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Sequential Monte Carlo (SMC) methods, also known as particle filters, are simulation-based recursive al-
gorithms for the approximation of the a posteriori probability measures generated by state-space dynamical
models. At any given time t , a SMC method produces a set of samples over the state space of the system of
interest (often termed “particles”) that is used to build a discrete and random approximation of the poste-
rior probability distribution of the state variables, conditional on a sequence of available observations. One
potential application of the methodology is the estimation of the densities associated to the sequence of a
posteriori distributions. While practitioners have rather freely applied such density approximations in the
past, the issue has received less attention from a theoretical perspective. In this paper, we address the prob-
lem of constructing kernel-based estimates of the posterior probability density function and its derivatives,
and obtain asymptotic convergence results for the estimation errors. In particular, we find convergence rates
for the approximation errors that hold uniformly on the state space and guarantee that the error vanishes al-
most surely as the number of particles in the filter grows. Based on this uniform convergence result, we first
show how to build continuous measures that converge almost surely (with known rate) toward the posterior
measure and then address a few applications. The latter include maximum a posteriori estimation of the
system state using the approximate derivatives of the posterior density and the approximation of functionals
of it, for example, Shannon’s entropy.

Keywords: density estimation; Markov systems; particle filtering; sequential Monte Carlo; state-space
models; stochastic filtering

1. Introduction

1.1. Background

Consider two random sequences, {Xt }t≥0 and {Yt }t≥1, possibly multidimensional, where Xt rep-
resents the unobserved state of a system of interest and Yt is a related observation. Very often,
the dependence between the two sequences is given by a Markov state-space model and the
posterior probability measure that characterizes the random variable Xt conditional on the ob-
servations {Ys,1 ≤ s ≤ t} is usually termed the “filtering measure”, denoted as πt in the sequel. If
the model is linear and Gaussian, πt is also Gaussian and can be computed exactly using a set of
recursive equations known as the Kalman filter [32]. However, if Xt takes values in a continuous
space and the model is nonlinear or non-Gaussian, the exact filter is intractable and numerical
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approximation techniques are necessary. The class of sequential Monte Carlo (SMC) methods,
also known as particle filters [21,22,27,33,36], has become a very popular tool for this purpose.
Particle filters generate discrete random measures (constructed from random samples in the state
space) that can be naturally used to approximate integrals with respect to (w.r.t.) the filtering
measure.

The asymptotic convergence of SMC algorithms has been well studied during the past two
decades. The first formal results appeared in [13,14], while the analysis in [9] already took into
account the branching (resampling) step indispensable in most practical applications. Currently,
there is a broad knowledge about the convergence of particle filters in some of the forms com-
monly used in practical applications; see [3,8,15,16,30,35] and the references therein. Most of
these results are aimed to show that integrals of real functions w.r.t. πt can be accurately ap-
proximated by weighted sums when the particle filter is run with a sufficiently large number of
random samples (commonly referred to as particles). More recently, other types of convergence
have been investigated. For instance, the convergence of particle approximations of maximum a
posteriori (MAP) estimates of sequences has also been proved. Convergence in probability can
be shown using random genealogical trees (see [40] and [15]) while almost sure convergence can
also be guaranteed by extending the analysis in [10] (see [38]).

In most cases of interest, the filtering measure has a density, denoted pt , w.r.t. a dominating
measure (usually Lebesgue’s) and practitioners have freely used various estimators of this func-
tion. Less attention has been devoted to this problem from a theoretical perspective, though. Note
that the samples generated by the particle filter are not drawn directly from pt : they can only be
considered as approximate samples, in the sense that they can be used to estimate the value of
integrals w.r.t. the measure πt . As a consequence, the convergence of a kernel density estimate of
pt built from the output of a particle filter cannot be justified directly using the classical theory of
kernel density estimation, which is concerned with samples drawn directly from the distribution
of interest (see, e.g., [18,42,43,45]).

The estimation of pt is of interest by itself, since it naturally enables the computation of
confidence regions, as well as MAP and maximum likelihood estimators, but also because it
leads to the approximation of πt by a continuous (instead of discrete) random measure. The
convergence of continuous approximations of the filtering measure in total variation distance has
been investigated in the context of regularized particle filters [35] as well as for accept/reject and
auxiliary particle filters [34].

1.2. Contributions

In this paper, we analyze the approximation of pt constructed as the sum of properly scaled
kernel functions located at the particle positions. Kernel methods [42,45] are the most widely
used techniques for the nonparametric estimation of probability density functions (pdfs) and,
therefore, it seems natural to analyze their convergence when applied to the approximate samples
generated by particle filters.

The pdf estimators we analyze are based on generic kernel functions which are only required
to satisfy mild standard conditions (essentially the same as in classical density estimation theory
[42]). We describe how to build approximations in arbitrary-dimensional spaces Rd , d ≥ 1, and



Particle-kernel density estimation 1881

then analyze their convergence as the number of particles is increased and the bandwidth of
the kernels is decreased. In particular, we obtain point-wise convergence rates for the absolute
approximation errors, both of pt and its derivatives1 (provided they exist). The latter results can
be extended to deduce uniform (instead of point-wise) convergence rates, again both for pt and
its derivatives. Specifically, we provide explicit bounds for the supremum of the approximation
error and prove that it converges almost surely (a.s.) toward 0 as the number of particles is
increased. Our analysis is different from the standard methods in kernel density estimation. The
latter address the bias and variance of the estimators using approximations based on Taylor series
(see, e.g., [42], Chapter 4 or [45], Chapter 4) or Edgeworth expansions [28], which enable the
asymptotic approximation of the mean integrated square error (MISE) of the density estimate
and yield expressions involving the number of samples and the kernel bandwidth. We directly
obtain convergence rates for various estimation errors (not only the MISE), given in terms of
a single index that links the number of samples and the kernel bandwidth. This link is briefly
discussed in Section 3.3.

The uniform (on the support of pt ) convergence result can be exploited in a number of ways.
For instance, if we let pN

t be the approximation of pt with N particles, then we can obtain a
continuous approximation of the filtering measure πt (dx) as π̆N

t (dx) = pN
t (x)dx, prove that

π̆N
t converges to πt a.s. in total variation distance (as N → ∞) and provide explicit convergence

rates. A similar kind of analysis also leads to the calculation of convergence rates for the MISE
of the particle-kernel density estimator pN

t . Additionally, we prove that the (random) integrated
square error (ISE) of a truncated version of pN

t converges to 0 a.s. and provide convergence
rates. A comparison of these results with the standard asymptotic approximation of the MISE for
kernel estimators built from i.i.d. samples is presented at the end of Section 4.3.

The convergence in total variation distance of a continuous approximation of the filtering
measure πt was also addressed in [35] and [34]. Compared to these earlier contributions, our
analysis guarantees the almost sure convergence of the (random) total variation distance toward 0,
with explicit rates, rather than the convergence of its expected value (as in [35]) or its convergence
in probability (as in [34]). Also, our assumptions on the Markov kernel of the state process
{Xt }t≥0 and the conditional densities of {Yt |Xt }t≥1 are relatively mild and simple to check. In
particular, our results also hold for light-tailed Markov kernels (e.g., Gaussian), unlike Theorems
2 and 3 in [34].

The last part of the paper is devoted to some applications of the density approximation method
and the uniform convergence result. We first consider the problem of MAP estimation. We refer
here to the maximization of the filtering density, a problem different from that of MAP estimation
in the path space addressed, for example, in [26,38,40]. We first prove that the maxima of the
approximation of the filtering density actually converge, asymptotically, to the maxima of the true
function pt and then show some simulation results that illustrate the use of gradient algorithms
on the estimated density function.

1Let us note here that the approximation of derivatives of the filter has received attention recently, related to problems of
parameter estimation in state-space systems [12,17]. In the latter context, the filtering pdf is made to depend explicitly on
a parameter vector θ = (θ1, . . . , θd ), and the interest is in the computation of the partial derivatives ∂pt /∂θi in order to
implement, for example, maximum likelihood estimation algorithms [17]. In this paper, however, we consider derivatives
with respect to the state variables in Xt = (X1,t , . . . ,Xdx ,t ), that is, ∂pt /∂xi,t .
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The second application we describe is the approximation of functionals of pt . We provide first
a generic result that guarantees the almost sure convergence of such approximations for bounded
and Lipschitz continuous functionals. Then, we address the problem of approximating Shannon
entropies [7], which is of practical interest in various machine learning and signal processing
problems. The log function is neither bounded nor Lipschitz continuous and, therefore, the latter
generic result does not apply to the computation of entropies. We specifically address this prob-
lem resorting to a new result on the convergence of the particle approximations of integrals of the
form

∫
f (x)πt (dx) when the test function f is possibly unbounded. Let us remark that a large

majority of the results in the literature [3,8,15,16,35] refer exclusively to the approximation of
integrals of bounded functions. Only recently, the convergence of approximate integrals of un-
bounded test functions has been proved [31], albeit for a modified particle filter and assuming that
the product of the test and the likelihood functions is bounded. Here, we prove the almost sure
convergence of the approximations of integrals of unbounded functions for the standard particle
filter, placing only integrability assumptions on the test function. From this result, we deduce the
almost sure convergence toward 0 of the errors in the approximation of Shannon entropies for
densities with a compact support. A numerical illustration is given.

1.3. Organization of the paper

The rest of the paper is organized as follows. Section 2 contains background material, including
a summary of notation, a description of Markov state space models and the standard particle
(bootstrap) filter. A new lemma that establishes the convergence of the particle approximation of
posterior expectations of unbounded test functions is also introduced in Section 2. The construc-
tion of particle-kernel approximations of the filtering density and its derivatives is described in
Section 3, where we also review some basics of kernel density estimation and the most relevant
results in [35] and [34] for density estimation with particle filters. Our formal results on the con-
vergence of the particle-kernel density estimators and the smooth approximation of the filtering
measure are introduced in Section 4. This includes the point-wise and uniform approximations of
pt (x), the convergence in total variation distance of the smooth measures π̆N

t and convergence
rates for the mean integrated square error and the (random) integrated square error of pN

t and
its truncated version, respectively. In Section 5, we discuss applications of the particle-kernel
estimator of pt and its derivatives. In particular, we consider the problem of (marginal) MAP
estimation of the state variables and the approximation of functionals of the filtering density,
including Shannon’s entropy. Finally, brief conclusions are presented in Section 6.

2. Particle filtering

2.1. Notation

We first introduce some common notations to be used through the paper, broadly classified by

topics. Below, R denotes the real line, while for an integer d ≥ 1, Rd =
d times︷ ︸︸ ︷

R× · · · ×R
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• Measures and integrals.
– B(Rd) is the σ -algebra of Borel subsets of Rd .
– P(Rd) is the set of probability measures over B(Rd).
– (f,μ) �

∫
f (x)μ(dx) is the integral of a real function f :Rd → R w.r.t. a measure μ ∈

P(Rd).
– Take a measure μ ∈P(Rd), a Borel set A ∈ B(Rd) and a real function f :Rd →R

+. The
projective product f � μ is a measure, absolutely continuous w.r.t. μ and proportional to
f , constructed as

(f � μ)(A) =
∫
A

f (x)μ(dx)

(f,μ)
. (2.1)

• Functions.
– The supremum norm of a real function f :Rd →R is denoted as ‖f ‖∞ = supx∈Rd |f (x)|.
– B(Rd) is the set of bounded real functions over Rd , that is, f ∈ B(Rd) if, and only if,

‖f ‖∞ < ∞.
– Cb(R

d) is the set of continuous and bounded real functions over Rd .
• Sets.

– Given a probability measure μ ∈P(Rd), a Borel set A ∈ B(Rd) and the indicator function

IA(x) =
{

1, if x ∈ A,

0, otherwise,

μ(A) = (IA,μ) = ∫
A

μ(dx) is the probability of A.
– The Lebesgue measure of a set A ∈ B(Rd) is denoted L(A).
– For a set A ∈ R

d , Ac = R
d\A denotes its complement.

• Sequences, vectors and random variables (r.v.).
– We use a subscript notation for sequences, xt1:t2 � {xt1, . . . , xt2}.
– For an element x = (x1, . . . , xd) ∈ R

d of an Euclidean space, its norm is denoted as

‖x‖ =
√

x2
1 + · · · + x2

d .

– The Lp norm of a real r.v. Z, with p ≥ 1, is written as ‖Z‖p � E[|Z|p]1/p , where E[·]
denotes expectation.

2.2. Filtering in discrete-time, state-space Markov models

Consider two random sequences, {Xt }t≥0 and {Yt }t≥1, taking values in R
dx and R

dy , respectively.
The common probability measure for the pair ({Xt }t≥0, {Yt }t≥1) is denoted P, and we assume
that it is absolutely continuous w.r.t. the Lebesgue measure. We refer to the first sequence as the
state process and we assume that it is an inhomogeneous Markov chain governed by an initial
probability measure τ0 ∈ P(Rdx ) and a sequence of transition kernels τt :B(Rdx )×R

dx → [0,1],
defined as

τt (A|xt−1)� P{Xt ∈ A|Xt−1 = xt−1}, (2.2)
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where A ∈ B(Rdx ) is a Borel set. The sequence {Yt }t≥1 is termed the observation process. Each
r.v. Yt is assumed to be conditionally independent of other observations given the state Xt , mean-
ing that

P
{
Yt ∈ A|X0:t = x0:t , {Yk = yk}k �=t

}= P{Yt ∈ A|Xt = xt } (2.3)

for any A ∈ B(Rdy ). Additionally, we assume that every probability measure γt ∈ P(Rdy ) in the
sequence

γt (A|xt ) � P{Yt ∈ A|Xt = xt }, A ∈ B
(
R

dx
)
, t = 1,2, . . . , (2.4)

has a positive density w.r.t. the Lebesgue measure. We denote this density as gt (y|x), hence we
write γt (A|xt ) = ∫

A
gt (y|xt )dy.

The filtering problem consists in the computation of the posterior probability measure of the
state Xt given a sequence of observations up to time t . Specifically, for a fixed observation record
Y1:T = y1:T , T < ∞, we seek the measures πt ∈ P(Rdx ) given by

πt (A) � P{Xt ∈ A|Y1:t = y1:t }, t = 0,1, . . . , T , (2.5)

where A ∈ B(Rdx ). For many practical problems, the interest actually lies in the computation of
integrals of the form (f,πt ). Note that, for t = 0, we recover the prior measure, that is, π0 = τ0.

2.3. Particle filters

The sequence of measures {πt }t≥1 can be numerically approximated using particle filtering. Par-
ticle filters are numerical methods based on the recursive decomposition [3]

πt = g
yt
t � τtπt−1, (2.6)

where g
yt
t :Rdx → R

+ is the function defined as g
yt
t (x) � gt (yt |x), � denotes the projective

product and ξt � τtπt−1 is the (predictive) probability measure

ξt (A) = τtπt−1(A) =
∫

τt (A|x)πt−1(dx), A ∈ B
(
R

dx
)
. (2.7)

Specifically, the simplest particle filter, often called ‘standard particle filter’ or ‘bootstrap filter’
[27] (see also [20]), can be described as follows.

1. Initialization. At time t = 0, draw N i.i.d. samples from the initial distribution τ0 ≡ π0,
denoted x

(n)
0 , n = 1, . . . ,N .

2. Recursive step. Let 
N
t−1 = {x(n)

t−1}n=1,...,N be the particles (samples) generated at time
t − 1. At time t , proceed with the two steps below.

(a) For n = 1, . . . ,N , draw a sample x̄
(n)
t from the probability distribution τt (·|x(n)

t−1)

and compute the normalized weight

w
(n)
t = g

yt
t (x̄

(n)
t )∑N

k=1 g
yt
t (x̄

(k)
t )

. (2.8)
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(b) For n = 1, . . . ,N , let x
(n)
t = x̄

(k)
t with probability w

(k)
t , k ∈ {1, . . . ,N}.

Step 2(b) is referred to as resampling or selection. In the form stated here, it reduces to the so-
called multinomial resampling algorithm [19,22] but the convergence of the algorithm can be
easily proved for various other schemes (see, e.g., the treatment of the resampling step in [8]).
Using the samples in 
N

t = {x(n)
t }n=1,...,N , we construct a random approximation of πt , namely

πN
t (dxt ) = 1

N

N∑
n=1

δ
x

(n)
t

(dxt ), (2.9)

where δ
x

(n)
t

is the delta unit-measure located at Xt = x
(n)
t . For any integrable function f in the

state space, it is straightforward to approximate the integral (f,πt ) as

(f,πt ) ≈ (
f,πN

t

)= 1

N

N∑
n=1

f
(
x

(n)
t

)
. (2.10)

The convergence of particle filters has been analyzed in a number of different ways. Most of
the results to be described in this paper rely only on the convergence of the Lp norm of the
approximation errors (f,πN

t )− (f,πt ) for bounded functions. Additionally, we establish the a.s.
convergence toward 0 of the approximation errors for a class of possibly unbounded functions.
Specifically, let f be a real function over the state space and introduce the notation

τt (f )(x) =
∫

f (z)τt (dz|x)

for conciseness. Note that τt (f ) :Rdx → R is also a real function over the state space. We define
the following class of functions.

Definition 2.1. F
p
T is a family of functions f :Rdx → R that satisfy:

(i) (f p,πt ) < ∞ for t = 0, . . . , T , and
(ii) if f ∈ F

p
T then τt (f

p) ∈ F
p
T for t = 1, . . . , T .

The set F
p
T includes functions that are p-integrable w.r.t. πt , 0 ≤ t ≤ T , and remain p-

integrable when sequentially transformed by the kernels τt , 1 ≤ t ≤ T . Note that if p ≤ q then
F

q
T ⊆ F

p
T . It turns out that if f ∈ F

p
T for some p ≥ 4, then the error of the particle approximations

vanishes for large N at every time step. This is precisely stated by the following proposition.

Proposition 2.1. Assume that the sequence of observations Y1:T = y1:T is fixed, with T being
some large but finite time horizon, g

yt
t ∈ B(Rdx ) and g

yt
t > 0 (in particular, (g

yt
t , ξt ) > 0) for

every t = 1,2, . . . , T . The following results hold.

(a) For any f ∈ B(Rdx ) and any p ≥ 1,

∥∥(f,πN
t

)− (f,πt )
∥∥

p
≤ ct‖f ‖∞√

N
(2.11)
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for t = 0,1, . . . , T , where ct is a constant independent of N , ‖f ‖∞ = supx∈Rdx |f (x)|
and the expectation is taken over all possible realizations of the random measure πN

t . In
particular,

lim
N→∞

∣∣(f,πN
t

)− (f,πt )
∣∣= 0 a.s. for 0 ≤ t ≤ T .

(b) If f ∈ F4
T , then limN→∞ |(f,πN

t ) − (f,πt )| = 0 a.s. for 0 ≤ t ≤ T .

See Appendix A for a proof.

Remark 2.1. Part (a) of Proposition 2.1 is fairly standard. A similar proposition was already
proved in [16], albeit under additional assumptions on the state-space model. Bounds for p = 2
and p = 4 can also be found in a number of references (see, e.g., [8,11,15]). Part (b) establishes
the almost sure convergence for the approximate integrals of unbounded functions (e.g., for the
approximation of the posterior mean) as long as they are “sufficiently integrable”. A similar result
can be found in [31], including convergence rates. However, the analysis in [31] is carried out for
a modified particle filtering algorithm, that involves a rejection test on the generated particles,
and cannot be applied to the standard particle filter presented in this section.

3. Particle-kernel approximation of the filtering density

In the sequel, we will be concerned with the family of Markov state-space models for which
the posterior probability measures {πt }t≥1 are absolutely continuous w.r.t. the Lebesgue measure
and, therefore, there exist pdfs pt :Rdx → [0,+∞), t = 1,2, . . . , such that πt (A) = ∫

A
pt (x)dx

for any A ∈ B(Rdx ). The density pt is referred to as the filtering pdf at time t . In this section,
we briefly review the basic methodology for kernel density estimation and then describe the
construction of sequences of approximations of pt using the particles generated by a particle
filter and a generic kernel function. The section concludes with the discussion on the relationship
between the complexity of the particle filter (i.e., the number of particles N ) and the choice of
kernel bandwidth for the density estimators.

3.1. Kernel density estimators

In order to build an approximation of the function pt(x) using a sample of size N , {x(n)
t }i=1,...,N ,

we resort to the classical kernel approach commonly used in density estimation [42,43,45].
Specifically, given a kernel function φ :Rdx → R

+, we build a regularized density function of
the form

pN
t (x) = 1

N

N∑
n=1

φ
(
x − x

(n)
t

)
. (3.1)

In the classical theory, the kernel function φ is often taken to be a nonnegative and symmetric
probability density function with zero mean and finite second order moment. Specifically, the
following assumptions are commonly made [42] and we abide by them in this paper.
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A. 1. The kernel φ is a pdf w.r.t. the Lebesgue measure. In particular, φ(x) ≥ 0 ∀x ∈ R
dx and∫

φ(x)dx = 1.

A. 2. The probability distribution with density φ has a finite second order moment, that is, c2 =∫ ‖x‖2φ(x)dx < ∞.

Given a function φ satisfying A.1 and A.2 it is possible to define a family of rescaled kernels

φ1/h(x) = h−dx φ
(
h−1x

)
, (3.2)

where h > 0 is often referred to as the bandwidth of the kernel function. Both the kernel and the
bandwidth can be optimized to minimize the mean integrated square error (MISE) between the
regularized density and the target densities [45]. Specifically, the MISE is defined as

MISE ≡
∫

E

[(
pt(x) − 1

N

N∑
n=1

φ1/h

(
x − x

(n)
t

))2]
dx, (3.3)

where the expectation is taken over the random sample. Although the MISE given in equation
(3.3) is intractable in general, asymptotic approximations (as N → ∞) are known [45]. More-
over, if we assume that x

(1)
t , . . . , x

(N)
t are i.i.d. and drawn exactly from pt (x) (beware that this

is not the case in the particle filtering framework, though), then the MISE is minimized by the
Epanechnikov kernel [42]

φE(x) =
⎧⎨
⎩

dx + 2

2vdx

(
1 − ‖x‖2), if ‖x‖ < 1,

0, otherwise,
(3.4)

where vdx is the volume of the unit sphere in R
dx . If, additionally, pt (x) is Gaussian with unit co-

variance matrix, then the scaling of φE that yields the minimum MISE is given by the bandwidth
[45]

hopt = [
8v−1

dx
(dx + 4)(2

√
π)dx

]1/(dx+4)
N−1/(dx+4).

In our case, pt(x) is not known (it is known not to be Gaussian in general, though) and the
random sample x

(1)
t , . . . , x

(N)
t is not drawn from pt(x), so the standard results of [42,43,45] and

others cannot be applied directly and a specific analysis is needed [34,35].
In [35], two regularized particle filtering algorithms were studied, each of them yielding a

different kernel estimator of pt . Using the notation in the present paper, they can be written as

pN
t,pre(x) ∝ 1

N

N∑
n=1

gt (yt |x)φ1/h

(
x − x̄

(n)
t

)
(3.5)

for the pre-regularized particle filter, and

pN
t,post(x) =

N∑
n=1

w
(n)
t φ1/h

(
x − x̄

(n)
t

)
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for the post-regularized particle filter. Note that pN
t,pre(x) is an unnormalized approximation of

pt (x) (the normalization constant cannot be computed in general). For the post-regularized den-
sity estimator, it can be shown that under certain regularity assumptions ([35], Theorem 6.15)

E

[∫ ∣∣pt(x) − pN
t,post(x)

∣∣dx
∣∣Y1:t

]
→ 0 a.s.

(where the expectation is taken w.r.t. pN
t,post) when N → ∞ and h → 0 jointly. Specifically, the

mean total variation decreases as O(N−1/2 + h2). A similar result can be shown for pN
t,post ([35],

Theorem 6.9).

Remark 3.1. Although we use the same notation for the particles, x̄
(i)
t , i = 1, . . . ,N , as in Sec-

tion 2.3, the sampling/resampling schemes in the pre-regularized and post-regularized particle
filters are different from the basic ‘bootstrap’ filter [35,39]. The pre-regularized filter, in particu-
lar, involves the use of a rejection sampler.

Remark 3.2. The convergence results in [35] for the post-regularized density estimator pN
t,post

hold true when the following assumptions on the state-space model are guaranteed.

• The transition kernel Rt(xt−1,A) = ∫
A

g
Yt
t (x)τt (dx|xt−1) is mixing ([35], Definition 3.2).

• The likelihood satisfies supu∈W2,1
g

Yt
t u

‖u‖2,1
< ∞, where W2,1 is the Sobolev space of functions

defined on R
dx which, together with their derivatives up to order 2, are integrable with

respect to the Lebesgue measure, and ‖ · ‖2,1 is the corresponding norm.
• The measure τt (dx|xt−1) is absolutely continuous w.r.t. the Lebesgue measure, with density

τ
xt−1
t (x) ∈ W2,1 and supxt−1∈Rdx ‖τxt−1

t ‖2,1 < ∞.

Assuming that τt = τ for every t ≥ 1 (hence, the Markov state process is homogeneous), the
analysis in [34] targets the convergence in total variation distance of the continuous measure
ρN

t (x)dx, where the density estimator ρN
t is defined as

ρN
t (x) = ct

N∑
n=1

gt (yt |x)τx
(n)
t−1(x)

with normalization constant ct = (
∑N

n=1

∫
gt (yt |x)τx

(n)
t−1(x)dx)−1. This is similar to the pre-

regularized approximation pN
t,pre but using the Markov kernel of the model, τ , for smoothing,

instead of the generic kernel φ1/h. Although in most problems it is possible to draw from τxt−1 ,
it is often not possible to evaluate it and, in such cases, the approximation ρN

t is not practical.
Also note that ρN

t is not a kernel density estimator of pt in the classical form of equation (3.1).
The sample of size N from which the approximation is constructed corresponds to the variable
Xt−1, rather than Xt , and smoothing is achieved by way of a prediction step (using the Markov
kernel τ ). It is not possible, in general, to write ρN

t (x) ∝∑N
n=1 gt (yt |x)φ1/h(x − x

(n)
t−1) for some

kernel function φ. Under regularity assumptions on gt and τ , it is proved in [34], Theorem 2,
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that

P

{∫ ∣∣ρN
t (x) − pt (x)

∣∣dx > ε

}
≤ c1 exp{−c2N}, t ≥ 1, (3.6)

for any ε > 0 and some constants c1, c2 > 0.

Remark 3.3. The regularity assumptions on the state-space model in [34], Theorem 2, are the
following.

(a) There are pdfs {bt }t≥1 and two constants 0 < cτ < Cτ < ∞ such that

cτ bt (x) ≤ τxt−1(x) ≤ Cτbt (x) for all x, t.

(b) The likelihood gt satisfies that supt≥1;x,x′∈Rdx ;y∈Rdy
gt (y|x)
gt (y|x′) < ∞.

The assumption in (a) excludes, for example, models of the form Xt = h(Xt−1) + Vt where the
function h :Rdx → R

dx is not bounded or the noise process Vt is Gaussian ([34], Section 4.2).
The assumption in (b) is also stronger than required for Proposition 2.1 to hold true.

3.2. Approximation of the filtering density and its derivatives

We investigate particle-kernel approximations of pt constructed from a kernel function φ and the
samples x

(n)
t , n = 1, . . . ,N , generated by the particle filter. Instead of restricting our attention to

procedures based on a single kernel, however, we consider a sequence of functions φk :Rdx →
R

+, k ∈ N, defined according to the notation in equation (3.2), that is, φk(x) = kdx φ(kx). If φ

complies with A.1 and A.2, then we have similar properties for φk . Trivially, φk(x) ≥ 0 ∀x ∈R
dx ,

and it is also straightforward to check that
∫

φk(x)dx = 1. Moreover, if we apply the change of
variable y = kx and note that dy = kdx dx, then∫

‖x‖2φk(x)dx = 1

k2

∫
‖y‖2φ(y)dy = c2

k2

from A.2.
The approximation of pt generated by the particles x

(n)
t , n = 1, . . . ,N , and the kth kernel, φk ,

is denoted as pk
t and has the form

pk
t (x) � 1

N

N∑
n=1

φk

(
x − x

(n)
t

)= (
φx

k ,πN
t

)
,

where φx
k (x′) � φk(x − x′). Beware that, in our notation, we skip the dependence of pk

t on
the number of particles, N , for the sake of simplicity. In Section 4.1, we will assume a certain
relationship between N and k that will be carried on through the rest of the paper and justifies the
omission in the notation. Let us also remark that we do not construct pk

t in order to approximate
integrals w.r.t. the filtering measure (this is more efficiently achieved using equation (2.10)).
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Instead, we aim at applications where an explicit approximation of the density pt is necessary.
Some examples are considered in Section 5.

In order to investigate the approximation of derivatives of pt , let us consider the multi-index
α = (α1, α2, . . . , αdx ) ∈ N

∗ × N
∗ × · · · × N

∗, where N
∗ = N ∪ {0}, and introduce the partial

derivative operator Dα defined as

Dαh � ∂α1 · · ·∂αdx h

∂x
α1
1 · · · ∂x

αdx

dx

for any (sufficiently differentiable) function h :Rdx → R. The order of the derivative Dαh is
denoted as |α| =∑dx

i=1 αi . We are interested in the approximation of functions Dαpt (x) which
are continuous, as explicitly given below.

A. 3. For every x in the domain of pt(x), Dαpt (x) exists and is Lipschitz continuous, that is,
there exists a constant cα,t > 0 such that

∣∣Dαpt(x − z) − Dαpt (x)
∣∣≤ cα,t‖z‖

for all x, z ∈ R
dx .

Remark 3.4. It is possible to check whether A.3 holds by inspecting the transition kernel τt and
the likelihood function g

yt
t . For example, assume that τt (dx|x′) has an associated density w.r.t.

the Lebesgue measure, denoted τx′
t . A sufficient condition for Dαpt to be Lipschitz is that both

g
yt
t and τx′

t be bounded with bounded derivatives up to order 1 + |α|. Specifically, it is sufficient
that g

yt
t ∈ B(Rdx ) and, for any β = (β1, . . . , βdx ) such that 0 ≤ |β| ≤ 1 + |α|, Dβg

yt
t ∈ B(Rdx )

and there exist constants cβ , independent of x and x′, such that Dβτx′
t ≤ cβ .

For the same α, we also impose the following condition on the kernel φ.

A. 4. Dαφ ∈ Cb(R
dx ), that is, Dαφ is a continuous and bounded function. In particular,

‖Dαφ‖∞ = supx∈Rdx |Dαφ(x)| < ∞.

Remark 3.5. Trivially, if Dαφ ∈ Cb(R
dx ) then Dαφk ∈ Cb(R

dx ) for any finite k. In particular,
‖Dαφk‖∞ = kdx+|α|‖Dαφ‖∞.

The approximation of Dαpt computed from the samples x
(n)
t , n = 1, . . . ,N , and the kth ker-

nel, φk , has the form

Dαpk
t (x) = 1

N

N∑
n=1

Dαφx
k

(
x

(n)
t

)= (
Dαφx

k ,πN
t

)
. (3.7)
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3.3. Complexity of the particle filter and choice of kernel bandwidth

In the sequel, we will be concerned with the convergence of the sequence of approximations
{Dαpk

t }k≥1 under the generic assumptions A.1–A.4. The convergence results introduced in Sec-
tions 4 and 5 are given either as limits, for k → ∞, or as error bounds that decrease with k.

Recall, however, that pk
t (x) = (φx

k ,πN
t ), that is, the density estimator pk

t depends both on the
kernel bandwidth h = 1

k
and the number of particles N . A distinctive feature of the analysis in

Sections 4 and 5 is that it links both indices by way of the inequality N ≥ k2(dx+|α|+1), where
|α| =∑dx

i=1 αi is the order of the derivative Dα . For α = (0, . . . ,0), Dαpk
t = pk

t and

N ≥ k2(dx+1). (3.8)

Obviously, k → ∞ implies that N → ∞ and h → 0.
This connection is useful to provide simple bounds for the approximation errors, but also be-

cause it yields guidance for the numerical implementation of the density estimators. In particular,
for |α| = 0 and a fixed kernel bandwidth h = 1

k
, the inequality in (3.8) determines the minimum

number of particles N that are needed in the particle filter in order to guarantee that convergence,
at the rates given by the Theorems of Sections 4 and 5, holds. A lesser number of samples (i.e.,
some N < k2(dx+1)) would result in an under-smoothed density pk

t (x) with a bigger approxima-
tion error.

If the computational complexity of the particle filter is limited by practical considerations,
then N is given and the error bounds to be introduced only hold when k ≤ N1/(2(dx+1)) or,
equivalently, when the kernel bandwidth is lower-bounded as h = 1

k
≥ N−1/(2(dx+1)). A smaller

bandwidth would, again, result in an under-smoothed approximation pk
t (x). On the other hand,

since over-smoothing also increases the approximation error of kernel density estimators [42],
it is convenient to choose the smallest possible bandwidth h. For given N , we should therefore
select2 h = h(N) = N−1/(2(dx+1)).

4. Convergence of the approximations

Starting from Proposition 2.1, we prove that the kernel approximations of the filtering pdf, pk
t (x),

and its derivates converge a.s. for every x in the domain of pt , both point-wise and uniformly on
R

dx . We also prove that the smoothed approximating measure π̆
N(k)
t (dx) = pk

t (x)dx converges
to πt in total variation distance and that the integrated square error of a sequence of truncated
density estimators converges quadratically (in k) toward 0 a.s. Explicit convergence rates for the
approximations are given.

2In practice, an adaptive choice of the kernel bandwidth (see, e.g., [5,47]) is generally more efficient. In this paper,
however, we restrict our attention to fixed-bandwidth kernels.



1892 D. Crisan and J. Míguez

4.1. Almost sure convergence

In this section, we obtain convergence rates for the particle-kernel approximation Dαpk
t (x) of

equation (3.7). Depending on the support of the density pt (x), these rates may be point-wise or
uniform (for all x). In both cases, convergence is attained a.s. based on the following auxiliary
result.

Lemma 4.1. Let {θk}k∈N be a sequence of nonnegative random variables such that, for p ≥ 2,

E
[(

θk
)p]≤ c

kp−ν
, (4.1)

where c > 0 and 0 ≤ ν < 1 are constant w.r.t. k. Then, there exists a nonnegative and a.s. finite
random variable Uε , independent of k, such that

θk ≤ Uε

k1−ε
, (4.2)

where 1+ν
p

< ε < 1 is also a constant w.r.t. k.

Proof. See Appendix B. �

Remark 4.1. In Lemma 4.1, if the inequality (4.1) holds for all p ≥ 2 then the constant ε in (4.2)
can be made arbitrarily small, that is, we can choose 0 < ε < 1.

Using Lemma 4.1, it is possible to prove that Dαpk
t (x) → Dαpt (x) a.s. and obtain explicit

convergence rates. In order to establish a connection between the sequence of kernels φk(x), k ∈
N, and the sequence of measure approximations πN

t , N ∈ N, we define the number of particles
to be a function of the kernel index and denote it as N(k). To be specific, for a given multi-index
α, we assume that N(k) ≥ k2(dx+|α|+1). In this way, all the convergence rates to be presented in
this paper are primarily given in terms of the kernel index k. We first show that Dαpk

t → Dαpt

point-wise for x ∈R
dx .

Theorem 4.1. Under assumptions A.1, A.2, A.3, A.4 and N(k) ≥ k2(dx+|α|+1), the inequality

∣∣Dαpk
t (x) − Dαpt (x)

∣∣≤ V x,α,ε

k1−ε
(4.3)

holds true, with V x,α,ε an a.s. finite, nonnegative random variable and a constant 0 < ε < 1. In
particular,

lim
k→∞

∣∣Dαpk
t (x) − Dαpt(x)

∣∣= 0 a.s. (4.4)

Proof. Let us construct an approximation of pt (x) using the kernel φk and the true filtering mea-
sure πt , namely, p̃k

t (x) = (φx
k ,πt ). Since πt (dx) = pt(x)dx, the approximation p̃k

t is actually a
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convolution integral and can be written in two alternative ways using the commutative property,
namely

p̃k
t (x) =

∫
φk(x − z)pt (z)dz =

∫
φk(z)pt (x − z)dz. (4.5)

Let us now consider the derivative Dαpt . If we apply the operator Dα to p̃k
t in (4.5), we readily

obtain

Dαp̃k
t (x) =

∫
φk(z)D

αpt (x − z)dz

and, using the latter expression, we find an upper bound for the error |Dαp̃t
k(x) − Dαpt(x)|. In

particular,

∣∣Dαp̃t
k
(x) − Dαpt (x)

∣∣ = ∣∣∣∣
∫

φk(z)D
αpt (x − z)dz − Dαpt(x)

∣∣∣∣
≤
∫

φk(z)
∣∣Dαpt(x − z) − Dαpt (x)

∣∣dz (4.6)

≤ cα,t

∫
φk(z)‖z‖dz (4.7)

≤ cα,t

√∫
φk(z)‖z‖2 dz (4.8)

= cα,t

√
c2

k
, (4.9)

where equation (4.6) follows from A.1 (namely, φ ≥ 0), (4.7) is obtained from the Lipschitz
assumption A.3, (4.8) follows from Jensen’s inequality and, finally, the bound in (4.9) is obtained
from assumption A.2. Note that cα,t and c2 are constants with respect to both x and k. As a
consequence of (4.9),

lim
k→∞Dαp̃k

t (x) = Dαpt (x).

Consider now the approximation, with N(k) particles, Dαpk
t = (Dαφx

k ,π
N(k)
t ) of the integral

(Dαφx
k ,πt ). From Proposition 2.1 and assumption A.4, we obtain

∥∥Dαpk
t (x) − Dαp̃k

t (x)
∥∥

p
= ∥∥(Dαφx

k ,π
N(k)
t

)− (
Dαφx

k ,πt

)∥∥
p

(4.10)

≤ c̄t k
dx+|α|‖Dαφ‖∞√

N(k)
,

where we have used Remark 3.5 and the constant c̄t is independent of N(k) and x.
A straightforward application of the triangle inequality now yields∥∥Dαpk

t (x) − Dαpt(x)
∥∥

p
≤ ∥∥Dαpk

t (x) − Dαp̃k
t (x)

∥∥
p

+ ∥∥Dαp̃k
t (x) − Dαpt (x)

∥∥
p
. (4.11)
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The first term on the right-hand side of (4.11) can be bounded using (4.10), while the second
term also has an upper bound given by3 (4.9). Taking both bounds together, we arrive at

∥∥Dαpk
t (x) − Dαpt(x)

∥∥
p

≤ c̄t k
dx+|α|‖Dαφ‖∞√

N(k)
+ cα,t

√
c2

k
≤ c̄α,t

k
, (4.12)

where the second inequality follows from the assumption N(k) ≥ k2(dx+|α|+1) and c̄α,t =
c̄t‖Dαφ‖∞ + cα,t

√
c2,α is a constant.

The inequality (4.12) immediately yields

E
[∣∣Dαpk

t (x) − Dαpt (x)
∣∣p]≤ c̄

p
α,t

kp
(4.13)

and we can apply Lemma 4.1, with θk = |Dαpk
t (x) − Dαpt(x)|, ν = 0 and arbitrarily large

p ≥ 2, to obtain ∣∣Dαpk
t (x) − Dαpt(x)

∣∣≤ V α,x,ε

k1−ε
, (4.14)

where V α,x,ε is a nonnegative and a.s. finite random variable and 0 < ε < 1 is a constant, both
of them independent of k. The limit in equation (4.4) follows immediately from the inequality
(4.14). �

Remark 4.2. The convergence rate for the approximation error ‖Dαpk
t (x) − Dαpt(x)‖p given

by inequality (4.12) can be improved if we place additional assumptions on the filter density and
the kernel, and increase the number of particles N(k). In particular, if in addition to A.1–A.4 we
assume that

• pt(x) has continuous and bounded derivatives up to order |α| + 2,
• the kernel satisfies

∫
ziφ(z)dz = 0, for i = 1, . . . , dx , and

• N(k) ≥ k2(dx+|α|+2),

then it can be shown, using the multivariate version of Taylor’s theorem, that

∥∥Dαpk
t (x) − Dαpt(x)

∥∥
p

≤ C̄α,t

k2

for some constant C̄α,t independent of k. A specific result that relies on these extended assump-
tions is given in Theorem 4.6 (see Section 4.3).

Remark 4.3. The constant c̄α,t of equation (4.12) is independent of the index k and the point
x ∈ R

dx . The random variable V α,x,ε is also independent of the kernel index k, as explicitly
given by Lemma 4.1. However, it may depend on the multi-index α, the dimension of the state
space dx and the point x where the derivative of the density is approximated, hence the notation.

3Note that ‖Dαp̃k
t (x) − Dαpt (x)‖p = |Dαp̃k

t (x) − Dαpt (x)| because Dαp̃t
k(x) does not depend on π

N(k)
t .
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Remark 4.4. For α = (0, . . . ,0) = 0, the inequality (4.3) implies that we can construct a par-
ticle approximation of pt(x) that converges point-wise. In particular, D0pt (x) = pt (x) and
D0pk

t (x) = pk
t (x) = (φx

k ,π
N(k)
t ), hence equation (4.4) becomes

lim
k→∞

∣∣pk
t (x) − pt(x)

∣∣= 0 a.s. (4.15)

for every x ∈R
dx .

Remark 4.5. The proof of Theorem 4.1 does not demand that the assumptions A.3, A.4 and
N(k) ≥ k2(dx+|α|+1) hold for every possible α, but only for the particular derivative we need to
approximate. For instance, if we only aim to approximate pt(x) (i.e., α = 0), assumption A.2
implies that the distribution with density φ must have a finite second order moment, assumption
A.3 means that pt must be Lipschitz, assumption A.4 implies that the basic kernel function
φ must be continuous and bounded, and it suffices that the number of particles satisfies the
inequality N(k) ≥ k2(dx+1).

Most of the results to be given in the remaining of this paper are conditional on the assumptions
A.1, A.2, A.3, A.4 and N(k) ≥ k2(dx+|α|+1), the same as Theorem 4.1. However, they refer only
to properties of pt and its first order derivatives and, as a consequence, it is enough to assume that
A.3 and A.4 hold true for α = 0 and α = 1 = (1, . . . ,1) alone. For the same reason, it suffices to
assume N(k) ≥ k2(2dx+1).

Through the rest of the paper, we say that the “standard conditions” are satisfied when

• A.1 and A.2 hold true;
• A.3 and A.4 hold true for, at least, α = 0 and α = 1; and
• N(k) ≥ k2(2dx+1).

If we restrict x to take values on a sequence of compact subsets of Rdx , then we can obtain a
convergence rate for the error |pk

t (x) − pt(x)| that is uniform on x, instead of point-wise like in
Theorem 4.1. For the following result, we fix p ≥ 2 and consider the sequence of hypercubes

Kk = [−Mk,+Mk] × · · · × [−Mk,+Mk] ⊂R
dx ,

where Mk = 1
2kβ/(dxp), and 0 ≤ β < 1 is a positive constant independent of k. Note that, for any

fixed p and β > 0, limk→∞ Kk =R
dx .

Theorem 4.2. If the standard conditions are satisfied, then

sup
x∈Kk

∣∣pk
t (x) − pt (x)

∣∣≤ Uε

k1−ε
,

where Uε ≥ 0 is an a.s. finite random variable and 0 < ε < 1 is a constant, both of them inde-
pendent of k and x. In particular,

lim
k→∞ sup

x∈Kk

∣∣pk
t (x) − pt (x)

∣∣= 0 a.s.
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Proof. For any x = (x1, . . . , xdx ) ∈ Kk and a function f :Rdx → R continuous, bounded and
differentiable,

f (x) − f (0) =
∫ x1

−Mk

· · ·
∫ xdx

−Mk

D1f (z)dz −
∫ 0

−Mk

· · ·
∫ 0

−Mk

D1f (z)dz.

In particular, for xi ∈ [−Mk,Mk], i = 1, . . . , dx , and the assumption A.4 with α = 1,

∣∣pk
t (x) − pt(x)

∣∣≤ 2
∫ Mk

−Mk

· · ·
∫ Mk

−Mk

∣∣D1pk
t (z) − D1pt(z)

∣∣dz + ∣∣pk
t (0) − pt(0)

∣∣ (4.16)

and, as a consequence,

sup
x∈Kk

∣∣pk
t (x) − pt (x)

∣∣≤ 2Ak + ∣∣pk
t (0) − pt (0)

∣∣, (4.17)

where

Ak =
∫ Mk

−Mk

· · ·
∫ Mk

−Mk

∣∣D1pk
t (z) − D1pt(z)

∣∣dz.

An application of Jensen’s inequality yields, for p ≥ 1,(
1

2dx M
dx

k

Ak

)p

≤ 1

2dx M
dx

k

∫ Mk

−Mk

· · ·
∫ Mk

−Mk

∣∣D1pk
t (z) − D1pt (z)

∣∣p dz,

hence

(
Ak
)p ≤ 2dx(p−1)M

dx(p−1)
k

2dx −1∑
�=0

∫ Mk

−Mk

· · ·
∫ Mk

−Mk

∣∣D1pk
t (z) − D1pt(z)

∣∣p dz. (4.18)

Since, from inequality (4.12) in the proof of Theorem 4.1,

E
[∣∣D1pk

t

(
s�(z)

)− D1pt

(
s�(z)

)∣∣p]≤ c̄
p

1,t

kp
, (4.19)

we can combine (4.19) and (4.18) to arrive at

E
[(

Ak
)p]≤ 2dxpM

dxp
k c̄

p

1,t

kp
= c̄

p

1,t

kp−β
,

where the equality follows from the relationship Mk = 1
2kβ/(dxp). Using Lemma 4.1 with θk =

Ak , p ≥ 2, ν = β and c = c̄
p

1,t
, we obtain a constant ε1 ∈ (

1+β
p

,1) and a nonnegative and a.s.

finite random variable V A,ε1 , both of them independent of k, such that

Ak ≤ V A,ε1

k1−ε1
. (4.20)
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Since, from Proposition 2.1,

E
[∣∣pk

t (x) − pt (x)
∣∣p]≤ c̄

p

0,t

kp
,

we can apply Lemma 4.1 again, with θk = |pk
t (0) − pt(0)|, p ≥ 2, ν = 0 and c = c̄

p

0,t
to obtain

that ∣∣pk
t (0) − pt (0)

∣∣≤ V pt (0),ε2

k1−ε2
, (4.21)

where ε2 ∈ ( 1
p
,1) is a constant and V pt (0),ε2 is a nonnegative and a.s. finite random variable,

both of them independent of k.
If we choose ε = ε1 = ε2 ∈ (

1+β
p

,1) and define Uε = V A,ε1 + V pt (0),ε2 , then the combination
of equations (4.17), (4.20) and (4.21) yields

sup
x∈Kk

∣∣pk
t (x) − pt (x)

∣∣≤ Uε

k1−ε
,

where Uε is a.s. finite. Note that Uε and ε are independent of k. Moreover, we can choose p as
large as we wish and β > 0 as small as needed, hence we can select ε ∈ (0,1). �

Remark 4.6. Assuming that A.3 and A.4 hold for the multi-index α′ = α + 1, the argument of
the proof of Theorem 4.2 can also be adapted to show that

sup
x∈Kk

∣∣Dαpk
t (x) − Dαpt(x)

∣∣≤ Ũ ε

k1−ε
,

where the constant 0 < ε < 1 and the a.s. finite random variable Ũ ε ≥ 0 are independent of k.

Remark 4.7. Theorem 4.2 also holds for a fixed compact subset K ⊂ R
dx instead of the se-

quence K1,K2, . . . . In particular, the presented proof is easily adapted to a fixed hypercube
K = [−M,+M] × · · · × [−M,+M]. Therefore,

sup
x∈K

∣∣pk
t (x) − pt (x)

∣∣≤ Ũ ε

k1−ε
, (4.22)

where the constant 0 < ε < 1 and the a.s. finite random variable Ũ ε ≥ 0 are independent of k.

4.2. Convergence in total variation distance

The total variation distance (TVD) between two measures μ1,μ2 ∈ P(Rd) on the Borel σ -
algebra B(Rd) is defined as

dTV(μ1,μ2) � sup
A∈B(Rd )

∣∣μ1(A) − μ2(A)
∣∣.



1898 D. Crisan and J. Míguez

Correspondingly, a sequence of measures μn ∈ P(Rd) converges toward μ ∈ P(Rd) in TVD
when limn→∞ dTV(μn,μ) = 0. It can be shown that if μn and μ have densities w.r.t. the
Lebesgue measure, denoted qn and q , respectively, then

dTV
(
μn,μ

)= 1

2

∫ ∣∣qn(x) − q(x)
∣∣dx

and, therefore, the sequence μn converges to μ in TVD if, and only if,

lim
n→∞

∫ ∣∣qn(x) − q(x)
∣∣dx = 0. (4.23)

Consider the smooth approximating measures

π̆
N(k)
t (dx) = pk

t (x)dx, k = 1,2, . . . .

In this section, we show that the sequence π̆
N(k)
t converges toward πt in TVD, as k → ∞, by

proving first that
∫ |pk

t − pt |dx → 0 under the same assumptions of Theorem 4.2. This result
is established by Theorem 4.3 below. The same as in the proof of Theorem 4.2, we consider
an increasing sequence of hypercubes K1 ⊂ · · · ⊂ Kk ⊂ · · · ⊂ R

dx , where Kk = [−Mk,+Mk] ×
· · · × [−Mk,+Mk] and Mk = 1

2kβ/(dxp), with constants 0 < β < 1 and p > 3. Also, recall that,
for a set A ∈ R

d , Ac = R
d\A denotes its complement and, given a probability measure μ ∈

P(Rd), μ(A) = ∫
A

μ(dx) is the probability of A.

Theorem 4.3. If the standard conditions are satisfied and πt (Kc
k) ≤ b

2k−γ , where b > 0 and
γ > 0 are arbitrary but constant w.r.t. k, then∫ ∣∣pk

t (x) − pt (x)
∣∣dx <

Qε

kmin{1−ε,γ } ,

where Qε > 0 is an a.s. finite random variable and 0 < ε < 1 is a constant, both of them inde-
pendent of k. In particular,

lim
k→∞

∫ ∣∣pk
t (x) − pt (x)

∣∣dx = 0 a.s.

and, as a consequence,

lim
k→∞dTV

(
π̆

N(k)
t , πt

)= 0 a.s.

Proof. We start with a trivial decomposition of the integrated absolute error,∫ ∣∣pk
t (x) − pt (x)

∣∣dx =
∫
Kk

∣∣pk
t (x) − pt(x)

∣∣dx +
∫
Kc

k

∣∣pk
t (x) − pt(x)

∣∣dx

≤
∫
Kk

∣∣pk
t (x) − pt(x)

∣∣dx + 2
∫
Kc

k

pt (x)dx

+
∫
Kc

k

(
pk

t (x) − pt(x)
)

dx,
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where the equality follows from Kk ∪Kc
k =R

dx and the inequality is obtained from the fact that
pt and pk

t are nonnegative. Moreover,∫
Kc

k

(
pk

t (x) − pt (x)
)

dx ≤
∫
Kc

k

∣∣pk
t (x) − pt(x)

∣∣dx ≤
∫
Kk

∣∣pk
t (x) − pt(x)

∣∣dx

hence ∫ ∣∣pk
t (x) − pt(x)

∣∣dx ≤ 2
∫
Kk

∣∣pk
t (x) − pt (x)

∣∣dx + 2
∫
Kc

k

pt (x)dx. (4.24)

The first term on the right-hand side (4.24) can be bounded by∫
Kk

∣∣pk
t (x) − pt (x)

∣∣dx ≤ L(Kk) sup
x∈Kk

∣∣pk
t (x) − pt(x)

∣∣, (4.25)

where L(Kk) = (2Mk)
dx = kβ/p is the Lebesgue measure of Kk . From Theorem 4.2, the supre-

mum in (4.25) can be bounded as supx∈Kk
|pk

t (x) − pt (x)| ≤ V ε1/k1−ε1 , where V ε1 ≥ 0 is an
a.s. finite random variable and 1+β

p
< ε1 < 1 is a constant, both independent of k. Therefore, the

inequality (4.25) can be extended to yield∫
Kk

∣∣pk
t (x) − pt(x)

∣∣dx ≤ V ε1

k1−ε1−β/p
= V ε

k1−ε
, (4.26)

where ε = ε1 + β
p

and V ε = V ε1 . If we choose ε1 < 1 − β
p

, then ε ∈ (
1+2β

p
,1). Note that, for

β < 1 and p > 3, 1 − β
p

− 1+β
p

> 1 − 3
p

> 0, hence both ε1 and ε are well defined.

For the second integral in equation (4.24), note that
∫
Kc

k
pt (x)dx = πt (Kc

k) and, therefore, it
can be bounded directly from the assumptions in the Theorem, that is,

2
∫
Kc

k

pt (x)dx ≤ bk−γ , (4.27)

where b > 0 and γ > 0 are constant w.r.t. k. Putting together equations (4.24), (4.26) and (4.27)
yields the desired result. �

Remark 4.8. The condition πt (Kc
k) ≤ b

2k−γ in the statement of Theorem 4.3 is satisfied for any
t when

• it is satisfied at time t = 0, that is, there exists some constant b0 such that π0(Kc
k) ≤ b0

2 k−γ ,
• the likelihood is bounded, that is, g

yt
t ∈ B(Rdx ),

• and the kernels τt (dx|x′) have sufficiently light tails for every t and every x′ ∈R
dx .

The latter can be made more precise using a standard induction argument. For example, let Kk =
[− 1

2kβ/(dxp),+ 1
2kβ/(dxp)] with p ≥ 2 and 0 ≤ β < 1, and assume that for any x′ ∈R

dx the kernel

τt satisfies that τt (Kc
k) ≤ b(x′)

2 k−γ for some function b :Rdx → (0,∞). If b(x′) can be upper
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bounded by a polynomial function, say b(x′) ≤ c(1 + (
∑dx

i=1 |x′
i |)a), for some constant c > 0

and degree a <
dxp(γ−1)

β
, then there exists a constant bt < ∞ such that πt (Kc

k) ≤ bt

2 k−γ .

4.3. Integrated square error

A standard figure of merit for the assessment of kernel density estimators is the mean integrated
square error (MISE) [42,43]. If we assume that both pt(x) and the kernel φ(x) take values on
a compact set K, then it is relatively simple to prove that the MISE of the sequence of approx-
imations Dαpk

t converges toward 0 quadratically with the index k. In particular, we have the
following result.

Theorem 4.4. Assume that A.1, A.2, A.3, A.4 and N(k) ≥ k2(dx+|α|+1) hold true. If both pt(x)

and the kernel φ(x) have a compact support set K ⊂R
dx , then

MISE ≡
∫
K

E
[(

Dαpk
t (x) − Dαpt(x)

)2]dx ≤ cα,K,t

k2
,

where cα,K,t > 0 is constant w.r.t. k.

Proof. Since any compact set is contained in a larger hypercube, we can choose K =
[−M,+M] × · · · × [−M,+M] without loss of generality. Furthermore, since the assumptions
of Theorem 4.1 are satisfied, we can recall the inequality in (4.13), which, selecting p = 2, yields

E
[(

Dαpk
t (x) − Dαpt (x)

)2]≤ c̄2
α,t

k2
,

where the constant c̄2
α,t is independent of k and x. Therefore,

∫
K

E
[(

Dαpk
t (x) − Dαpt(x)

)2]dx ≤ c̄2
α,t

k2
L(K) ≤ cα,K,t

k2
,

where L(K) = (2M)dx is the Lebesgue measure of K and cα,K,t = (2M)dx c̄2
α,t . �

It is also possible to establish a quadratic convergence rate (w.r.t. k) for the integrated square
error (ISE) of a sequence of truncated density approximations. In particular, consider the usual
hypercubes Kk = [−Mk,+Mk] × · · · × [−Mk,+Mk] with Mk = 1

2kβ/(dxp), for some p > 5
2 and

a constant 0 < β < 1, and define the truncated density estimators

p
�,k
t (x) = IKk

(x)pk
t (x) =

{
pk

t (x), if x ∈ Kk,

0, otherwise.

Since limk→∞ Kk = R
dx , it follows that limk→∞ |p�,k

t (x) − pk
t (x)| = 0 and we can make p

�,k
t

arbitrarily close to the original approximation. The theorem below states that p
�,k
t converges a.s.

toward pt , with a quadratic rate.
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Theorem 4.5. If the standard conditions are satisfied, pt ∈ B(Rdx ) and πt (Kc
k) ≤ bk−γ , where

b > 0 and γ > 0 are arbitrary but constant w.r.t. k, then

ISE ≡
∫ (

p
�,k
t (x) − pt(x)

)2 dx ≤ Uε

kmin{2−ε,γ } ,

where Uε ≥ 0 is an a.s. finite random variable, independent of k, and 0 < ε < 2 is an arbitrarily
small constant. In particular,

lim
k→∞

∫ (
p

�,k
t (x) − pt(x)

)2 dx = 0 a.s.

Proof. We start with the trivial decomposition∫ (
p

�,k
t (x) − pt(x)

)2 dx =
∫
Kk

(
p

�,k
t (x) − pt(x)

)2 dx

(4.28)

+
∫
Kc

k

(
p

�,k
t (x) − pt(x)

)2 dx,

where Kc
k = R

dx \Kk is the complement of Kk , and, expanding the square in the last integral of
equation (4.28), we obtain∫ (

p
�,k
t (x) − pt (x)

)2 dx =
∫
Kk

(
p

�,k
t (x) − pt (x)

)2 dx

+
∫
Kc

k

(
pt(x) − p

�,k
t (x)

)
pt(x)dx (4.29)

+
∫
Kc

k

(
p

�,k
t (x) − pt (x)

)
p

�,k
t (x)dx.

In the rest of the proof, we compute upper bounds for each of the integrals on the right-hand side
of equation (4.29).

For the first term in (4.29), we note that p
�,k
t (x) = pk

t (x) for all x ∈ Kk , hence∫
Kk

(
p

�,k
t (x) − pt(x)

)2 dx =
∫
Kk

(
pk

t (x) − pt (x)
)2 dx

(4.30)

≤ L(Kk)
(

sup
x∈Kk

∣∣p�,k
t (x) − pt (x)

∣∣)2
,

where L(Kk) = (2Mk)
dx = kβ/p . Using Theorem 4.2, we obtain an upper bound for the supre-

mum in equation (4.30), namely supx∈Kk
|pk

t (x)− pt (x)| ≤ V ε1/k1−ε1 , where V ε1 ≥ 0 is an a.s.
finite random variable and 1+β

p
< ε1 < 1 is a constant. Both V ε1 and ε1 are independent of k. We
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then extend the inequality in (4.30) as

∫
Kk

(
p

�,k
t (x) − pt(x)

)2 dx ≤ kβ/p (V ε1)2

k2−2ε1
= Ũ ε

k2−ε
, (4.31)

where ε = 2ε1 + β
p

and Ũ ε = (V ε1)2. If we choose ε1 < 1 − β
2p

, then ε ∈ (
2+3β

p
,2). Note that,

for β < 1 and p > 5
2 , 2 − 2+3β

p
> 0, hence ε is well defined.

For the second term on the right-hand side of equation (4.29) we simply note that p
�,k
t (x) = 0

for all x ∈Kc
k and pt (x) < ‖pt‖∞ < ∞, since pt ∈ B(Rdx ). Therefore,∫
Kc

k

(
pt (x) − p

�,k
t (x)

)
pt (x)dx ≤ ‖pt‖∞

∫
Kc

k

pt (x)dx = ‖pt‖∞πt

(
Kc

k

)
,

and using the assumption πt (Kc
k) ≤ bk−γ we obtain∫

Kc
k

(
pt(x) − p

�,k
t (x)

)
pt (x)dx ≤ b‖pt‖∞

kγ
. (4.32)

The third term is trivial. Since p
�,k
t (x) = 0 for all x ∈ Kc

k , it follows that∫
Kc

k

(
p

�,k
t (x) − pt(x)

)
p

�,k
t (x) = 0. (4.33)

Substituting equations (4.31), (4.32) and (4.33) into equation (4.29) yields

∫ (
p

�,k
t (x) − pt (x)

)2 dx ≤ Ũ ε

k2−ε
+ b‖pt‖∞

kγ
≤ Uε

kmin{2−ε,γ } ,

where Uε = Ũ ε + b‖pt‖∞ and 0 < ε < 2. �

The classical asymptotic approximation of the MISE (AMISE) for kernel density estimators
built from i.i.d. samples is (see, e.g., [23] and note that we restrict ourselves to diagonal band-
width matrices)

AMISE ≡ h4c(φ,po) + c(φ)

Nhdx
, (4.34)

where h > 0 is the bandwidth parameter, c(φ,po) > 0 is a constant that depends on the kernel
φ and the target density (denoted po here and assumed twice differentiable), c(φ) > 0 is another
constant depending on φ alone and N is the number of samples. If we substitute h = 1/k and
N = k2dx+2, as given by our analysis, into the expression above, then we find that the MISE
converges asymptotically as c̃(φ,po)

k4 , for some constant c̃(φ,po) > 0. We note, however, that

• Equation (4.34) is only an asymptotic approximation of the MISE, whereas Theorems 4.4
and 4.5 give actual upper bounds for the MISE and the ISE that are valid for every k;
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• the AMISE of equation (4.34) is derived under the assumption that a size N sample drawn
from the density pt is available [45], whereas Theorems 4.4 and 4.5 hold true for the
smoothing of any random measure πN

t that satisfies ‖(f,πN
t )−(f,πt )‖p ≤ c‖f ‖∞√

N
for some

constant c and f ∈ B(Rdx ).

Nevertheless, the convergence rate for the MISE in Theorem 4.4 can be improved if we place
some additional assumptions on the kernel φ(x), assume that the filter density is sufficiently
smooth and increase the number of particles N(k) in the filter. To be specific, we consider the
approximation of pt (x) alone for clarity and make the following assumptions.

a.1 The kernel φ(x) satisfies A.1 (φ > 0,
∫

φ(x)dx = 1), A.2 (
∫ ‖x‖2φ(x)dx ≤ C2 < ∞ for

some constant C2) and it is a bounded function. Additionally,
∫

xiφ(x)dx = 0 for every
i ∈ {1, . . . , dx}.

a.2 The filter density pt has continuous and bounded derivatives up to order 2, that is, Dαpt ∈
Cb(R

dx ) for every α such that |α| ≤ 2.
a.3 The number of particles is selected to guarantee that N = N(k) ≥ k2(dx+2).

Then we have the following refinement of Theorem 4.4 for α = 0.

Theorem 4.6. If both pt (x) and the kernel φ(x) have a compact support set K ⊂ R
dx and

assumptions a.1, a.2 and a.3 hold, then

MISE ≡
∫
K

E
[(

pk
t (x) − pt (x)

)2]dx ≤ CK,t

k4
,

where CK,t < ∞ is constant w.r.t. k.

Proof. Recall the deterministic approximation p̃k
t (x) = (φx

k ,πt ) of pt (x). Using the multivariate
version of Taylor’s theorem, the difference p̃k

t (x) − pt(x) can be written as

p̃k
t (x) − pt(x) =

∫
φk(z)

(
pt(x − z) − pt(x)

)
dz

(4.35)

=
∫

φk(z)

( ∑
α:|α|=1

Dαpt(x)(−z)α +
∑

α:|α|=2

Rα(x − z)(−z)α
)

dz,

where zα = z
α1
1 · · · zαdx

dx
and the remainder terms, Rα , satisfy

∣∣Rα(x − z)
∣∣≤ max

α:|α|=2

∥∥Dαpt

∥∥∞. (4.36)

From assumption a.1,
∫

φk(z)zi dz = 0 for any 1 ≤ i ≤ dx , hence

∑
α:|α|=1

Dαpt (x)

∫
φk(z)(−z)α dz = −

dx∑
i=1

∂pt

∂xi

(x)

∫
φk(z)zi dz = 0. (4.37)
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Substituting (4.37) and (4.36) into (4.35) and taking the absolute value of the difference yields

∣∣p̃k
t (x) − pt (x)

∣∣≤ (
max

α:|α|=2

∥∥Dαpt

∥∥∞
) ∑

i,j∈{1,...,dx }

∫
φk(z)|zizj |dz.

However, maxα:|α|=2 ‖Dαpt‖∞ < ∞ from assumption a.2 and
∫

φk(z)|zizj |dz ≤ C2
k2 from as-

sumption a.1. Therefore, we obtain

∣∣p̃k
t (x) − pt(x)

∣∣≤ C2,t

k2
, (4.38)

where the constant C2,t = maxα:|α|=2 ‖Dαpt‖∞d2
xC2 < ∞ is independent of k. Combining

(4.38) with the inequalities (4.10) (for α = 0) and (4.11) yields

∥∥pk
t (x) − pt(x)

∥∥
p

≤ c̄t k
dx ‖φ‖∞√
N(k)

+ C2,t

k2
,

where c̄t is constant w.r.t. to k (and N(k)). From assumption a.3, N(k) ≥ k2(dx+2), we arrive at

∥∥pk
t (x) − pt(x)

∥∥
p

≤ C̄2,t

k2
, (4.39)

where C̄2,t = c̄t‖φ‖∞ + C2,t < ∞ is a constant.
Similarly to the proof of Theorem 4.4, we choose K = [−M,+M]×· · ·×[−M,+M] without

loss of generality. Using the inequality (4.39) with p = 2, we readily obtain

∫
K

E
[(

pk
t (x) − pt(x)

)2]dx ≤ C̄2
2,t

k4
L(K) ≤ CK,t

k4
,

where L(K) = (2M)dx is the Lebesgue measure of K and CK,t = (2M)dx C̄2
2,t is constant

w.r.t. k. �

Note that the improvement of the convergence rate in Thorem 4.6 (k−4 versus k−2 in Theo-
rem 4.4) is obtained at the expense of slightly increasing the computational cost of the particle
filter (N(k) ≥ k2(dx+2) are needed, versus N(k) ≥ k2(dx+1) in Theorem 4.4 for α = 0).

4.4. Convergence with the number of particles N

The results stated in this section are given in terms of the index k because this leads to concise
expressions for the upper bounds of the approximation errors and it also yields a straightfor-
ward connection with classical kernel density estimation results in terms of the kernel bandwidth
(recall that h = 1/k), as explicitly exploited in Section 4.3.

However, for the use of numerical schemes it may be useful to re-state, or at least interpret,
some of these results in terms of the number particles, N , in the particle filter, since it is this
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parameter that determines the computational complexity of the algorithm. Fortunately, there is
a straightforward (and deterministic) connection between the values of N and k, as already dis-
cussed in Section 3.3. Here, we elaborate on this issue and provide versions of Theorems 4.2
(uniform convergence over the state space), 4.3 (convergence in total variation distance of the
continuous particle approximation of πt ) and 4.5 (convergence of the ISE) with rates given in
terms of N . They are given as corollaries, as their proofs are straightforward from the original
theorems.

Under the standard conditions in Remark 4.5, the number of particles N and the inverse band-
width k satisfy the inequality N ≥ k2(dx+1), and they are both integer quantities. Therefore, given
N , the largest inverse bandwidth that we can choose is

k(N) = ⌊
N1/(2(dx+1))

⌋
, (4.40)

where �z� = sup{m ∈ Z :m ≤ z}. It is apparent that limN→∞ k(N) = ∞. For conciseness in the
notation, let us write

p̂N
t (x) = p

k(N)
t (x) = (

φx
k(N),π

N
t

)
for the kernel approximation of pt with N particles determined by the map (4.40). Similarly,
consider the sequence of hypercubes

K̂N = [−M̂N,+M̂N ] × · · · × [−M̂N,+M̂N ],
where M̂N = 1

2k(N)β/(dxp), with positive constants p ≥ 2 and 0 ≤ β < 1. This is the counterpart
of the sequence Kk in Section 4.1. Then, the next result follows readily from Theorem 4.2.

Corollary 4.1. If the standard conditions are satisfied, then

sup
x∈K̂N

∣∣p̂N
t (x) − pt(x)

∣∣≤ Uε

k(N)1−ε
,

where k(N) = �N1/(2(dx+1))�, Uε ≥ 0 is an a.s. finite random variable and 0 < ε < 1 is a con-
stant, both of them independent of N and x. In particular,

lim
N→∞ sup

x∈K̂N

∣∣p̂N
t (x) − pt(x)

∣∣= 0 a.s.

If we write π̆N
t (dx) = p̂N

t (x)dx for the continuous approximation of πt (dx) constructed from
the approximate density for a given number of particles N , then we have the corollary below,
that follows immediately from Theorem 4.3.

Corollary 4.2. If the standard conditions are satisfied and πt (K̂c
N) ≤ b

2k(N)−γ , where k(N) =
�N1/(2(dx+1))� and b > 0 and γ > 0 are constants independent of N , then∫ ∣∣p̂N

t (x) − pt(x)
∣∣dx <

Qε

k(N)min{1−ε,γ } ,
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where Qε is an a.s. finite random variable and 0 < ε < 1 is a constant, both of them independent
of N . In particular,

lim
N→∞

∫ ∣∣p̂N
t (x) − pt (x)

∣∣dx = 0 a.s.

and, as a consequence,

lim
N→∞dTV

(
π̆N

t ,πt

)= 0 a.s.

We can also give a version of Theorem 4.5 with the error bound explicitly given in terms of the
number of particles, N . To write it, let p̂

�,N
t (x) = p

�,k(N)
t (x) = IK̂N

(x)p̂N
t (x) be the truncation

of the approximate density within the compact hypercube K̂N . Then we have the corollary below,
which is proved in a trivial way from Theorem 4.5.

Corollary 4.3. If the standard conditions are satisfied, pt ∈ B(Rdx ) and πt (K̂c
N) ≤ bk(N)−γ ,

where k(N) = �N1/(2(dx+1))� and b > 0 and γ > 0 are constants independent of N , then

ISE ≡
∫ (

p̂
�,N
t (x) − pt (x)

)2 dx ≤ Uε

k(N)min{2−ε,γ } ,

where Uε ≥ 0 is an a.s. finite random variable, independent of N , and 0 < ε < 2 is an arbitrarily
small constant. In particular,

lim
N→∞

∫ (
p̂

�,N
t (x) − pt (x)

)2 dx = 0 a.s.

4.5. A simple example

There are several possible choices for the kernel function φ(x) that comply with assumptions
A.1 and A.2. In particular, the standard multivariate Gaussian density with unit covariance,

φG(x) = 1

(2π)dx/2
exp

{
−1

2

dx∑
j=1

x2
j

}
,

the dx -dimensional Laplacian pdf,

φL(x) =
(

1

2b

)dx

exp

{
−1

b

dx∑
j=1

|xj |
}

,

where b =
√

1
2dx

, and the Epanechnikov kernel φE(x) of equation (3.4) are densities with

bounded second order moment.
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It is also straightforward to check assumption A.4 for α = 0 and α = 1. In particular, for α = 0,
it is apparent that φG, φL, φE ∈ Cb(R

dx ). For α = 1, the partial derivatives of the Gaussian and
Laplacian kernels yield

D1φG(x) = (−1)dx

(2π)dx/2

dx∏
l=1

xl exp

{
−1

2

dx∑
j=1

x2
j

}
and

D1φL(x) = (−1)n
+

2dx b2dx
exp

{
−1

b

dx∑
j=1

|xj |
}

, x �= 0,

respectively, where n+ = |{l ∈ {1, . . . , dx} :xl > 0}| is the number of positive elements of
x ∈ R

dx . It is not hard to verify that D1φG ∈ Cb(R
dx ), while D1φL ∈ B(Rdx ). As for the

Epanechnikov kernel, it is easy to show that D1φE(x) = 0 ∀x ∈R
dx .

In the sequel, we consider a simple example consisting in the approximation of a Gaussian
filtering density using the Epanechnikov kernel.

Example 4.1. Consider the state-space system

p0(x0) = N(x0;0,I2), Xt = AXt−1 + Ut , Yt = BXt + Vt , t = 1,2, . . . , (4.41)

where N(x0;0,I2) is the bivariate Gaussian pdf with mean 0 and 2 × 2 identity covariance
matrix, I2; the matrices A,B ∈ R

2×2 are

A =
[

0.50 −0.35
0.39 −0.45

]
, B =

[
0.50 0.30

−0.80 0.20

]
,

and Ut , Vt , t = 1,2, . . . , are sequences of independent and identically distributed 2 × 1 Gaussian
vectors with zero mean and covariance I2. For this class of (linear and Gaussian), models the
filtering pdf pt , t ≥ 1, can be computed exactly using the Kalman filter [32] and, therefore, we
have a reference for comparison with the approximations pk

t produced by the particle filter with
N(k) = k2(dx+1) = k6 samples.

For the simulation, we generated two sequences, x0, x1, . . . , xT and y1, . . . , yT for T = 50,
according to the model (4.41). Then, using the fixed data y1:T , we run a Kalman filter to compute
the Gaussian pdf pT (x) = N(x; x̄T ,�T ) exactly, where x̄T and �T are the posterior mean and
covariance at time T , respectively. For the same sequence y1:T , we run independent particle
filters with various values of k and N(k) = k6 particles each.

Figure 1 shows plots of the approximations pk
T (x) for k = 4,7,10 (constructed using the

Epanechnikov kernel, φE) and the true pdf pT (x). The plots are drawn from a regular grid of
points in R

2, namely

x ∈ GT = {
(x1, x2) :x1 = −2.92 + 0.2n, x2 = −3.54 + 0.2n, 1 ≤ n ≤ 42

}
(4.42)

(the offsets −2.92 and −3.54 correspond, approximately, to the true posterior mean of Xt ). We
can see that there is an obvious error for small k, while for k = 10 the difference between pT (x)

and its approximation is negligible.
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(a) k = 4 and N(k) = 4096 (b) k = 7 and N(k) = 117 649

(c) k = 10 and N(k) = 1 000 000 (d) pT (x) (exact)

Figure 1. Plots (a)–(c) display the approximations of the filtering density produced by the particle filter,
pk

T
(x), with an increasing number of particles N(k) = k6, and an Epanechnikov kernel, φE. The true pdf,

pT (x), is shown in plot (d) for comparison. The plots correspond to the discrete grid GT in equation (4.42).

5. Applications

We illustrate the use of the convergence results in Section 3 by addressing two application prob-
lems: the computation of maximum a posteriori (MAP) estimators and the approximation of
functionals of the filtering density, pt . All through this section, we implicitly assume that the
standard conditions of Remark 4.5 are satisfied.

5.1. MAP estimation

We tackle the problem of approximating the maximum a posteriori (MAP) estimator of the r.v.
Xt . In particular, we address the numerical search of elements of the set

St = arg max
x∈Rdx

pt (x), (5.1)
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where s ∈ St if, and only if, pt(s) = maxx∈Rdx pt (x). Note that this is a relevant problem since
MAP estimates are often used, for example, in signal processing and engineering applications
(see, e.g., [24,25,37]), and the density pt(x) cannot be analytically found in general.

Let

Sk
t = arg max

x∈Rdx

pk
t (x) (5.2)

be the set of MAP estimates for the approximation density pk
t (x) and note that x̂k ∈ Sk

t if, and
only if, pk

t (x̂k) = maxx∈Rdx pk
t (x). We can build a sequence of approximate estimates, denoted

{x̂k}k≥1, by taking one element from each set Sk
t , k = 1,2, . . . , at time t . If St is nonempty, then

any convergent subsequence of {x̂k}k≥1 yields an arbitrarily accurate approximation of a true
MAP estimator s ∈ St , as stated below.

Theorem 5.1. Assume that St �= ∅ and take any convergent subsequence of {x̂k}k≥1, de-
noted {x̂ki

}i≥1. Let x̂ = limi→∞ x̂ki
be the limit of such subsequence. If pt ∈ Cb(R

dx ), then
pt(x̂) = maxx∈Rdx pt (x). In particular, if pt (x) has a unique maximum, then St is a singleton
and limi→∞ x̂ki

= arg maxx∈Rdx pt (x).

Proof. We prove the theorem by contradiction. Specifically, assume that pt (x̂) <

maxx∈Rdx pt (x). Then, choose some s ∈ St , so that pt(s) = maxx∈Rdx pt (x) and pt (x̂) < pt (s),
and let

ε � pt(s) − pt (x̂)

3
> 0. (5.3)

Now, choose a compact subset K ⊂ R
dx that contains s, {x̂ki

}i≥1 and x̂. From Remark 4.7,
limk→∞ supx∈K |pk

t (x) − pt(x)| = 0 a.s., hence there exists m such that for all k ≥ m

sup
x∈K

∣∣pk
t (x) − pt (x)

∣∣< ε. (5.4)

Moreover, since pt (x) is continuous at every point x ∈ K, we can choose an integer i0 such that
for all i ≥ i0 we obtain ∣∣pt (x̂ki

) − pt(x̂)
∣∣< ε. (5.5)

Now, choose an index � such that � ≥ i0 and � ≥ m. Then, for every i, ki > �, we have

p
ki
t (x̂ki

) − p
ki
t (s) =

<ε︷ ︸︸ ︷
p

ki
t (x̂ki

) − pt (x̂ki
)+

<ε︷ ︸︸ ︷
pt(x̂ki

) − pt (x̂)
(5.6)

+
=−3ε︷ ︸︸ ︷

pt(x̂) − pt(s)+
<ε︷ ︸︸ ︷

pt(s) − p
ki
t (s) < 0,

where the first term on the right-hand side, p
ki
t (x̂ki

) − pt (x̂ki
) < ε, follows from inequal-

ity (5.4), the second term, pt(x̂ki
) − pt (x̂) < ε, follows from inequality (5.5), the third term,

pt(x̂)−pt(s) = −3ε, is due to the definition in (5.3) and for the fourth term, pt(s)−p
ki
t (s) < ε,
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is obtained from the inequality (5.4). Therefore, x̂ki
/∈ arg maxx∈Rdx p

ki
t (x) and we arrive at a

contradiction. Hence, pt(x̂) = maxx∈Rdx pt (x). �

Remark 5.1. Note that the whole sequence {x̂k} may not converge to a MAP estimate since it
may, for example, alternate between different elements of St .

Many global optimization algorithms, such as simulated annealing [6,29] or accelerated ran-
dom search [2], rely only on the evaluation of the objective function and Theorem 5.1 justifies
their use with the approximation pk

t (x). Many other optimization procedures are based on the
evaluation of derivates of the objective function. For example, we may want to use a gradient
search method to find a local maximum of pt (x), that is, to find a solution of the equation

∇xpt (x) = 0, (5.7)

where x = (x1, . . . , xdx ) and

∇xpt (x) =

⎡
⎢⎢⎣

∂pt

∂x1
...

∂pt

∂xdx

⎤
⎥⎥⎦ (x) =

⎡
⎢⎣

Dα1pt

...

Dαdx pt

⎤
⎥⎦ (x),

with αi = (0, . . . ,

ith︷︸︸︷
1 , . . . ,0). Let x∗ be a solution of (5.7), that is, ∇xpt (x

∗) = 0. Under the
assumptions of Theorem 4.1, for every ε > 0 there exists kε such that, ∀k > kε ,

−ε < Dαi pk
t

(
x∗)< ε a.s.

Therefore,

∥∥∇xp
k
t

(
x∗)∥∥=

√√√√ dx∑
i=1

(
Dαi pt

k
(
x∗))2 < ε

√
dx ∀k < kε,

and, since ε can be chosen as small as we wish,

lim
k→∞

∥∥∇xp
k
t

(
x∗)∥∥= 0 a.s.,

which justifies the application of a gradient search procedure using the approximation of the
filtering pdf.

Example 5.1. We illustrate the application of a gradient search procedure using the same ex-
ample as in Section 4.5. In particular, we consider the approximation of the maximum of the
Gaussian filtering pdf pT (x), T = 50, using a steepest descent method. Given an approxima-
tion pk

T (x) of the filtering density constructed with the Gaussian kernel φG, we run the iterative
algorithm

x̂T (i + 1)k = x̂T (i)k + a∇xp
k
T (x)

∣∣
x=x̂T (i)k

, i = 0,1,2, . . . (5.8)
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(a) k = 5, N(k) = 15 625 (b) k = 9, N(k) = 531 441

(c) True pdf pt

Figure 2. Trajectories of the gradient search algorithms. Plot (a) shows the estimates produced by the
gradient search algorithm of equation (5.8) superimposed over a contour representation of pk

T
(x) for k = 5.

Plot (b) displays the estimates and contour graph for pk
T

(x) for k = 9. Plot (c) shows the estimates produced
by the gradient search algorithm of equation (5.9) superimposed over a contour representation of pT (x),
for comparison.

with initial condition x̂T (0)k = (−2,−2)� and step-size parameter a = 0.1. This procedure
yields a sequence of approximations x̂T (1)k, . . . , x̂T (i)k, . . . of the MAP estimator x̂T . Since for
the model of equation (4.41) it is possible to obtain pT (x) exactly, we have also run a steepest
descent search over the true filtering pdf, namely,

x̂T (i + 1) = x̂T (i) + a∇xpT (x)|x=x̂T (i), i = 0,1,2, . . . , (5.9)

that generates the estimates x̂T (1), . . . , x̂T (i), . . . for the same initial condition and step size.
The results, using the same sequence of observations as in Section 4.5, are shown in Fig-

ure 2. Specifically, Figures 2(a) and 2(b) show the trajectories described by the estimates
x̂T (1)k, . . . , x̂T (i)k, . . . superimposed over the contour plots of the approximate pdf pk

T (x) for
k = 5 and k = 9, respectively (and N(k) = k6). For comparison, Figure 2(c) depicts the sequence
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x̂T (1), . . . , x̂T (i), . . . obtained from the search over the true density pT (x), together with the
corresponding contour plot. We observe that both the pdfs and the trajectories described by the
search algorithms are very similar.

In practice, problem (5.2) may turn out difficult to solve because the approximation pk
t (x)

can be rough, plagued with local maxima, when the number of particles N(k) is not sufficiently
large (see, e.g., Figure 1(a)). In such cases, one may have to resort to computationally expensive
global optimization methods instead of (simpler) gradient-based techniques. A computationally
less demanding approach consists in performing the search of the maximum of pk

t (x) over the

discrete set of particles 

N(k)
t = {x(n)

t }n=1,...,N(k) (where N(k) ≥ k2(2dx+1)) instead of over the
complete (continuous) state space4

 [1]. To be specific, it is straightforward (e.g., by a linear
search) to obtain the set of particle values for which the approximate density is maximum, namely

S̃k
t = arg max

x∈

N(k)
t

pk
t (x). (5.10)

In the classical setup, when the target density is approximated using i.i.d. samples drawn directly
from the desired distribution, it can be shown that the elements of S̃k

t become arbitrarily close to
the elements of Sk

t as k → ∞ (and, hence, as N(k) → ∞) [1]. The following theorem yields a
similar asymptotic result when 


N(k)
t is generated by the standard particle filter.

Theorem 5.2. Assume that St �=∅ and pt ∈ Cb(R
dx ). If st ∈ St , sk

t ∈ Sk
t and s̃k

t ∈ S̃k
t , then,

lim
k→∞pt

(
s̃k
t

)= lim
k→∞pt

(
sk
t

)= pt(st ) a.s. (5.11)

Proof. Let us introduce the additional approximation of the MAP estimator

Šk
t = arg max

x∈

N(k)
t

pt (x).

The set Šk
t cannot be computed in practice because pt (x) cannot be evaluated, but it will be

auxiliary in proving that equation (5.11) holds. Specifically, we first show (using an argument
taken from [38]) that the sequence {pt (š

k
t ) : šk

t ∈ Šk
t , k ≥ 1} converges to pt(st ) a.s. when k → ∞.

Then, we use the latter result to show that (5.11) holds.
We proceed to prove that limk→∞ pt(š

k
t ) = pt(st ) a.s. Choose any MAP estimate st ∈ St and

define the open ball

Bm(st ) =
{
x ∈R

dx :‖x − st‖ <
1

m

}
,

where m is a positive integer. From Proposition 2.1, the integral (IBm(st ), πt ) (where IA(x) = 1
if x ∈ A and 0 otherwise) can be approximated with asymptotically vanishing error. Specifically,

4This alternative approximation of the MAP estimator of Xt was pointed out to us by one of the anonymous reviewers
of the original manuscript.
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since k → ∞ implies that N(k) → ∞, we have

lim
k→∞

(
IBm(st ), π

N(k)
t

)= lim
k→∞

|Bm(st ) ∩ 

N(k)
t |

N(k)
= (IBm(st ), πt ) a.s.,

where |Bm(st ) ∩ 

N(k)
t | yields the number of particles inside the ball Bm(st ). Since pt is contin-

uous and positive at st , then (IBm(st ), πt ) > 0, hence

lim
k→∞

|Bm(st ) ∩ 

N(k)
t |

N(k)
> 0 a.s. (5.12)

for any integer m.
The inequality (5.12) means that the set Bm(st ) ∩ 


N(k)
t , consisting of particles which are

“close” to st (namely, at a distance lesser than 1/m), is asymptotically nonempty, with probability
1, no matter how large we choose m. Therefore, let us choose a point s

k,m
t ∈ Bm(st ) ∩ 


N(k)
t .

Obviously, pt(s
k,m
t ) ≤ pt (st ), but also pt(s

k,m
t ) ≤ pt(š

k
t ) by construction, hence

pt

(
s
k,m
t

)≤ pt

(
šk
t

)≤ pt(st ). (5.13)

Since pt is continuous at st , for any arbitrarily small ε > 0 we can choose m > 0 such that if x ∈
Bm(st ) then pt(st )−pt (x) < ε. However, for every m there exists km such that when k > km the
intersection Bm(st )∩


N(k)
t is a.s. nonempty, hence there exists a particle s

k,m
t ∈ Bm(st )∩


N(k)
t

and the inequality (5.13) yields 0 ≤ pt(st ) − pt(š
k
t ) ≤ pt (st ) − pt (s

k,m
t ) < ε. Therefore,

lim
k→∞pt

(
šk
t

)= pt (st ) a.s. (5.14)

Now we prove the convergence of pt(s̃
k
t ) and pt(s

k
t ) toward pt(st ) = maxx∈Rdx pt (x). Con-

sider first the nonnegative difference

0 ≤ pt(st ) − pt

(
s̃k
t

)
= (

pt(st ) − pt

(
šk
t

))+ (
pt

(
šk
t

)− pk
t

(
šk
t

))
(5.15)

+ (
pk

t

(
šk
t

)− pk
t

(
s̃k
t

))+ (
pk

t

(
s̃k
t

)− pt

(
s̃k
t

))
,

where the inequality follows from the definition of St , and let us look into each term on the
right-hand side of (5.15) separately.

Choose any arbitrarily small ε > 0. From (5.14), there exists k1 such that for every k > k1,

0 ≤ pt (st ) − pt

(
šk
t

)
<

ε

6
. (5.16)

Let us now select, without loss of generality, a compact set K ⊃ St ∪ Sk
t ∪ S̃k

t ∪ Šk
t . From Re-

mark 4.7,

∣∣pt

(
šk
t

)− pk
t

(
šk
t

)∣∣≤ sup
x∈K

∣∣pt (x) − pk
t (x)

∣∣≤ Ũ ε

k1−ε
,
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where Ũ ε is an a.s. finite random variable and 0 < ε < 1 is arbitrary but constant. Hence, there
exists k2 such that, for every k > k2,

−ε

6
< pt

(
šk
t

)− pk
t

(
šk
t

)
<

ε

6
. (5.17)

By the same argument, there is some k3 such that, for every k > k3,

−ε

6
< pt

(
s̃k
t

)− pk
t

(
s̃k
t

)
<

ε

6
. (5.18)

Since, by construction,

pk
t

(
šk
t

)− pk
t

(
s̃k
t

)≤ 0, (5.19)

substituting (5.16)–(5.19) into the inequality (5.15) and solving for pk
t (š

k
t ) − pk

t (s̃
k
t ) yields

0 ≥ pk
t

(
šk
t

)− pk
t

(
s̃k
t

)
> −ε

2
(5.20)

for every k > max{k1, k2, k3}. However,∣∣pt (st ) − pt

(
s̃k
t

)∣∣ ≤ ∣∣pt(st ) − pt

(
šk
t

)∣∣+ ∣∣pt

(
šk
t

)− pk
t

(
šk
t

)∣∣
(5.21)

+ ∣∣pk
t

(
šk
t

)− pk
t

(
s̃k
t

)∣∣+ ∣∣pk
t

(
s̃k
t

)− pt

(
s̃k
t

)∣∣
and substituting (5.16)–(5.18) and (5.20) into (5.21) yields |pt(st ) − pt(s̃

k
t )| < ε a.s. for every

k > max{k1, k2, k3}, hence

lim
k→∞pt

(
s̃k
t

)= pt(st ) a.s.

A similar argument proves the convergence of pt(s
k
t ) → pt (st ). In particular, if we choose a

compact set K ⊃ St ∪ Sk
t we can again apply Remark 4.7 to show that, for any ε > 0 there exists

k4 such that, for every k > k4,

−ε

4
< pt(st ) − pk

t (st ) <
ε

4
(5.22)

and there exists k5 such that, for every k > k5,

−ε

4
< pk

t

(
sk
t

)− pt

(
sk
t

)
<

ε

4
. (5.23)

However,

0 ≤ pt (st ) − pt

(
sk
t

)= (
pt(st ) − pk

t (st )
)+ (

pk
t (st ) − pk

t

(
sk
t

))+ (
pk

t

(
sk
t

)− pt

(
sk
t

))
(5.24)

and, since pk
t (st ) − pk

t (s
k
t ) ≤ 0 by definition of Sk

t , substituting (5.22) and (5.23) into (5.24) and
solving for pk

t (st ) − pk
t (s

k
t ) yields

−ε

2
< pk

t (st ) − pk
t

(
sk
t

)≤ 0 (5.25)



Particle-kernel density estimation 1915

Table 1. Approximation of the maximum posterior density pT (sT ) =
maxx∈Rdx pT (x) by way of equations (5.2) and (5.10) (pT (sk

T
) and

pT (s̃k
T

), respectively). The approximate MAP estimate sk
T

has been
computed via the gradient search method of equation (5.8)

pT (sT ) pT (sT ) − pT (sk
T

) pT (sT ) − pT (s̃k
T

)

k = 5 0.201937 0.005090 0.004500
k = 9 0.201937 0.001030 0.002679

for every k > max{k4, k5}. Finally, since∣∣pt (st ) − pk
t

(
sk
t

)∣∣≤ ∣∣pt (st ) − pk
t

(
st
)∣∣+ ∣∣pk

t (st ) − pk
t

(
sk
t

)∣∣,
we obtain that |pt(st ) − pk

t (s
k
t )| ≤ ε for every k > max{k4, k5}, hence

lim
k→∞pk

t

(
sk
t

)= pt (st ) a.s. �

Example 5.2. We consider, again, the Gaussian density pT (x), with T = 50, of Examples 4.1
and 5.1 in order to compare numerically the approximations pT (sk

t ) and pT (s̃k
T ) with the true

maximum pT (sT ). The results are displayed in Table 1, which shows the maximum pT (sT ) =
maxx∈Rdx pT (x) and the differences pT (sT ) − pT (s̃k

t ) and pT (sT ) − pT (sk
T ) for k = 5 (N =

15 625) and k = 9 (N = 531 441).

5.2. Functionals of pt

The result of Theorem 4.3 allows us to construct (rigorous) approximations of functionals of the
form (f ◦ pt ,πt ), where ◦ denotes composition and f is a Lipschitz-continuous and bounded
real function. In order to provide rates for the convergence of the particle-kernel approxima-
tions (f ◦ pk

t ,π
N(k)
t ), we again work with the sequence of hypercubes Kk = [−Mk,Mk] × · · · ×

[−Mk,Mk] ⊂ R
dx where Mk = 1

2kβ/(dxp) and 0 < β < 1, p > 3 are constants with respect to k.
Specifically, we have the following result.

Theorem 5.3. Choose any bounded, Lipschitz continuous function f , that is, f ∈ B(R) and
∀x, y ∈R ∣∣f (x) − f (y)

∣∣≤ cf |x − y|
for some finite constant cf > 0. If pt ∈ B(Rdx ) and πt (Kc

k) ≤ b
2k−γ for some constants γ, b > 0,

then ∣∣(f ◦ pk
t ,π

N(k)
t

)− (f ◦ pt ,πt )
∣∣≤ Qε

f

kmin{1−ε,γ } , (5.26)
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where 0 < ε < 1 is an arbitrarily small constant and Qε
f is an a.s. finite random variable inde-

pendent of k. In particular,

lim
k→∞

∣∣(f ◦ pk
t ,π

N(k)
t

)− (f ◦ pt ,πt )
∣∣= 0 a.s.

Proof. Consider first the absolute difference

∣∣(f ◦ pk
t ,πt

)− (f ◦ pt ,πt )
∣∣ = ∣∣∣∣

∫ [(
f ◦ pk

t

)
(x) − (f ◦ pt )(x)

]
pt (x)dx

∣∣∣∣
(5.27)

≤
∫ ∣∣(f ◦ pk

t

)
(x) − (f ◦ pt )(x)

∣∣pt(x)dx,

where the inequality holds because pt (x) ≥ 0. Using the Lipschitz continuity of f in the integral
of equation (5.27) yields

∣∣(f ◦ pk
t ,πt

)− (f ◦ pt ,πt )
∣∣ ≤ cf

∫ ∣∣pk
t (x) − pt(x)

∣∣pt(x)dx

(5.28)

≤ cf ‖pt‖∞
∫ ∣∣pk

t (x) − pt(x)
∣∣dx,

where the second inequality follows from the assumption pt ∈ B(Rdx ) (hence ‖pt‖∞ < ∞).
Equation (5.28) together with Theorem 4.3 readily yields

∣∣(f ◦ pk
t ,πt

)− (f ◦ pt ,πt )
∣∣≤ cf ‖pt‖∞Qε

kmin{1−ε,γ } , (5.29)

where 0 < ε < 1 is a constant and Qε is an a.s. finite random variable.
As a second step, consider the difference |(f ◦ pk

t ,π
N(k)
t ) − (f ◦ pk

t ,πt )|. Since f ∈ B(R), it
follows that ‖f ◦ pk

t ‖∞ ≤ ‖f ‖∞ independently of k and an application of Proposition 2.1 yields

E
[∣∣(f ◦ pk

t ,π
N(k)
t

)− (
f ◦ pk

t ,πt

)∣∣q]≤ c
q
t ‖f ‖q∞

N(k)q/2
≤ c

q
t ‖f ‖q∞

kq(2dx+1)
,

where q ≥ 1 and the second inequality holds because N(k) ≥ k2(dx+|1|+1). Using Lemma 4.1
with c = c

q
t ‖f ‖q∞ and ν = 0 (note that q(2dx + 1) ≥ 2 for any q, dx ≥ 1), we readily obtain the

convergence rate for the absolute error, that is,

∣∣(f ◦ pk
t ,π

N(k)
t

)− (
f ◦ pk

t ,πt

)∣∣≤ Uε

k1−ε
, (5.30)

where 0 < ε < 1 is an arbitrarily small constant and Uε ≥ 0 is an a.s. finite random variable.
To conclude, consider the triangle inequality∣∣(f ◦ pk

t ,π
N(k)
t

)− (f ◦ pt ,πt )
∣∣ ≤ ∣∣(f ◦ pk

t ,π
N(k)
t

)− (
f ◦ pk

t ,πt

)∣∣
(5.31)

+ ∣∣(f ◦ pk
t ,πt

)− (f ◦ pt ,πt )
∣∣.
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Substituting (5.29) and (5.30) into (5.31) yields

∣∣(f ◦ pk
t ,π

N(k)
t

)− (f ◦ pt ,πt )
∣∣≤ Uε

k1−ε
+ cf ‖pt‖∞Qε

kmin{1−ε,γ } ≤ Qε
f

kmin{1−ε,γ } , (5.32)

where the random variable Qε
f = Uε + cf ‖pt‖∞Qε ≥ 0 is a.s. finite and independent of k. �

In statistical signal processing, machine learning and information theory it is often of interest
to evaluate the Shannon entropy of a probability measure π [4,41,44]. Assuming that π has a
density p w.r.t. the Lebesgue measure, the entropy of the probability distribution is

H(π) = −(logp,π) = −
∫
S

p(x) log
[
p(x)

]
dx,

where S is the support of p. In the case of the filtering measure πt , it is natural to think of a
particle approximation of the entropy H(πt ) constructed as

H(πt )
k = −(logpk

t ,π
N(k)
t

)= − 1

N(k)

N(k)∑
n=1

logpk
t

(
x

(n)
t

)
.

Unfortunately, the log function is neither bounded nor Lipschitz continuous and, therefore, The-
orem 5.3 does not guarantee the convergence H(πt )

k → H(πt ). Such a result, however, can
be obtained, with a more specific argument, if we assume the support of the density pt to be
compact.

Theorem 5.4. Let the sequence of observations Y1:T = y1:T (for some large but finite T ) be
fixed and assume that g

yt
t is positive and bounded and logpt ∈ F4

T for 1 ≤ t ≤ T . If there exists a
compact set S ⊂R

dx such that
∫
S pt (x)dx = 1 and infx∈S pt (x) > 0, then

lim
k→∞

∣∣H(πt )
k −H(πt )

∣∣= 0 a.s.

Proof. We apply the triangle inequality to obtain∣∣(− logpk
t ,π

N(k)
t

)− (− logpt ,πt )
∣∣ ≤ ∣∣(− logpk

t ,π
N(k)
t

)− (− logpt ,π
N(k)
t

)∣∣
(5.33)

+ ∣∣(− logpt ,π
N(k)
t

)− (− logpt ,πt )
∣∣

and then analyze the two terms on the right-hand side of (5.33).
The first one can be expanded to yield

∣∣(− logpk
t ,π

N(k)
t

)− (− logpt ,π
N(k)
t

)∣∣ =
∣∣∣∣∣ 1

N(k)

N(k)∑
i=1

log
pt(x

(i)
t )

pk
t (x

(i)
t )

∣∣∣∣∣
(5.34)

≤ 1

N(k)

N(k)∑
i=1

∣∣∣∣log
pt(x

(i)
t )

pk
t (x

(i)
t )

∣∣∣∣.
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The logarithm of a ratio x/y can be upper bounded as

log
x

y
≤ max{x, y}

min{x, y} − 1, (5.35)

hence applying (5.35) into (5.34) we arrive at

∣∣(− logpk
t ,π

N(k)
t

)− (− logpt ,π
N(k)
t

)∣∣≤ 1

N(k)

N(k)∑
i=1

∣∣∣∣max{pk
t (x

(i)
t ),pt (x

(i)
t )}

min{pk
t (x

(i)
t ),pt (x

(i)
t )}

− 1

∣∣∣∣. (5.36)

However, from Theorem 4.2 and Remark 4.7,

lim
k→∞pk

t (x)/pt (x) = lim
N→∞pt(x)/pk

t (x) = 1 a.s.

for every x ∈ S . Moreover, since we have assumed infx∈S pt(x) > 0, it follows that for any ε > 0
there exists kε independent of x such that, for all k > kε ,

max{pk
t (x

(i)
t ),pt (x

(i)
t )}

min{pk
t (x

(i)
t ),pt (x

(i)
t )}

≤ 1 + ε. (5.37)

Substituting (5.37) into (5.36) yields, for all k > kε ,∣∣(− logpk
t ,π

N(k)
t

)− (− logpt ,π
N(k)
t

)∣∣≤ ε a.s.

Since ε can be as small as we wish,

lim
k→∞

∣∣(− logpk
t ,π

N(k)
t

)− (− logpt ,π
N(k)
t

)∣∣= 0 a.s. (5.38)

The second term in (5.33) converges to 0 because of Proposition 2.1, part (b), that is,

lim
k→∞

∣∣(− logpt ,π
N(k)
t

)− (− logpt ,πt )
∣∣= 0 a.s. (5.39)

and taking together equations (5.38), (5.39) and (5.33) we arrive at

lim
k→∞

∣∣(− logpk
t ,π

N(k)
t

)− (− logpt ,πt )
∣∣= 0 a.s. �

Example 5.3. We continue to use the model of Section 4.5 to numerically illustrate the particle
approximation of H(πt ). Since the densities pt for this example are Gaussian with known co-
variance matrices �t , t = 1,2, . . . , we can compute their associated Shannon entropies exactly,
namely

H(πt ) = 1

2
log
(
(2πe)dx |�t |

)
,

where |�t | is the determinant of matrix �t . Taking t = T = 50 and using the same sequence of
observations y1:50 as in Section 4.5, the resulting entropy is H(πT ) = 2.5998 nats.
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Table 2. Empirical mean and standard deviation of the entropy-
approximation error, |H(πT ) −H(πT )k |, averaged over 30 indepen-
dent simulations. The entropies are evaluated in nats

k = 3 k = 4 k = 5

Mean 0.0616 0.0370 0.0128
Std. 0.0453 0.0249 0.0091

Let us point out that, obviously, the Gaussian distribution has an infinite support and, therefore,
the convergence result of Theorem 5.4 cannot be rigorously applied. However, the Gaussian pdf
is light-tailed and, as can be observed from Figure 1(d), it can be truncated within a compact
(rectangular) support and still yield a faithful representation of the original distribution.

Table 2 displays the empirical mean and standard deviation of the absolute error |H(πT ) −
H(πT )k| obtained through computer simulations for N(k) = k6 and k = 3,4,5. To be specific,
we carried out 30 independent simulation runs for each value of k. We observe how both the
mean error and its standard deviation reduce quickly as k is increased.

6. Summary

We have addressed the approximation of the sequence of filtering pdfs of a Markov state-space
model using a particle filter. The numerical technique is conceptually simple. We collect the N

particles generated by the sequential Monte Carlo algorithm and approximate the desired density
as the sum of N scaled kernel functions located at the particle positions. The main contribution of
the paper is the analysis of the convergence of such particle-kernel approximations. In particular,
we have first proved the point-wise convergence of the approximation of the filtering density and
its derivatives as the number of particles is increased and the kernel bandwidth is correspond-
ingly decreased. Explicit convergence rates are provided and they are sufficient to prove that the
approximation errors vanish a.s. Under mild additional assumptions on the chosen kernel, it is
possible to extend the latter result to prove that the approximation error converges uniformly on
the support of the filtering density (rather than point-wise) and a.s. to 0. We have also found an
explicit convergence rate for the supremum of the approximation error. The analysis establishes a
connection between the complexity of the particle filter and the bandwidth of the kernel function
used for estimating the filtering pdf. For a given number of particles N , this relationship yields
an optimal value of the bandwidth.

The uniform approximation result has a number of applications. We have first exploited it
to prove the convergence, in total variation distance, of the continuous measure generated by
the estimated density toward the true filtering measure. In a similar vein, we have also shown
that the MISE of the sequence of approximate densities converges (quadratically with the kernel
bandwidth) toward 0 when the state space is compact. For a truncated version of the density
approximation, the (random) ISE is also shown to converge a.s. toward 0 without assuming com-
pactness of the support. Although the convergence rate found for the ISE is only quadratic (versus
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fourth order for the asymptotic approximation of the MISE in classical kernel density estimation
theory), one should be aware that all the results obtained in this paper remain valid whenever the
density estimator is obtained by smoothing a discrete random measure πN

t that is “good enough”
to estimate integrals of bounded functions in such a way that the Lp norms of the approximation
error convergence as c√

N
(in particular, we do not require to have samples from the target density

pt ). As a consequence, the results obtained here can be applied to, for example, kernel density
estimators built from importance samples as in [46], or to the analysis of bootstrapped estimators
as considered in [28]. Convergence of the MISE with the fourth power of the bandwidth (i.e., the
same as for the AMISE in the classical theory) can also be obtained at the expense of a slight
increase in the computational load of the particle filter and some additional assumptions on the
kernel function and the smoothness of the filter density.

We have also proved that the maxima of the approximate filtering density converge a.s. to-
ward the true ones. Therefore, MAP estimation of the state at time t can be carried out using, for
example, gradient search methods on the approximate filtering pdf. We remark that it is sound
to apply such methods on the approximate function, since we have proved convergence also for
its derivatives. The last application we consider is the approximation of functionals of the fil-
tering pdf. We provide a general result that guarantees the convergence of the particle-kernel
approximations for general bounded and Lipschitz continuous functionals of the filtering den-
sity. Finally, we prove that it is also possible to use the proposed constructs to approximate the
Shannon entropy of densities with a compact support. In order to arrive at this result, we have
also proved the convergence of the particle filter approximations of integrals of unbounded test
functions under very mild assumptions (essentially, the integrability of the function up to fourth
order). This is a departure from most existing approaches, which assume bounded test functions.

Appendix A: Proof of Proposition 2.1

Part (a) of Proposition 2.1 is a straightforward consequence of [38], Lemma 1, hence we focus
here on part (b). We start with the following lemma, which is used as an auxiliary result in the
proof of the proposition.

Lemma A.1. Let {θn;n = 1, . . . ,N} be a set of random variables, assumed centered and i.i.d.
conditionally on some σ -algebra G. If E[θ4

n ] < ∞, n = 1, . . . ,N , then

E

[(
1

N

N∑
n=1

θn

)4]
≤ cE[θ4

1 ]
N2

, (A.1)

where c is a constant independent of N . In particular,

lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

θn

∣∣∣∣∣= 0 a.s.
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Proof. Conditional on G, the variables are zero mean and independent, hence it is straightfor-
ward to show that

E

[(
1

N

N∑
n=1

θn

)4∣∣∣G
]

= 1

N4

N∑
n=1

E
[
θ4
n |G]+ 6

N4

∑
1≤j<k≤N

E
[
θ2
j |G]E[θ2

k |G]. (A.2)

Since the conditional (on G) distributions of the θn’s are identical, we can rewrite (A.2) in terms
of E[θ4

1 |G] and E[θ2
1 |G] alone, namely

E

[(
1

N

N∑
n=1

θn

)4∣∣∣G
]

= 1

N3
E
[
θ4

1 |G]+ 6(N − 1)

N3
E2[θ2

1 |G]. (A.3)

However, E[θ4
n |G] ≥ E2[θ2

n |G] (from Jensen’s inequality), which readily yields the bound

E

[(
1

N

N∑
n=1

θn

)4∣∣∣G
]

≤ E
[
θ4

1 |G]1 + 6(N − 1)

N3
≤ cE[θ4

1 |G]
N2

(A.4)

for any constant c ≥ 6. Taking unconditional expectations on the right-hand and left-hand sides
of (A.4) leads to the desired inequality (A.1).

Finally, a standard Borel–Cantelli argument yields limN→∞ E[| 1
N

∑N
n=1 θn|] = 0 a.s. �

Lemma A.1 enables us to prove the convergence of particle approximations, limN→∞(f,

πN
t ) → (f,πt ) a.s., when f ∈ F4

T . We follow an induction argument to prove the latter result. In
particular, let

π̄N
t (dx) =

N∑
n=1

w
(n)
t δ

x̄
(n)
t

(dx) (A.5)

be the random measure resulting from assigning importance weights w
(n)
t = g

yt
t (x̄

(n)
t )/

(
∑N

k=1 g
yt
t (x̄

(k)
t )) to the particles x̄

(n)
t . We prove that:

1. At time t = 0, limN→∞ |(f,πN
0 ) − (f,π0)| = 0 a.s. and, at time t = 1,

lim
N→∞

∣∣(f, π̄N
1

)− (f,π1)
∣∣= 0 a.s.

2. If limN→∞ |(f, π̄N
t ) − (f,πt )| = 0 a.s. at some time 1 ≤ t < T , then

lim
N→∞

∣∣(f, π̄N
t+1

)− (f,πt+1)
∣∣= 0 a.s.

In the induction step, it is explicitly shown that limN→∞ |(f, π̄N
t ) − (f,πt )| = 0 a.s. implies

limN→∞ |(f,πN
t ) − (f,πt )| = 0. The latter is the result in the statement of Proposition 2.1,

hence the argument above yields a complete proof.
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A.1. Base case (t ≤ 1)

For t = 0, the samples x
(n)
0 , n = 1, . . . ,N , are i.i.d. with common distribution π0, hence the

approximation πN
0 is constructed as πN

0 (dx) = 1
N

∑N
n=1 δ

x
(n)
0

(dx). Consider the random variables

θn,0 = f (x
(n)
0 ) − (f,π0). It is apparent that they are i.i.d. and E[θn,0] = 0. Also

E
[
θ4
n,0

] = E
[(

f
(
x

(n)
0

)− (f,π0)
)4]

≤ 24(E[f (x(n)
0

)4]+ (f,π0)
4)< ∞,

where the last inequality follows from E[f (x
(n)
0 )4] = (f 4,π0) and the assumption f ∈ F4

T . Since
the variables {θn,0;n = 1, . . . ,N} satisfy the assumptions of Lemma A.1, we readily obtain

lim
N→∞

∣∣(f,πN
0

)− (f,π0)
∣∣= lim

N→∞

∣∣∣∣∣ 1

N

N∑
n=1

f
(
x

(n)
0

)− (f,π0)

∣∣∣∣∣= 0 a.s. (A.6)

Consider the (predictive) measure ξt+1 = τt+1πt as defined in equation (2.7). After the sam-
pling step, the particle filter produces a random approximation

ξN
t+1(dx) = 1

N

N∑
n=1

δ
x̄

(n)
t+1

(dx),

that is, ξN
t+1 = τt+1π

N
t . We look now into the approximation error |(f, ξN

1 ) − (f, ξ1)|.
Let Ft = σ(x

(n)
0:t , x̄

(n)
1:t : 1 ≤ n ≤ N) denote the σ -algebra generated by the random variables

x
(n)
s and x̄

(n)
r for n = 1, . . . ,N , s = 0, . . . , t and r = 1, . . . , t . It is apparent that E[f (x̄

(n)
t+1)|Ft ] =

τt+1(f )(x
(n)
t ), hence the conditional mean an of (f, ξN

t+1) is

E
[(

f, ξN
t+1

)|Ft

] = 1

N

∑
E
[
f
(
x̄

(n)
t+1

)|Ft

]

= 1

N

N∑
n=1

τt+1(f )
(
x

(n)
t

)= (
f, τt+1π

N
t

)
,

and it is natural to use the triangular inequality∣∣(f, ξN
t+1

)− (f, ξt+1)
∣∣≤ ∣∣(f, ξN

t+1

)− (
f, τt+1π

N
t

)∣∣+ ∣∣(f, τt+1π
N
t

)− (f, τt+1πt )
∣∣ (A.7)

to analyze the approximation error |(f, ξN
t+1) − (f, ξt+1)|.

We proceed with the case t = 0. If we look into the second term on the right-hand side of (A.7)
we observe that

(f, τ1π0) =
∫

τ1(f )(x0)π0(dx0) = (
τ1(f ),π0

)
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and, similarly, (f, τ1π
N
0 ) = (τt+1(f ),πN

t ). Since f ∈ F4
T , it follows that τt+1(f ) ∈ F4

T as well
and, from equation (A.6), we readily see that

lim
N→∞

∣∣(f, τ1π
N
0

)− (f, τ1π0)
∣∣= 0 a.s. (A.8)

In order to analyze the first term on the right-hand side of (A.7) (for t = 0), let us choose the
random variables

θ̄1,n = f
(
x̄

(n)
1

)− τ1(f )
(
x

(n)
0

)
, n = 1, . . . ,N.

It is straightforward to check that they are unconditionally i.i.d. To see that they are centered,
simply observe that, for every n = 1, . . . ,N ,

E[θ̄1,n] = E
[
E[θ̄1,n|F0]

]= 0,

since E[θ̄1,n|F0] = E[f (x̄
(n)
1 )|F0] − τ1(f )(x

(n)
0 ) and E[f (x̄

(n)
1 )|F0] = τ1(f )(x

(n)
0 ). Moreover,

E
[
θ̄4

1,n|F0
]≤ 24(τ1

(
f 4)(x(n)

0

)+ (
τ1(f )4,π0

))
,

hence

E
[
θ̄4

1,n

]= E
[
E
[
θ̄4

1,n|F0
]]≤ 24((τ1

(
f 4),π0

)+ (
τ1(f )4,π0

))
< ∞,

where the last inequality holds because f ∈ F4
T and, as a consequence (τ1(f )4,π0) ≤

(τ1(f
4),π0) < ∞. As the variables θ̄1,n = f (x̄

(n)
1 ) − τ1(f )(x

(n)
0 ) satisfy the assumptions of

Lemma A.1, we readily obtain that

lim
N→∞

∣∣(f, ξN
1

)− (
f, τ1π

N
0

)∣∣= 0 a.s. (A.9)

Taking together (A.7), (A.9) and (A.8), we obtain

lim
N→∞

∣∣(f, ξN
1

)− (f, ξ1)
∣∣= 0 a.s. (A.10)

After computing the importance weights, we obtain the random measure π̄N
1 (dx) defined in

equation (A.5) (with t = 1). Integrals w.r.t. π̄N
1 can be written in terms of g

y1
1 and ξN

1 , namely

(
f, π̄N

1

)=
N∑

n=1

g
y1
1 (x̄

(n)
1 )∑N

k=1 g
y1
1 (x̄

(k)
1 )

f
(
x̄

(n)
1

)= (fg
y1
1 , ξN

1 )

(g
y1
1 , ξN

1 )
.

Similarly, for π1 and ξ1 Bayes’ theorem yields

(f,π1) = (fg
y1
1 , ξ1)

(g
y1
1 , ξ1)

,
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and the difference (f, π̄N
1 ) − (f,π1) can be written as(

f, π̄N
1

)− (f,π1)

= (fg
y1
1 , ξN

1 )

(g
y1
1 , ξN

1 )
− (fg

y1
1 , ξ1)

(g
y1
1 , ξ1)

± (fg
y1
1 , ξN

1 )

(g
y1
1 , ξ1)

(A.11)

= (fg
y1
1 , ξN

1 ) − (fg
y1
1 , ξ1)

(g
y1
1 , ξ1)

+ (fg
y1
1 , ξN

1 )

(g
y1
1 , ξN

1 )
× (g

y1
1 , ξ1) − (g1, ξ

N
1 )

(g
y1
1 , ξ1)

.

Note that, since g
y1
1 ∈ B(Rdx ) (hence g

y1
1 ∈ F4

T ), equation (A.10) yields

lim
N→∞

∣∣(gy1
1 , ξ1

)− (
g1, ξ

N
1

)∣∣= 0 a.s. (A.12)

and, since we have assumed (
g

y1
1 , ξ1

)
> 0, (A.13)

it follows that

lim
N→∞

(
g1, ξ

N
1

)
> 0 a.s. (A.14)

Also as a consequence of the likelihood g
y1
1 being bounded, we have fg

y1
1 ∈ F4

T and (A.10)
guarantees that

lim
N→∞

∣∣(fg
y1
1 , ξ1

)− (
fg1, ξ

N
1

)∣∣= 0 a.s. (A.15)

Taking equations (A.13) and (A.14) together, we deduce that limN→∞
(fg

y1
1 ,ξN

1 )

(g
y1
1 ,ξN

1 )
< ∞ a.s. This

result, combined with (A.12) and (A.15) yields

lim
N→∞

∣∣(f, π̄N
1

)− (f,π1)
∣∣= 0 a.s. (A.16)

A.2. Induction step (t > 1)

Let us assume that limN→∞ |(f, π̄N
t ) − (f,πt )| = 0 a.s. for some 1 ≤ t < T .

We first show that the difference |(f,πN
t ) − (f, π̄t )| converges to 0 a.s. Recall that πN

t is
obtained from the equally-weighted particles after the resampling step. Let us introduce the gen-
erated σ -algebra F̄t = σ(x

(n)
0:t−1, x̄

(n)
1:t ; 1 ≤ n ≤ N) and the random variables

θt,n = f
(
x

(n)
t

)− (
f, π̄N

t

)
, n = 1, . . . ,N.

It is simple to check that

E
[
f
(
x

(n)
t

)|F̄t

]= (
f, π̄N

t

)
, n = 1, . . . ,N,
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hence θt,n, n = 1, . . . ,N , are centered (and obviously i.i.d.) given F̄t . Also, E[θ4
t,n|F̄t ] < ∞.

Specifically, (f 4, π̄N
t ) is F̄t -measurable hence

E
[
f
(
x

(n)
t

)4|F̄t

]= (
f 4, π̄N

t

)
,

and, from the induction hypothesis and f ∈ F4
T ,

lim
N→∞

(
f 4, π̄N

t

)= (
f 4,πt

)
< ∞ a.s.

Therefore, for sufficiently large N , (f 4, π̄N
t ) < ∞. However,

E
[
θ4
t,n|F̄t

]≤ 24((f 4, π̄N
t

)+ (
f, π̄N

t

)4)
,

hence E[θ4
t,n] = E[E[θ4

t,n|F̄t ]] < ∞ for sufficiently large N . As the conditions of Lemma A.1
are satisfied for θt,n, n = 1, . . . ,N , we obtain

lim
N→∞

∣∣(f,πN
t

)− (
f, π̄N

t

)∣∣= lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

θt,n

∣∣∣∣∣= 0 a.s. (A.17)

Finally, taking together the induction hypothesis, (A.17) and the triangle inequality∣∣(f,πN
t

)− (f,πt )
∣∣≤ ∣∣(f,πN

t

)− (
f, π̄N

t

)∣∣+ ∣∣(f, π̄N
t

)− (f,πt )
∣∣,

readily yields

lim
N→∞

∣∣(f,πN
t

)− (f,πt )
∣∣= 0 a.s. (A.18)

Next, we prove that limN→∞ |(f, ξN
t+1) − (f, ξt+1)| = 0 a.s. We resort again to the triangular

inequality (A.7). Since (f, τt+1πt ) = (τt+1(f ),πt ), (f, τt+1π
N
t ) = (τt+1(f ),πN

t ) and τt+1(f ) ∈
F4

T , it is a straightforward consequence of (A.18) that

lim
N→∞

∣∣(f, τt+1π
N
t

)− (f, τt+1πt )
∣∣= 0 a.s. (A.19)

To show that the error (f, ξN
t+1) − (f, τt+1π

N
t ) also vanishes, let us choose the random vari-

ables θ̄t+1,n = f (x̄
(n)
t+1) − τt+1(f )(x

(n)
t ). These are i.i.d.5 conditional on F̄t . They are also cen-

tered, since E[θ̄t+1,n|Ft ] = E[f (x̄
(n)
t+1)|Ft ]− τt+1(f )(x

(n)
t ) = 0 and F̄t ⊂Ft . Therefore, we just

5In particular, note that

• {x̄(n)
t+1}n=1,...,N can be viewed as i.i.d. samples from the probability measure mt+1(dx) = ∑N

n=1 w
(n)
t τt+1(dx|

x̄
(n)
t ), where both w

(n)
t and x̄

(n)
t , 1 ≤ n ≤ N , are F̄t -measurable, and

• {x(n)
t }n=1,...,N are also i.i.d. given F̄t .
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need to check that E[θ̄4
t+1,n] < ∞ in order to apply Lemma A.1. We note that

E
[
θ̄4
t+1,n|Ft

]≤ 24(τt+1
(
f 4)(x(n)

t

)+ τt+1(f )4(x(n)
t

))
and then readily obtain

E
[
θ̄4
t+1,n|F̄t

] = E
[
E[θ̄t+1,n|Ft ]|F̄t

]
(A.20)

≤ 24((τt+1
(
f 4), π̄N

t

)+ (
τt+1(f )4, π̄N

t

))
.

However, τt+1(f )4 ≤ τt+1(f
4) and f ∈ F4

T implies that (τt+1(f
4),πt ) < ∞. Moreover, the in-

duction hypothesis yields

lim
N→∞

∣∣(τt+1
(
f 4), π̄N

t

)− (
τt+1

(
f 4), π̄t

)∣∣= 0 a.s.

hence (τt+1(f )4, π̄N
t ) ≤ (τt+1(f

4), π̄N
t ) < ∞ for sufficiently large N . As a consequence,

E[θ̄4
t+1,n] < ∞ and the conditions of Lemma A.1 are satisfied for the random variables θ̄t+1,n

and the σ -algebra F̄t . In particular, we have

lim
N→∞

∣∣(f, ξN
t+1

)− (
f, τt+1π

N
t

)∣∣= lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

θ̄t+1,n

∣∣∣∣∣= 0 a.s. (A.21)

Taking together (A.21), (A.19) and (A.7) yields

lim
N→∞

∣∣(f, ξN
t+1

)− (f, ξt+1)
∣∣= 0 a.s. (A.22)

Finally, given (A.22), it is straightforward to prove that limN→∞ |(f, π̄N
t+1) − (f,πt+1)| = 0

a.s. using the same argument as in the base case for π̄N
1 .

Appendix B: Proof of Lemma 4.1

Choose a constant β such that ν < β < p − 1 and define

Uβ,p =
∞∑

m=1

mp−1−β
(
θm
)p

.

The random variable Uβ,p is obviously nonnegative and, additionally, it has a finite mean,
E[Uβ,p] < ∞. Indeed, from Fatou’s lemma

E
[
Uβ,p

] ≤
∞∑

m=1

mp−1−βE
[(

θm
)p]≤ c

∞∑
m=1

m−1−β+ν,



Particle-kernel density estimation 1927

where the second inequality follows from equation (4.1). Since β − ν > 0, it follows that∑∞
m=1 m−1−(β−ν) < ∞, hence E[Uβ,p] < ∞.
We use the so-defined random variable Uβ,p in order to determine the convergence rate of θk .

Obviously, kp−1−β(θk)p ≤ Uβ,p and solving for θk yields

θk ≤ (Uβ,p)1/p

k1−(1+β)/p
.

If we define ε = 1+β
p

and Uε = (Uβ,p)1/p , the we obtain the inequality

θk ≤ Uε

k1−ε
.

Since E[Uβ,p] < ∞, it follows that E[(Uε)p)] < ∞, hence Uε is a.s. finite. Also, we recall that
ν < β < p − 1, therefore 1+ν

p
< ε < 1.
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