X(s)]2)1/2 near zero uniformly in s ∈ [ε,T ) for each ε > 0, and ((tni )

mn

i=0) is a sequence of
partitions of [0, T ] such that the sequence (maxi (t

n
i − tni−1)) tends to zero as n → ∞ sufficiently

fast.
In the case f ≡ 1, X is a real centered Brownian motion B , ρ(h) = √

h, T = 1 and tni = i2−n,
i ∈ {0,1, . . . ,2n}, (2) gives the result of Lévy [15]

lim
n→∞

2n∑
i=1

[
B

(
i2−n

) − B
(
(i − 1)2−n

)]2 = 1 a.s. (3)
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This result has been extended in many directions. The Brownian motion B has been replaced
by a general Gaussian procces X under suitable hypotheses on the covariance of X ([1,9,20]).
The sequence of dyadic partitions of [0,1] in (3) have been replaced by a sequence ((tni )

mn

i=0) of
partitions of [0,1] such that maxi (t

n
i − tni−1) = o(1/ logn) as n → ∞ ([6]), and this is the best

possible rate ([5]). The second power of increments of a Brownian motion B in (3) has been
replaced by r th power of increments of a Gaussian process X with stationary increments by
Marcus and Rosen [19] when r ≥ 2 and by Shao [23] when r > 1. A different strand of research
led to similar results for a power variation of a general stochastic process with convergence
in probability in place of convergence with probability one (see [4], and references there). In
fact, the present paper is an attempt to prove the almost sure convergence for a weighted power
variation of integral process (1) like in [4] (but different) and keeping the framework of the above
mentioned results.

In the rest of this section, we formulate and discuss in more detail the stated main result of the
paper. In Section 2, we give conditions for the existence of the integral process Y given by (1). In
Section 3, we give conditions for a Gaussian process to have positively or negatively correlated
increments in terms of p-variation of its covariance function. The general results are proved
to hold for a fractional Brownian motion, a subfractional Brownian motion and a bifractional
Brownian motion. The main result is proved in Section 4.

We consider the integral process Y given by (1) with a Gaussian process X having “lo-
cally stationary increments” defined next (Definition 2). While in this paper we consider only
Gaussian processes, the following concept makes sense for any stochastic process whose finite-
dimensional distributions have finite moments of the first and second orders. Such a process with
mean zero will be called a second order stochastic process as in [16], Chapter 37.

Definition 1. Let T > 0 and let R[0, T ] be a set of functions ρ : [0, T ] → R+ such that ρ(0) = 0,
ρ is continuous at zero, and for each δ ∈ (0, T ),

0 < inf
{
ρ(u) :u ∈ [δ, T ]} ≤ sup

{
ρ(u) :u ∈ [δ, T ]} < ∞. (4)

Let X = {X(t) : t ∈ [0, T ]} be a second order stochastic process with the incremental variance
function σ 2

X defined on [0, T ]2 := [0, T ] × [0, T ] with values

σ 2
X(s, t) := E

[
X(t) − X(s)

]2
, (s, t) ∈ [0, T ]2.

We say that X has a local variance if there is a function ρ ∈ R[0, T ] such that (A1) and (A2)
hold, where

(A1) there is a finite constant L such that for all (s, t) ∈ [0, T ]2

σX(s, t) ≤ Lρ
(|t − s|);

(A2) for each ε ∈ (0, T )

lim
δ↓0

sup

{∣∣∣∣σX(s, s + h)

ρ(h)
− 1

∣∣∣∣ : s ∈ [ε,T ),h ∈ (
0, δ ∧ (T − s)

]} = 0. (5)

In this case, we say that X has a local variance with ρ ∈ R[0, T ].
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Let X = {X(t) : t ∈ [0, T ]}, T > 0, be a mean zero Gaussian process with stationary incre-
ments, and let ρX(u) := σX(u,0) for each u ∈ [0, T ]. Then (A1) and (A2) for ρ = ρX hold
trivially. Also, if X is such that ρX is continuous at zero, and (4) holds for ρ = ρX and each
δ ∈ (0, T ), then ρX ∈ R[0, T ], and so X has a local variance with ρX .

Suppose X is a second order stochastic process such that σX(s, t) �= 0 for each (s, t) ∈ [0, T ]2.
If X has a local variance with two elements ρ1 and ρ2 in R[0, T ], then by (A2) we have

lim
u↓0

ρ1(u)/ρ2(u) = 1.

This property defines a binary relation in the set R[0, T ], which is an equivalence relation. Let
us denote this relation by ∼. If X has a local variance with ρ1 ∈ R[0, T ], and if ρ2 ∈ R[0, T ] is
such that ρ1 ∼ ρ2, then X has a local variance with ρ2. Therefore, the property of X having a
local variance is a class invariant under the binary relation ∼.

Definition 2. Let X be a second order stochastic process. We say that X has locally stationary
increments if X has a local variance with some ρ ∈ R[0, T ]. Any element in the equivalence
class {ρ′ ∈ R[0, T ] :ρ′ ∼ ρ} will be called a local variance function. We write X ∈ LSI(ρ(·)) if
X has local variance with ρ ∈ R[0, T ].

So far as we are aware, a similar concept was suggested by [2], Section 8, under the name
of local stationarity. We show that a subfractional Brownian motion GH = {GH (t) : t ∈ [0, T ]}
with index H ∈ (0,1) and covariance function (26) has local variance function ρH (u) = uH ,
u ∈ [0, T ] (see Proposition 17). Also, we show that a bifractional Brownian motion BH,K =
{BH,K(t) : t ∈ [0, T ]} with parameters (H,K) ∈ (0,1) × (0,1) and covariance function (30) has
local variance function ρH,K(u) = 2(1−K)/2uHK , u ∈ [0, T ] (see Proposition 18).

For ρ ∈ R[0, T ] let

γ∗(ρ) := inf
{
γ > 0 :uγ /ρ(u) → 0 as u ↓ 0

} = lim sup
u↓0

logρ(u)

logu

and

γ ∗(ρ) := sup
{
γ > 0 :uγ /ρ(u) → +∞ as u ↓ 0

} = lim inf
u↓0

logρ(u)

logu
.

By definition, we have 0 ≤ γ ∗(ρ) ≤ γ∗(ρ) ≤ ∞. Clearly, γ∗(ρ) and γ ∗(ρ) do not change when
ρ is replaced by ρ′ ∼ ρ. If a second order stochastic process X has a local variance with ρ ∈
R[0, T ] and if 0 < γ ∗(ρ) = γ∗(ρ) < ∞ then we will say that X has the Orey index γX :=
γ ∗(ρ) = γ∗(ρ). Clearly this notion extends the one suggested by Orey [22] (see also [21]) for a
Gaussian stochastic process with stationary increments. We will be interested in the case in which
a Gaussian stochastic process X ∈ LSI(ρ(·)) has the Orey index γX ∈ (0,1). In this case, X is
equivalent to a stochastic process whose almost all sample functions satisfy a Hölder condition
of order α for each α < γX .

Now we can formulate the main result of the paper with more details. Suppose that a mean zero
Gaussian process X has locally stationary increments with a local variance ρ and has the Orey
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index γX(ρ) = γ ∈ (0,1). Suppose that a function f : [0, T ] →R is regulated if γ ≥ 1/2 and has
bounded q-variation for some q < 1/(1 − 2γ ) if γ < 1/2, and let 1 < r < 2/max{(2γ − 1),0}.
Under the further hypotheses of Theorem 21 on the covariance of X, a stochastic process Y de-
fined by (1) exists, and (2) holds with probability one. The proof of the main result (Theorem 21)
use the ideas of Marcus and Rosen [19] and Shao [23].

Gladyshev [9] considered a stochastic process X = {X(t) : t ∈ [0,1]} with Gaussian incre-
ments, mean zero and a covariance function 	X such that the expression

σ 2
X(t, t − h)/h2γ = [

	X(t, t) − 2	X(t, t − h) + 	X(t − h, t − h)
]
/h2γ (6)

converges uniformly to a function g on [0,1] as h → 0, 	X is continuous, twice differentiable
outside the diagonal and ∣∣∣∣∂2	X(t, s)

∂t ∂s

∣∣∣∣ ≤ C

|t − s|2(1−γ )
(7)

(here γ = 1 − γ̃ /2 for γ̃ in [9]). Under these assumptions, E. G. Gladyshev proved (2) with the
right-hand side replaced by

∫ 1
0 g when f ≡ 1, ρ(u) = uγ , r = 2, tni = i2−n for i ∈ {1, . . . ,2n}

and each n ≥ 1. In [20], we showed that hypothesis (6) does not hold when X is a subfractional
Brownian motion and a bifractional Brownian motion, but the conclusion of Theorem 1 in [9]
(with g ≡ 1) still holds for these processes. Malukas [17] further extended this result to arbitrary
sequences of partitions using the ideas of Klein and Giné [12], and proved a central limit theorem
in his setting.

As compared to previous results, in the present paper a class of Gaussian processes is de-
fined by conditions (A1) and (A2) which seem to fit perfectly Gladyshev’s theorem for the mean
convergence (see Corollary 20 below), and are weaker than hypothesis (6) with g ≡ 1. Instead
of hypothesis (7), we use the following assumption on a Gaussian process X having locally
stationary increments and the Orey index γ ∈ (0,1): there is a constant C2 such that the inequal-
ity

m∑
j=1

∣∣E[
X(ti) − X(ti−1)

][
X(tj ) − X(tj−1)

]∣∣ ≤ C2(ti − ti−1)
1∧(2γ )

holds for each partition (tj )j∈{0,...,m} of [0, T ] and each i ∈ {1, . . . ,m} (see Corollary 23). Fi-
nally, in place of X, we consider a stochastic process Y defined by (1). In this case the preceding
assumption on X is replaced by the following one: there is a constant C2 such that the inequal-
ity

m∑
j=1

Vp

(
	X; [ti−1, ti] × [tj−1, tj ]

) ≤ C2(ti − ti−1)
1∧(2γ )

holds for each partition (tj )j∈{0,...,m} of [0, T ] and each i ∈ {1, . . . ,m}, where Vp(·) is the p-
variation seminorm defined by (11) below and p = max{1,1/(2γ )} (see Theorem 21). The two
assumptions are shown to be easily verified using the properties of negative or positive correla-
tion of X (see Section 3).
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The following is a consequence of Theorem 21, Proposition 15 when K = 1 and Proposi-
tion 18 when K ∈ (0,1).

Corollary 3. Let T > 0, H ∈ (0,1), K ∈ (0,1], r ∈ (1,2/max{(2HK − 1),0}), and let
BH,K = {BH,K(t) : t ∈ [0, T ]} be a bifractional Brownian motion with parameters (H,K). Let
f : [0, T ] → R be regulated if HK ≥ 1/2 and of bounded q-variation for some q < 1/(1−2HK)

if HK < 1/2. Let (κn) be a sequence of partitions κn = (tni )i∈{0,...,mn} of [0, T ] such that

lim
n→∞|κn|(1∧2/r)+(0∧(1−2HK)) logn = 0.

Then with probability one

lim
n→∞

mn∑
i=1

∣∣∣∣q.m.

∫ tni

tni−1

f dBH,K

∣∣∣∣
r(

tni − tni−1

)1−rHK = 2r(1−K)/2E|η|r
∫ T

0
|f |r ,

where η is a standard normal random variable.

A similar result holds for a subfractional Brownian motion due to Theorem 21 and Proposi-
tion 17. Corollary 3 when K = 1 (the case of fractional Brownian motion BH ) may be compared
with Theorem 1 of [4] where f is a stochastic process, the integral

∫ t

0 f dBH , t ∈ [0,1], is defined
pathwise as the Riemann–Stieltjes integral, partition κn = (i/n)i∈{0,...,n}, convergence holds in
probability and with no restrictions on r .

Notation. For n ∈ N := {0,1, . . .} let [n] := {0,1, . . . , n} and (n] := {1, . . . , n}. An interval [a, b]
is a closed set of real numbers r such that a ≤ r ≤ b. A partition of an interval [a, b] is a fi-
nite sequence of real numbers κ = (ti)i∈[n] such that a = t0 < t1 < · · · < tn = b. The set of all
partitions of [a, b] is denoted by �[a, b]. Given a partition κ = (ti)i∈[n], for each i ∈ (n], let
J κ

i := [ti−1, ti] and 
κ
i := ti − ti−1. The mesh of a partition κ is |κ| := maxi 


κ
i . Given a func-

tion g : [a, b] → R and a sequence (κn) of partitions κn = (tni )i∈[mn] of [a, b], for each i ∈ (mn],
let 
n

i := 

κn

i = tni − tni−1 and 
n
i g := g(tni ) − g(tni−1).

2. Riemann–Stieltjes integrals

In this section, the double Riemann–Stieltjes integral and the quadratic mean Riemann–Stieltjes
integral are defined, and several their properties to be used are given.

A double Riemann–Stieltjes integral

Let F and G be real-valued functions defined on a rectangle R := [a, b] × [c, d] in R
2 defined

by real numbers a < b and c < d . We recall a definition of the Riemann–Stieltjes integral of F

with respect to G over R. A partition of [a, b] × [c, d] is a finite double sequence of pairs of real
numbers τ = {(si , tj ) : (i, j) ∈ [n] × [m]} such that (si)i∈[n] ∈ �[a, b] and (tj )j∈[m] ∈ �[c, d].
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The set of all partitions of a rectangle R is denoted by �(R). Thus τ ∈ �(R) if and only if
τ = κ × λ for some κ ∈ �[a, b] and λ ∈ �[c, d]. The mesh of τ = κ × λ ∈ �(R) is |τ | :=
max{|κ|, |λ|}. Given such τ , for each i ∈ (n] and j ∈ (m], the double increment of G over the
rectangle Qi,j = [si−1, si] × [tj−1, tj ] is defined by


τ
i,jG := 
Qi,j G := G(si, tj ) − G(si−1, tj ) − G(si, tj−1) + G(si−1, tj−1). (8)

Also if (ui, vj ) ∈ Qi,j for (i, j) ∈ (n] × (m], then (ui, vj ) is called a tag and the collection
τ̇ := {((ui, vj ),Qi,j ) : (i, j) ∈ (n]×(m]} is called a tagged partition of R. The Riemann–Stieltjes
sum of F with respect to G and based on a tagged partition τ̇ is

SRS
(
F,
2G; τ̇) :=

n∑
i=1

m∑
j=1

F(ui, vj )

τ
i,jG.

We say that the double Riemann–Stieltjes integral over [a, b] × [c, d] of F with respect to G

exists and equals A ∈R, if for each ε > 0 there is a δ > 0 such that∣∣SRS
(
F,
2G; τ̇) − A

∣∣ < ε

for each tagged partition τ̇ of [a, b] × [c, d] with the mesh |τ | < δ. Clearly, if such A exists then
it is unique and is denoted by

∫ b

a

∫ d

c

F d2G =
∫ b

a

∫ d

c

F (s, t)d2G(s, t) := A.

Since in this paper we work with the quadratic mean Riemann–Stieltjes integral
∫

f dX of a
deterministic function f it is enough to treat double Riemann–Stieltjes integral for integrands
F = f ⊗ f , where f ⊗ f (s, t) = f (s)f (t) for (s, t) ∈ R.

First, we give sufficient conditions for the existence of a double Riemann–Stieltjes when the
integrator has bounded total variation. Let R = [a, b] × [c, d] be a rectangle and G :R →R. For
a partition τ = {(si , tj ) : (i, j) ∈ [n] × [m]} ∈ �(R) let

s1(G; τ) :=
n∑

i=1

m∑
j=1

∣∣
τ
i,jG

∣∣,
where 
τ

i,jG is defined by (8).

Definition 4. Let R be a rectangle in R
2 and G :R →R.

V1(G;R) := sup
{
s1(G; τ) : τ ∈ �(R)

}
.

If V1(G,R) < ∞ then one says that G is of bounded variation in the sense of Vitali–Lebesgue–
Fréchet–de la Vallée Poussin and write G ∈W1(R).
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We say that a function G :R → R is separately continuous if its sections x �→ G(x,y) and
y �→ G(x,y) are continuous for each fixed y and x, respectively. A function f : [a, b] → R is
regulated if for each x ∈ (a, b] it has left limits f (x−) and for each x ∈ [a, b) it has right limits
f (x+). The set of all regulated functions on [a, b] is denoted by W∞[a, b]. Each regulated
function is bounded and for such a function f we write

‖f ‖sup := sup
{∣∣f (x)

∣∣ :x ∈ [a, b]}, Osc(f ) := sup
{∣∣f (x) − f (y)

∣∣ :x, y ∈ [a, b]}.
Theorem 5. Let R = [a, b] × [c, d] for some real numbers a < b and c < d . Let G ∈ W1(R)

be separately continuous, f ∈ W∞[a, b] and g ∈ W∞[c, d]. Then the double Riemann–Stieltjes
integral

∫ b

a

∫ d

c
f ⊗ g d2G is defined and we have the bounds

∣∣∣∣
∫ b

a

∫ d

c

f ⊗ g d2G

∣∣∣∣ ≤ ‖f ‖sup‖g‖supV1(G;R), (9)

∣∣∣∣
∫ b

a

∫ d

c

[
f ⊗ g − f (a)g(c)

]
d2G

∣∣∣∣ ≤ [‖g‖supOsc(f ) + ‖f ‖supOsc(g)
]
V1(G;R). (10)

The proof is standard for such statements about existence of Riemann–Stieltjes integrals when
the integrand is a regulated function and the integrator has bounded variation (see, e.g., Theo-
rem 2.17 in [7] when functions have single variable). Namely, one needs to compare a difference
between two Riemann–Stieltjes sums corresponding to sufficiently fine partitions and one of
them is a refinement of the other. The sum of terms corresponding to subrectangles containing
a jump of either f or g can be made small due to separate continuity of G and since G is a
difference of two quasi-monotone functions as shown in [10], page 345. The details are omitted.

Next, we give sufficient conditions for the existence of a double Riemann–Stieltjes integral
in terms of p-variation of the integrand and integrator. Let p ≥ 1 and let f : [a, b] → R. For a
partition κ = (si)i∈[n] of [a, b], let

sp(f ;κ) :=
n∑

i=1

∣∣f (si) − f (si−1)
∣∣p.

The p-variation seminorm of f on [a, b] is the quantity

Vp(f ) = Vp

(
f ; [a, b]) := sup

{[
sp(f ;κ)

]1/p :κ ∈ �[a, b]}.
One says that f has bounded p-variation or f ∈Wp[a, b] if Vp(f ; [a, b]) < ∞. We also use the
p-variation norm defined by

‖f ‖[p] = ‖f ‖[p],[a,b] := ‖f ‖sup + Vp

(
f ; [a, b]).

Recalling that W∞[a, b] is the set of regulated functions on [a, b], Wp[a, b] is defined for 1 ≤
p ≤ ∞.
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Again, let R = [a, b] × [c, d] be a rectangular and G :R → R. For p ≥ 1 and a partition
τ = {(si , tj ) : (i, j) ∈ [n] × [m]} of R let

sp(G; τ) :=
n∑

i=1

m∑
j=1

∣∣
τ
i,jG

∣∣p,

where 
τ
i,jG is defined by (8). The p-variation seminorm of G is

Vp(G;R) := sup
{[

sp(G; τ)
]1/p : τ ∈ �(R)

}
. (11)

Let Wp(R) be the set of all functions G :R →R such that Vp(G;R) is bounded, which extends
Definition 4 when p = 1.

The following is an elaboration on the statements 3.7(ii) and 4.3 of [14]. In the present case,
we do not assume f (a) = 0 and g(c) = 0.

Theorem 6. Let R = [a, b]×[c, d] for some real numbers a < b and c < d . Let p > 1 and q > 1
be such that p−1 + q−1 > 1. Let f ∈Wq [a, b], g ∈ Wq [c, d] and let G ∈ Wp(R) be continuous.

There exists the double Riemann–Stieltjes integral
∫ b

a

∫ d

c
f ⊗ g d2G and∣∣∣∣

∫ b

a

∫ d

c

[
f ⊗ g − f (a)g(c)

]
d2G

∣∣∣∣ ≤ 8Kp,q

[‖f ‖[q]Vq(g) + ‖g‖[q]Vq(f )
]
Vp(G;R), (12)

where Kp,q := (1 + ζ(p−1 + q−1))2 and ζ(s) := ∑∞
k=1 k−s for s > 1.

Proof. The functions �p and �q with values �p(x) := xp/p and �q(x) := xq/q for x ≥ 0 are
the N -functions. We apply the results of Leśniewicz and Leśniewicz [14] for � = � = �p and

�̃ = �̃ = �q . The integral
∫ b

a

∫ d

c
f ⊗ g d2G exists by Theorem 4.3 in [14], page 57. (We note

that continuity of the functions f and g is not used in the proof there.) To obtain the bound (12), it
is enough to bound the Riemann–Stieltjes sums. Let τ̇ = {(ui, vj ), [si−1, si] × [tj−1, tj ] : (i, j) ∈
(n] × (m]} be a tagged partition of R. Letting u0 := a and v0 := c we have the identity

S
(
f ⊗ g − f (a)g(c),
2G; τ̇) =

n∑
i=1

m∑
j=1

i∑
k=1

j∑
l=1


kf 
lg
τ
i,jG + f (a)

m∑
j=1

j∑
l=1


lg

n∑
i=1


τ
i,jG

+ g(c)

n∑
i=1

i∑
k=1


kf

m∑
j=1


τ
i,jG,

where 
kf := f (uk)−f (uk−1) and 
lg := g(vl)−g(vl−1). Using the bounds 3.5 in [14], page
53, and (5.1) in [24], page 254, we get∣∣S(

f ⊗ g − f (a)g(c),
2G; τ̇)∣∣
≤ 16

(
1 + ζ

(
1

p
+ 1

q

))2

Vq

(
f ; [a, b])Vq

(
g; [a, b])Vp(G;R)

+
(

1 + ζ

(
1

p
+ 1

q

))[∣∣f (a)
∣∣Vq

(
g; [c, d]) + ∣∣g(c)

∣∣Vq

(
f ; [a, b])]Vp(G;R),
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and so (12) follows. Instead of the bound 3.3 in [14], page 51, we used the bound of L.C. Young
since it gives a smaller constant in (12) in the present setting. �

We use the following two versions of the preceding inequality (12) adapted to subrectangles
of a rectangle [0, T ]2.

Corollary 7. Let p > 1 and q > 1 be such that p−1 + q−1 > 1. Let T > 0, let f ∈ Wq [0, T ]
and let G ∈ Wp[0, T ]2 be continuous. There exists the double Riemann–Stieltjes integral∫ T

0

∫ T

0 f ⊗ f d2G. Also, letting Kp,q := 16(1 + ζ(p−1 + q−1))2,

(i) the inequality∣∣∣∣
∫ t

s

∫ t

s

[
f ⊗ f − f 2(s)

]
d2G

∣∣∣∣ ≤ Kp,q‖f ‖[q],[0,T ]Vq

(
f ; [s, t])Vp

(
G; [s, t]2) (13)

holds for any 0 ≤ s < t ≤ T ;
(ii) the inequality∣∣∣∣

∫ t

s

∫ v

u

f ⊗ f d2G

∣∣∣∣ ≤ Kp,q‖f ‖2[q],[0,T ]Vp

(
G; [s, t] × [u,v]) (14)

holds for any 0 ≤ s < t ≤ T and 0 ≤ u < v ≤ T .

The quadratic mean Riemann–Stieltjes integral

This integral is defined for a (deterministic) function with respect to a stochastic process in the
present paper. Let X = {X(t) : t ≥ 0} be a second order stochastic process on a probability space
(�,F ,Pr), which is a family of random variables X(t) having mean zero and finite second
moment. The covariance function of X is the function 	X defined on R

2+ = [0,∞) × [0,∞)

with values

	X(s, t) := E
[
X(s)X(t)

]
, (s, t) ∈R

2+.

Let f : [0,∞) → R be a function and let 0 ≤ a < b < ∞. For a tagged partition κ̇ =
{(ui, [ti−1, ti]) : i ∈ (n]} of the interval [a, b] the Riemann–Stieltjes sum is

SRS(f,
X; κ̇) :=
n∑

i=1

f (ui)
[
X(ti) − X(ti−1)

]
,

and so it is a random variable in L2(�,F ,Pr). We say that the quadratic mean Riemann–Stieltjes
integral over [a, b] of f with respect to X exists and equals I ∈ L2(�,F ,Pr), if for each ε > 0
there is a δ > 0 such that

E
[
SRS(f,
X; κ̇) − I

]2
< ε
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for each tagged partition κ̇ of [a, b] with the mesh |κ| < δ. If such I exists, then it is unique in
L2 and is denoted by ∫ b

a

f dX = q.m.

∫ b

a

f (t)dX(t) := I.

Next, is the integration in quadratic mean criterion of Loève [16], page 138.

Proposition 8. Let X be a second order stochastic process and f : [0,∞) → R. For 0 ≤ a <

b < ∞, the quadratic mean Riemann–Stieltjes integral∫ b

a

f dX exists if and only if
∫ b

a

∫ b

a

f ⊗ f d2	X exists

as the double Riemann–Stieltjes integral. Moreover, for any 0 ≤ s < t < ∞ and 0 ≤ u < v < ∞
if the two integrals

∫ t

s
f dX and

∫ v

u
f dX exist then so does

∫ t

s

∫ v

u
f ⊗ f d2	X and the equality

E

[∫ t

s

f dX

∫ v

u

f dX

]
=

∫ t

s

∫ v

u

f ⊗ f d2	X (15)

holds.

Formal properties of Riemann–Stieltjes integrals such as (finite) additivity and linearity hold
almost surely for corresponding integrals in quadratic mean.

We shall write Qp := [1,p/(p − 1)) if p > 1 and Q1 := {∞}. The following theorem holds
by Theorem 5, Corollary 7 and Proposition 8.

Theorem 9. Let X be a second order stochastic process with the continuous covariance function
	X ∈ Wp[0, T ]2 for some p ≥ 1 and 0 < T < ∞, and let f ∈ Wq [0, T ] with q ∈ Qp . Then for
each t ∈ [0, T ] there exists the q.m. Riemann–Stieltjes integral

∫ t

0 f dX and there is a finite
constant K = K(p,f ) (depending on p and f ) such that the inequality

E

[
q.m.

∫ t

s

f dX

]2

≤ KVp

(
	X; [s, t]2)

holds for any 0 ≤ s < t ≤ T .

Given a second order stochastic process X, a class of functions f such that
∫ T

0 f dX is defined
as the quadratic mean Riemann–Stieltjes integral can be larger than the class of functions f such
that

∫ T

0 f dX is defined as the pathwise Riemann–Stieltjes integral. Indeed, let X be a fractional
Brownian motion BH with the Hurst index H ∈ (0,1). By Proposition 15 below, BH has the
continuous covariance function 	BH

∈ Wp[0, T ]2 with p = max{1,1/(2H)}. Therefore, the q.m.

Riemann–Stieltjes integral
∫ T

0 f dBH is defined for each f ∈Wq [0, T ], where

q <
1

1 − 2H
if H ∈ (0,1/2) and q = ∞ if H ∈ [1/2,1)
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by the preceding theorem. While the pathwise Riemann–Stieltjes integral
∫ T

0 f dBH is defined
for each f ∈ Wq [0, T ] with q < 1/(1 − H) if H ∈ (0,1) by the result of Young [24], and these
results are best possible in terms of p-variation (see [7], Section 3.7).

The preceding comment suggests that a family of random variables

q.m.

∫ t

0
f dX, t ∈ [0, T ], (16)

need not be a stochastic process with well-behaved sample functions. The following is a standard
approach to deal with such cases.

Theorem 10. Suppose that the hypotheses of the preceding theorem hold. Suppose that for each
t ∈ (0, T ]

lim
s↑t

Vp

(
	X; [s, t]2) = 0.

Then a measurable and separable stochastic process Y = {Y(t) : t ∈ [0, T ]} exists on (�,F ,Pr)
such that

Pr

({
Y(t) = q.m.

∫ t

0
f dX

})
= 1

for each t ∈ [0, T ].

Throughout the paper, we assume that the q.m. Riemann–Stieltjes integrals (16) are given by
the stochastic process Y from the preceding theorem, to be called the q.m. integral process.

3. p-variation of the covariance function

We start with a simple fact concerning the boundedness of variation of the covariance functions
of stochastic processes with positively or negatively correlated disjoint increments (meaning hy-
pothesis (17) or (18), respectively).

Proposition 11. Let 0 < T < ∞ and let X = {X(t) : t ∈ [0, T ]} be a second order stochastic
process with the covariance function 	X on [0, T ]2.

(i) If for any 0 ≤ u < v ≤ s < t ≤ T ,

E
[
X(v) − X(u)

][
X(t) − X(s)

] ≥ 0, (17)

then for any 0 ≤ a < b ≤ T and 0 ≤ c < d ≤ T

V1
(
	X; [a, b] × [c, d]) = E

[
X(b) − X(a)

][
X(d) − X(c)

]
.

(ii) If for any 0 ≤ u < v ≤ s < t ≤ T ,

E
[
X(v) − X(u)

][
X(t) − X(s)

] ≤ 0, (18)
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then for any 0 ≤ a < b ≤ c < d ≤ T

V1
(
	X; [a, b] × [c, d]) = ∣∣E[

X(b) − X(a)
][

X(d) − X(c)
]∣∣. (19)

Proof. To prove (i) note that (17) holds for any pairs of closed intervals [u,v] and [s, t] in [0, T ]
provided (17) holds for such intervals having at most a common endpoint, as assumed. Then the
conclusion follows using the relation

∣∣
[u,v]×[s,t]	X

∣∣ = E
[
X(v) − X(u)

][
X(t) − X(s)

]
.

In the case (ii), the conclusion follows using the relation

∣∣
[u,v]×[s,t]	X

∣∣ = −E
[
X(v) − X(u)

][
X(t) − X(s)

]
for nonoverlapping intervals [u,v] and [s, t] in [0, T ]. �

By the second part of the preceding proposition the covariance function of a stochastic process
with negatively correlated disjoint increments has bounded variation over rectangles which do
not contain a diagonal. The following result for such a process, with an additional assumption
(20), gives a bound of the p-variation of the covariance function over rectangles containing a
diagonal.

Theorem 12. Let 0 < T < ∞, let p ≥ 1 and let X = {X(t) : t ≥ 0} be a second order stochastic
process with the covariance function 	X such that (18) holds for any 0 ≤ u < v ≤ s < t ≤ T ,
and

E
[
X(v) − X(u)

][
X(t) − X(s)

] ≥ 0, (20)

holds for any 0 ≤ s ≤ u < v ≤ t ≤ T . Then for any 0 ≤ a < b ≤ T

Vp

(
	X; [a, b]2) ≤ 2V2p

(
ψX; [a, b])2

, (21)

where ψX : [0, T ] → L2(�,F ,Pr) defined by ψX(t) := X(t, ·) for t ∈ [0, T ].

Remark 13. The theorem is meaningful provided the right side of (21) is finite. In addition to
the hypotheses of Theorem 12, suppose that X and p ≥ 1 are such that for a finite constant L the
inequality

E
[
X(t) − X(s)

]2 ≤ L(t − s)1/p

holds for each 0 ≤ s < t ≤ T . Then for any 0 ≤ a < b ≤ T we have V2p(ψX; [a, b]) ≤√
L(b − a)1/(2p), and so by Theorem 12

Vp

(
	X; [a, b]2) ≤ 2L(b − a)1/p.
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Proof of Theorem 12. Let 0 ≤ a < b ≤ T . Without loss of generality, we can assume that the
right side of (21) is finite. Let λ × κ = {(si , tj ) : i ∈ [n], j ∈ [m]} be a partition of [a, b]2 with
n ≥ 1 and m ≥ 1. If n = 1 then, since p ≥ 1 and (20) holds, we have

sp(	X;λ × κ) ≤
(

m∑
j=1

E
[
X(b) − X(a)

]

κ

j X

)p

= (
E

[
X(b) − X(a)

]2)p

(22)
= ∥∥ψX(b) − ψX(a)

∥∥2p

L2
≤ V2p

(
ψX; [a, b])2p

.

Let n ≥ 2, let 1 ≤ i ≤ n, and let Ai := {j ∈ (m − 1] : tj ∈ (si−1, si)}. If Ai is the empty set, then
there is a j0 ∈ (m] such that [si−1, si] ⊂ [tj0−1, tj0]. In this case, we have

∣∣E
λ
i X
κ

j0
X

∣∣ ≤ E
[

λ

i X
]2

+ ∣∣E
λ
i X

[
X(tj0) − X(si)

]∣∣ + ∣∣E
λ
i X

[
X(si−1) − X(tj0−1)

]∣∣.
If Ai is not the empty set then let j1 be the minimal element in Ai and let j2 be the maximal
element in Ai . In this case, we have∣∣E
λ

i X
κ
j1

X
∣∣ ≤ ∣∣E
λ

i X
[
X(tj1) − X(si−1)

]∣∣ + ∣∣E
λ
i X

[
X(si−1) − X(tj1−1)

]∣∣
and ∣∣E
λ

i X
κ
j2+1X

∣∣ ≤ ∣∣E
λ
i X

[
X(tj2+1) − X(si)

]∣∣ + ∣∣E
λ
i X

[
X(si) − X(tj2)

]∣∣.
Therefore to bound

∑m
j=1 |E
λ

i X
κ
j X|, we can and do assume that in the partition κ we have

tj1 = si−1 and tj2 = si for some j1 < j2 in (m − 1]. Using this assumption and negative correla-
tion for disjoint increments it follows that

m∑
j=1

∣∣E
λ
i X
κ

j X
∣∣ = 2E

[

λ

i X
]2 − E
λ

i X
[
X(b) − X(a)

] ≤ 2E
[

λ

i X
]2

,

where the last inequality holds by (20). Finally, since p ≥ 1, we have

sp(	X;λ × κ) ≤
n∑

i=1

(
m∑

j=1

∣∣E
λ
i X
κ

j X
∣∣)p

≤ 2p
n∑

i=1

(
E

[

λ

i X
]2)p

= 2p

n∑
i=1

∥∥ψX(si) − ψX(si−1)
∥∥2p

L2
≤ 2pV2p

(
ψX; [a, b])2p

.

Recalling the bound (22) in the case n = 1, the conclusion (21) follows. �

Next, we show that for several classes of stochastic processes including fractional Brownian
motion, subfractional Brownian motion and bifractional Brownian motion one has positively or
negatively correlated increments.



Power variation of integrals 1273

Stochastic processes with stationary increments

First, consider real-valued stochastic processes X with mean zero, finite second moments
E[X(t)]2 and (weakly) stationary increments. Then the incremental variance function σ 2

X(t,

t + r) does not depend on t , and so it is a function of r . The following fact is known (see
[18], page 32); we sketch a proof for completeness.

Lemma 14. Let X = {X(t) : t ≥ 0} be a mean zero second order stochastic process with station-
ary increments, and let φ : [0,∞) → [0,∞) be the function with values

φ(r) := σ 2
X(t, t + r) = E

[
X(t + r) − X(t)

]2

for each r ≥ 0.

(i) If φ is convex on [0, T ], then (17) holds for any 0 ≤ u < v ≤ s < t ≤ T .
(ii) If φ is concave on [0, T ], then (18) holds for any 0 ≤ u < v ≤ s < t ≤ T .

Proof. To prove (i) let φ be convex on [0, T ], and let 0 ≤ u < v ≤ s < t ≤ T . Using an expression
of φ in terms of the covariance function 	X , it follows that

2E
[
X(v) − X(u)

][
X(t) − X(s)

] = [
φ(t − u) − φ(t − v)

] − [
φ(s − u) − φ(s − v)

]
.

Inserting additional points in the interval [u,v] if necessary, one can suppose that v − u < t − s.
Then letting x1 := s − v, x2 := s − u, x3 := t − v and x4 := t − u, we have 0 ≤ x1 < x2 < x3 <

x4 ≤ T and

φ(x4) − φ(x3)

x4 − x3
≥ φ(x3) − φ(x2)

x3 − x2
≥ φ(x2) − φ(x1)

x2 − x1
,

by convexity of φ. This proves (17), and so (i). The proof of (ii) is symmetric. �

We apply this fact to a fractional Brownian motion BH = {BH (t) : t ∈ [0, T ]} with the Hurst
index H ∈ (0,1), which is a Gaussian stochastic process with mean zero and the covariance
function

FH (s, t) := 	BH
(s, t) = 1

2

(
t2H + s2H − |t − s|2H

)
for (s, t) ∈ [0, T ]2.

Proposition 15. Let BH be a fractional Brownian motion with the Hurst index H ∈ (0,1), let
ρH (u) := uH for each u ∈ [0, T ], and let p := max{1,1/(2H)}. Then BH ∈ LSI(ρH (·)). Also,
the inequality

Vp

(
FH ; [s, t]2) ≤ C1

[
ρH (t − s)

]2 ≡ C1(t − s)2H (23)

with C1 = 1 if 2H ≥ 1 and C1 = 2 if 2H < 1, holds for any 0 ≤ s < t ≤ T , and the inequality

m∑
j=1

Vp

(
FH ;J κ

i × J κ
j

) ≤
m∑

j=1

∣∣E[

κ

i BH 
κ
j BH

]∣∣ ≤ C2
(

κ

i

)1∧(2H) (24)
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with C2 = 2HT 2H−1 if 2H ≥ 1 and C2 = 3 if 2H < 1, holds for any partition κ = (tj )j∈[m] of
[0, T ] and for any i ∈ (m].

Proof. The incremental variance function σ 2
BH

(s, t) = |t −s|2H for (s, t) ∈ [0, T ]. Clearly, BH ∈
LSI(ρH (·)). By Lemma 14, disjoint increments of BH are positively correlated if 2H ≥ 1 and
negatively correlated if 2H < 1. If 2H ≥ 1, then by part (i) of Proposition 11,

V1
(
FH ; [a, b]2) = E

[
BH (b) − BH (a)

]2 = (b − a)2H

for any 0 ≤ a < b ≤ T , proving (23) with C1 = 1 in this case. If 2H < 1 then (23) holds with
C1 = 2 by Remark 13 and Theorem 12 since its hypothesis (20) holds due to the relation

2E
[
BH (v) − BH (u)

][
BH (t) − BH (s)

]
(25)

= (v − s)2H − (u − s)2H + (t − u)2H − (t − v)2H > 0

for any 0 ≤ s ≤ u < v ≤ t ≤ T .
To prove (24) let κ = (tj )j∈[m] be a partition of [0, T ], and let i ∈ (m]. Due to (23) one can

suppose that m > 1. First let H ∈ [1/2,1). Then p = 1. By part (i) of Lemma 14 and by part (i)
of Proposition 11 we have

m∑
j=1

V1
(
FH ; [ti−1, ti] × [tj−1, tj ]

) =
m∑

j=1

E
[

κ

i BH 
κ
j BH

]

= E
[
BH (ti) − BH (ti−1)

][
BH (T ) − BH (0)

]
= 1

2

[
t2H
i − t2H

i−1 + (T − ti−1)
2H − (T − ti )

2H
]

≤ 2HT 2H−1(ti − ti−1),

where the last inequality holds by the mean value theorem. Now, let H ∈ (0,1/2). Then p =
1/(2H) > 1. Since Vp(·) ≤ V1(·), by part (ii) of Lemma 14 and by part (ii) of Proposition 11 we
have ∑

j∈(m]\{i}
Vp

(
FH ;J κ

i × J κ
j

) ≤
∑

j∈(m]\{i}
V1

(
FH ;J κ

i × J κ
j

)

=
∑

j∈(m]\{i}

∣∣E(

κ

i BH 
κ
j BH

)∣∣
= E

(

κ

i BH

)2 − E
κ
i BH

[
BH (T ) − BH (0)

]
≤ E

(

κ

i BH

)2 = (ti − ti−1)
2H ,

where the last inequality holds by (25). This together with (23) gives (24), completing the
proof. �
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The inequality (23) in the case H ∈ (0,1/2) and with a different constant is the same as the
one stated by Proposition 13 in [8]. The proofs seem to be also different.

Sub-fractional Brownian motion

Let H ∈ (0,1) and 0 < T < ∞. The function RH : [0, T ]2 →R with values

RH (s, t) := s2H + t2H − 1
2

[
(s + t)2H + |s − t |2H

]
, (26)

(s, t) ∈ [0, T ]2, is positive definite as shown in [3]. A sub-fractional Brownian motion with index
H is a mean zero Gaussian stochastic process GH = {GH (t) : t ∈ [0, T ]} with the covariance
function RH and with the incremental variance function

σ 2
GH

(s, t) = |s − t |2H + (s + t)2H − 22H−1[t2H + s2H
]

for s, t ∈ [0, T ]. In the case H = 1/2, G1/2 is a Brownian motion. A subfractional Brownian
motion GH with index H is H -self-similar but does not have stationary increments if H �= 1/2.

Proposition 16. Let GH = {GH (t) : t ∈ [0, T ]} be a sub-fractional Brownian motion with H ∈
(0,1). The following properties hold:

(i) for any 0 ≤ s ≤ t ≤ T

(t − s)2H ≤ σ 2
GH

(s, t) ≤ (
2 − 22H−1)(t − s)2H , if 0 < H < 1/2,(

2 − 22H−1)(t − s)2H ≤ σ 2
GH

(s, t) ≤ (t − s)2H , if 1/2 < H < 1;
(ii) for any 0 ≤ u < v ≤ s < t ≤ T

E
[
GH (v) − GH (u)

][
GH (t) − GH (s)

]{
< 0, if 0 < H < 1/2,
> 0, if 1/2 < H < 1;

(iii) for any 0 ≤ s ≤ u < v ≤ t ≤ T

C(u, v, s, t) := E
[
GH (v) − GH (u)

][
GH (t) − GH (s)

]
> 0.

Proof. Statements (i) and (ii) are proved in [3], Theorems (3), (5). To prove (iii), let 0 ≤ s ≤ u <

v ≤ t ≤ T . Since the pairs of intervals [s, u], [u,v] and [v, t], [u,v] do not intersect (except for
the endpoints), by (ii) in the case 1/2 < H < 1, we have

C(u, v, s, t) = E
[
GH (v) − GH (u)

]2

+ E
[
GH (v) − GH (u)

][
GH (u) − GH (s)

]
+ E

[
GH (v) − GH (u)

][
GH (t) − GH (v)

]
> 0.



1276 R. Norvaiša

Thus we can suppose that 0 < H < 1/2. Using the values of the covariance function (26) it
follows that

C(u, v, s, t) = 1
2

{−(t + v)2H − (t − v)2H + (t + u)2H + (t − u)2H

(27)
+ (v + s)2H + (v − s)2H − (u + s)2H − (u − s)2H

}
.

Let ft (x) := (t + x)2H + (t − x)2H for each x ∈ [0, t]. Since 0 < H < 1/2, then f ′
t (x) < 0 for

x ∈ (0, t), and so for 0 ≤ u < v ≤ t we have −ft (v) + ft (u) > 0 by the mean value theorem. Let
gs(x) := (x + s)2H + (x − s)2H for each x ≥ s. Since g′

s(x) > 0 for x > s and v > u ≥ s, we
have gs(v) − gs(u) > 0 by the mean value theorem again. Therefore

C(u, v, s, t) = 1
2

{−ft (v) + ft (u) + gs(v) − gs(u)
}

> 0,

as claimed. �

The following proposition shows that the hypotheses (36) and (44) of the main result (Theo-
rem 21) hold true for a sub-fractional Brownian motion.

Proposition 17. Let GH = {GH (t) : t ∈ [0, T ]} be a sub-fractional Brownian motion with
H ∈ (0,1), let ρH (u) := uH for each u ∈ [0, T ], and let p := max{1,1/(2H)}. Then GH ∈
LSI(ρH (·)). Also, there is a finite constant C1 such that the inequality

Vp

(
RH ; [s, t]2) ≤ C1

[
ρH (t − s)

]2 ≡ C1(t − s)2H (28)

holds for any 0 ≤ s < t ≤ T , and there is a finite constant C2 such that the inequality

m∑
j=1

Vp

(
RH ;J κ

i × J κ
j

) ≤
m∑

j=1

∣∣E[

κ

i GH 
κ
j GH

]∣∣ ≤ C2
(

κ

i

)1∧(2H) (29)

holds for any partition (ti)i∈[m] of [0, T ] and for any i ∈ (m].

Proof. Condition (A1) of Definition 1 holds by part (i) of Proposition 16. To prove condi-
tion (A2) suppose that H ∈ (0,1/2) ∪ (1/2,1) and let ε ∈ (0, T ). For each s ∈ [ε,T ) and
t ∈ [−ε,T − s], let

fs(t) := (2s + t)2H − 22H−1[s2H + (s + t)2H
]
.

Then fs(0) = f ′
s (0) = 0 and

b(s, s + h) :=
(

σGH
(s, s + h)

ρH (h)

)2

− 1 = h−2H fs(h).

Let s ∈ [ε,T ) and h ∈ (0, T − s]. By Taylor’s theorem with the Lagrange remainder applied to
the function fs , there exists u = u(s,h) ∈ (0, h) such that

b(s, s + h) = 2−1h2(1−H)f ′′
s (u),
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where

f ′′
s (u) = 2H(2H − 1)

[
(2s + u)2H−2 − 22H−1(s + u)2H−2].

Then there is a finite constant C = C(ε,H) such that the inequality∣∣b(s, s + h)
∣∣ ≤ Ch2(1−H)

holds for each s ∈ [ε,T ) and h ∈ (0, T − s]. Since H < 1 the preceding bound yields that condi-
tion (A2) holds, and so GH ∈ LSI(ρH (·)).

To prove (28), first let H ∈ (1/2,1). Then p = 1 and hypothesis (17) holds for X = GH by
part (ii) of Proposition 16. Therefore in this case by part (i) of Proposition 11 and by part (i) of
Proposition 16, for any 0 ≤ s < t ≤ T we have

V1
(
RH ; [s, t]2) = E

[
GH (t) − GH (s)

]2 ≤ (t − s)2H .

Therefore, (28) holds with C1 = 1 in the case H ∈ (1/2,1). Now let H ∈ (0,1/2). Then
p = 1/(2H) > 1 and the hypotheses of Theorem 12 hold by Proposition 16. By part (i) of
Proposition 16 and Remark 13 with L = 2 − 22H−1, (28) holds with C1 = 4 − 22H in the case
H ∈ (0,1/2).

To prove (29), let κ = (tj )j∈[m] be a partition of [0, T ] and i ∈ (m]. Due to (28), one can sup-
pose that m > 1. First, let H ∈ (1/2,1). Then p = 1. As for fractional Brownian motion (Propo-
sition 15), in the present case by part (ii) of Proposition 16 and by part (i) of Proposition 11, we
have

m∑
j=1

V1
(
RH ;J κ

i × J κ
j

) =
m∑

j=1

E
[

κ

i GH 
κ
j GH

] = −1

2

[
fT (ti) − fT (ti−1)

] + t2H
i − t2H

i−1,

where fT (t) = (T + t)2H + (T − t)2H for t ∈ [0, T ] and the last equality is the special case of
(27). Since 1/2 < H < 1 the function fT is increasing, and so

m∑
j=1

E
[

κ

i GH 
κ
j GH

] ≤ t2H
i − t2H

i−1 ≤ 2HT 2H−1(ti − ti−1)

by the mean value theorem. Now let H ∈ (0,1/2). Then p = 1/(2H) > 1. Again as for fractional
Brownian motion (Proposition 15), in the present case by part (ii) of Proposition 11 and by parts
(ii), (iii) of Proposition 16, we have∑

j∈(m]\{i}
Vp

(
RH ;J κ

i × J κ
j

) ≤
∑

j∈(m]\{i}

∣∣E[

κ

i GH 
κ
j GH

]∣∣ ≤ E
(

κ

i GH

)2
.

Then by part (i) of Proposition 16, the inequality

m∑
j=1

Vp

(
RH ;J κ

i × J κ
j

) ≤
m∑

j=1

∣∣E[

κ

i GH 
κ
j GH

]∣∣ ≤ 2E
(

κ

i GH

)2 ≤ C2
(

κ

i

)1/p
,

holds with c2 = 2HT 2H−1 if 2H > 1 and C2 = 4 − 22H if 2H < 1, completing the proof. �
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Bifractional Brownian motion

Let 0 < T < ∞, 0 < H < 1 and 0 < K ≤ 1. The function CH,K : [0, T ]2 → R with values

CH,K(s, t) := 2−K
{(

t2H + s2H
)K − |t − s|2HK

}
, (30)

(s, t) ∈ [0, T ]2, is positive definite as shown in [11]. A bifractional Brownian motion with pa-
rameters (H,K) is a mean zero Gaussian stochastic process BH,K = {BH,K(t) : t ∈ [0, T ]} with
the covariance function CH,K . When K = 1, BH,1 is the fractional Brownian motion BH with
the Hurst index H ∈ (0,1). The Gaussian process BH,K is a self-similar stochastic process of
order HK ∈ (0,1), the increments are not stationary and its incremental variance function is

σ 2
BH,K

(s, t) = 21−K
[|t − s|2HK − (

t2H + s2H
)K] + t2HK + s2HK

for each s, t ≥ 0. By Proposition 3.1 of [11], for every s, t ≥ 0,

2−K |t − s|2HK ≤ σ 2
BH,K

(s, t) ≤ 21−K |t − s|2HK. (31)

This suggests that the incremental variance function σ 2
BH,K

is dominated by a single variable

function u �→ const|u|2HK , u ∈ R. A more precise property is proved next.

Proposition 18. Let 0 < T < ∞, 0 < H < 1, 0 < K < 1 and BH,K = {BH,K(t) : t ∈ [0, T ]} be
a bifractional Brownian motion with parameters (H,K). Let ρH,K(u) := 2(1−K)/2uHK for each
u ∈ [0, T ], and let p := max{1,1/(2HK)}. Then BH,K ∈ LSI(ρH,K(·)). Also, there is a finite
constant C1 such that the inequality

Vp

(
CH,K ; [a, b]2) ≤ C1(b − a)2HK (32)

holds for any 0 ≤ a < b ≤ T , and there is a finite constant C2 such that the inequality

m∑
j=1

Vp

(
CH,K ;J κ

i × J κ
j

) ≤ C2
(

κ

i

)1∧(2HK)
(33)

holds for any partition (tj )j∈[m] of [0, T ] and for any i ∈ (m].

Proof. Concerning the property of local stationarity of increments of BH,K with the local vari-
ance function ρ = ρH,K(·) note that condition (A1) in Definition 1 holds with L = 21−K by (31).
To prove condition (A2) let ε > 0. For each s ∈ [ε,T ) and t ∈ (−ε,T − s] let

fs(t) := 21−K
[
s2H + (s + t)2H

]K − s2HK − (s + t)2HK.

Then fs(0) = f ′
s (0) = 0 and

b(s, s + h) :=
(

σBH,K
(s, s + h)

ρH,K(h)

)2

− 1 = −2K−1h−2HKfs(h).
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Let s ∈ [ε,T ) and h ∈ (0, T − s]. By Taylor’s theorem with the Lagrange remainder applied to
the function fs , there exists u = u(s,h) ∈ (0, h) such that

b(s, s + h) = −2K−2h2(1−HK)f ′′
s (u),

where

f ′′
s (u) = 23−KK(K − 1)H 2[(s + u)2H + s2H

]K−2
(s + u)2(2H−1)

+ 22−KKH(2H − 1)
[
(s + u)2H + s2H

]K−1
(s + u)2H−2

− 2HK(2HK − 1)(s + u)2HK−2.

Then there is a finite constant C = C(ε,H,K) such that∣∣b(s, s + h)
∣∣ ≤ Ch2(1−HK)

for each s ∈ [ε,T ) and h ∈ (0, T − s]. Since HK < 1, the preceding bound yields that condition
(A2) holds, and so BH,K ∈ LSI(ρH,K(·)).

To prove (32) and (33), we use a decomposition in distribution of a fractional Brownian motion
BHK with the Hurst index HK into a linear combination of a bifractional Brownian motion BH,K

and a Gaussian process YH,K with the covariance function

DH,K(s, t) := 	(1 − K)

K

[
t2HK + s2HK − (

t2H + s2H
)K]

, (34)

(s, t) ∈ [0, T ]2, due to [13], Proposition 1. Letting A := 2−KK/	(1 − K) and B := 21−K , by
the decomposition we have the relation

CH,K = −ADH,K + BFHK (35)

between the covariance functions of BH,K , YH,K and BHK , respectively. For any 0 ≤ u < v ≤ T

and 0 ≤ s < t ≤ T , if Q = [u,v] × [s, t] and f (r) = fu,v(r) := (u2H + r2H )K − (v2H + r2H )K

for r ≥ 0, then


QDH,K = 	(1 − K)

K

[
f (t) − f (s)

]
> 0,

since f ′(r) > 0 for each r > 0, and so YH,K has positively correlated increments. Let 0 ≤ a <

b ≤ T . Since Vp(·) ≤ V1(·), by part (i) of Proposition 11, it follows that

Vp

(
CH,K ; [a, b]2) ≤ AV1

(
DH,K ; [a, b]2) + BVp

(
FHK ; [a, b]2)

= AE
[
YH,K(b) − YH,K(a)

]2 + BVp

(
FHK ; [a, b]2).

Using (34) we have

AE
[
YH,K(b) − YH,K(a)

]2 = 2−K
[
2
(
b2H + a2H

)K − 2Kb2HK − 2Ka2HK
]

≤ 2−K(b − a)2HK

by the left inequality in (31). Using inequality (23) for the fractional Brownian motion with the
Hurst index HK , the first desired bound (32) with C1 = 5 · 2−K follows.
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To prove the second desired bound (33) let (tj )j∈[m] be a partition of [0, T ] and let i ∈ (m].
Again, since YH,K has positively correlated increments and using (34) it follows that

A

m∑
j=1

∣∣E
κ
i YH,K
κ

j YH,K

∣∣ = AE
[
YH,K(ti) − YH,K(ti−1)

]
YH,K(T )

= 2−K
[
t2HK
i − t2HK

i−1 + (
t2H
i−1 + T 2H

)K − (
t2H
i + T 2H

)K]
≤

{
2−K(ti − ti−1)

2HK, if 2HK < 1,
21−KHKT 2HK−1(ti − ti−1), if 2HK ≥ 1.

Since Vp(·) ≤ V1(·), using (35), (24) with HK in place of H , and the preceding inequality, it
follows that

m∑
j=1

Vp

(
CH,K ;J κ

i × J κ
j

)

≤ A

m∑
j=1

∣∣E[

κ

i YH,K
κ
j YH,K

]∣∣ + B

m∑
j=1

∣∣E[

κ

i BHK
κ
j BHK

]∣∣
≤ C2(ti − ti−1)

1∧(2HK),

where C2 = 7 · 2−K if 2HK < 1 and C2 = 6HK2−KT 2HK−1 if 2HK ≥ 1. This completes the
proof of the proposition. �

4. Proof of the main result

The main result is Theorem 21 below dealing with almost sure convergence of sums of properly
normalized powers of increments of the q.m. integral process (1). First, we prove a convergence
of the mean of such sums under less restrictive assumptions.

Theorem 19. Let r > 0 and T > 0. Let X = {X(t) : t ∈ [0, T ]} be a mean zero Gaussian process
from the class LSI(ρ(·)) with the covariance function 	X such that for a constant C1 and a
number p ≥ 1 the inequality

Vp

(
	X; [s, t]2) ≤ C1

[
ρ(t − s)

]2 (36)

holds for all 0 ≤ s < t ≤ T . Let f ∈ Wq [0, T ] with q ∈ Qp and let (κn) be a sequence of
partitions κn = (tni )i∈[mn] of [0, T ] such that |κn| → 0 as n → ∞. Then there exists the q.m.
integral process Y(t) = q.m.

∫ t

0 f dX, t ∈ [0, T ], and

lim
n→∞

mn∑
i=1

E|
n
i Y |r

[ρ(
n
i )]r


n
i = E|η|r

∫ T

0
|f |r , (37)

where η is a standard normal random variable.
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Proof. Since ρ(·) is continuous at zero, by (A1) of Definition 1, it follows that 	X is a continuous
function. Then the q.m. integral process Y exists by Theorems 9 and 10. We shall prove (37).
Since Y is a Gaussian process, for 0 ≤ s < t ≤ T we have

E
∣∣Y(t) − Y(s)

∣∣r = E|η|r
(

E

[∫ t

s

f dX

]2)r/2

.

By (15), we have

E

[∫ t

s

f dX

]2

=
∫ t

s

∫ t

s

f ⊗ f d2	X

=
∣∣∣∣
∫ t

s

∫ t

s

[
f ⊗ f − f 2(s)

]
d2	X + f 2(s)E

[
X(t) − X(s)

]2
∣∣∣∣.

For (s, t) ∈ [0, T ]2 let

b(s, t) := σ 2
X(s, t)

[ρ(|t − s|)]2
− 1, (38)

if s �= t , and let b(s, t) := 0 if s = t . Then

Rn := (
E|η|r)−1

mn∑
i=1

E|
n
i Y |r

[ρ(
n
i )]r


n
i

=
mn∑
i=1

∣∣∣∣ 1

[ρ(
n
i )]2

∫ tni

tni−1

∫ tni

tni−1

[
f ⊗ f − f 2(tni−1

)]
d2	X + f 2(tni−1

)[
1 + b

(
tni−1, t

n
i

)]∣∣∣∣
r/2


n
i

for each n. Also for each integer n ≥ 1, let

Tn :=
mn∑
i=1

{
f 2(tni−1

)}r/2

n

i , Un :=
mn∑
i=1

{
f 2(tni−1

)∣∣b(
tni−1, t

n
i

)∣∣}r/2

n

i

and

Wn :=
mn∑
i=1

{
1

[ρ(
n
i )]2

∣∣∣∣
∫ tni

tni−1

∫ tni

tni−1

[
f ⊗ f − f 2(tni−1

)]
d2	X

∣∣∣∣
}r/2


n
i .

If r < 2 then using the inequality ||A|r/2 − |B|r/2| ≤ |A − B|r/2 it follows that

|Rn − Tn| ≤ Un + Wn (39)

for each n. If r ≥ 2, then using the Minkowskii inequality for weighted sums, it follows that

∣∣R2/r
n − T

2/r
n

∣∣ ≤ U
2/r
n + W

2/r
n (40)
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for each n. Recall that the mesh |κn| → 0 as n → ∞. Therefore since f is regulated, and so |f |r
is Riemann integrable, it follows that

lim
n→∞Tn = lim

n→∞

mn∑
i=1

∣∣f (
tni−1

)∣∣r
n
i =

∫ T

0
|f |r . (41)

We will show that Un and Wn tend to zero as n → ∞. Assuming this, by (39) if r < 2, by (40) if
r ≥ 2 and (41), the conclusion (37) follows.

To prove convergence of Un let ε > 0. Recalling notation (38) and using condition (A1) of
Definition 1, we have

∣∣b(
tni−1, t

n
i

)∣∣ ≤ E[
n
i X]2

[ρ(
n
i )]2

+ 1 ≤ L2 + 1

for each n ∈N and i ∈ (mn]. For each δ > 0 letting

φε(δ) := sup
{∣∣b(s, s + h)

∣∣ : s ∈ [ε,T ),h ∈ (
0, δ ∧ (T − s)

]}
(42)

it follows that

∑
i:tni−1≥ε

{
f 2(tni−1

)∣∣b(
tni−1, t

n
i

)∣∣}r/2

n

i ≤ {
φε

(|κn|
)}r/2

mn∑
i=1

∣∣f (
tni−1

)∣∣r
n
i

for all n ∈ N. Then for each n ∈ N we have

Un ≤
( ∑

i:tni−1≥ε

+
∑

i:tni−1<ε

){
f 2(tni−1

)∣∣b(
tni−1, t

n
i

)∣∣}r/2

n

i

≤ {
φε

(|κn|
)}r/2

mn∑
i=1

∣∣f (
tni−1

)∣∣r
n
i + (

ε + |κn|
)‖f ‖r

sup

(
L2 + 1

)r/2
.

By conditions (A1) and (A2) of Definition 1, and since the Riemann sums are bounded as |κn| →
0 with n → ∞, Un tends to zero as n → ∞.

We prove convergence of Wn first assuming that p = 1. In this case, by (10) and (36), we have

Wn ≤ (
2‖f ‖sup

)r/2
mn∑
i=1

{
V1(	X; [tni−1, t

n
i ]2)

[ρ(
n
i )]2

Osc
(
f ; [tni−1, t

n
i

])}r/2


n
i

(43)

≤ (
2C1‖f ‖sup

)r/2
mn∑
i=1

{
Osc

(
f ; [tni−1, t

n
i

])}r/2

n

i .

Let ε > 0. Since f is a regulated function there is a partition {sj }kj=0 of [0, T ] such that

Osc(f ; (sj−1, sj )) < ε for each j ∈ (k] by Theorem 2.1 in [7]. Since |κn| → 0 as n → ∞ there is
an N ∈N such that |κn| < ε/(2k) for each n ≥ N . For each n let Jn be the set of indices i ∈ (mn]
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such that sj ∈ [tni−1, t
n
i ] for some j ∈ [k] and let J c

n := (mn] \ Jn. Then the cardinality of Jn does
not exceed 2k, and continuing (43), we have for each n ≥ N

Wn ≤ (
4C1‖f ‖2

sup

)r/2 ∑
i∈Jn


n
i + (

2εC1‖f ‖sup
)r/2 ∑

i∈J c
n


n
i

≤ ε
(
4C1‖f ‖2

sup

)r/2 + (
2εC1‖f ‖sup

)r/2
T ,

since the mesh |κn| < ε/(2k).
Now suppose that p > 1. Let q ′ > q be such that 1

p
+ 1

q
> 1

p
+ 1

q ′ > 1. By (13), we have

Wn ≤ (
Kp,q ′ ‖f ‖[q ′]

)r/2
mn∑
i=1

{
Vp(	X; [tni−1, t

n
i ]2)

[ρ(
n
i )]2

Vq ′
(
f ; [tni−1, t

n
i

])}r/2


n
i

≤ (
Kp,q ′ ‖f ‖[q ′]C1Vq(f )q/q ′)r/2

mn∑
i=1

{
Osc

(
f ; [tni−1, t

n
i

])1−q/q ′}r/2

n

i .

Since a function of bounded q-variation is regulated the arguments used in the preceding case
p = 1 apply and show that Wn tends to zero as n → ∞. The theorem is proved. �

In the case f ≡ 1, we have the following conclusion.

Corollary 20. Let r > 0 and T > 0. Let X = {X(t) : t ∈ [0, T ]} be a mean zero Gaussian process
from the class LSI(ρ(·)), and let (κn) be a sequence of partitions κn = (tni )i∈[mn] of [0, T ] such
that |κn| → 0 as n → ∞. Then

lim
n→∞

mn∑
i=1

E|
n
i X|r

[ρ(
n
i )]r


n
i = E|η|rT ,

where η is a standard normal random variable.

Proof. In the proof of Theorem 19 taking f ≡ 1 it follows that for each n ≥ 1, in the present
case we have Tn = T , Wn = 0,

Rn =
mn∑
i=1

[
1 + b

(
tni−1, t

n
i

)]r/2

n

i and Un =
mn∑
i=1

[
b
(
tni−1, t

n
i

)]r/2

n

i .

The argument used in the proof of Theorem 19 gives that Un → 0 as n → ∞, and so Rn → T as
n → ∞, proving the corollary. �

Next, is the main result.

Theorem 21. Let T > 0, let ρ ∈ R[0, T ] be such that γ∗(ρ) = γ for some γ ∈ (0,1), let p :=
max{1,1/(2γ )}, and let 1 < r < 2/max{(2γ − 1),0}. Let X be a mean zero Gaussian process
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from the class LSI(ρ(·)) with the covariance function 	X . Suppose that there is a constant C1

such that (36) holds for all 0 ≤ s < t ≤ T , and there is a constant C2 such that the inequality

m∑
j=1

Vp

(
	X;J κ

i × J κ
j

) ≤ C2
(

κ

i

)1∧(2γ ) (44)

holds for each partition κ = (tj )j∈[m] of [0, T ] and each i ∈ (m]. Let f ∈ Wq [0, T ] with q ∈ Qp ,
and let (κn) be a sequence of partitions κn = (tni )i∈[mn] of [0, T ] such that

sup
{
α : lim

n→∞|κn|α logn = 0
}

=
(

1 ∧ 2

r

)
+ (

0 ∧ (1 − 2γ )
)
. (45)

Then there exists the q.m. integral process Y(t) = q.m.
∫ t

0 f dX, t ∈ [0, T ], and with probability
one

lim
n→∞

mn∑
i=1

|
n
i Y |r

[ρ(
n
i )]r


n
i = E|η|r

∫ T

0
|f |r , (46)

where η is a standard normal random variable.

Remark 22. The right side of (45) is less than or equal to 1. Also it is positive for any 1 < r < ∞
if γ ≤ 1/2, and for any 1 < r < 2/(2γ − 1) if γ > 1/2. It follows from the proof of the theorem
that if the local variance ρ(u) = uγ then the hypothesis (45) can be replaced by the following
one

lim
n→∞|κn|(1∧2/r)+(0∧(1−2γ )) logn = 0.

It is known that this condition with r = 2 is best possible ([5] and [19], Theorem 2.6).

Proof of Theorem 21. The q.m. integral process Y(t) = q.m.
∫ t

0 f dX, t ∈ [0, T ], exists due to
reasons stated in the proof of Theorem 19. For each n ≥ 1, let

Zn :=
(

mn∑
i=1

ci,n

∣∣
n
i Y

∣∣r)1/r

, where ci,n := [
ρ
(

n

i

)]−r

n

i .

Denoting the median of a real random variable Z by med(Z), by Lemma 2.2 of [19], for each
ε > 0

Pr
({∣∣Zn − med(Zn)

∣∣ > ε
}) ≤ 2 exp

{
− ε2

2σ 2
n

}
, (47)

where

σ 2
n := sup

{
E

(
mn∑
i=1

bic
1/r
i,n 
n

i Y

)2

: (bi)i∈(mn] ∈R
mn,

mn∑
i=1

|bi |r ′ ≤ 1

}
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and 1/r + 1/r ′ = 1. For each n ≥ 1 and i ∈ (mn], by (15) we have

Mi,n :=
mn∑
j=1

∣∣E(

n

i Y
n
jY

)∣∣ =
mn∑
j=1

∣∣∣∣
∫ tni

tni−1

∫ tnj

tnj−1

f ⊗ f d2	X

∣∣∣∣.
For each n ≥ 1 and each vector (bi) ∈R

mn , by Lemma 2.2 of [23]

E

(
mn∑
i=1

bic
1/r
i,n 
n

i Y

)2

=
∣∣∣∣∣

mn∑
i=1

mn∑
j=1

bibj (ci,ncj,n)
1/rE

(

n

i Y
n
jY

)∣∣∣∣∣
≤

mn∑
i=1

b2
i c

2/r
i,n Mi,n

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
1≤i≤mn

c
2/r
i,n Mi,n

(
mn∑
j=1

|bj |r ′
)2/r ′

, if 2 ≤ r < ∞,

(
mn∑
i=1

c
2/(2−r)
i,n M

r/(2−r)
i,n

)(2−r)/r( mn∑
j=1

|bj |r ′
)2/r ′

, if 1 < r < 2.

It then follows that for each n ≥ 1

σ 2
n ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
1≤i≤mn

(

n

i

[ρ(
n
i )]r

)2/r

Mi,n, if 2 ≤ r < ∞,(
mn∑
i=1

(

n

i

[ρ(
n
i )]r

)2/(2−r)

M
r/(2−r)
i,n

)(2−r)/r

, if 1 < r < 2.

By (14) if p > 1 and by (9) if p = 1, and then by (44), for each i

Mi,n ≤ Kp,q‖f ‖2[q]
mn∑
j=1

Vp

(
	X;J κn

i × J
κn

j

) ≤ C2Kp,q‖f ‖2[q]
[

n

i

]1/p
,

where K1,∞ := 1 and ‖f ‖[∞] := ‖f ‖sup. By the hypothesis on the local variance ρ, we have

γ∗(ρ) = inf

{
α > 0 : sup

u>0

uα

ρ(u)
< ∞

}
= γ.

In the case p > 1, we have 1 − 2γ > 0, and so for each δ ∈ (0,1/r),

σ 2
n ≤ C2Kp,q‖f ‖2[q]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|κn|2/r−2δ max
1≤i≤mn

(
(
n

i )
γ+δ

ρ(
n
i )

)2

, if 2 ≤ r < ∞,

T (2−r)/r |κn|1−2δ max
1≤i≤mn

(
(
n

i )
γ+δ

ρ(
n
i )

)2

, if 1 < r < 2,

= o
(
1/(logn)

)
,
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as n → ∞ by the hypothesis (45). In the case p = 1, we have 1 − 2γ ≤ 0, and so for each δ > 0,

σ 2
n ≤ C2‖f ‖2

sup

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|κn|2/r+1−2γ−2δ max
1≤i≤mn

(
(
n

i )
γ+δ

ρ(
n
i )

)2

, if 2 ≤ r < ∞,

T (2−r)/r |κn|2−2γ−2δ max
1≤i≤mn

(
(
n

i )
γ+δ

ρ(
n
i )

)2

, if 1 < r < 2,

= o
(
1/(logn)

)
,

as n → ∞ by the hypothesis (45). By (47) and Borel–Cantelli lemma it then follows that

lim
n→∞

∣∣Zn − med(Zn)
∣∣ = 0

with probability one. Using our Theorem 19 and the argument of [19], Theorem 2.3, it follows
that (46) holds with probability one. �

In the case f ≡ 1, we have the following conclusion.

Corollary 23. Let T > 0, let ρ ∈ R[0, T ] be such that γ∗(ρ) = γ for some γ ∈ (0,1), and let
1 < r < 2/max{(2γ − 1),0}. Let X = {X(t) : t ∈ [0, T ]} be a mean zero Gaussian process from
the class LSI(ρ(·)). Suppose there is a constant C2 such that the inequality

m∑
j=1

∣∣E[

κ

i X
κ
j X

]∣∣ ≤ C2
(

κ

i

)1∧(2γ ) (48)

holds for each partition κ = (tj )j∈[m] of [0, T ] and each i ∈ (m]. Let (κn) be a sequence of
partitions κn = (tni )i∈[mn] of [0, T ] such that (45) holds. Then with probability one

lim
n→∞

mn∑
i=1

|
n
i X|r

[ρ(
n
i )]r


n
i = E|η|rT , (49)

where η is a standard normal random variable.

Proof. The proof is the same as of Theorem 21 except that now Corollary 20 is used in place of
Theorem 19 and the bound (48) is used in place of (44). �
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