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We link optimal filtering for hidden Markov models to the notion of duality for Markov processes. We show
that when the signal is dual to a process that has two components, one deterministic and one a pure death
process, and with respect to functions that define changes of measure conjugate to the emission density, the
filtering distributions evolve in the family of finite mixtures of such measures and the filter can be com-
puted at a cost that is polynomial in the number of observations. Special cases of our framework include the
Kalman filter, and computable filters for the Cox–Ingersoll–Ross process and the one-dimensional Wright–
Fisher process, which have been investigated before. The dual we obtain for the Cox–Ingersoll–Ross pro-
cess appears to be new in the literature.

Keywords: Bayesian conjugacy; Cox–Ingersoll–Ross process; finite mixture models; hidden Markov
model; Kalman filter

1. Introduction

A hidden Markov model (HMM) for a sequence of observations {Yn,n ≥ 0}, where Yn ∈ Y , is a
discrete-time stochastic process with dynamics depicted in Figure 1. It is defined in terms of a
hidden Markov chain, the so-called signal, which in this paper will be taken to be the discrete-
time sampling of a time-homogeneous continuous-time Markov process Xt , with state-space X ,
transition kernel Pt(x,dx′), and initial distribution ν(dx). The observations relate to the signal by
means of conditional distributions, assumed to be given by the kernel F(x,dy). We will assume
that

F(x,dy) = fx(y)μ(dy) (1)

for some measure μ(dy), in which case the corresponding densities are known as the obser-
vation or emission densities. The optimal filtering problem is the derivation of the conditional
distributions L(Xtn |Y0, . . . , Yn) of the unobserved signal given the observations collected up to
time tn, henceforth denoted νn(dx). These filtering distributions are the backbone of all statistical
estimation problems in this framework, such as the prediction of future observations, the deriva-
tion of smoothing distributions (i.e., the conditional distribution of Xtn given past and future
observations) and the calculation of the likelihood function, that is, the marginal density of the
observations when the emission distributions are dominated. See [3] for details and applications.

Throughout the paper, we will assume that the signal is stationary and reversible with respect
to a probability measure π . Section 4 shows how to extend our result to non-stationary signals. It
is also appealing, from a modeling point of view, to assume that the signal evolves in continuous
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Figure 1. Hidden Markov model represented as a graphical model.

time, since there is a rich family of such models with a prespecified stationary measure π . In
addition, this assumption will give us a powerful tool to study optimal filtering by using the
generator of the process, as we show in Section 2. In the examples of Section 3, the state space
X of the signal will either be a subset of R or the (K − 1)-dimensional simplex �K .

Mathematically, optimal filtering is the solution of the recursion

ν0 = φY0(ν), νn = φYn

(
ψtn−tn−1(νn)

)
, n > 0,

which involves the following two operators acting on probability measures ξ :

update: φy(ξ)(dx) = fx(y)ξ(dx)

pξ (y)
, pξ (y) =

∫
X

fx(y)ξ(dx),

prediction: ψt(ξ)
(
dx′) = ξPt

(
dx′) =

∫
X

ξ(dx)Pt

(
x,dx′). (2)

The “update” is the application of Bayes theorem, and the “prediction” gives the distribution of
the next step of the Markov chain initiated from ξ . These operators have the following property
when applied to finite mixtures of distributions:

φy

(
n∑

i=1

wiξi

)
(dx) =

n∑
i=1

wipξi
(y)∑

j wjpξj
(y)

φy(ξi), ψt

(
n∑

i=1

wiξi

)
(dx) =

n∑
i=1

wiψt (ξi). (3)

This implies that when X is a finite set, there is a simple algorithm for the sequential computation
of the filtering probabilities. To see this, note that we can think of a distribution ν on a finite set X ,
specified in terms of probabilities αx, x ∈ X , as a finite mixture of point masses, ν = ∑

x αxδx ;
it is easy to compute φy(δx),ψt (δx) and then use the above result to obtain the probabilities
associated with the distributions φy(ν) and ψt(ν). This yields a popular algorithm for inference
in HMMs, commonly known as the Baum–Welch filter, whose complexity is easily seen to be
O(n|X |2), where |X | is the cardinality of X .

Outside the finite state-space case, the iteration of these two operators typically leads to ana-
lytically intractable distributions. However, there are notable exceptions to this rule. The classic
example is the linear Gaussian state-space model, for which the filtering distributions are Gaus-
sian with mean and covariance that can be iteratively computed using the so-called Kalman filter,
at cost that grows linearly with n. Recent work by Genon-Catalot and collaborators uncovered
that there exist interesting non-Gaussian models for which the filtering distributions are finite
mixtures of parametric distributions. See [4,5,13], where the authors show how to compute the
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corresponding parameters sequentially in these models. We revisit their findings in Section 3.
However, the number of mixture components increases with n in a way such that the cost of com-
puting the filters grows polynomially with n (see Section 2 for details). Borrowing and adapting
the terminology from [4], we will refer to filters with such computational cost as computable,
whereas filters whose cost grows linearly with n as finite-dimensional.

The work by Genon-Catalot and collaborators raises four important questions, which we ad-
dress in this paper: are there more models which admit computable filters; do they share some
basic structure; is there a general methodology to identify such models and to obtain the algo-
rithm which computes the sequence of parameters; what is the computational complexity of such
schemes and how can we obtain faster approximate filtering algorithms? We show that the an-
swer to all these questions relates to an important probabilistic object: the dual process. Duality
methods have a long history in Probability, dating back to the work of P. Lévy [20] (see [16]
for a recent review). These have been widely applied to the study of interacting particle systems
[21] and proven to be a powerful method which provides alternative, and often simpler, tools for
investigating the sample path properties of the process at hand. For example, the existence of a
dual for a certain Markov process (and for a sufficiently large class of functions) implies that the
associated martingale problem is well defined, hence that the process is unique; see Section 4.4
of [10]. See also [7] and [8] for applications of duality to population genetics.

In this paper, we illustrate that dual processes play a central role in optimal filtering and to a
great extent can be used to settle the four questions posed above. We also uncover their potential
as auxiliary variables in Monte Carlo schemes for stochastic processes (and, hence, as a variance
reduction scheme). In our framework, the dual will in general be given by two components: a
deterministic process, driven by an ordinary differential equation, and a (multidimensional) death
process with countable state-space. We show how to derive an explicit, recursive filtering scheme
once the dual is identified, and apply this methodology to three cases of fundamental interest. In
doing so, we identify what, to the best of our knowledge, is a new gamma-type duality.

The rest of the paper is organized as follows. In Section 2, we link optimal filtering to a
specific type of duality, we show how to identify the dual in terms of the generator of Xt , and
study the complexity of the resulting filtering algorithm. Section 3 analyzes three interesting
models for which the dual process is derived: the Cox–Ingersoll–Ross model, the Ornstein–
Uhlenbeck process and the K-dimensional Wright–Fisher diffusion. These models are reversible
with respect to the gamma, Gaussian and Dirichlet distribution, respectively, and for the Gaussian
case the computable filter reduces to the Kalman filter. Section 4 discusses certain aspects of the
methodology, including the extension to infinite-dimensional signals modeled as Fleming–Viot
processes.

2. Methodology: Filtering the dual process

2.1. Linking optimal filtering to duality

Before presenting the main results, we introduce three fundamental assumptions which provide
the general framework under which the results are derived. First, we will assume that X is re-
versible with respect to a probability measure π :
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A1 (Reversibility): π(dx)Pt (x,dx′) = π(dx′)Pt (x
′,dx).

Section 4 discusses how this assumption can be relaxed to accommodate non-stationary signals.
In order to state the second assumption, we need to introduce a certain amount of notation.
Define, for K ∈ Z+ =N∪ {0}, the space of multi-indices

M = Z
K+ = {

m = (m1, . . . ,mK) :mj ∈ Z+, j = 1, . . . ,K
}
. (4)

We will use the symbol 0 to denote the vector of zeros, ej for the vector in M whose only non-
zero element is found at the j th coordinate and equals 1, and let |m| = ∑

i mi . Furthermore, we
will use the product order on M, according to which for m,n ∈M, m ≤ n if an only if mj ≤ nj

for all j . Then, for i ≤ m, m − i is the vector with j th element mj − ij . Additionally, if 
 ⊂M,
define

G(
) = {n ∈M : n ≤ m,m ∈ 
}. (5)

The notation for M does not reflect its dependence on the dimension K , but we will reserve
boldface for elements of M when K > 1 (or unspecified), whereas normal typeface will be
used for elements of Z+. Finally, the following notations will be used to denote conditional
expectations

(Ptf )(x) = E
x
[
f (Xt )

] = E
[
f (Xt )|X0 = x

] =
∫
X

f
(
x′)Pt

(
x,dx′).

The first denotes the action on f of the semigroup operator associated to the transition kernel,
where with some abuse of notation the same symbol is used both for the semigroup and the
kernel.

The second assumption is concerned with models where π(dx) is conjugate to the emission
density fx(y):

A2 (Conjugacy): For Θ ⊆ R
l , l ∈ Z+, let h :X × M × Θ → R+ be such that supx h(x,m,

θ) < ∞ for all m ∈ M, θ ∈ Θ , and h(x,0, θ̃ ) = 1 for some θ̃ ∈ Θ . Then F = {h(x,m, θ) ×
π(dx),m ∈ M, θ ∈ Θ} is assumed to be a family of probability measures such that there
exist functions t :Y × M → M and T :Y × Θ → Θ with m → t (y,m) increasing and
such that

φy

(
h(x,m, θ)π(dx)

) = h
(
x, t (y,m), T (y, θ)

)
π(dx).

Hence here with conjugacy, we intend the fact that the family F of measures, which includes π ,
is closed under the update operation. The assumption that h is bounded in x will be discussed
after the statement of Assumption A4.

For pν(y) as in (2), it is easy to check that in the context of A2, we have

ph(x,m,θ)π(dx)(y) =: c(m, θ, y) = fx(y)h(x,m, θ)

h(x, t (y,m),T (y, θ))
, (6)

which, despite its appearance, does not depend on x.
Note that our definitions of M and Θ allow the possibility that K = 0 or l = 0, in which case

h in A2 is function only of the variables with non-zero dimension, whereas the case K = l = 0
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is not of interest here. In the setting of Assumption A2 and for the trivial Markov dynamics
Xt ≡ X0, with X0 ∼ π , the filtering problem collapses to conjugate Bayesian inference for the
unknown parameter x of the sampling density fx(y). See Section 5.2 and Appendix A.2 of [2]
for an exposition of conjugate Bayesian inference and stylized conjugate Bayesian models, and
Section 3 in this paper for examples within our framework.

The third main assumption for our results concerns the existence of a certain type of dual
process for the signal.

A3 (Duality): We assume that r :Θ → Θ is such that the differential equation

dt/dt = r(t ), 0 = θ0, (7)

has a unique solution for all θ0. Let λ :Z+ → R+ be an increasing function, ρ :Θ →R+ be
a continuous function, and consider a two-component Markov process (Mt ,t ) with state-
space M × Θ , where t evolves autonomously according to (7), and when at (Mt ,t ) =
(m, θ), the process jumps down to state (m − ej , θ) with instantaneous rate

λ
(|m|)ρ(θ)mj . (8)

We assume (Mt ,t ) is dual to Xt with respect to the family of functions h defined in A2,
in the sense that

E
x
[
h(Xt ,m, θ)

] = E
(m,θ)

[
h(x,Mt ,t )

] ∀x ∈X ,m ∈M, θ ∈ Θ, t ≥ 0. (9)

When K = 0 or l = 0 in A2, the dual process is just t or Mt , respectively, and we adopt
the convention that

ρ(θ) ≡ 1 whenever l = 0.

Note that Mt can only jump to “smaller” states according to the partial order on M, and that
(8) implies that 0 is an absorbing state for each coordinate j of Mt , so that the vector of zeros is
a global absorbing state.

As mentioned in Section 1, the notion of duality for Markov processes with respect to a given
function is well known. See, for example, Section II.4 in [21]. Among the most common type
of duality relations we mention moment duality, that is duality with respect to functions of type
h(x, y) = xy , and Laplace duality, that is with respect to functions of type h(x, y) = e−axy .
See, for example, [16]. In our framework, the duality functions are Radon–Nikodym derivatives
between measures that are conjugate to the emission density, and this setup is perfectly tailored to
optimal filtering. Furthermore, A3 specifies that we are interested in dual processes which can be
decomposed into two parts: one purely deterministic and the other given by a K-dimensional pure
death process, whose death rates are subordinated by the deterministic process. The transition
probabilities of the death process, conditional on the initial state 0 = θ , will be denoted by

pm,n(t; θ) = P[Mt = n|M0 = m,0 = θ ], n,m ∈M,n ≤ m. (10)

It is worth mentioning that the requirements on the structure of the dual processes prescribed by
Assumption A3, with particular reference to the intensity (8), are justified by the three main rea-
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sons. The first is that, as shown in Section 3, they define a framework general enough to identify
duals of processes of interest, the incorporation of a deterministic component being necessary in
this respect. The second reason is that the transition probabilities (10) are analytically available,
as provided by the following result, whose proof can be found in the Appendix.

Proposition 2.1. Let (Mt ,t ) be as in A3, with (M0,0) = (m, θ) ∈ M × Θ , and let λ|m| =
|m|λ(|m|). Then the transition probabilities for Mt are pm,m(t; θ) = exp{−λ|m|

∫ t

0 ρ(s)ds}
and, for any 0 ≤ i ≤ m,

pm,m−i(t; θ) =
(|i|−1∏

h=0

λ|m|−h

)
C|m|,|m|−|i|(t)p

(
i1, . . . , iK ;m, |i|),

where

C|m|,|m|−|i|(t) = (−1)|i|
|i|∑

k=0

e−λ|m|−k

∫ t
0 ρ(s)ds∏

0≤h≤|i|,h�=k(λ|m|−k − λ|m|−h)

and p(i1, . . . , iK ;m, |i|) is the multivariate hypergeometric probability mass function with pa-
rameters (m, |i|) evaluated at (i1, . . . , iK).

This result can be interpreted as follows. The probability that a one-dimensional death pro-
cess with inhomogeneous rates λ|m|ρ(s) decreases from |m| to |m| − |i| in the interval [0, t] is
(
∏|i|−1

h=0 λ|m|−h)C|m|,|m|−|i|(t), where the second factor is related to the convolution of the wait-
ing times in an inhomogeneous Poisson process (see Section 19.10 in [17], and [22]). For a
K-dimensional death process, the same quantity is the probability associated to all paths lead-
ing from level |m| to level |m| − |i|. Given such event, the probability of the subset of paths
leading exactly from m to m − i is then given by the multivariate hypergeometric probability
p(i1, . . . , iK ;m, |i|) (an expression of this probability can be found in the Appendix).

Note that the special case of Proposition 2.1 yielded by K = 1 and ρ(s) ≡ 1 relates to
the result obtained in Proposition 4.5 in [5]. Note also that when ρ(s) ≡ 1 and λm = m(θ +
m− 1)/2, C|m|,|m|−|i|(t) is the transition probability of the block-counting process of Kingman’s
coalescent with mutation, see [23] and [14] for details on such process.

The third motivation behind the type of duality required by A3 is that if it holds, the prediction
operator maps measures as in A2 into finite mixtures.

Proposition 2.2. Let ψt be as in (2) and assume A1–A2–A3 hold. Then

ψt

(
h(x,m, θ)π(dx)

) =
∑

0≤i≤m

pm,m−i(t; θ)h(x,m − i,t )π(dx) (11)

with pm,m−i(t; θ) as in Proposition 2.1 and where t is the value in t of the process in (7) started
from 0 = θ .
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Proof. From (2), we have

ψt

(
h(x,m, θ)π(dx)

) =
∫
X

h(x,m, θ)π(dx)Pt

(
x,dx′) =

∫
X

h(x,m, θ)π
(
dx′)Pt

(
x′,dx

)
= π

(
dx′)

E
x′[

h(Xt ,m, θ)
] = π

(
dx′)

E
(m,θ)

[
h
(
x′,Mt ,t

)]
=

∑
n≤m

pm,n(t; θ)h
(
x′,n,t

)
π

(
dx′),

where the second equality follows from A1, the fourth from A3, and the last from (10). �

The above result states that reversibility and the existence of the required duality jointly guar-
antee that the prediction operator can be computed with a finite effort. The reduction of the
operator to a sum is due to the fact that Xt is dual to a Markov process with discrete state-space,
but it is precisely the fact that Mt is a pure death process that makes the number of terms in the
sum being finite. The next result shows that computable filtering is available in the framework
we have outlined.

Proposition 2.3. Consider the family of finite mixtures

F̄f =
{∑

m∈


wmh(x,m, θ)π(dx) :
 ⊂M, |
| < ∞,wm ≥ 0,
∑
m∈


wm = 1

}
. (12)

Then, under Assumptions A1–A2–A3, F̄f is closed under the application of the prediction and
update operators (2), and specifically

φy

(∑
m∈


wmh(x,m, θ)π(dx)

)
=

∑
n∈t (y,
)

ŵnh
(
x,n, T (y, θ)

)
π(dx)

with

t (y,
) := {
n : n = t (y,m),m ∈ 


}
(13)

ŵn ∝ wmc(m, θ, y) for n = t (y,m),
∑

n∈t (y,
)

ŵn = 1,

and

ψt

(∑
m∈


wmh(x,m, θ)π(dx)

)
=

∑
n∈G(
)

( ∑
m∈
,m≥n

wmpm,n(t; θ)

)
h(x,n, θt )π(dx). (14)

The above proposition shows that under Assumption A1 to A3, and provided the starting
state belongs to the family F̄f of finite mixtures with components as in A2, then the filtering
distributions evolve within F̄f . Furthermore, the explicit reweighing of the mixture components
is provided, thus allowing to concretely implement the recursive filtering scheme. Note also that
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this result generalizes Theorem 2.1 in [4], which states a similar result for K = 1 under the
Assumption A2 and the result in Proposition 2.2. The proof of Proposition 2.3 follows from (3),
A2 and Proposition 2.2 by direct computation, and is thus omitted. Later in this section, we will
derive filtering algorithms based on this result. However, we first address in the next subsection
the most important aspect of the approach described in this section, which is how to find a dual
process that satisfies A2.

2.2. Local duality as a sufficient condition

It is typically easier to identify a process that satisfies the duality relation (9) for infinitesimal t .
Formally, this requires studying the generator of Xt , which we will denote by A. This is a linear
operator, with domain denoted D(A), linked to the semigroup operator via the Kolmogorov
backward equation

∂

∂t
Ptf (x) = (APtf )(x), f ∈ D(A),

where on the left hand side Pth(x) is differentiated in t for given x, whereas on the right hand
side, A acts on Pth(x) as a function of x for given t . See, for example, Proposition 1.1.5 in [10].

Suppose now Xt is a diffusion process which solves an SDE on R
d of the form

dXt = b(Xt )dt + σ(Xt )dBt .

In this case, A is the second-order differential operator given by

(Af )(x) =
d∑

i=1

bi(x)
∂f (x)

∂xi

+ 1

2

d∑
i,j=1

ai,j (x)
∂2f (x)

∂xi ∂xj

, f ∈ D(A), (15)

for an appropriate domain D(A) and where ai,j (x) := (σ (x)σ (x)T)i,j .
Let now A denote the generator of the dual process defined in A3, which can be easily checked

to be

(Ag)(m, θ) = λ
(|m|)ρ(θ)

K∑
i=1

mi

[
g(m − ei , θ) − g(m, θ)

]
(16)

+
l∑

i=1

ri(θ)
∂g(m, θ)

∂θ
, g ∈ D(A),

with r as in (7). The main idea is then to identify the dual process from the generator, instead of
the semigroup operator.

A4 (Local duality): The function h(x,m, θ) defined in A2 is such that h(x,m, θ), as a func-
tion of x belongs to D(A) for all (m, θ) ∈M×Θ , as a function of (m, θ) belongs to D(A)

for all x ∈X , and(
Ah(·,m, θ)

)
(x) = (

Ah(x, ·, ·))(m, θ) ∀x ∈ X ,m ∈M, θ ∈ Θ. (17)
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It will typically be the case that in order to have h(·,m, θ) ∈ D(A), one needs h to be bounded
in x, requirement included in Assumption A2. Proposition 1.2 of [16] shows that A4, together
with the further assumption

E
x
[
h(Xt ,m, θ)

] ∈ D(A), E
(m,θ)

[
h(x,Mt ,t )

] ∈ D(A),

implies (9), whose argument can be sketched as follows. From (17), we can write

(βI −A)h = (βI − A)h, β ∈ R,

where I denotes the identity operator. Since A and A generate strongly continuous contraction
semigroups, say on L1 and L2, their ranges are dense in L1 and L2, respectively. Moreover, the
resolvents Rβ = (βI − A)−1, Rβ = (βI − A)−1 are one-to-one for all β > 0, so the previous
implies

Rβh = Rβh, h ∈ L1 ∩ L2, β > 0.

Since the resolvent of an operator is the Laplace transform of the associated semigroup, and
because of the uniqueness of Laplace transforms, the previous expression in turn implies (9).

The approach sketched above for identifying the dual process by means of the local condition
(17) will be implemented in Section 3, where we will identify the duals for some interesting
relevant models.

2.3. The filtering algorithm

Typically, the initial distribution of the signal process belongs to F , and most often equals the
invariant measure π . Thus, without loss of generality and in order to simplify the exposition
below, we make the following additional assumption.

A5 (Initialization): The initial distribution of the signal is ν = h(x,m0, θ0)π(dx) ∈ F , for
some m0 ∈ M, θ0 ∈ Θ .

Proposition 2.3 provides a probabilistic interpretation of the weights involved in the finite mix-
tures in terms of the transition probabilities of the dual death process Mt . This interpretation can
be elaborated further, in order to facilitate the development of filtering algorithms. With a little
abuse of notation, denote by {Dn = (Mn,n),n ≥ 0} a discrete-time process with state-space
M × Θ constructed as follows. Consider a partially observed Markov process, where the sig-
nal is now Dn and the conditional independence structure, given in Figure 2 graphically, is as
follows. Let D0 = (M0,0) = (m0, θ0) be the initial state of the chain, with (m0, θ0) defined
in A5. Then L(Yn|Dn = (m, θ)) = c(m, θ, y)μ(dy), with c(m, θ, y) as in (6) and μ in (1), and
for n ≥ 1, L(Dn|Yn−1 = y,Dn−1 = (m, θ)) is the law of (Mtn−tn−1,tn−tn−1) in A3 started from
(t (y,m), T (y, θ)) at time 0. Then, the connection between duality and optimal filtering can be
expressed as

L(Xtn |Y0, . . . , Yn) =
∫

h
(
x, t (Yn,Mn),T (Yn,n)

)
π(dx)dL(Dn|Y0, . . . , Yn−1). (18)
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Figure 2. The partially observed Markov process dual to the hidden Markov model in Figure 1, where
Di = (Mi,i).

Thus, filtering Xti in the original model in Figure 1 can be achieved by filtering Di in the dual
model in Figure 2. Since n evolves deterministically, optimal filtering for X reduces to filter-
ing Mn, which has finite support with probabilities that can be computed recursively using an
algorithm similar to the Baum–Welch filter, as we now describe. L(M0,0) has support on the
single point {(m0, θ0)}; if L(Mn,n|Y0, . . . , Yn−1) has support on 
n × {θn} for 
n ⊂ M and
θn ∈ Θ , and assigns probability wm to state (m, θn), then L(Mn+1,n+1|Y0, . . . , Yn) has sup-
port on 
n+1 × {θn+1}, where 
n+1 = G(t(Yn,
n)), for G and t (y, ·) defined in (5) and (13),
respectively, θn+1 the solution of (7) at time tn+1 − tn started from 0 = θn, and the probability
associated to state (n, θn+1) ∈ 
n+1 × {θn+1} is

P[Mn+1 = n,n+1 = θn+1|Y0, . . . , Yn] =
∑

m∈
n

t(Yn,m)≥n

wmpt(Yn,m),n(tn+1 − tn; θn). (19)

Therefore, the optimal filtering reduces to the sequential computation of the parameters θn, the
supports 
n and the probabilities on each support point in 
n, for n = 0,1, . . . .

The computation of the probabilities (19) for all (n, θn+1) ∈ 
n+1 × {θn+1} can be done at
a cost that is at most of order |
n+1|2. Therefore, the overall cost of computing the filters up
to the nth observation is bounded from above by

∑n
i=0 |
i |2. If |
i | were constant with i, we

would recover the complexity of the Baum–Welch filter, discussed in Section 1. However, |
i |
increases with i, as a result of the successive operation of G and t (y, ·) defined in (5) and (13),
respectively. Clearly, it is hard to make further analysis on the computational complexity without
some information on t (y, ·). Here we will assume that t (y,m) = m + N(y), where N :Y →M,
a structure that is found in all the examples we study in this paper. We then have the following
key result. The proof of the lemma is omitted.

Lemma 2.4. For any 
 ⊂M and m ∈M, we define 
 + m = {n + m;n ∈ 
}. Then

G
(
G(
) + m

) = G(
 + m).

Proposition 2.5. Under the assumption that t (y,m) = m + N(y), where N :Y → M, we have
that

|
n| = G

(
m0 +

n∑
i=1

N(Yi)

)
≤

(
1 + dn

K

)K

,

where dn = |m0 + ∑n
i=1 N(Yi)|.
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Proof. The equality follows by successive application of Lemma 2.4. For the inequality, notice
that n := m0 + ∑n

i=1 N(Yi) ∈ M, with |n| = dn. Then, by (5), |G(n)| = ∏K
i=1(ni + 1). Then,

apply Jensen’s inequality to log |G(n)| to obtain the result. �

When the observations follow a stationary process, dn will be of order n. Therefore, the com-
plexity of carrying out the computations involved in the filtering recursions up to iteration n, will
be O(n2K), where the constant depends on K but not n. We return to the issue of complexity in
Section 4.

3. The dual of some stochastic processes

Following the local duality approach outlined in the previous section, here we identify the dual
processes for the Cox–Ingersoll–Ross model, diffusion processes with linear coefficients and K-
dimensional Wright–Fisher diffusions. In accordance with the rest of the article, we focus on
stationary parametrizations of the processes and discuss the non-stationary case in Section 4.

Recall that d,K, l denote the state space dimension for Xt , Mt and t , respectively.

3.1. CIR processes

The so-called Cox–Ingersoll–Ross (CIR) model is a non-negative one-dimensional diffusion, that
solves the SDE

dXt = (
δσ 2 − 2γXt

)
dt + 2σ

√
Xt dBt .

This name is due to [6] who introduced the model in mathematical finance, although this model
had been studied long before in the literature, see, for example, the population growth model in
Section 13.C of [18] and the process described in Section 5 of [12]. From a broader perspective,
the CIR model can also be seen as a special case of a continuous-state branching process with
immigration [19].

The generator of the CIR process is

A= (
δσ 2 − 2γ x

) d

dx
+ 2σ 2x

d2

dx2
, δ, γ, σ > 0, (20)

with domain defined as follows. With the above parametrization, and using Feller’s terminology,
the boundary point +∞ is natural for all choices of parameters, while 0 is regular if δ < 2 and
entrance if δ ≥ 2. Define

D0(A) = {
f ∈ C0

([0,∞)
) ∩ C2((0,∞)

)
:Af ∈ C0

([0,∞)
)}

,

where C0([0,∞)) is the space of continuous functions vanishing at infinity, and

D(A) =
{

f ∈ D0(A), if δ ≥ 2,

f ∈ D0(A) : lim
x→0

xδ/2f ′(x) = 0, if 0 < δ < 2.
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Then {(f,Af ) :f ∈ D(A)} generates a Feller semigroup on C0([0,∞)). Such choice of the
domain for the case 0 < δ < 2 guarantees that the boundary 0 is instantaneously reflecting. See
Theorems 8.1.2 and 8.2.1 in [10]. In this case, the CIR process is reversible with respect to the
gamma distribution

π ≡ Ga
(
δ/2, γ /σ 2).

Previous results on duality for the CIR model include a Laplace duality, that is with respect to
a function of type h(x, y) = e−axy . See, for example, [15]. Here however we identify a new,
gamma-type duality relation, which has as special cases a moment and a Laplace duality. Now,
let d = 1, K = 1 and l = 1, and define, for θ > 0, the function

h(x,m, θ) = �(δ/2)

�(δ/2 + m)

(
γ

σ 2

)−δ/2

θδ/2+mxm exp
{−(

θ − γ /σ 2)x}
.

This function can be identified as the Radon–Nikodym derivative of a Ga(δ/2+m,θ) distribution
with respect to π . The family of gamma distributions that arises by varying m ∈ Z+ and θ > 0,
defines a subset of the family of gamma distributions that is conjugate to emission densities that
as a function of x are proportional to

xne−λx, n ∈ Z+, λ > 0,

in which case t and T in A2 coincide with

t (y,m) = n + m, T (y, θ) = θ + λ.

Such type of emission density arises, for example, for observations Yn = n distributed as Poisson
with intensity λXtn , giving rise to a dynamic version of the Poisson-gamma conjugate Bayesian
model.

On the other hand, h(·,m, θ) belongs to the domain of A only when θ ≥ γ /σ 2, in which case
h ∈ C2

0([0,∞)). In order to be able to use local duality as in A4 we will assume that the family
is defined as

F = {
h(x,m, θ)π(dx),m ∈ Z+, θ ≥ γ /σ 2}

but we will return to the case θ < γ/σ 2 at the end of this subsection. Then a simple computation
yields

Ah(·,m, θ)(x) = 2mσ 2θh(x,m − 1, θ) + σ 2(δ + 2m)
(
θ − γ /σ 2)h(x,m + 1, θ)

− σ 2[2mθ + (δ + 2m)
(
θ − γ /σ 2)]h(x,m, θ).

Motivated by this structure, and with view to achieving the local duality in (17) we consider a
two-component process (Mt ,t ) with generator A as in (16), where

λ(m) = 2σ 2, r(θ) = 2σ 2θ
(
γ /σ 2 − θ

)
, ρ(θ) = θ.
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It is then easy to check that local duality holds, namely

Ah(·,m, θ)(x) = Ah(x, ·, ·)(m, θ).

Additionally, the conditions that are required to derive (9) from this local duality are satisfied. In
this example, the solution of the dynamical system (7) for 0 = θ is given by

t = γ

σ 2

θe2γ t

θe2γ t + γ /σ 2 − θ
,

which in conjunction with Proposition 2.1 implies that the transition probabilities for the death
process simplify to binomial probabilities

pm,m−i (t; θ) = Bin

(
m − i;m,

γ

σ 2

(
θe2γ t + γ /σ 2 − θ

)−1
)

.

Therefore, we have all the ingredients necessary to implement the filtering algorithm. Finally,
note that if θ0 ≥ γ /σ 2, then θn ≥ γ /σ 2 for all n.

Notice that the result on the transition probabilities above, together with Proposition 2.2, im-
plies the following interesting property of the CIR process:

ψt

(
Ga(m + δ/2, θ)

)
(21)

=
m∑

k=0

Bin

(
k;m,

γ

σ 2

(
θe2γ t + γ /σ 2 − θ

)−1
)

Ga

(
k + δ/2,

γ

σ 2

θe2γ t

θe2γ t + γ /σ 2 − θ

)
.

This result has been obtained before, using a completely different approach; the case δ = 1 can
be shown directly by elementary calculations using a change of variables and binomial expansion
of the left-hand-side; the general case was proved in [4], see Proposition 3.4 and the associated
Lemma 3.1, after some rather heavy calculations. The result in (21) leads to a computable filter,
as we showed in Proposition 2.3, which is precisely the result also obtained in [4] for the CIR
process. It is neat that using duality and the generic result in Proposition 2.2, this result can be
obtained in a straightforward manner. The proof in [4] is based on the following known series
expansion of the CIR transition kernel, see expression (80) in [4] and page 334 of [18], which
can be re-expressed as a Poisson mixture of gamma distributions as follows:

Pt

(
x,dx′) =

∑
k≥0

Poisson

(
k; γ

σ 2

1

e2γ t − 1
x

)
Ga

(
k + δ/2,

γ

σ 2

e2γ t

e2γ t − 1

)
. (22)

It is interesting that instead of deriving (21) from (22), which in any case is laborious, one can
prove the former using duality and then obtain (22) by taking θ = (m + δ/2)/x and letting
m → ∞ in (21).

In view of the arguments of Section 2, it follows that, for θ < γ/σ 2, h /∈ D(A), hence duality
in the sense of A3 cannot be established using local duality. However, in view of the result
(21) that has already been obtained in [4], it is obvious that duality still holds in this case. This
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also shows the limitation of the functional analytic method for establishing duality: it is a very
powerful when all formal requirements are met, but there will be examples, like this one, where
(9) would have to be established by alternative arguments. Nevertheless, a formal calculation
using the generator reveals the dual even when θ < γ/σ 2.

3.2. Linear diffusion processes

We consider the scalar Ornstein–Uhlenbeck process that solves an SDE of the form

dXt = −σ 2

α
(Xt − γ )dt + √

2σ dBt ,

which is reversible with respect to the Gaussian distribution,

π(dx) ≡ Normal(γ,α).

The generator is given by

A = (
σ 2γ /α − σ 2x/α

) d

dx
+ σ 2 d2

dx2

with domain C2
0((−∞,∞)). In this model, we have d = 1,K = 0, l = 2, where θ = (μ, τ) ∈

R×R+, and

h(x,μ, τ) =
(

α

τ

)1/2

exp

{
− (x − μ)2

2τ
+ (x − γ )2

2α

}
,

which can be easily recognised as the Radon–Nikodym derivative between a Normal(μ, τ)

and π . The measures h(x,μ, τ)π(dx) are conjugate to emission densities that as a function
of x are proportional to

exp

{
− 1

2λ
(x − c)2

}
, λ > 0, c ∈ R,

with T (y, θ) = ((λμ + τc), λτ)/(λ + τ). Such density arises, for example, with data Yn = c

that is Gaussian with mean Xtn and variance λ. As with the CIR process, we have the technical
problem that this function belongs to D(A) only for τ < α, hence we will restrict to this case
and define Θ = {(μ, τ) :μ ∈ R,0 < τ < α}. A direct calculation gives that

Ah(·,μ, τ)(x) = σ 2

α
(γ − μ)

∂

∂μ
h(x,μ, τ) + 2σ 2(1 − τ/α)

∂

∂τ
h(x,μ, τ).

This suggests that the dual is purely deterministic and described in terms of the ODEs:

dμt/dt = σ 2

α
(γ − μt)dt, dτt/dt = 2σ 2(1 − τt/α)dt.
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Duality with respect to this deterministic process implies that the filter evolves within the Gaus-
sian family and the computational cost is linear in n, that is, we are dealing with a finite-
dimensional filter.

Of course, all this is known: the ODEs above are the well-known equations for the first two
moments of linear SDEs, and the filter is the Kalman filter. Thus, within the assumptions we have
made in this article, the finite-dimensional filter corresponds to the special case where the dual
is purely deterministic. We considered d = 1 for simplicity, but the results carry over to multi-
dimensional stationary linear SDEs. The same discussion as for the CIR applies here regarding
the restrictions posed by needing that h ∈ D(A). We return to this issue in Section 4.

3.3. Wright–Fisher diffusions

Wright–Fisher (WF) processes are K-dimensional diffusions with paths confined in the (K −1)-
dimensional simplex

�K =
{

x ∈ [0,1]K :
K∑

i=1

xi = 1

}
. (23)

These processes approximate, among others, large-population discrete Wright–Fisher reproduc-
tive models with non-overlapping generations, and describe the time-evolution of the species
abundancies when the individuals in the underlying population are subject to random genetic
drift and, possibly, mutation, selection and recombination. See, for example, Chapter 5 in [7] and
Chapter 10 in [10]. Here we are interested in the case without selection nor recombination, and
with parent-independent mutation. That is, we consider a WF diffusion with generator

A = 1

2

K∑
i=1

(
αi − |α|xj

) ∂

∂xi

+ 1

2

K∑
i,j=1

xi(δij − xj )
∂2

∂xi ∂xj

, (24)

where δij denotes the Kronecker delta, α = (α1, . . . , αK) ∈ R
K+ and |α| = ∑K

i=1 αi . The domain
of the operator A is taken to be C2(�K), and the closure of A generates a strongly continuous
contractive semigroup on C(�K). See [9] for details. Note that this is a hypoelliptic diffusion,
that is, the square of the diffusion matrix is not full rank, as a result of the constraint

∑
i xi = 1.

Even though we could work with an elliptic diffusion for the K −1 variables, it is the formulation
above that is desirable for identifying the dual, as we will show.

Such diffusion is reversible with respect to the Dirichlet distribution

π(dx1, . . . ,dxK) = �(|α|)∏K
j=1 �(αj )

x
α1−1
1 · · ·xαK−1

K dx1 · · · dxK, x ∈ �K. (25)

In this model, we have d = K ≥ 2 and l = 0, therefore there is no deterministic component in
the dual process. We denote

xm = x
m1
1 · · ·xmK

K , x ∈ �K,m ∈ M,
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and define

h(x,m) = �(|α| + |m|)
�(|α|)

K∏
j=1

�(αj )

�(αj + mj)
xm, (26)

whence clearly h(·,m) ∈ D(A). This can be identified with the Radon–Nikodym derivative be-
tween a Dirichlet distribution with parameters (α1 +m1, . . . , αK +mK) and π , and it is conjugate
to emission densities that as a function of x are proportional to

x
n1
1 · · ·xnK

K , ni ∈ Z+, i = 1, . . . ,K,

in which case t in A2 coincides with t (y,m) = n + m. Such type of emission density arises,
for example, for observations Yn = (n1, . . . , nK) distributed as Multinomial with parameters
Xtn = (Xtn,1, . . . ,Xtn,K), giving rise to a dynamic version of the Dirichlet-Multinomial conju-
gate Bayesian model.

Then we have

Ah(x,m) =
K∑

i=1

(
αimi

2
+

(
mi

2

))
�(|α| + |m|)

�(|α|)
K∏

j=1

�(αj )

�(αj + mj)
xm−ei

−
K∑

i=1

( |α|mi

2
+

(
mi

2

)
+ 1

2
mi

∑
j �=i

mj

)
�(|α| + |m|)

�(|α|)
K∏

j=1

�(αj )

�(αj + mj)
xm

= |α| + |m| − 1

2

K∑
i=1

mih(x,m − ei ) − |m|(|α| + |m| − 1)

2
h(x,m).

This suggests considering a one-component dual process, with Mt a Markov jump process with
generator A obtained by letting

λ
(|m|) = (|α| + |m| − 1

)
/2, ρ(θ) ≡ 1,

in (16). Since h(x, ·) ∈ D(A), it is then easy to check that the local duality condition

Ah(·,m)(x) = Ah(x, ·)(m)

holds. Hence, the WF diffusion with parent-independent mutation Xt and the death process Mt

on Z
K+ , which jumps from m to m − ej at rate mj(|α| + |m| − 1)/2, are dual with respect to the

above h in the sense of A3. The transition probabilities of Mt are as in Proposition 2.1.
Filtering the WF model when K = 2 on the basis of binomial data was studied in [5]. One can

appreciate the strength of the approach we introduce here, since it is straightforward to obtain
the filtering recursion using the dual and Proposition 2.1 for any K . It has to be noted that, in
our opinion, one of the reasons why the results are harder to obtain using the approach in [5], is
because they decide to work with the elliptic WF model, which is a scalar diffusion since K = 2.
Working with the elliptic model hides the structure of duality, which is immediately apparent in
the hypoelliptic model.
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The death process we obtain in this section can be seen as a special case of the process used in
[1] for deriving an infinite mixture expansion for the transition kernel of the WF diffusion with
selection.

An extension of WF diffusions to the case of infinitely-many types is given by Fleming–
Viot processes. These are measure-valued diffusions whose finite-dimensional projections onto
partitions of the type space coincide with WF processes. A duality relation holds between the
Fleming–Viot process and a function-valued process related to Kingman’s coalescent. See, for
example, [11]. However, by applying to such dual process the same finite-dimensional projection
that yields the WF process, one does not obtain the dual derived here, since binning the process
into finitely-many sets hides some important information about the events at the level of particles.

4. Discussion

We have demonstrated that computable filtering follows from duality, in the sense described in
Assumptions A2 and A3 in Section 2. A sufficient condition to establish duality is the local
duality described in Assumption A4, which is based on the properties of the generator of the
signal process and its relation to the semigroup operator via the Kolmogorov backward equation.
The use of this functional analytic machinery places some constraints on the duality function in
A2, such as for example that as a function of x it has to vanish at infinity. Therefore, even when
duality holds in the sense of A3 for functions that do not satisfy such constraints, the local duality
cannot be used to prove this. On the other hand, the local duality can still be used formally to
identify the dual. Both in the CIR process when θ < γ/σ 2 and in the OU process when τ < α

(see Section 3 for details) the formal application of the generator identifies the dual correctly.
We have assumed reversibility with respect to a probability measure π . In fact, our methodol-

ogy relies on the existence of such reversible measure but does not require that it be a probability
measure. An inspection of Proposition 2.2 reveals that it is still valid in this more general case,
provided h(x,m, θ)π(dx) is a probability measure. Therefore, h is the Radon–Nikodym deriva-
tive between the measures in F and the reversible measure, in this more general framework
which also covers non-stationary signals.

Another topic of investigation is the connection of the duality, as used in this paper, and results
about the spectral representation of the transition kernel of the signal, for example, the type of
expression in (22). There are classic results about such expressions, see, for example, Chapter 13
of [18], and their existence seems to be related to computable filtering, see Section 6.4 of [5], but
the connection is not well understood.

Our results in Section 2 show that for observations generated by a stationary process the com-
putational cost associated with the identification of the filtering distributions grows polynomially
with the number of observations, unless K = 0 in which case the growth is linear. However, it
might be the case that most of the components in the mixture representations have negligible
weight. Previous simulation studies, see, for example, Table 1 in [13], show that after a few it-
erations the filter might concentrate all its mass in two or three components. We believe that the
connection to the dual process might be very helpful in studying the effective number of com-
ponents. However, there are subtleties in this line of research. Note that when Xt is ergodic, and
ti − ti−1 is large relative to its mixing time, practically all mass of the filtering distribution will be
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concentrated on a single component, the “root” (0, θ̃ ) (see A2) that corresponds to the invariant
measure π . Therefore, the time evolution of the number of states with non-negligible filtering
probabilities (say above a given ε ≈ 0) will depend on the number of observations per unit of
time in the X process. This aspect deserves careful study.

We have obtained explicit filters also for a class of Fleming–Viot diffusions with parent inde-
pendent mutation and for a class of measure-valued branching processes with immigration, under
parametrizations which make them reversible with respect to the Dirichlet and the gamma pro-
cess respectively. A peculiarity of this framework, entailed by the fact that the signal is measure-
valued and the observations are random draws from the signal, is the lack of a common dom-
inating measure for the emission distributions, hence the lack of likelihood, which makes the
nature of the problem truly non-parametric. The techniques for obtaining an optimal filter thus
necessarily differ from those illustrated in this paper and will be reported elsewhere.

Appendix: Proof of Proposition 2.1

Before stating the result, we recall a useful lemma, whose proof can be found in [5].

Lemma A.1.

l∑
j=0

(−1)j

(λn − λn−1−j )
∏

0≤h≤l,h�=j |λn−1−j − λn−1−h| = 1∏
1≤h≤l+1(λn − λn−h)

.

Proof of Proposition 2.1. Consider first the one-dimensional case, that is, m = m, denote for
brevity θ [s, t] = ∫ t

s
ρ(θu)du, and define for i ≥ 1

I1,...,i =
∫ t

0
· · ·

∫ t

ti−1

e−λmθ [0,t1]
i−1∏
k=1

θtk e−λm−kθ [tk,tk+1] dtk θti e
−λm−i θ [ti ,t] dti ,

I1,...,j−1,j,...,i =
∫ t

0
· · ·

∫ t

ti−1

e−λmθ [0,t1]
i−1∏

k=1,k �=j

θtk e−λm−kθ [tk ,tk+1] dtk θti e
−λm−i θ [ti ,t] dti ,

where tj := tj+1 in I1,...,j−1,j+1,...,i . It can be easily seen that

Ii = e−λm−i θ [0,t] − e−λmθ [0,t]

λm − λm−i

. (A.1)

Then we have (
i−1∏
h=0

λm−h

)−1

pm,m−i (t) = I1,...,i , (A.2)
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where pm,m−i (t) is the transition probability associated to the one-dimensional death process.
By integrating twice, we obtain

I1,...,i = (−1)(I1,...,i−1 − I1,...,i−2,i )

λm−(i−1) − λm−i

= (−1)2

λm−(i−1) − λm−i

[
(I1,...,i−2 − I1,...,i−3,i−1)

λm−(i−2) − λm−(i−1)

− (I1,...,i−2 − I1,...,i−3,i )

λm−(i−2) − λm−i

]
.

The iteration of the successive integrations can be represented as a binary tree with root (i,0) :=
I1,...,i , whose node (i −j, i −k) := I1,...,i−j,i−k branches into (i −j,0) := I1,...,i−j and ((i −j −
1)+, i − k) = I1,...,i−j−1,i−k , with both branches weighed 1/(λm−(i−j) − λm−(i−k)), determined
by the parent node’s indices. The leaves correspond to nodes where the left coordinate touches
zero if the right coordinate is already zero, or where the left crosses zero if the right coordinate is
positive. The term associated to the leaf (0, i − k) will be (−1)ie−λm−(i−k)θ [0,t] weighed by some
appropriate coefficient. The level before the leaves can be seen as the sequence

I1I2︸︷︷︸
21

I1I3︸︷︷︸︸ ︷︷ ︸
22

I1I2I1I4︸ ︷︷ ︸
︸ ︷︷ ︸

23

I1I2I1I3I1I2I1I5︸ ︷︷ ︸

︸ ︷︷ ︸
24

. . . ,

where every sequence of 2i terms is repeated with the last index augmented by one, and each Ii

produces the leaves e−λm and e−λm−i . Hence given i, there are 2i−2 terms I1, 2i−3 terms I2, . . . ,
21 terms Ii−2, 20 terms Ii−1 and Ii . Note also that I1 has 20 paths in common with Ii , 20 paths
in common with Ii−1, 21 paths in common with Ii−2, . . . , 2i−3 paths in common with I2.

The correct coefficient for Ik is computed by collecting some constants related to the paths
that have the same last coefficient and simplifying. In particular, given i, the paths to be grouped
for Ik are those whose constants for indices greater than k change, since according to the rule
above, when k is the rightmost index in I1,...,k , there is only one path down to Ik . Hence, given
i, term Ik has coefficient

(−1)i−1∏
1≤h<k(λm−h − λm−k)

×
i−(k+1)∑

j=0

1

(λm−k − λm−k−1−j )
∏

0≤h≤i−(k+1),h�=j (λm−k−1−j − λm−k−1−h)
.

By taking moduli and applying Lemma A.1 to the sum above, we obtain

(−1)i−1∏
1≤h≤i,h�=k(λm−k − λm−h)

.
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The result now follows from (A.1) and (A.2), and from the fact that in the K-dimensional case,
the probability of going from m to m − i, conditional on |i|, is

p
(
i1, . . . , iK ;m, |i|) =

(
m1
i1

) · · · (mK

iK

)(|m|
|i|

) .
�
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