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Testing the regularity of a smooth signal
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We develop a test to determine whether a function lying in a fixed L2-Sobolev-type ball of smoothness t ,
and generating a noisy signal, is in fact of a given smoothness s ≥ t or not. While it is impossible to construct
a uniformly consistent test for this problem on every function of smoothness t , it becomes possible if we
remove a sufficiently large region of the set of functions of smoothness t . The functions that we remove are
functions of smoothness strictly smaller than s, but that are very close to s-smooth functions. A lower bound
on the size of this region has been proved to be of order n−t/(2t+1/2), and in this paper, we provide a test
that is consistent after the removal of a region of such a size. Even though the null hypothesis is composite,
the size of the region we remove does not depend on the complexity of the null hypothesis.
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1. Introduction

We consider in this paper a composite testing problem in the non-parametric Gaussian regres-
sion setting. Assuming that the unknown regression function f lies in a given smoothness class
(indexed by t ), we want to decide whether f is in fact in a much more regular class (indexed by
s ≥ t ), by constructing a suitable test. More precisely, we consider the setting of testing between
two fixed L2 Sobolev-type classes, which we define formally in Section 2 below.

Let �(t,B) be the L2-Sobolev-type ball of functions in [0,1] of smoothness t and radius B ,
and let �(s,B) with s > t be a sub-model (i.e., �(s,B) ⊂ �(t,B)). We assume that we have ob-
servations generated according to a Gaussian non-parametric model with underlying function f ,
at noise level n, where f ∈ �(s,B) or f ∈ �(t,B) \ �(s,B).

For G ⊂ L2, set ‖f − G‖2 = infg∈G ‖f − g‖2. We define for ρn ≥ 0 the sets

�̃(t,B,ρn) = {
f ∈ �(t,B) :

∥∥f − �(s,B)
∥∥

2 ≥ ρn

}
.

Note that these sets are separated away from �(s,B) whenever ρn > 0. They correspond to
�(t,B) \ �(s,B) where we have removed some critical functions, very close to functions in
�(s,B).

We are interested in the composite testing problem:

H0 :f ∈ �(s,B) vs. H1 :f ∈ �̃(t,B,ρn). (1.1)

More precisely, we want to know the minimal order of magnitude of ρn that enables the con-
struction of a uniformly consistent test �n between H0 and H1, that is, of a test such that there
exists N that depends on H0,H1 and α only such that for any n ≥ N ,

sup
f ∈H0

Ef �n + sup
f ∈H1

Ef (1 − �n) ≤ α.
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Two topics that are closely related to this question have been thoroughly studied. The first one
is non-parametric signal detection where H0 = {0}. The second is the creation of adaptive and
honest non-parametric confidence bands around functions.

Let us first recall the results obtained in signal detection where one wishes to test

H0 :f = 0 vs. H1 :f ∈ {
f ∈ �(t,B) :‖f − 0‖2 ≥ ρn

}
. (1.2)

As in any testing problem, in order to obtain a uniformly consistent test, the model has to be
restricted such that the elements in H0 are not too close to the ones in H1. This explains the
presence of the separation by ρn. Ingster [23,24], Spokoiny [37] and Ingster and Suslina [25]
prove that the minimal order of ρn that enables the existence of a consistent test in the above
problem is

ρn ≥ Dn−t/(2t+1/2).

For ρn of this order, the authors also build a consistent test for the testing problem (1.2). They
prove that the testing problem is equivalent to testing whether the sum of the squares of the means
of independent (or close to independent) sub-Gaussian random variables is null or not, and the
usual χ2-test theory applies. The size ρn of the separation area is related to the minimax rate of
estimation of the L2 norm of f under the alternative hypothesis. A question that arises is how
the results change when the null hypothesis is a composite hypothesis, in our case an infinite
dimensional Sobolev-type ball.

The testing problem described in equation (1.1) is also closely connected to the problem of the
creation of confidence bands around functions – see, for instance, Hoffmann and Lepski [20],
Juditsky and Lambert-Lacroix [26], Hoffmann and Nickl [21], Bull and Nickl [9] where this
relation is made clear. Despite the fact that there exists a quite complete and satisfying theory for
adaptive non-parametric estimation – see, for example, Lepski [29], Donoho et al. [13], Barron et
al. [3], Tsybakov [38] – the theory of adaptive confidence sets has some fundamental limitations.
Indeed, one has to remove critical regions from the parameter space in order to construct honest
adaptive confidence sets, see Low [30], Cai and Low [10], Hoffmann and Nickl [21], Bull and
Nickl [9]. In the paper Bull and Nickl [9], the problem of L2-adaptive and honest confidence sets
is considered and in the course of the proofs, the authors establish that in the testing problem
(1.1), ρn can be taken of the order

ρn ≥ D max
(
n−t/(2t+1/2), n−s/(2s+1)

)
,

for D large enough depending on the level of the test and on s, t . On the other hand, they prove
in the case of density estimation (we provide a proof of this fact in our setting, see Theorem 3.2
below) that the lower bound for ρn is

ρn ≥ D′n−t/(2t+1/2),

for some D′ positive; otherwise there exists no consistent test for the problem (1.1). In the case
s < 2t , the upper and lower bound do not match (which in the context of confidence sets is
unimportant, see Baraud [1], Cai and Low [11], Robins and Van Der Vaart [36], Bull and Nickl
[9] related results).
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From the point of view of hypothesis testing, the case s < 2t is in fact of particular interest,
as it implicitly addresses the question whether the complexity of the null hypothesis should
influence the separation rate in non-parametric composite testing problems. When s ≥ 2t , the
rate of estimation in the null hypothesis is of order of the separation rate, and a reduction to a
singleton null hypothesis is (intuitively) always possible as shown by the infimum test considered
in Bull and Nickl [9]. For s < 2t , new ideas seem to be required.

To the best of our knowledge, the classical literature on non-parametric hypothesis testing does
not answer this question. A majority of papers consider the case of a singleton, or a parametric
(finite dimensional) null hypothesis, see Ingster [23], Ingster and Suslina [25], Spokoiny [37],
Lepski and Spokoiny [28], Horowitz and Spokoiny [22], Pouet [34], Fromont and Laurent [16].
In this case, the null hypothesis is reducible to a finite union of singletons. The papers that
do not consider the case of a simple null hypothesis, such as Dümbgen and Spokoiny [14],
Juditsky and Nemirovski [27], Baraud et al. [2], consider settings where it is provable that the
separation rate ρn must be of the same order as the estimation rate in the alternative hypothesis
(ρn � n−t/(2t+1) up to some log(n) factor). In particular the gap between estimation and testing
rate from which the problem studied in the present paper arises does not exist, and plug-in tests
that are based on the distance between an estimate of the function and the null hypothesis, are
optimal in these cases. Blanchard et al. [8] consider a general multiple testing problem where
they test a continuum of null hypotheses. As in Bull and Nickl [9], their separation rate depends
on the complexity of the null hypothesis. The papers [17] and [32] consider a composite a non-
parametric testing problem, and an approach based on an infimum test. For the same reason as
in the paper [9], the complexity of the null hypothesis affects the separation rates they obtain.
Finally the papers [4,15] consider directly the problem of smoothness testing (or smoothness
estimation for [15]). However, their perspective is different and the assumptions they make are
very restrictive (for instance, piecewise smoothness, see [15]).

In this paper, we demonstrate that the complexity of the null hypothesis does not influence the
separation rate at least in the testing problem (1.1). More precisely, we prove that it is possible
to build a test that is uniformly consistent with a separation rate

ρn � n−t/(2t+1/2).

The test we propose uses the geometric structure of the Sobolev-type balls combined with a
simple multiple testing idea, and is straightforward to implement. Our proofs rely on the specific
structure of this problem, and in general whether or not the complexity of H0 influences the
separation rate depends heavily on the problem at hand.

Section 2 formalises the setting and notations that we consider. Section 3 provides the test and
the main Theorems. Proofs are given in Sections 4 and 5.

2. Setting

Denote by L2([0,1]) = L2 the space of functions defined on [0,1] such that ‖f ‖2
2 =∫ 1

0 |f (x)|2 dx < +∞, where ‖ · ‖2 is the usual L2 norm. For any functions (f, g) ∈ L2, we

consider the usual scalar product 〈f,g〉 = ∫ 1
0 f (x)g(x)dx.
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2.1. Wavelet basis

Let S ≥ 0. We consider the Cohen–Daubechies–Vial wavelet basis on [0,1] with S first null
moments (see Cohen et al. [12]), that we write

{φk, k ∈ ZJ0,ψl,k, l > J0, l ∈ N, k ∈ Zl},
where J0 ≡ J0(S) ∈ N

∗ is a constant that grows with S (see Cohen et al. [12]), where ∀l ≥
J0,Zl ⊂ Z, and where ∀k′ ∈ ZJ0 , ∀l > J0,∀k ∈ Zl , φk′ and ψl,k are functions from [0,1] to R.

The Cohen–Daubechies–Vial wavelet basis is an orthonormal basis of functions on [0,1]. It is
also such that

∀l ≥ J0 + 1, |Zl | = 2l and z0 ≡ Z0(s) = |ZJ0 | < ∞,

where ∀l ≥ J0, |Zl | is the number of elements in the set Zl . Note that the constant z0 grows
with S in the definition of the Cohen–Daubechies–Vial wavelet basis, and is such that z0 ≥ 1.
We write ∀k ∈ ZJ0 ,ψJ0,k = φk in order to simplify notations.

For any function f ∈ L2, we consider the sequence a ≡ a(f ) of coefficients such that ∀l ≥
J0,∀k ∈ Zl ,

al,k =
∫ 1

0
ψl,k(x)f (x)dx = 〈ψl,k, f 〉.

The functions f ∈ L2 have the representation

f =
∑
l≥J0

∑
k∈Zl

ψl,k〈ψl,k, f 〉 =
∑
l≥J0

∑
k∈Zl

al,kψl,k. (2.1)

We moreover write for any J ≥ J0

	VJ
(f ) =

∑
J0≤l≤J

∑
k∈Zl

al,kψl,k

the projection of f onto VJ = span(ψl,k, J0 ≤ l ≤ J, k ∈ Zl) (where for any A ⊂ L2, span(A) is
the vectorial sub-space generated by the functions in A). We also write

	WJ
(f ) =

∑
k∈ZJ

aJ,kψJ,k

the projection of f onto WJ = span(ψJ,k, k ∈ ZJ ).

2.2. Besov spaces

We consider, for r > 0, the (r,2,∞)-Besov (Nikolskii) norms

‖f ‖r,2,∞ = sup
l≥J0

(
2lr

∣∣〈f,ψl,·〉
∣∣
l2

)
,
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where |u|l2 = (
∑

i u
2
i )

1/2 is the sequential l2 norm, and l2 is the associated sequential space.
The associated (r,2,∞)-Besov (Nikolskii) spaces are defined as

Br,2,∞ = {
f ∈ L2 :‖f ‖r,2,∞ < +∞}

.

We write for a given r > 0 and a given B > 0 the Br,2,∞ Besov ball of smoothness r and
radius B as

�(r,B) := {
f ∈ Br,2,∞ :‖f ‖r,2,∞ < B

}
.

Since the wavelet basis we considered to build the (r,2,∞)-Besov spaces is the Cohen–
Daubechies–Vial wavelets with S first null moments, the defined (r,2,∞) Besov spaces corre-
spond to the functional (r,2,∞)-Besov spaces (Sobolev-type spaces) for any r ≤ S, see Meyer
[31] and Härdle et al. [18].

Remark. We chose to consider the Cohen–Daubechies–Vial wavelet basis for simplicity and
clarity in presentation, but any orthonormal wavelet basis that is such that (i) the number of
wavelets |Zl | at each level l is bounded by a constant time 2l and (ii) the basis can be used to
characterize the functional (r,2,∞)-Besov spaces (Sobolev-type spaces), could have been used.

2.3. Observation scheme

Let n > 0. The data is a realisation of a Gaussian process defined for any x ∈ [0,1] as

dY (n)(x) = f (x)dx + dBx√
n

,

where (Bx)x∈[0,1] is a standard Brownian motion, and f ∈ L2 is the function of interest.
Let us write for any l ≥ J0 and k ∈ Zl the associated wavelet coefficients as

âl,k = 〈
ψl,k,dY (n)

〉= ∫ 1

0
ψl,k(x)f (x)dx + 1√

n

∫ 1

0
ψl,k(x)dBx, and al,k = 〈ψl,k, f 〉,

where for any g ∈ L2,
∫ 1

0 g(x)dBx is the usual stochastic integral, and is as such distributed
as a Gaussian random variable of mean 0 and variance ‖g‖2

2. Since the Cohen–Daubechies–
Vial wavelet basis is orthonormal, the coefficients (âl,k)l≥J0,k∈Zl

are jointly Gaussian random
variables such that

(âl,k)l≥J0,k∈Zl
∼N

(
(al,k)l≥J0,k∈Zl

,

(
1

n
1
{
l = l′, k = k′})

l≥J0,k∈Zl,l
′≥J0,k

′∈Zl′

)
,

where N (μ,σ 2) is the normal distribution of mean μ and variance-covariance σ 2 (and where
we write X ∼N (μ,σ 2) for stating that X is such a Gaussian distribution) and where 1{ · } is the
usual indicator function.
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We consider the wavelet estimate of f :

f̂n =
∑
l≥J0

∑
k

âl,kψl,k.

This estimate is of infinite variance in L2, hence projected estimates

f̂n(j) := 	Vj
f̂n,

have to be considered.
In the sequel, we write Prf (respectively Ef , and Vf ) the probability (respectively expectation,

and variance) under the law of dY (n) when the function underlying the data is f . When no
confusion is likely to arise, we write simply Pr (respectively, E and V).

Remark. The spaces Br,2,∞ are slightly larger than the usual Sobolev spaces, see Bergh and
Löfström [5] and Besov et al. [6]. They are however the natural objects to consider for a smooth-
ness test, since they are the largest Besov spaces where adaptive estimation remains possible (see
Donoho et al. [13] and Bull and Nickl [9]). Indeed, one can prove that there exists an estimate
f̃n(Y

(n)) of f such that for any S ≥ r > 1/2 and B > 0, we have

sup
f ∈�(r,B)

E‖f̃n − f ‖2 ≤ O
(
n−r/(2r+1)

)
,

see, for instance, Theorem 2 in the paper Bull and Nickl [9] (with some simple modifications
needed for the regression situation considered in the present paper).

3. Testing problem

3.1. Formulation of the testing problem

Let S ≥ s > t > 0 (we choose the Cohen–Daubechies–Vial wavelet basis with S first null mo-
ments with S larger than s). We want to test whether f is in �(s,B), or whether f is outside
this ball, i.e., in �(t,B) \ �(s,B). This is generally impossible to do uniformly and functions
that are t smooth but too close from s smooth functions (such that the L2 distance between these
functions and the Sobolev-type ball of smoothness s is small) have to be removed.

Let us first define the restriction of the sets �(t,B) to sets that are separated away from
�(s,B) by some minimal distance ρn > 0:

�̃(t,B,ρn) = {
f ∈ �(t,B) :

∥∥f − �(s,B)
∥∥

2 ≥ ρn

}
,

where we remind that for any set G ⊂ L2, we have ‖f − G‖2 = infg∈G ‖f − g‖2.
The testing problem is the following

H0 :f ∈ �(s,B) vs. H1 :f ∈ �̃(t,B,ρn).

When no confusion is likely to arise, we will use the short-hand notation f ∈ H0 for f ∈ �(s,B),
and f ∈ H1 for f ∈ �̃(t,B,ρn).
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3.2. Main results

Let j ≥ J0 such that j = �1/(2t + 1/2) log(n)/ log(2)�, where � · � is the integer part of a real
number. In particular, this definition implies that n1/(2t+1/2)/2 ≤ 2j ≤ n1/(2t+1/2).

Consider for any J0 < l ≤ j the test statistics

Tn(l) = ‖	Wl
f̂n‖2

2 − 2l

n
, and Tn(J0) = ‖	WJ0

f̂n‖2
2 − z0

n
. (3.1)

These quantities Tn(l) are estimates of ‖	Wl
(f )‖2

2 across all levels J0 ≤ l ≤ j . Concerning
levels l > j , even in the worst case of smoothness t , the L2 norm of the function at these levels is
smaller than n−t/(2t+1/2), that is, ‖f − 	Vj

(f )‖2 = O(n−t/(2t+1/2)). This implies that one does
not need to control for what happens at these levels.

Let α > 0 be the desired level of the test. Consider the positive constants tn(l) such that for
any J0 ≤ l ≤ j

tn(l)
2 =

(
B

2ls
+ τl

2

)2

= B2

22ls
+ B

2ls
τl + τ 2

l

4
, (3.2)

where the sequence (τl)J0≤l≤j is such that for any J0 < l ≤ j

τl ≡ τn,l = 24

√
z0

α

2(j+l)/8

√
n

, and τJ0 ≡ τn,J0 = 24

√
z0

α

1√
n
. (3.3)

We consider the test:

�n(α) = 1 −
∏

J0≤l≤j

1
{
Tn(l) < tn(l)

2},
where we remind that 1{ · } is the usual indicator function. We reject H0 as soon as the test statistic
at one of the levels J0 ≤ l ≤ j indicates a too large Besov norm. The intuition behind this test is
that f belonging to �(s,B) is equivalent to ‖	Vl

(f )‖s,2,∞ being smaller than or equal to B for
any l ≥ J0. As explained before, we do not need to be too concerned by what happens for l > j .
In the case J0 ≤ l ≤ j , each statistic Tn(l) is designed to test this. We illustrate this in Figure 1.

We provide the following definition of consistency for a test, following the line of work of
Ingster and Suslina [25].

Definition 3.1 (α-consistency). Let α > 0 and H0,H1 be two hypotheses (functional sets). Let
�n(Y

(n),H0,H1, α) be a test, that is to say a measurable function taking values in {0,1}. We say
that �n is α-consistent if we have for any n > 0

sup
f ∈H0

Ef �n + sup
f ∈H1

Ef (1 − �n) ≤ α.

We now state the main result of this paper.
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Figure 1. Illustration of the testing problem.

Theorem 3.1. Let α > 0. The test �n(α) is an α-consistent test for discriminating between H0

and H1 and for ρn = C̃(α)n−t/(2t+1/2), where C̃(α) = 24( 2t B√
1−2−2t

+ 19)

√
1
α

.

The proof of this theorem is in Section 4. The region we had to remove so that �n(α) is
α-consistent could not have been taken significantly smaller, as stated in the next theorem.

Theorem 3.2. Let 1 > α ≥ 0. There exists no α-consistent test for discriminating between H0

and H1 and for ρn = D̃(α)n−t/(2t+1/2), where D̃(α) = min(( 1−α
2 )1/4,B).

The proof of Theorem 3.2 is in Section 5. It is very similar to the proofs in papers Ingster [23]
and Bull and Nickl [9] (the proof in paper Bull and Nickl [9] holds in the more involved case of
density estimation).

We would like to emphasise that the test �n, in addition to being rather simple conceptually,
is quite easy to implement since it requires only the computation of (significantly) less than
n integrals/sums – the empirical coefficients – and less than log(n) sums of squares of these
coefficients. It can replace the more complicated infimum test considered in the paper Bull and
Nickl [9] for the creation of adaptive and honest confidence bands.

3.3. Alternative settings

We provided in the last subsection a consistent test on a model that could not have been taken
significantly larger. This test was constructed in the rather simplistic setting of non-parametric
Gaussian homoscedastic regression with normalised variance. But in many cases (see, e.g., Reiß
[35] and Nussbaum [33]), it has been proven that it generalises rather well to more realistic and
complex settings. The concern in our case, however, is that we heavily rely on the homoscedas-
ticity assumption with known variance of the noise. Indeed, we subtract the constant part induced
by this variance in the estimates of Tn(l) in equation (3.1). This part is much larger than the de-
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Figure 2. Statistics Tn(l) and the removal of the expectation of the square of the expectation of the noise.

viations (in high probability) of ‖	Wl
f̂n‖2

2 around its mean, and it is thus crucial to remove it.
We illustrate this in Figure 2.

There is however a way around this problem that we discuss now, as well as generalizations to
more complex settings.

Heteroscedastic non-parametric Gaussian regression. Assume now that the data are generated
according to the process

dY (n)(x) = f (x)dx + σ(x)dBx√
n

,

where (Bx)x∈[0,1] is a standard Brownian motion, and f,σ ∈ L2. Since the function σ is un-
known, we cannot apply the technique we described. However, if we know a upper bound on
‖σ‖2, it is still possible to solve this problem with a very similar technique.

The modification goes as follows. We start by dividing the initial sample in two sub-samples
of equal size n/2. Then we compute the empirical estimates of the function in these two samples
and write f̂

(1)
n and f̂

(2)
n for the estimates of the function computed in each of the two halves. We

then define the statistics T̂n(l) (which play the same role as the Tn(l)) as

T̂n(l) = 〈
	Wl

f̂ (1)
n ,	Wl

f̂ (2)
n

〉
. (3.4)

Since f̂
(1)
n and f̂

(2)
n are independent estimates of f , the additional term that comes from the

expectation of the square of the noise (the variance) disappears and it is possible to prove that this
newly defined T̂n(l) concentrates around ‖	Wl

f ‖2
2 with an error of same order as in Lemma 4.2

below. This implies that we can test in a similar way and derive similar results.
Regression, density estimation and autoregressive model. The settings of non-parametric re-

gression (with noise that can be non-Gaussian), of non-parametric density estimation, and of
non-parametric auto-regressive model (AR(1)) are not too different from the heteroscedastic set-
ting under a given set of assumptions (that, e.g., the noise on the data is sub-Gaussian and that
the design is adapted for regression, and that, e.g., the regression function/density is bounded,
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see Bull and Nickl [9]. This follows from the asymptotic equivalence between these models and
non-parametric Gaussian regression (again, see, e.g., Reiß [35] and Nussbaum [33]).

• In the regression setting, we assume that the n data (Xi, Yi)i≤n are

Yi = f (Xi) + σ(Xi)εi,

where εi are independent random variables of mean 0 and variance 1. Based on these data,
we can compute also estimates for the wavelet coefficients of f as

âl,k = 1

n

n∑
i=1

Yiψl,k(Xi),

and thus estimate f . Then we can follow the procedure described in the setting of het-
eroscedastic non-parametric Gaussian regression (equation (3.4)). However, one needs to be
careful in this setting since the design (i.e., position of the Xi ) is crucial. Indeed, wavelets
are very localised functions and estimating the wavelet coefficients in a reasonably accurate
way requires that the points Xi are spread over the whole domain, that is to say that there
are enough points in each region of the domain. In particular, a standard random design will
fail in this case, see Härdle et al. [18].

• In the density estimation setting, we assume that the n data generated by f are (Xi)i , and
estimate the wavelet coefficients of f as

âl,k = 1

n

n∑
i=1

ψl,k(Xi),

and thus estimate f . Then we can follow the procedure described in the setting of het-
eroscedastic non-parametric Gaussian regression (equation (3.4)).

• We consider finally the non-parametric autoregressive model with memory 1 (or AR(1)).
The output (Xi)i≤n of an AR(1) can be described as follows:

Xi+1 = f (Xi) + σ(Xi)εi .

After sub-sampling the data at random in order to make them close to independent, one can
go back to the regression setting, and apply the same method (see, e.g., Hoffmann [19] for
equivalence of this setting and regression setting after sub-sampling).

4. Proof of Theorem 3.1

This section contains a proof of Theorem 3.1.

4.1. Decomposition of the problem

The statistics Tn(l) are unbiased estimates of ‖	Wl
(f )‖2

2 for any J0 ≤ l ≤ j , as explained later
in this section. Assuming this, the next lemma explains why the test �n that we described is a
reasonable thing to do.
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Lemma 4.1. Let (τl)J0≤l≤j be a sequence of positive real numbers. Assume that

ρn ≥
(

4
B√

1 − 2−2t
2−j t + 4

3

∑
J0≤l≤j

τl

)
.

Then we have

• f ∈ H0 ⇒ maxJ0≤l≤j (‖	Wl
(f )‖2 − B

2ls ) ≤ 0.

• f ∈ H1 ⇒ maxJ0≤l≤j (‖	Wl
(f )‖2 − B

2ls − τl) > 0.

Proof. Under the null Hypothesis H0. If f is in �(s,B), then by definition of the Besov spaces

‖	Vj
f ‖s,2,∞ ≤ B,

which implies by definition of the ‖ · ‖0,2,∞ norm that

sup
J0≤l≤j

(
‖	Wl

f ‖0,2,∞ − B

2ls

)
≤ 0.

This implies by Parseval’s identity, and since ‖	Wl
f ‖0,2,∞ = ‖	Wl

f ‖2

sup
J0≤l≤j

(
‖	Wl

f ‖2 − B

2ls

)
= sup

J0≤l≤j

(
‖	Wl

f ‖0,2,∞ − B

2ls

)
≤ 0.

Under the alternative Hypothesis H1. Assume that f is in �̃(t,B,ρn). By triangular inequal-
ity, we have

inf
g∈�(s,B)

‖f − g‖2 ≤ inf
g∈�(s,B)

∥∥	Vj
(f ) − g

∥∥
2 + ∥∥f − 	Vj

(f )
∥∥

2

≤ inf
g∈�(s,B)

∥∥	Vj
(f ) − g

∥∥
2 + B√

1 − 2−2t
2−j t ,

since by definition of the (t,2,∞) Besov space, we know that

∥∥f − 	Vj
(f )

∥∥
2 ≤

√√√√ ∞∑
l=j+1

2−2ltB2 ≤ B√
1 − 2−2t

2−j t .

We thus have, since ρn ≤ infg∈�(s,B) ‖f − g‖2 by definition of �̃(t,B,ρn), and since ρn ≥
(4 B√

1−2−2t
2−j t + 4/3

∑
J0≤l≤j τl)

3ρn/4 ≤ ρn − B√
1 − 2−2t

2−j t ≤ inf
g∈�(s,B)

∥∥	Vj
(f ) − g

∥∥
2. (4.1)
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Let us write (al,k)l,k the coefficients of f and (bl,k)l,k the coefficients of the minimiser g. We
have by definition of �(s,B), by the triangular inequality and by Parseval’s identity

inf
g∈�(s,B)

∥∥	Vj
(f ) − g

∥∥
2

≤ inf
g∈�(s,B)

j∑
l=J0

∥∥	Wl
(f ) − g

∥∥
2

= inf
(bl,k)l,k :∀l≥J0,2ls‖bl,·‖l2 ≤B

(
j∑

l=J0

√∑
k∈Zl

(al,k − bl,k)2 +
∞∑

l=j+1

√∑
k∈Zl

b2
l,k

)

=
j∑

l=J0

inf
(bl,k)l,k :2ls‖bl,·‖l2 ≤B

√∑
k∈Zl

(al,k − bl,k)2,

since the constraints defining the minimisation problems involved do not interact across the lev-
els l. The last equation, together with equation (4.1), implies that

3ρn/4 ≤
j∑

l=J0

inf
(bl,k)l,k :2ls‖bl,·‖l2 ≤B

√∑
k∈Zl

(al,k − bl,k)2.

By definition, ρn ≥ 4/3
∑j

l=J0
τl , so the last equation implies that

j∑
l=J0

τl ≤
j∑

l=J0

inf
(bl,k)l,k :2ls‖bl,·‖l2 ≤B

√∑
k∈Zl

(al,k − bl,k)2. (4.2)

At least one of the τl’s has to be less than or equal to

inf
(bl,k)l,k :2ls‖bl,·‖l2 ≤B

√∑
k∈Zl

(al,k − bl,k)2,

as otherwise
∑j

l=J0
τl would exceed the right-hand side in equation (4.2). Let J0 ≤ l ≤ j be one

of these indexes, we have

τl ≤ inf
(bl,k)l,k :2ls‖bl,·‖l2 ≤B

√∑
k∈Zl

(al,k − bl,k)2

≤ max

(
0,

√∑
k∈Zl

a2
l,k − B

2ls

)

≤ ∥∥	Wl
(f )

∥∥
2 − B

2ls
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since by definition of the Euclidian ball, for any u ∈ l2, we have infv∈l2:‖v‖l2 =1 ‖u − v‖l2 =
max(0,‖u‖l2 − 1).

This concludes the proof. �

4.2. Convergence tools for Tn(l)

The next lemma is a standard and also rather weak concentration inequality (see, e.g., Birgé [7]
for similar results).

Lemma 4.2. Let  > 0. Then

Pr

{
∀l :J0 ≤ l ≤ j,

∣∣Tn(l) − ‖	Wl
f ‖2

2

∣∣≥ 4

√
3z0



(
2(j+l)/2

n2
+ 2l/4

‖	Wl
f ‖2

2

n

)}
≤ .

Proof. Let J0 < l ≤ j . Note first that by Parseval’s identity, we have ‖	Wl
f̂n‖2

2 =∑
k â2

l,k . Then

we have by definition Tn(l) =∑
k â2

l,k − 2l

n
.

We have âl,k = al,k + âl,k −al,k where âl,k −al,k ∼N (0,1/n) (by assumption of the Gaussian
model), and thus we have

E|âl,k|2 = 1

n
+ a2

l,k.

Also since for any constant m ∈R, and for G ∼N (0,1),

V(G + m)2 = E
(
G2 + 2Gm − 1

)2 = E
(
G4 + 4G2m2 + 1 − 2G2)= 4m2 + 2 ≤ 4

(
1 + m2),

we have

V|âl,k|2 ≤ 4

(
1

n2
+ a2

l,k

n

)
.

This implies since the âl,k are independent Gaussian random variables

E

(∑
k∈Zl

â2
l,k

)
=

∑
k∈Zl

a2
l,k + 2l

n
,

and

V

(∑
k∈Zl

â2
l,k

)
≤ 4

(
2l

n2
+

∑
k∈Zl

a2
l,k

n

)
.

This implies by Chebyshev’s inequality that for any δl > 0, we have

Pr

{∣∣∣∣∑
k∈Zl

â2
l,k − 2l

n
−
∑
k∈Zl

a2
l,k

∣∣∣∣≥
√

1

δl

4

(
2l

n2
+

∑
k∈Zl

a2
l,k

n

)}
≤ δl
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and since ‖	Wl
f̂n‖2

2 =∑
k∈Zl

â2
l,k and ‖	Wl

f ‖2
2 =∑

k∈Zl
a2
l,k that

Pr

{∣∣∣∣‖	Wl
f̂n‖2

2 − 2l

n
− ‖	Wl

f ‖2
2

∣∣∣∣≥
√

1

δl

4

(
2l

n2
+ ‖	Wl

f ‖2
2

n

)}
≤ δl.

In the same way (since there are z0 terms in ZJ0 ), we have for l = J0, that for any δJ0 > 0

Pr

{∣∣∣∣‖	WJ0
f̂n‖2

2 − z0

n
− ‖	WJ0

f ‖2
2]
∣∣∣∣≥

√
1

δJ0

4

(
z0

n2
+ ‖	WJ0

f ‖2
2

n

)}
≤ δJ0 .

These two last results imply by definition of Tn(l), that for any J0 ≤ l ≤ j

Pr

{∣∣Tn(l) − ‖	Wl
f ‖2

2

∣∣≥
√

1

δl

4

(
2l

n2
+ ‖	Wl

f ‖2
2

n

)}
≤ δl,

and

Pr

{∣∣Tn(J0) − ‖	WJ0
f ‖2

2

∣∣≥
√

1

δJ0

4

(
z0

n2
+ ‖	WJ0

f ‖2
2

n

)}
≤ δJ0 .

These results imply by an union bound over all J0 ≤ l ≤ j , that we have

Pr

{
∀l :J0 < l ≤ j,

∣∣Tn(l) − ‖	Wl
f ‖2

2

∣∣≥
√

1

δl

4

(
2l

n2
+ ‖	Wl

f ‖2
2

n

)
,

∣∣Tn(J0) − ‖	WJ0
f ‖2

2

∣∣≥
√

1

δJ0

4

(
z0

n2
+ ‖	WJ0

f ‖2
2

n

)}
≤

∑
J0≤l≤j

δl .

Set for any J0 < l ≤ j , δl = (2−(j−l)/2 + 2−l/4)/12, and δJ0 = /12. Then

Pr

{
∀l :J0 < l ≤ j,

∣∣Tn(l) − ‖	Wl
f ‖2

2

∣∣≥ 4

√
3



(
2(j+l)/2

n2
+ 2l/4

‖	Wl
f ‖2

2

n

)
,

∣∣Tn(J0) − ‖	WJ0
f ‖2

2

∣∣≥ 4

√
3



(
z0

n2
+ ‖	WJ0

f ‖2
2

n

)}
≤

∑
J0≤l≤j

δl ≤ ,

since

∑
J0≤l≤j

δl ≤ 

12
+ 

12

∑
1≤l≤j

(
2−(j−l)/2 + 2−l/4)≤ 

12

(
1 + 1

1 − 2−1/2
+ 1

1 − 2−1/4

)
≤ .
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Since z0 ≥ 1, we have

Pr

{
∀l :J0 ≤ l ≤ j,

∣∣Tn(l) − ‖	Wl
f ‖2

2

∣∣≥ 4

√
3z0



(
2(j+l)/2

n2
+ 2l/4

‖	Wl
f ‖2

2

n

)}
≤ ,

which concludes the proof. �

4.3. Study of the test

Set c ≡ c(α) = 24
√

z0
α

, where we remind that α > 0 is the desired level of the test. By definition

of the quantities τl (equation (3.3)), we have for any J0 < l ≤ j

τl ≡ τn,l = c
2(j+l)/8

√
n

, and τJ0 ≡ τn,J0 = c
1√
n
.

We thus have

j∑
l=J0

τl ≤
j∑

l=0

c
2(j+l)/8

√
n

≤ c√
n

2j/4
(

1 + 1

1 − 2−1/8

)
≤ 14cn−t/(2t+1/2). (4.3)

Also, by definition of C̃(α) in Theorem 3.1, we have

ρn = c

(
2tB√

1 − 2−2t
+ 19

)
n−t/(2t+1/2).

In particular this implies together with equation (4.3), and since 2j ≤ 2t nt/(2t+1/2), that

ρn ≥ c
B√

1 − 2−2t
2−j t + 4

3

∑
J0≤l≤j

τl . (4.4)

4.3.1. Null hypothesis

Since f ∈ �(s,B), by Lemma 4.1,

max
J0≤l≤j

(
‖	Wl

f ‖2 − B

2ls

)
≤ 0.

Thus by Lemma 4.2, we have with probability at least 1 − α/2 that for any J0 ≤ l ≤ j

Tn(l) ≤ ‖	Wl
f ‖2

2 + 4

√
6z0

α

(
2(l+j)/2

n2
+ 2l/4

‖	Wl
f ‖2

2

n

)

≤ B

2ls

(
B

2ls
+ 4 × 2l/4

√
6z0

αn

)
+ 4

√
6z0

α

2(j+l)/4

n
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≤ B2

22ls
+ 4

B

2ls

√
6z0

α

2(j+l)/8

n1/2
+ 4

√
6z0

α

2(j+l)/4

n

≤
(

B

2ls
+ 4

√
6z0

α

2(j+l)/8

n1/2

)2

≤
(

B

2ls
+ τl/

√
6

)2

< tn(l)
2,

since c = 24
√

z0
α

, and by definition of tn(l) (see equation (3.2)).

So with probability at least 1 − α/2, we have �n = 0 under H0.

4.3.2. Alternative hypothesis

The sequence (τl)l , and ρn verify the assumptions of Lemma 4.1 (see equation (4.4)).
If H1 is verified, then

max
J0≤l≤j

(∥∥	Wl
(f )

∥∥
2 − B

2ls
− τl

)
> 0,

see Lemma 4.1. So there exists J0 ≤ l ≤ j such that

∥∥	Wl
(f )

∥∥
2 ≥ B

2ls
+ τl.

By Lemma 4.2, we have with probability at least 1 − α/2 that for this l

Tn(l) ≥ ‖	Wl
f ‖2

2 − 4

√
6z0

α

(
2(j+l)/2

n2
+ 2l/4

‖	Wl
f ‖2

2

n

)

≥
(

B

2ls
+ τl

)(
B

2ls
+ τl − 4

√
6z0

α

2l/4

n1/2

)
− 4

√
6z0

α

2(j+l)/2

n2

≥
(

B

2ls
+ τl

)(
B

2ls
+ τl/2

)
− 4

√
6z0

α

2(j+l)/4

n

≥ B2

22ls
+ B

2ls
τl + τ 2

l /2 − 4

√
6z0

α

2(j+l)/4

n

≥ B2

22ls
+ B

2ls
τl + τ 2

l /4

≥
(

B

2ls
+ τl/2

)2

= tn(l)
2.

since c = 24
√

z0
α

, and by definition of tn(l) (see equation (3.2)).
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So with probability at least 1 − α/2, we have �n = 1 under H1.
Conclusion on the test �n. All the inequalities developed earlier are true for any f in H0 or H1
with constants depending only on s, t,B,α and the supremum over f in H0 and H1 of the error
of type one and two are bounded by α/2. Finally, the test �n of errors of type 1 and 2 bounded by

α/2 distinguishes between H0 and H1 with condition ρn = 24
√

z0
α

( 2t B√
1−2−2t

+ 19)n−t/(2t+1/2).

This implies that

sup
f ∈�(s,B)

Ef �n + sup
f ∈�̃(t,B,ρn)

Ef (1 − �n) ≤ α.

5. Proof of Theorem 3.2

Let B > 0, s > t > 0, min(1,B) > υ > 0, and j ∈ N
∗ such that j = �1/(2t + 1/2) log(n)/

log(2)�, where � · � is the integer part of a real number. In particular, this definition implies that
n1/(2t+1/2)/2 ≤ 2j ≤ n1/(2t+1/2).
Step 1: Definition of a testing problem on some large set. Define the set

I ≡ Ij = {
(αl,k)l≥J0,k∈Zl

:∀l �= j,αl,k = 0, αj,k ∈ {−1,1}}.
Consider the sequence of coefficients indexed by a given α ∈ I as

a
(α)
l,k = υaαl,k,

where a = 1√
n2j/4 . Consider the function associated to a(α) that we write f (α) and that we define

as

f (α) =
∞∑

l=J0

∑
k∈Zl

a
(α)
l,k ψl,k =

∑
k∈Zj

a
(α)
j,k ψj,k.

Consider the testing problem

H0 :f = 0 vs. H1 :f = f (α), α ∈ I. (5.1)

Step 2: Quantity of interest. An observation in the white noise model is equivalent, by sufficiency
considerations, to an observation of empirical coefficients: equivalently to having access to the
process Y (n), we have access to the empirical coefficients (âl,k)l,k (where âl,k = ∫

ψl,k dY (n)) and
each of these coefficients are independent N (al,k,1/n). Let � be a test, i.e., some measurable
function (according to the empirical coefficients) taking values in {0,1}.

We have for any η > 0 (using the notations Pr0 and E0 for the probability and expectation
when the data are generated with f = 0)

E0[�] + sup
f (α),α∈I

Ef (α)[1 − �] ≥ E0[�] + 1

|I |
∑
α∈I

Ef (α)[1 − �]

≥ E0
[
1{� = 1}]+ 1{� = 0}Z (5.2)

≥ (1 − η)Pr0(Z ≥ 1 − η),
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where Z = 1
|I |

∑
α∈I

∏
l,k

dP
(α)
l,k

dP 0
l,k

, where dP
(α)
l,k is the density of âl,k when the function generating

the data is f (α), and dP 0
l,k is the density of âl,k when the function generating the data is 0 (this

holds since the (âl,k)l,k are independent).
More precisely, we have since the (âl,k)l,k are independent N (al,k,1/n)

Z
(
(xk)k

) ≡ Z
(
(xl,k)l,k

)= 1

|I |
∑
α∈I

∏
l,k

exp((−n/2)(xl,k − a
(α)
l,k )2)

exp((−n/2)x2
l,k)

= 1

|I |
∑
α∈I

∏
k∈Zj

exp
(
nxka

(α)
k

)
exp

(
−n

2

(
a

(α)
k

)2
)

,

where (xk)k ≡ (xj,k)k and (a
(α)
k )k ≡ (a

(α)
k )k . In the rest of the proof, we write also (αk)k ≡

(αj,k)k in order to simplify notations.
By Markov and Cauchy Schwarz’s inequality

Pr0(Z ≥ 1 − η) ≥ 1 − E0|Z − 1|
η

≥ 1 −
√
E0(Z − 1)2

η
. (5.3)

Step 3: Study of the term in Z. We have by definition of Z

E0
[
(Z − 1)2]

=
∫

x1,...,x2j

(
1

|I |
∑
α∈I

∏
k

exp
(
xkna

(α)
k

)
exp

(
−n

2

(
a

(α)
k

)2
)

− 1

)2

×
∏
k

1√
2nπ

exp

(
−n

2
(xk)

2
)

dx1 · · ·x2j

=
∫

x1,...,x2j

(
1

|I |
∑
α∈I

∏
k

exp
(
xkna

(α)
k

)
exp

(
−n

2

(
a

(α)
k

)2
))2

×
∏
k

1√
2nπ

exp

(
−n

2
(xk)

2
)

dx1 · · ·x2j

− 2
∫

x1,...,x2j

1

|I |
∑
α∈I

∏
k

exp
(
xkna

(α)
k

)
exp

(
−n

2

(
a

(α)
k

)2
)

×
∏
k

1√
2nπ

exp

(
−n

2
(xk)

2
)

dx1 · · ·x2j + 1

=
∫

x1,...,x2j

(
1

|I |
∑
α∈I

∏
k

exp
(
xkna

(α)
k

)
exp

(
−n

2

(
a

(α)
k

)2
))2
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×
∏
k

1√
2nπ

exp

(
−n

2
(xk)

2
)

dx1 · · ·x2j

− 2
1

|I |
∑
α∈I

∏
k

∫
xk

1√
2nπ

exp

(
−n

2

(
xk − a

(α)
k

)2
)

dxk + 1

=
∫

x1,...,x2j

(
1

|I |
∑
α∈I

∏
k

exp
(
xkna

(α)
k

)
exp

(
−n

2

(
a

(α)
k

)2
))2

×
∏
k

1√
2nπ

exp

(
−n

2
(xk)

2
)

dx1 · · ·x2j − 1

by Fubini–Tonelli. This implies by developing the first term that

E0
[
(Z − 1)2]

= 1

|I |2
( ∑

α,α′∈I

∫
x1...,x2j

∏
k

exp
(
xkn

(
a

(α)
k + a

(α′)
k

))
exp

(
−n

2

((
a

(α)
k

)2 + (
a

(α′)
k

)2))

× 1√
2nπ

exp

(
−n

2
(xk)

2
)

dx1 · · ·dx2j

)
− 1

= 1

|I |2
( ∑

α,α′∈I

∏
k

∫
xk

exp
(
xkn

(
a

(α)
k + a

(α′)
k

))
exp

(
−n

2

((
a

(α)
k

)2 + (
a

(α′)
k

)2))

× 1√
2nπ

exp

(
−n

2
(xk)

2
)

dxk

)
− 1

= 1

|I |2
( ∑

α,α′∈I

∏
k

∫
xk

exp
(
xknυa

(
αk + α′

k

))
exp

(−nυ2a2) 1√
2nπ

exp

(
−n

2
(xk)

2
)

dxk

)
− 1.

This implies by integrating depending on the respective values of αk and α′
k that

E0
[
(Z − 1)2]

= 1

|I |2
[ ∑

α,α′∈I

∏
k

(
exp

(
nυ2a2)1{αk = α′

k = 1
}∫

xk

1√
2nπ

exp

(
−n

2
(xk − 2υa)2

)
dxk

+ exp
(
nυ2a2)1{αk = α′

k = −1
}

×
∫

xk

1√
2nπ

exp

(
−n

2
(xk + 2υa)2

)
dxk

(5.4)

+ exp
(−nυ2a2)1{αk �= α′

k

}∫
xk

1√
2nπ

exp

(
−n

2
x2
k

)
dxk

)]
− 1

= 1

|I |2
( ∑

α,α′∈I

∏
k

(
exp

(−nυ2a2)(1 − 1
{
αk �= α′

k

})+ exp
(
nυ2a2)1{αk �= α′

k

})− 1.
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Since the α and α′ take respectively all possible values in {−1,1}2j
, by definition of the expec-

tation, and by replacing α and α′ by R and R′ in the formula, we have

1

|I |2
∑

α,α′∈I

[ · ] = E(Ri)i ,(R
′
j )j

[ · ],

where the (Ri)i , (R
′
j )j are two sequences of i.i.d. Rademacher random variables that are also

independent of each other, and where E(Ri)i ,(R
′
j )j

[ · ] is the expectation according to these random
variables. This implies together with equation (5.4) that

E0
[
(Z − 1)2]

= E(Ri)i ,(R
′
j )j

[∏
k

(
exp

(−nυ2a2)(1 − 1
{
Rk �= R′

k

})+ exp
(
nυ2a2)1{Rk �= R′

k

})]− 1

=
∏
k

ERk,R
′
k

[
exp

(−nυ2a2)(1 − 1
{
Rk �= R′

k

})+ exp
(
nυ2a2)1{Rk �= R′

k

}]− 1,

since all Rk , R′
k are independent of each other. Moreover, 1{Rk �= R′

k} is a Bernoulli random
variable of parameter 1/2 (since the two Rademacher are independent), which implies

E0
[
(Z − 1)2] =

∏
k

EB

[
exp

(−nυ2a2)(1 − B) + exp
(
nυ2a2)B]− 1

= (
EB

[
exp

(−nυ2a2)(1 − B) + exp
(
nυ2a2)B])2j − 1,

where EB [ · ] is the expectation according to a Bernoulli random variable with parameter 1/2.
The last equation implies

E0
[
(Z − 1)2] =

(
exp(−nυ2a2) + exp(nυ2a2)

2

)2j

− 1

≤
(

1 − nυ2a2 + (nυ2a2)2 + 1 + nυ2a2 + (nυ2a2)2

2

)2j

− 1

≤ (
1 + (

nυ2a2)2)2j − 1,

since for any |u| ≤ 1, we have exp(u) ≤ 1 + u + u2. Since a2 = 1
n2j/2 , we have

E0
[
(Z − 1)2] ≤

(
1 + υ4

2j

)2j

− 1

≤
(

exp

(
υ4

2j

))2j

− 1 = exp
(
υ4)− 1

≤ 1 + 2υ4 − 1 = 2υ4,
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since for any 0 ≤ u ≤ 1, we have 1 + u ≤ exp(u) ≤ 1 + 2u.
Step 4: Conclusion on the testing problem (5.1). By combining this with equations (5.2), (5.3),
we know that for n large enough

E0[�] + sup
f (α),α∈I

Ef (α)[1 − �] ≥ 1 − 2υ4,

and since this holds with any � , we have

inf
�

[
E0[�] + sup

f (α),α∈I

Ef (α)[1 − �]
]

≥ 1 − 2υ4,

where inf� is the infimum over measurable tests � . This implies that there is no 1 − 2υ4 consis-
tent test for test (5.1) (and it holds for any 0 ≤ υ < 1).
Step 5: Translation of this result in terms of the test (1.1). Set

ρn = υn−t/(2t+1/2)

2
.

Since υ ≤ B ,

∥∥f (α)
∥∥

t,2,∞ =
√∑

k∈Zl

(
a

(α)
k

)222j t = υ ≤ B,

so f (α) ∈ �(t,B).
Also since ∀α ∈ I , only the j th first coefficients of f (α) are non-zero (i.e., f (α) =

	Wj
(f (α)) =∑

k∈Zj
a

(α)
j,k ψj,k), then by definition of �(s,B)

∥∥f (α) − �(s,B)
∥∥

2 = inf
(bl,k)l,k :2ls‖bl,·‖l2 ≤B

√∑
l,k

(
a

(α)
l,k − bl,k

)2

= inf
(bl,k)l,k :2ls‖bl,·‖l2 ≤B

√∑
k∈Zj

(
a

(α)
j,k − bj,k

)2 +
∑

l �=j,k∈Zl

b2
l,k

= inf
(bk)k :2js‖b‖l2 ≤B

√∑
k∈Zj

(
a

(α)
j,k − bk

)2

= max

(
0,

√∑
k∈Zj

(
a

(α)
j,k

)2 − B2−js

)

= max
(
0,
∥∥	Wj

f (α)
∥∥

2 − B2−js
)
.

Since by definition of the Euclidian ball, for any u ∈ l2, we have infv∈l2:‖v‖l2 =1 ‖u − v‖l2 =
max(0,‖u‖l2 − 1).
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We thus have ∀α ∈ I , and for all n large enough∥∥f (α) − �(s,B)
∥∥

2 ≥ ∥∥	Wj
f (α)

∥∥
2 − B2−js

≥ υn−t/(2t+1/2) − Bn−s/(2t+1/2)

≥ υn−t/(2t+1/2)

2

by triangular inequality and since for any g ∈ �(s,B),‖	Wj
(g)‖2 ≤ 2−sBn−s/(2t+1/2) ≤

υ/(2)nt/(2t+1/2) for n large enough, since s > t . This together with the fact that f (α) ∈ �(t,B)

implies that ∀α ∈ I, f (α) ∈ �̃(t,B,ρn).
We know that 0 ∈ �(s,B), and that ∀α,f (α) ∈ �̃(t,B,ρn) (by the previous equations). This

implies that the testing problem (5.1) is a strictly easier problem than the testing problem (1.1),
that is, that

inf
�

[
E0[�] + sup

f (α),α∈I

Ef (α)[1 − �]
]

≤ inf
�

[
sup

f ∈�(s,B)

Ef [�] + sup
f ∈�̃(t,B,ρn)

Ef [1 − �]
]
.

We know that there is no 1 − 2υ4 consistent test for the test (5.1) and hence, there is no 1 − 2υ4

consistent test for test (1.1) (and it holds for any 0 ≤ υ < 1).
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