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We characterize the small-time asymptotic behavior of the exit probability of a Lévy process out of a
two-sided interval and of the law of its overshoot, conditionally on the terminal value of the process. The
asymptotic expansions are given in the form of a first-order term and a precise computable error bound. As
an important application of these formulas, we develop a novel adaptive discretization scheme for the Monte
Carlo computation of functionals of killed Lévy processes with controlled bias. The considered functionals
appear in several domains of mathematical finance (e.g., structural credit risk models, pricing of barrier
options, and contingent convertible bonds) as well as in natural sciences. The proposed algorithm works by
adding discretization points sampled from the Lévy bridge density to the skeleton of the process until the
overall error for a given trajectory becomes smaller than the maximum tolerance given by the user.
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1. Introduction

Small-time asymptotics for the distributions of Lévy processes and related Markov processes
have a long history going back to the seminal work of Léandre [30], who obtained the leading
order term of the transition density of a Markov process solving a stochastic differential equation
with jumps. In the case of a Lévy process, the main result of Léandre [30] reads

lim
t→0

1

t
ft (x) = s(x) (x �= 0), (1.1)

where ft (x) := d
dx

P(Xt ≤ x) is the marginal density of the Lévy process X and s is the Lévy den-
sity of X, whose existence and smoothness need to be assumed. Léandre’s approach was to con-
sider separately the small jumps (say, those with sizes smaller than an ε > 0) and the large jumps
of the underlying Lévy process, and to condition on the number of large jumps by time t . A sim-
ilar approach has been applied during the last decade to obtain high-order asymptotic expansions
for the transition distributions and densities of Lévy processes and other Markov processes with
jumps (see Rüschendorf and Woerner [38], Figueroa-López, Gong and Houdré [19], Figueroa-
López and Houdré [20], and Figueroa-López and Ouyang [21]). These small-time asymptotic
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results have found a wide scope of applications ranging from estimation methods based on
high-frequency sampling observations of the process (see, e.g., Figueroa-López [17], Comte and
Genon-Catalot [11], Rosenbaum and Tankov [37], and references therein) to asymptotic results
for option prices and Black–Scholes volatilities in short-time (cf. Tankov [43], Figueroa-López
and Forde [18], Figueroa-López, Gong and Houdré [19]).

In the present paper, we adopt Leandre’s approach to study the asymptotic behavior of the
generalized moments of the Lévy process stopped at the time it exits a two-sided interval (a, b),
conditionally on the terminal value of the process. Specifically, for a Lévy process (Xt )t≥0 with
Lévy density s that is smooth outside any neighborhood of the origin and for a bounded Lipschitz
function ϕ, we prove that

E
(
ϕ(Xτ )1τ≤t |Xt = y

) = t

2

∫
(a,b)c

ϕ(v)
s(v)s(y − v)

s(y)
dv + o(t) (t → 0) (1.2)

for any y ∈ (a, b) \ {0}, where τ := inf{u ≥ 0: Xu /∈ (a, b)} with −∞ ≤ a < 0 < b ≤ ∞. In the
case ϕ ≡ 1, (1.2) can be written as follows:

P
(∃u ∈ [0, t]: Xu /∈ (a, b)|Xt = y

) = t

2

∫
(a,b)c

s(v)s(y − v)

s(y)
dv + o(t) (t → 0) (1.3)

for y ∈ (a, b) \ {0}. As in the case of the small-time asymptotics for the marginal distributions
of the process, the main intuition can be drawn from considering the pure-jump case with finite
jump activity. Intuitively, formulas (1.2)–(1.3) tell us that if, within a small time period, a Lévy
process goes out of the interval (a, b) and then comes back to the point y ∈ (a, b), this essentially
happens with two large jumps: the first jump takes the process out of (a, b), while the second
jump brings it back to y.

Our study of the short-time behavior of (1.2) and (1.3) is motivated by applications in the
Monte Carlo evaluation of functionals of the form

E
[
F(XT )1τ>T

]
, τ = inf

{
t ≥ 0: Xt /∈ (a, b)

}
. (1.4)

In financial mathematics, such functionals arise in structural credit risk models based on Lévy
processes (Fang et al. [16]) and in the pricing of barrier options (cf. Kou and Wang [27], Bo-
yarchenko and Levendorskii [7]), which is one of the most popular classes of exotic options.
Very recently, a renewed interest to these problems has emerged in relation to the so-called con-
tingent convertible bonds, where the conversion is triggered by a passage across a level and
which exhibit a high sensitivity to jump risk (Corcuera et al. [13]). In natural sciences, Lévy
processes (under the name of Lévy flights) are used as models for certain diffusion-like phenom-
ena in physics and chemistry (so-called anomalous or super-diffusion) (Metzler and Klafter [32],
Shlesinger, Zaslavsky and Frisch [41], Barthelemy, Bertolotti and Wiersma [3]) as well as to
describe movement patterns of foraging animals (Viswanathan et al. [44], Benhamou [5]), and
there is considerable interest toward the study of Lévy flights in bounded domains and related
first passage problems giving rise to functionals of type (1.4) (Chechkin et al. [10], Buldyrev
et al. [8], Garbaczewski and Stephanovich [22]). In all these settings, closed-form expressions
are rarely available and Monte Carlo is often the method of choice.
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The simplest procedure to evaluate the functional (1.4) by Monte Carlo consists in simulating
the process (Xt )t≥0 at evenly spaced times tnk := khn, with hn := T/n and k = 0, . . . , n, over the
interval [0, T ], and approximating the exit time τ by

τ̃n := inf
{
tnk : Xtnk

/∈ (a, b)
}
.

This simple method introduces two types of errors: the statistical error and the discretization
error. The latter is known to be quite significant (cf. Baldi [2] and Example 2 in Section 5 below);
Metwally and Atiya [31] reports errors of up to 10% in the context of barrier options for a time
discretization of one point per day.

In the context of continuous diffusions, short-time asymptotics have been successfully em-
ployed to alleviate the bias due to the discretization error. One of the earliest procedures of this
type, due to Baldi [2], is based on an approximation of the probability, p(x, y, t), that the pro-
cess X has gone out of a domain (a, b) during the small time interval [s, s + t] conditioning on
Xs = x and Xs+t = y; that is,

p(x, y, t) := P
(∃u ∈ [s, s + t]: Xu /∈ (a, b)|Xs = x,Xs+t = y

)
. (1.5)

Given such an approximation p̃(x, y, t) of the functional p(x, y, t), the procedure simulates
iteratively Xtnk+1

at each step k = 0, . . . , n−1, and if Xtnk+1
∈ (a, b), it proceeds to kill the process

with probability p̃(Xtnk
,Xtnk+1

, hn) and choose tnk+1 = (k + 1)hn as an approximation of the exit
time τ . A similar idea was used in Moon [33] to price barrier options with payoff ϕ(Sτ , τ ) by
Monte Carlo.

In the context of Lévy processes, an attempt to apply a similar methodology has been made in
Webber [45], Ribeiro and Webber [36]. The authors remarked that the discretization bias can be
reduced by using the identity

E
(
F(XT )1{τ<T }

) = E

(
F(XT )

(
1 −

n−1∏
k=0

{
1 − p(Xtnk

,Xtnk+1
, hn)

}))
(1.6)

and replacing the exact exit probability p(x, y, t) with a suitable small-time approximation
p̃(x, y, t). However, these papers propose no general formula for p̃(x, y, t) and, as shown in
Becker [4], the Monte Carlo method proposed in Webber [45], Ribeiro and Webber [36] could
lead to a large discretization bias. On the other hand, in the specific case of the parametric vari-
ance gamma model, there exist discretization algorithms (cf. Avramidis and L’Ecuyer [1]) allow-
ing to simulate the running minimum and maximum with error bounds. Let us also remark the
recent work of Kuznetsov et al. [28] where a method for the joint simulation of the running max-
imum and the position of a Lévy process is introduced based on the Wiener–Hopf decomposition
of the process.

Our short-time asymptotic result (1.3) provides an approximation of the exit probability (1.5)
via the formula

p̃(x, y, t) := t

2

∫
(a−x,b−x)c

s(v)s(y − x − v)

s(y − x)
dv = t

2

∫
(a,b)c

s(u − x)s(y − u)

s(y − x)
du (1.7)



Small-time asymptotics of stopped Lévy bridges 1129

for x �= y, which is valid under mild regularity conditions on the Lévy process X (see Section 2
for details). The first-order approximation (1.7), together with an appropriate error bound for it,
enable us to develop a general adaptive Monte Carlo method for evaluating the functional (1.4)
with a given precision. Given a target error level γ , the idea is to generate a “random skeleton”
{(Tk,XTk

)}Nk=1 of the process X such that the error in each subinterval [Tk,Tk+1], that is,

e := p(XTk
,XTk+1 , Tk+1 − Tk) − p̃(XTk

,XTk+1, Tk+1 − Tk), (1.8)

satisfies |e| ≤ Tk+1−Tk

T
γ . The functional (1.4) is then approximated as follows:

E
[
F(XT )1τ>T

] ≈ E

(
F(XT )

N−1∏
k=0

{
1 − p̃(XTk

,XTk+1 , Tk+1 − Tk)
})

, (1.9)

and it is shown that the total bias of this computation will be less then γ . As a result of this
adaptiveness, the algorithm generates more frequent points when the process X is close to the
boundary, and takes large time steps (thus saving computational time) when the process is far
from the boundary. Let us remark that, unlike the formula (1.6), where the sampling times {tnk }
are deterministic and fixed, the decomposition (1.9) for random skeletons X := {(Tk,XTk

)}Nk=0
requires precise (and also novel to the best of our knowledge) conditions under which this for-
mula holds (see Section 4 for the details).

The proposed adaptive algorithm works as follows. First, the endpoint XT is generated and
added to the skeleton. Next, if the error (1.8) is too large for a given subinterval [Tk,Tk+1], the
procedure splits the interval into two and generates the midpoint XT̄k

with T̄k := (Tk + Tk+1)/2
from the bridge distribution. This is repeated iteratively until the desired error bound is satisfied
for every subinterval [Tk,Tk+1] of the sampling times 0 = T0 < · · · < TN = T . Such retrospective
sampling (starting from the endpoint) has a number of advantages over the classical uniform
discretization, especially in the context of rare event simulation, where it enables one to easily
implement variance reduction by importance sampling. Indeed, the process can be directed to the
region of interest by modifying the distribution of the terminal value, while keeping unchanged
the rest of the algorithm. On the other hand, this method requires fast simulation from the bridge
distribution of Xt/2 conditioned to Xt = y. To this end, as another contribution of particular
interest on its own, we also propose a new method to simulate from this Lévy bridge distribution
based on the classical rejection method.

As previously explained, in order to implement the above adaptive algorithm, precise com-
putable bounds for the approximation errors in (1.2)–(1.3) are also needed. We obtain such
bounds by developing explicit inequalities for the tail probabilities and transition densities of
a Lévy process whose Lévy density has a small compact support. This type of concentration in-
equalities in turn allows us to estimate the different components of the error, which, as explained
above, originate from conditioning the desired functional on the number of big jumps by time t

(see Section 3 for the details). The resulting error bounds are given in terms of the Lipschitz and
L∞ norms of ϕ as well as several computable quantities related to the Lévy density s such as
sup|x|≥ε s(x), sup|x|≥ε |s′(x)|, ∫

|x|≥ε
s(x)dx, and

∫
|x|≤ε

x2s(x)dx.
Let us also remark that an adaptive simulation method similar to the one introduced in the

present paper was proposed in Dzougoutov et al. [15] to compute a functional of the form
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Eϕ(Xτ , τ ) for a homogeneous diffusion process X without jumps. Adaptive numerical methods
for finding weak approximation of diffusions without jumps and with finite intensity jumps (but
with the adaptiveness only concerning the diffusion part) have also been proposed in Szepessy,
Tempone and Zouraris [42] and Mordecki et al. [34], respectively. As in our paper, the idea
therein is to sample from inside of a subinterval [tnk , tnk+1] whenever the approximation error in
that subinterval has not reached a desired low level, specified by the user.

The paper is organized as follows. In Section 2, we obtain the leading term of the functional
E(ϕ(Xτ )1τ≤t |Xt = y) when t → 0. The explicit estimate of the approximation error is given in
Section 3. The development of the adaptive discretization schemes for the Monte Carlo compu-
tation of the functional E[F(XT )1τ>T ] as well as the algorithm to simulate random observations
from the Lévy bridge distribution are given in Section 4. Our methods are illustrated numerically
in Section 5 for Cauchy process. Finally, the proofs of the technical results are deferred to the
Appendix.

2. Small-time asymptotics for Lévy bridges

Let X be a real-valued Lévy process on a probability space (�, F ,P) with Lévy triplet (σ 2, ν,μ)

with respect to truncation function h(x) = 1|x|≤1. Throughout, (Ft )t≥0 denotes the natural fil-
tration generated by the process X and augmented by the null sets of F so that it satisfies the
usual conditions (see, e.g., Chapter I.4 in Protter [35]). The following standing assumptions are
imposed throughout the paper:

• The Lévy measure ν admits a continuously differentiable density s : R \ {0} → (0,∞), with
respect to the Lebesgue measure (hereafter denoted by L), which satisfies, for any ε > 0,

sup
|x|≥ε

s(x) < ∞, sup
|x|≥ε

∣∣s′(x)
∣∣ < ∞. (2.1)

• The distribution of Xt admits a density ft for all t > 0. Since ν is already assumed to admit
a density, for this assumption to hold, it suffices to additionally require that ν(R) = ∞ or
σ > 0 (see Theorem 27.7 in Sato [40]).

• The density of Xt satisfies ft (x) > 0 for all x ∈ R and t > 0 (see Theorem 24.10 in Sato [40]
for mild sufficient conditions for this property to hold).

As it is usually done with Lévy processes, we shall decompose X into a compound Poisson
process and a process with bounded jumps. More specifically, for any ε ∈ (0,1), we select a
function cε ∈ C∞(R), which is decreasing on (−∞,0) and increasing on (0,∞) and such that
1|x|≥ε ≤ cε(x) ≤ 1|x|≥ε/2. Next, we define the truncated Lévy densities

sε(x) := cε(x)s(x) and s̄ε(x) := c̄ε(x)s(x),

with c̄ε(x) := 1− cε(x). Let Zε be a compound Poisson process with Lévy measure sε(x)dx and
Xε be a Lévy process, independent from Zε , with characteristic triplet (σ 2, s̄ε(x)dx,με), where

με := μ −
∫

|x|≤1
xcε(x)s(x)dx. (2.2)
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It is clear that Xε + Zε has the same law as X and that the intensity and probability density
of the jumps of Zε are λε := ∫

sε(x)dx and sε(x)/λε , respectively. Throughout the paper, we
let (Nε

t )t≥0 be the jump counting process of Zε and (Y ε
k )k≥1 be the jump sizes of Zε . Thus,

Zε
t = ∑Nε

t

k=1 Y ε
k . Note that the distribution of Xε

t is also absolutely continuous since σ > 0 or∫
s̄ε(x)dx = ∞, for any ε > 0. For future reference, let us remark that

E
(
Xε

t

) = t

(
με +

∫
|x|≥1

xs̄ε(x)dx

)
= tμε,

(2.3)

Var
(
Xε

t

) = t

(
σ 2 +

∫
x2s̄ε(x)dx

)
=: tσ 2

ε ,

since ε ∈ (0,1) (see, e.g., Example 25.12 in Sato [40] for the mean and variance formulas of a
Lévy process).

The following lemma will be needed in what follows (cf. Propositions I.4 and III.2 in Léan-
dre [30]). See also Sections 3.1–3.2 below for explicit expressions for the constants Cp(η, ε) and
cp(η, ε).

Lemma 2.1. Let f ε
t be the transition density of the small-jump component process (Xε

t )t≥0.
Then, for any fixed positive real η and positive integer p, there exist an ε0(η,p) > 0 and positive
constants t0(η, ε), cp(η, ε), and Cp(η, ε) < ∞ for any ε < ε0 such that

(i) P

(
sup

0≤s≤t

∣∣Xε
s

∣∣ ≥ η
)

< Cp(η, ε)tp, (ii) sup
|x|≥η

f ε
t (x) < cp(η, ε)tp (2.4)

for all 0 < t ≤ t0 and 0 < ε ≤ ε0.

The following result provides the key tool for establishing the small-time asymptotics of the
moments of the Lévy bridge “stopped” at the exit time from an interval (a, b). Its proof is pre-
sented in Appendix A.

Theorem 2.1. For fixed constants a ∈ [−∞,0) and b ∈ (0,∞], define

τ := inf
{
u ≥ 0: Xu /∈ (a, b)

}
.

Let ϕ : R → R be bounded and Lipschitz on R and let δ0 ∈ (0, b−a
2 ). Then, for any y ∈ (a +

δ0, b − δ0) and 0 < δ < δ0,

E
(
ϕ(Xτ )1{τ≤t,Xt∈(y−δ,y+δ)}

) =
∫ y+δ

y−δ

(
t2

2

∫
(a,b)c

ϕ(v)s(v)s(u − v)dv + Rt (u)t2
)

du, (2.5)

where the remainder term Rt (u) is such that

lim
t→0

ess sup
u∈(a+δ0,b−δ0)

∣∣Rt (u)
∣∣ = 0. (2.6)
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Remark 2.1. By the definition of conditional expectation,

E
(
ϕ(Xτ )1{τ≤t,Xt∈(y−δ,y+δ)}

) = E
(
E

(
ϕ(Xτ )1{τ≤t}|Xt

)
1{Xt∈(y−δ,y+δ)}

)
(2.7)

=
∫ y+δ

y−δ

E
(
ϕ(Xτ )1{τ≤t}|Xt = u

)
ft (u)du,

where ft (u) is the density of Xt and, as usual, �(u) := E(ϕ(Xτ )1{τ≤t}|Xt = u) is such that
�(Xt) is a version of E(ϕ(Xτ )1{τ≤t}|Xt). Comparing (2.7) and (2.5), it then follows that, for
L-a.e. y ∈ (a, b),

E
(
ϕ(Xτ )1{τ≤t}|Xt = y

) = t2/2
∫
(a,b)c

ϕ(v)s(v)s(y − v)dv

ft (y)
+ Rt (y)t2

ft (y)
. (2.8)

If, in addition, the transition density ft satisfies the asymptotic formula (1.1)1 then, for L-a.e.
y ∈ (a, b) \ {0},

E
(
ϕ(Xτ )1{τ≤t}|Xt = y

) = t

∫
(a,b)c

ϕ(v)s(v)s(y − v)dv

2s(y)
+ o(t). (2.9)

Formulas (2.5) and (2.8) can be interpreted as large deviation results for the trajectories of Lévy
processes in small time. When ϕ(x) ≡ 1, (2.9) gives the following small-time approximation for
the exit probability of the Lévy bridge:

P(τ ≤ t |Xt = y) = t

∫
(a,b)c

s(v)s(y − v)dv

2s(y)
+ o(t). (2.10)

We conclude this section with a simpler result for the case when Xt is outside the interval. Its
proof is outlined in Appendix A.

Proposition 2.1. Let ϕ : R → R be bounded and Lipschitz on R, and let δ0 > 0. Then, under the
same notation and conditions as in Theorem 2.1, for any y ∈ (a − δ0, b + δ0)

c and δ < δ0,

E
(
ϕ(Xτ )1{Xt∈(y−δ,y+δ)}

) =
∫ y+δ

y−δ

(
tϕ(u)s(u) + Rt (u)t

)
du, (2.11)

where the remainder term Rt (u) is such that

lim
t→0

ess sup
u∈(a−δ0,b+δ0)

c

∣∣Rt (u)
∣∣ = 0. (2.12)

1As stated in the Introduction, (1.1) holds for a large class of Markov processes with jumps as proved by Léandre [30].
For Lévy processes, Rüschendorf and Woerner [38] provided a more elementary proof using the same conditions and
similar approach as in Léandre [30]. Higher order short-time expansions for the transition densities were obtained in
Figueroa-López, Gong and Houdré [19].



Small-time asymptotics of stopped Lévy bridges 1133

Remark 2.2. Analogously to Remark 2.1, (2.11) enables us to establish the following natural
asymptotic formula:

E
(
ϕ(Xτ )|Xt = y

) = t
ϕ(y)s(y)

ft (y)
+ o(1) = ϕ(y) + o(1) (t → 0)

for L-a.e. y ∈ [a, b]c . The second equality above holds whenever ft (y) satisfies (1.1).

3. On a precise bound for the remainder term

In the previous section, we developed the necessary results for finding estimates of the functional

f (0, y, t) := E
[
ϕ(Xτ )1τ≤t |Xt = y

]
(3.1)

in short-time. Indeed, as explained in Remark 2.1, Theorem 2.1 yields the following natural
estimate for f (0, y, t):

f̃ (0, y, t) = t2/2
∫
(a,b)c

ϕ(v)s(v)s(y − v)dv

ft (y)
. (3.2)

The estimate (3.2) will be used below to develop adaptive discretization schemes for the Monte
Carlo computation of functionals of the killed Lévy process (see Section 4). To this end, we first
need to find an explicit estimate for the remainder Rt (y) appearing in (2.5). Such an estimate
can be expressed in terms of bounds for the tail probability and transition densities of the small-
jump component (Xε

t )t≥0. Hence, we start by providing explicit expressions for the upper bounds
appearing in (2.4) and then proceed to give a precise error bound for |f (0, y, t) − f̃ (0, y, t)|.

3.1. Bounding the tail probability of the supremum

The following exponential inequality for Lévy processes with bounded jumps will be important
to estimate the supremum of the small-jump component (Xε

t ) defined in Section 2. Its proof,
which is provided in Appendix B for completeness, is a variation of the bound obtained in
Rüschendorf and Woerner [38] (which in turn is based on Lemma 26.4 in Sato [40]).

Lemma 3.1. Let (Mt) be a martingale Lévy process with |
Mt | ≤ ε and 〈M,M〉t = σ 2
ε t . Then,

P

(
sup
s≤t

(Ms + μs) ≥ η
)

≤ tη/εC̄�(η, ε;μ) (� = 0,1), (3.3)

with the following constants C̄�(η, ε;μ) and corresponding conditions:

(1) C̄0(η, ε;μ) = eμ∨0/εe−1
eσ 2

ε /ε2
for all η > 0 and 0 < t < η/(μ ∨ 0) (with the convention

here and below that the fraction is +∞ if the denominator is zero);
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(2) C̄1(η, ε;μ) = eμ∨0/εe−1
(

eσ 2
ε

εη
)η/ε for all η > 0 and 0 < t < η/(μ ∨ 0) if either (i) μ ≤ 0 or

(ii) μ > 0 and η ≤ σ 2
ε /ε;

In order to apply Lemma 3.1 for (Xε
t )t≥0, we recall that 0 < ε < 1 so that EXε

t = μεt . Then,
the martingale part Mε

t := Xε − μεt of Xε is such that

〈
Mε,Mε

〉
t
=

(
σ 2 +

∫
c̄ε(x)x2ν(dx)

)
t = σ 2

ε t.

Thus, fixing

t0(ε, η) := η

2(με ∨ 0)
, (3.4)

it follows that, for all 0 < t < t0,

P

(
sup
s≤t

Xε
s ≥ η

)
≤ P

(
sup
s≤t

Mε
s + |με|t ≥ η

)
≤ P

(
sup
s≤t

Mε
s ≥ η

2

)
≤ tη/(2ε)C

(
η

2
, ε

)
, (3.5)

with C(η, ε) is defined by

C(η, ε) :=
(

eσ 2
ε

εη

)η/ε

. (3.6)

Similarly, we have P(sups≤t |Xε
s | ≥ η) ≤ 2tη/(2ε)C(η/2, ε).

3.2. Bounding the transition density of the small-jump component

To obtain explicit expressions for the constants appearing in the bounds for the density f ε
t in

Lemma 2.1, we shall assume that the process X is such that Xε
t has a unimodal distribution for

all t > 0 and ε > 0. By Yamazato’s theorem (see Theorem 53.1 in Sato [40]), a sufficient condi-
tion for this is that the process X is self-decomposable, which is the case if and only if the Lévy
density s is of the form s(x) = k(x)

|x| for a function k which is increasing on (−∞,0) and decreas-
ing on (0,∞) (see Corollary 15.11 in Sato [40]). In particular, most of the parametric models
used in the literature (such as stable, tempered stable, variance gamma, and normal inverse Gaus-
sian processes) are self-decomposable and so these processes as well as their truncated versions
have unimodal densities at all times.

Let mε
t be the mode of Xε

t . If mε
t ∈ [−η,η] and η > η, then the density can be estimated by

sup
|x|≥η

f ε
t (x) ≤ 2

η − η
P

[∣∣Xε
t

∣∣ ≥ η
]
, (3.7)

simply because the density is decreasing in (η,∞) and increasing in (−∞,−η). The rela-
tion (3.7) in turn leads to a bound of the form (2.4)(ii) by applying the tail bound (2.4)(i). It
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remains to find conditions for mε
t ∈ [−η,η]. Since obviously Xε has finite second moment, the

following bound due to Johnson and Rogers [26] can be applied

∣∣mε
t − EXε

t

∣∣2 ≤ 3 Var
(
Xε

t

)
. (3.8)

Thus, recalling the mean and variance formulas given in (2.3), mε
t ∈ [−η,η] whenever 0 < t < t1,

where t1 is such that

t1|με| +
√

3t
1/2
1

(
σ 2 +

∫
|x|≤ε

|x|2ν(dx)

)1/2

= η. (3.9)

By taking η = η/2, we will have

sup
|x|≥η

f ε
t (x) ≤ 4

η
P

[∣∣Xε
t

∣∣ ≥ η

2

]
≤ 8C(η/4, ε)

η
tη/(2ε) (3.10)

for any 0 < t < t1 ∧ t0 with t0 defined as in (3.4).

3.3. Precise bound for the remainder

We are now ready to give an explicit bound for the reminder term Rt (y) appearing in (2.5),
which in turn will produce an error bound for |f (0, y, t) − f̃ (0, y, t)|. Throughout, we shall use
the following notation:

(i) aε := supx sε(x) and a′
ε := supx |s′

ε(x)|, where, as before, sε(x) := cε(x)s(x) is the Lévy
density s, truncated in a neighborhood of the origin;

(ii) λε := ∫
s(x)cε(x)dx, με := μ− ∫

|x|≤1 xcε(x)s(x)dx, and σ 2
ε := σ 2 + ∫

c̄ε(x)x2s(x)dx;
(iii) C(η, ε) is defined as in (3.6), t0(ε, η) is defined as in (3.4), and t1(ε, η) is defined as

in (3.9).

The following result, whose proof is given in Appendix B, gives an estimate for Rt (y) in terms
of the previously defined notation and the L∞- and Lipschitz norms of ϕ denoted hereafter by

‖ϕ‖∞ := ess sup
x

∣∣ϕ(x)
∣∣,

‖ϕ‖Lip := inf
{
K ≥ 0:

∣∣ϕ(x) − ϕ(y)
∣∣ ≤ K|x − y|,∀x, y ∈ R

}
.

Theorem 3.1. Using the notation of Theorem 2.1, assume that the process X is such that Xε
t has

a unimodal distribution for all t > 0 and ε > 0. Let c := b∧|a| and 
y := (b−y)∧ (y −a) > 0.
Then, ∣∣Rt (y)

∣∣ ≤ 1

t2
eR(0, y, t),
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for all 0 < t < t0(ε, (
y/2) ∧ c) ∧ t1(ε,
y/2), where

eR(0, y, t) := e−λεt‖ϕ‖∞C(
y/4, ε)t
y/(4ε)

{
8


y

+ 2aεt + aελεt
2
}

+ 2e−λεt‖ϕ‖∞aεC(c/2, ε)t1+c/(2ε){1 + tλε}
(3.11)

+ ‖ϕ‖∞λ2
εaε

2
t3 + ‖ϕ‖∞aελ

−1
ε

(
1 − e−λεt

[
1 + λεt + (λεt)

2/2
])

+ e−λεt t2[aελε‖ϕ‖Lip + 2‖ϕ‖∞a2
ε + ‖ϕ‖∞λεa

′
ε

](
σεt

1/2 + |με|
2

t

)
.

Two immediate conclusions can be drawn. First, note that, by taking ε <

y

8 ∧ c
2 , we obtain a

bound for the remainder satisfying condition (2.6). Second, as seen in Remark 2.1, the previous
bound implies the following error bound

∣∣f (0, y, t) − f̃ (0, y, t)
∣∣ ≤ eR(0, y, t)

ft (y)
=: ef (0, y, t),

with f and f̃ defined as in (3.1)–(3.2).

Remark 3.1. The approximation for the conditional exit probability p(0, y, t) := P[τ ≤ t |Xt =
y] is obtained by substituting ϕ ≡ 1 into (2.8):

p̃(0, y, t) = t2/2
∫
(a,b)c

s(v)s(y − v)dv

ft (y)
.

Making this substitution in the previous bound, it follows that |p(0, y, t) − p̃(0, y, t)| ≤
ep(0, y, t) with ep(0, y, t) given by

ep(0, y, t) := 1

ft (y)

(
e−λεtC(
y/4, ε)t
y/(4ε)

{
8


y

+ 2aεt + aελεt
2
}

+ 2e−λεt aεC(c/2, ε)t1+c/(2ε){1 + tλε} + λ2
εaε

2
t3

+ aελ
−1
ε

(
1 − e−λεt

[
1 + λεt + (λεt)

2/2
])

+ e−λεt t2[2a2
ε + λεa

′
ε

](
σεt

1/2 + |με|
2

t

))
,

valid for all t < t0(ε, (
y/2) ∧ c) ∧ t1(ε,
y/2). The one-sided case (a = −∞) can similarly be
obtained.
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4. Adaptive simulation of killed Lévy processes

Our goal in this section is to design a type of adaptive Monte Carlo estimators for functionals of
the form

E
[
F(XT )1τ>T

]
, (4.1)

where F is a Borel measurable function and τ := inf{t ≥ 0: Xt /∈ D} with D := (a, b), for some
a ∈ [−∞,0) and b ∈ (0,∞]. From now on, to simplify notation and with no loss of generality,
we shall take T = 1.

For 0 < s < t , x ∈ R, and y ∈ R, we denote by PBR
(s,t,x,y)[·] the bridge law of the Lévy process X

on the time interval [s, t] with starting value x and terminal value y; that is, this is a version of
the regular conditional distribution of {x + Xu−s}u∈[s,t] given Xt−s = y − x. Since Xt has a
strictly positive density on R for every t > 0, the bridge law is uniquely defined for L-almost
every y ∈ R (recall that L stands for the Lebesgue measure), which is sufficient for our purposes.
We also let p(x, y, t) denote the exit probability from the domain D before time t for the Lévy
bridge:

p(x, y, t) := PBR
(0,t,x,y)[τ ≤ t] = P

[∃u ∈ [0, t]: x + Xu /∈ (a, b)|Xt = y
]
. (4.2)

Our approach is based on the following decomposition:

E
[
F(X1)1τ>1

] = E

[
F(X1)

N−1∏
i=0

(
1 − p(XTi

,XTi+1 , Ti+1 − Ti)
)]

, (4.3)

where 0 = T0 ≤ · · · ≤ TN = 1 are suitable sampling times. Formula (4.3) directly follows from
the Markov property when the sampling points are deterministic. In that case, the set of points
X := {(Ti,XTi

)}Ni=0 is called a deterministic skeleton. In our setting, both the number of points N

and the sampling times 0 = T0 ≤ T1 ≤ · · · ≤ TN = 1 are random and we need to formalize under
what conditions on X (4.3) still holds. The following result will suffice for our purposes.

Lemma 4.1. Let N be a random variable with support N ⊆ N, such that N > 0, and let 0 =
T0 ≤ · · · ≤ TN = 1 be random points such that

(1) Each Ti takes values in a countable set K ⊂ [0,1];
(2) For each n ∈ N and (s0, . . . , sn) ∈ Kn+1 with 0 = s0 ≤ · · · ≤ sn = 1, the event {N =

n, (T0, . . . , Tn) = (s0, . . . , sn)} is σ(Xsi : i = 0, . . . , n)-measurable.

Then, (4.3) is satisfied for any measurable function F with E[|F(X1)|] < ∞ and, furthermore,
for every t ∈ (0,1), n ∈ N , and A ∈ B(R),

P[Xt ∈ A|N = n,T0, . . . , TN ,XT0, . . . ,XTN
] = PBR

Ti∗ ,Ti∗+1,XTi∗ ,XTi∗ +1
[Xt ∈ A], (4.4)

where i∗ = max{i: Ti ≤ t}.
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Proof. Throughout, we let p̄(x, y, t) := 1 − p(x, y, t), �Kn := {(s0, . . . , sn) ∈ Kn+1: 0 = s0 ≤
· · · ≤ sn = 1}, U0 := [s0, s1], and Ui := (si , si+1], with i = 1, . . . , n− 1. We also use the notation

IU := 1{Xu∈(a,b): ∀u∈U} for a domain U ⊂ R+ and I∅ = 1. (4.5)

Then, by Markov property

E
[
F(X1)1τ>1

]
=

∑
n∈N

∑
(s0,...,sn)∈ �Kn

E
[
F(X1)I[0,1]1{N=n,(T0,...,Tn)=(s0,...,sn)}

]

=
∑
n∈N

∑
(s1,...,sn)∈ �Kn

E

[
F(X1)1{N=n,(T0,...,Tn)=(s0,...,sn)}E

[
n−1∏
i=0

IUi
|Xsj : j = 0, . . . , n

]]

=
∑
n∈N

∑
(s1,...,sn)∈ �Kn

E

[
F(X1)1{N=n,(T0,...,Tn)=(s0,...,sn)}

n−1∏
i=0

p̄(XTi
,XTi+1 , Ti+1 − Ti)

]

= E

[
F(X1)

N−1∏
i=0

p̄(XTi
,XTi+1 , Ti+1 − Ti)

]
,

which proves (4.3). Similarly, P[Xt ∈ A|N = n,T0, . . . , TN ,XT0, . . . ,XTN
] can be decomposed

as ∑
(s0,...,sn)∈ �Kn

P
[
Xt ∈ A|N = n, (T0, . . . , Tn) = (s0, . . . , sn),XT0, . . . ,XTN

]
1(T0,...,Tn)=(s0,...,sn)

=
∑

(s0,...,sn)∈ �Kn

PBR
si∗ ,si∗+1,Xsi∗ ,Xsi∗+1

[Xt ∈ A]1(T0,...,Tn)=(s0,...,sn)

= PBR
Ti∗ ,Ti∗+1,XTi∗ ,XTi∗ +1

[Xt ∈ A]. �

From (4.3), it is now evident that, for the computation of (4.1) by Monte Carlo, it suffices
to simulate independent replicas of the random variable Y := F(X1)N(X ), where hereafter we
denote

N(X ) :=
N−1∏
i=0

(
1 − p(XTi

,XTi+1 , Ti+1 − Ti)
)
.

The exit probability p(x, y, t) does not typically admit a closed form expression and some type
of approximation must be applied for its evaluation. The short-time asymptotics (2.8) yields the
following natural estimate for p(x, y, t) when x, y ∈ D:

p̃(x, y, t) := (
p̆(x, y, t) ∨ 0

) ∧ 1 with p̆(x, y, t) := t2

2

∫
(a,b)c

s(u − x)s(y − u)

ft (y − x)
du. (4.6)
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We also set p̃(x, y, t) = 1 if x /∈ D or y /∈ D. This approximation satisfies∣∣p̃(x, y, t) − p(x, y, t)
∣∣ ≤ ep(x, y, t), (4.7)

where the error bound ep(x, y, t) is defined as in Remark 3.1 for x, y ∈ D and by ep(x, y, t) = 0
if x /∈ D or y /∈ D. We can then approximate N(X ) by

Ñ(X ) :=
N−1∏
i=0

(
1 − p̃(XTi

,XTi+1 , Ti+1 − Ti)
)
. (4.8)

Replacing the true exit probability p(x, y, t) with its approximation p̃(x, y, t) introduces a
bias into the evaluation of N(X ), which is hard to quantify if the process X is discretized using
the uniformly spaced grid Ti = i/N . For this reason, we now propose an adaptive algorithm for
the determination of the sampling times, which starts by simulating the terminal value X1 and
then refines the sampling grid, using more discretization points when the estimate of the approxi-
mation error is “large”. The algorithm is parameterized by a real number γ > 0, which represents
the error tolerance and ensures that under suitable conditions on ep , the global discretization er-
ror for approximating the quantity of interest (4.1) will be bounded by γ (see Proposition 4.1
below). The algorithm also requires simulation from the marginal distribution f1 of X1 and the
bridge distribution of Xt/2 conditioned to Xt = y (t > 0). Hereafter, we denote the density of
this bridge distribution by f br

t/2(x, y) and recall the following well-known formula:

f br
t/2(x, y) := ft/2(x)ft/2(y − x)

ft (y)
. (4.9)

At the end of this section, we introduce a new method to simulate variates from the density (4.9).
The procedure to generate the skeleton of X is outlined in pseudo-code in Algorithm 1 be-

low. Assume that this algorithm terminates in finite time a.s. (see Proposition 4.1 for sufficient
conditions for this to hold). The algorithm then defines a pair N and T := (T0, . . . , TN), which
satisfies the conditions of Lemma 4.1. Indeed, by construction, each Ti takes values in the dyadic
grid {i2−m, i = 0, . . . ,2m,m = 0,1, . . .}, which is a countable set. To check the second condition
of the lemma, we fix n and a partition π := {s0, . . . , sn} of [0,1], and proceed as follows to write
the event E := {N = n,T0 = s0, T1 = s1, . . . , Tn = sn} in terms of {Xsi }ni=0:

• We can and will assume with no loss of generality that π is a recursive dyadic partition,
meaning that {0,1} ⊂ π and, for every t ∈ (0,1)∩π , there exists k ∈ N with 2kt ∈ N, and if
we take the smallest such k then also t + 1

2k ∈ π and t − 1
2k ∈ π . By construction, if π does

not have this property, the event E has zero probability.
• We shall assume that n ≥ 2 because if n = 1 then necessarily s0 = 0 and s1 = 1 and, there-

fore,

E = {X1 /∈ D} ∪ {
X1 ∈ D,ep(X0,X1,1) ≤ γ

} ∈ σ(X0,X1).

• For each � ∈ {0, . . . , n − 1}, define π� := {si ∈ π : 2n−�si is an even integer}. The number
of elements of π� is denoted n� and the sorted elements of π� are denoted s�

1 < · · · < s�
n�

.
Clearly, π0 = π and πn−1 �= π since 1/2 ∈ π whenever n ≥ 2; we let �∗ = max{l ≥ 0: πl =
π} and π∗ = π \ π�∗+1.
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Algorithm 1 [X ] = GenerateSkeleton(γ )

N0 = 0, N1 = 1, m = 1
T 1

0 = 0, T 1
1 = 1, X0 = 0

Generate an observation X1 from the density f1
while Nm �= Nm−1 and {XT m

i
∈ D, for i = 1, . . . ,Nm} do

n = 0, T m+1
0 = 0

for i = 0 → Nm − 1 do

T = T m

i+1 − T m
i

if ep(XT m
i

,XT m
i+1

,
T ) > γ
T then

T m+1
n+1 = (T m

i + T m
i+1)/2, T m+1

n+2 := T m
i+1

Generate an observation X
T m+1

n+1
from the bridge density f br


T/2(·,XT m
i+1

− XT m
i

)

n = n + 2
else

T m+1
n+1 := T m

i+1
n = n + 1

end if
end for
Nm+1 = n

m = m + 1
end while
RETURN X = {(T m

i ,XT m
i

)}Nm

i=0.

• For each i = 1, . . . , n� − 1, define the event

E�
i := {

ω: ep

(
Xs�

i
(ω),Xs�

i+1
(ω), s�

i+1 − s�
i

) ≤ γ
(
s�
i+1 − s�

i

)}
if π ∩ (s�

i , s
�
i+1) = ∅; otherwise, we set

E�
i := {

ω: ep

(
Xs�

i
(ω),Xs�

i+1
(ω), s�

i+1 − s�
i

)
> γ

(
s�
i+1 − s�

i

)}
.

Then it follows that

E =
{

n⋂
i=0

{Xsi ∈ D} ∩
n−1⋂
�=�∗

n�−1⋂
i=1

E�
i

}

∪
{ ⋃

s∈π∗
{Xs /∈ D} ∩

⋂
s∈π�∗+1

{Xs ∈ D} ∩
n−1⋂

�=�∗+1

n�−1⋂
i=1

E�
i

}
,

which clearly belongs to σ(Xsi : i = 0, . . . , n).

To see that X
T m+1

n+1
can be sampled from the bridge density f br


T/2(·,XT m
i+1

−XT m
i

) in Algorithm 1,

we can apply the second part of Lemma 4.1 to the couple (k, Tk), where Tk = {T0, . . . , Tk} con-
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tains the first k + 1 sampling times which have been added to the grid by the algorithm, in
increasing order.

Algorithm 1 terminates when at least one of the sampling observations XTi
is out of the domain

D or the error over each subinterval of the sampling times 0 = T0 < · · · < TN = 1 is small enough
in the following sense:

ep(XTi
,XTi+1 , Ti+1 − Ti) ≤ γ (Ti+1 − Ti), i = 0, . . . ,N − 1. (4.10)

At first glance, it is not obvious that the algorithm will actually terminate in finite time. The
following result gives conditions under which this is the case and shows that the global error of
the estimate is of order γ .

Proposition 4.1. The following assertions hold:

(i) Let X be a Lévy process satisfying one of the following two (non-mutually exclusive)
conditions:
1. X does not hit points; that is, P(τ {x} < ∞) = 0 for all x, where τ {x} := inf{s > 0: Xs =

x} or, equivalently, ∫
R

�
(

1

1 + ψ(u)

)
du = ∞,

where ψ(u) = logE[eiuX1] (see Kyprianou [29], Theorem 7.12);
2. X is a finite variation process.
Additionally, assume that the upper bound of the approximation error ep(x, y, t) satisfies

lim
t↓0

1

t
sup

x,y∈(a′,b′)
ep(x, y, t) = 0 ∀a′, b′ ∈ (a, b). (4.11)

Then, Algorithm 1 terminates in finite time a.s.
(ii) Assume that E|F(X1)| < ∞. Let X = {(Ti,XTi

)}Ni=0 be a skeleton of X on [0,1] satisfying

(4.10) and Ñ (X ) be given by (4.8). Then,∣∣E[
F(X1)1τ>1

] − E
[
F(X1)Ñ(X )

]∣∣ ≤ γ E
[∣∣F(X1)

∣∣]. (4.12)

Remark 4.1. In view of Proposition 4.1, E[F(X1)1τ>1] can be approximated by the Monte Carlo
estimator

1

M

M∑
k=1

F
(
X

(k)
1

)
Ñ

(
X (k)

)
,

where X(k) are independent copies of the process X and Ñ(X (k)) are corresponding values com-
puted with formula (4.8). This estimator has a statistical error which can be estimated in the usual
way, and a discretization bias, which is bounded from above by γ E[|F(X1)|]. In view of (4.13)



1142 J.E. Figueroa-López and P. Tankov

below, a more precise a posteriori estimate of the bias is

1

M

M∑
k=1

∣∣F (
X

(k)
1

)∣∣1
S

(k)
N

N∑
i=1

ep

(
X

(k)

T
(k)
i

,X
(k)

T
(k)
i+1

, T
(k)
i+1 − T

(k)
i

)
,

with SN := {(XT0, . . . ,XTN
) ∈ DN+1}.

Lemma 4.2. Let X be a Lévy process such that for all t > 0, the law of Xt has no atom. Then,
for all x ∈ R,

P
[{

t ∈ [0,1]: 
Xt �= 0,Xt− = x
} = ∅

] = 1; P
[{

t ∈ [0,1]: 
Xt �= 0,Xt = x
} = ∅

] = 1.

Proof. We only prove the first identity, the second one follows by similar arguments (or alterna-
tively by time reversal). Let Nε

1 = #{t ∈ [0,1]: |
Xt | > ε,Xt− = x}. Then

P
[{

t ∈ [0,1]: 
Xt �= 0,Xt− = x
} �= ∅

] ≤ E
[
N0

1

] ≤
∞∑

n=1

E
[
N

1/n

1

]
.

But by the compensation formula (see Bertoin [6], Section 0.5),

E
[
N

1/n

1

] = E

[∫ 1

0

∫
|y|>ε

1Xs=xν(dy)ds

]
=

∫
|y|>ε

ν(dy)

∫ 1

0
P[Xs = x]ds = 0. �

Proof of Proposition 4.1. Part (i). With the aim of obtaining a contradiction, assume that the
statement of the proposition is not true, and the algorithm does not terminate. Let {T̃i}i≥1 be the
infinite sequence of different sampling times produced by the algorithm (in the order in which
they were generated, that is, not necessarily ordered in time). Let X̃i := X

T̃i
be the corresponding

sampling observations. Since the sequence {T̃i} is bounded, we can find indices {ik}k≥1 such that
T̃ik → T ∗. Moreover, since every point T̃i (for i ≥ 2) is obtained as a midpoint of a certain inter-
val, we can find two sequences {T −

i } and {T +
i } such that T −

i ↑ T ∗, T +
i ↓ T ∗, T ∗ ∈ [T −

i , T +
i ] for

all i and ep(XT −
i

,XT +
i

, T +
i − T −

i ) > γ (T +
i − T −

i ) for all i. In addition, since the process X has

right and left limits, both limXT +
i

= X+ and limXT −
i

= X− exist. There are three possibilities.

If X− ∈ (−∞, a) ∪ (b,∞) or X+ ∈ (−∞, a) ∪ (b,∞) then for some i, X̃i /∈ D, so that the
algorithm must have stopped in finite time and we have a contradiction.

If X− ∈ (a, b) and X+ ∈ (a, b) then, using the property (4.11), we can find a contradiction
with ep(XT −

i
,XT +

i
, T +

i − T −
i ) > γ (T +

i − T −
i ).

It remains to treat the case when X− or X+, or both, are at the boundary of D. Then, either
X− = X+ = XT ∗ or 
XT ∗ �= 0. The latter case is ruled out by Lemma 4.2 and in the case when
X cannot hit points, the former case is ruled out as well.

We may therefore assume that X is a finite variation process with nonzero drift μ (cf. Kypri-
anou [29], Theorem 7.12) and, to fix the notation, that X− = X+ = XT ∗ = b. We may also
assume that T ∗ is irrational, since for every t ∈ Q ∩ [0,1], P[Xt = b] = 0. The fact that T ∗ /∈ Q
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implies that T −
i < T ∗ < T +

i for every i, and we can also assume that XT +
i

and XT −
i

belong to D

for each i, because otherwise the algorithm would have stopped in finite time.
Introduce two sequences of stopping times:

σn := inf{t > τn: Xt ≤ b} ∧ 1, τn+1 := inf{t > σn: Xt ≥ b} ∧ 1, n ≥ 0,

with τ0 := inf{t > 0: Xt ≥ b} ∧ 1. The sequences {τn} and {σn} do not have an accumulation
point except t = 1 and for each n ≥ 0, σn > τn if τn < 1 and τn+1 > σn if σn < 1. This holds
because for a finite variation process X with drift μ �= 0, {0} is irregular for [0,∞) if μ < 0 and
for (−∞,0] if μ > 0 (Sato [40], Theorem 43.20), and X may only creep in the direction opposite
to the drift (Kyprianou [29], Theorem 7.11). Then clearly, for every τ ∈ [0,1] such that Xτ = b,
either there is n ≥ 0 with σn = τ , which means that for some ε > 0, Xt /∈ D for t ∈ (τ − ε, τ ), or
there is n ≥ 0 with τn = τ , which means that for some ε > 0, Xt /∈ D for t ∈ (τ, τ + ε). In both
cases, there is a contradiction with the fact that XT +

i
and XT −

i
belong to D for each i.

Part (ii). Below, we denote p̄(x, y, t) := 1 − p(x, y, t), ¯̃p(x, y, t) = 1 − p̃(x, y, t), and SN :=
{(XT0, . . . ,XTN

) ∈ DN+1}. Then, since

N(X ) − Ñ(X ) =
N−1∏
i=0

p̄(XTi
,XTi+1 , Ti+1 − Ti) −

N−1∏
i=0

¯̃p(XTi
,XTi+1 , Ti+1 − Ti),

we get

∣∣E[
F(X1)1τ>1

] − E
[
F(X1)Ñ(X )

]∣∣ ≤ E

[∣∣F(X1)
∣∣1SN

N−1∑
i=0

ep(XTi
,XTi+1 , Ti+1 − Ti)

]
, (4.13)

which can be bounded by γE[|F(X1)|]. �

Simulation of Lévy bridges. The adaptive method presented in this section requires fast simu-
lation from the bridge distribution of Xt/2 conditioned to Xt = y (with t > 0), whose density is
given by (4.9). We now propose a simple yet efficient method for simulating from the bridge dis-
tribution, valid for Lévy processes with unimodal density at all times. As remarked in Section 3,
a sufficient condition for a Lévy process to have a unimodal density for all t > 0 is that it belongs
to the class of self-decomposable processes which includes most of the parametric models used
in the literature. The algorithm is based on the following simple estimate.

Proposition 4.2. Let X be a Lévy process such that the density ft of Xt is unimodal for all t > 0.
Then,

f br
t/2(x, y) ≤ ft/2(y/2)

ft (y)
max

{
ft/2(x), ft/2(y − x)

}
. (4.14)

Proof. For all x and y,

ft/2(x)ft/2(y − x) = max
{
ft/2(x), ft/2(y − x)

}
min

{
ft/2(x), ft/2(y − x)

}
.
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By the assumption of unimodality, the density ft may not have a local minimum, hence, for all
a, b, min(ft/2(a), ft/2(b)) ≤ ft/2(

a+b
2 ) and the result follows. �

As a consequence of the previous result, random variates with density f br
t/2(x, y) can be sim-

ulated using the classical rejection method (Devroye [14]), with the proposal density given by
f̄ (x) = 1

2 (ft/2(x) + ft/2(y − x)), provided that the following two requirements are met:

(a) random variates with density ft (x) can be simulated in bounded time;
(b) the density ft (x) is known explicitly or can be evaluated in bounded time.

Assumptions (a) and (b) are satisfied, for example, for the variance gamma process, normal
inverse Gaussian process, or for stable processes. Simulating a random variable X with density
f̄ (x) = 1

2 (ft/2(x) + ft/2(y − x)) is straightforward: simulate a random variate Z with density
ft/2 and an independent Bernoulli random variate U ; then, take X = Z if U = 0 and X = y − Z

otherwise.
The expected number of iterations needed until the acceptance for a given value of y is equal

to C = 2ft/2(y/2)

ft (y)
. This number is bounded for Lévy processes with Pareto tails such as stable.

For processes with lighter tails, it may be unbounded for large y, but the probability of having
a large value of y in an adaptive simulation is very small. For example, if we want to simulate
Xt/2 and Xt by first simulating Xt and then Xt/2 from the bridge law using formula (4.14), we

find that the conditional expectation of the number of iterations given Xt equals
2ft/2(Xt /2)

ft (Xt )
, and

the unconditional expectation is

E

[
2ft/2(Xt/2)

ft (Xt )

]
= 2

∫
R

ft/2(x/2)dx = 4.

5. Numerical illustrations

In this section, to simplify the discussion, we assume that the interval D is of the form D =
(−∞, b). For the numerical implementation of Algorithm 1 given in Section 4, one needs to be
able to perform the following computations efficiently:

• Simulation of the increments of Xt for arbitrary t ;
• Evaluation of the density ft of Xt for arbitrary t ;
• Evaluation of the “incomplete convolution” of the Lévy density: C(b, y) := ∫ ∞

b
s(v)s(y −

v)dv;
• Evaluation of the error bound ep(x, y, t), appearing in Algorithm 1.

These computations can be performed relatively easily, for example, for α-stable Lévy pro-
cesses with Lévy density s(x) = |x|−α−1(c−1x<0 +c+1x>0) and for the variance gamma process
with Lévy density s(x) = |x|−1(ce−λ−|x|1x<0 + ce−λ+|x|1x>0). For α-stable processes, the in-
crements can be simulated with an explicit algorithm (cf. Chambers, Mallows and Stuck [9]), the
density can be computed using a rapidly convergent series (Samorodnitsky and Taqqu [39]) or
expressed via special functions (cf. Górska and Penson [23]), tabulated for t = 1 and computed
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by the scaling property for other values of t . The incomplete convolution is given by

C(b, y) = c+c−b−1−2αB(1 + 2α,1)F

(
1 + α,1 + 2α,2 + 2α,

y

b

)
, (5.1)

where B is the beta function and F is the hypergeometric function, for which a rapidly converg-
ing series is available (Gradshetyn and Ryzhik [24]) and which can also be tabulated prior to
the Monte Carlo computation. For the variance gamma process, the density is explicit and the
increments are straightforward to simulate (Cont and Tankov [12]). The incomplete convolution
is given by

C(b, y) = c2

y

{
e−yλ+ Ei

(
λ(b − y)

) − eyλ− Ei(λb)
}
,

where Ei(x) := ∫ ∞
x

e−z

z
dz, which can also be tabulated, and λ := λ− + λ+. The error bound ep

for the α-stable or the variance gamma process can be obtained along the lines of the general
computation of Section 3 or the specific computation for the Cauchy process in the Appendix C.

For the numerical simulations in this section, we shall concentrate on the Cauchy process,
which is an α-stable process with c+ = c− := c and α = 1. For this process, formula (5.1) sim-
plifies to

C(b, y) = c2

3b3

{
1 + 3

∞∑
n=1

n + 1

n + 3

(
y

b

)n
}

= c2

b3

{
1 + b

y
+ 2b2

y2
+ y

b − y
+ 2b3

y3
log

(
1 − y

b

)}
.

Note that for small y, the series representation has more stable behavior than the exact formula.
The error estimate ep is computed as explained in Section C of the Appendix. In both examples
below, we take c = 1.

Example 1. In our first example, we evaluate the probability P[sup0≤s≤1 Xs ≤ 1] = P(τ > 1),
which can be expressed in terms of the function (4.1) by taking T = 1, F(X1) = 1, and the
domain (a, b) = (−∞,1). Note that in this case, the starting value of the process is relatively far
from the boundary, and hence the advantage of using the adaptive algorithm is less important.
The process will typically cross the boundary by a large jump with a large overshoot, which
makes the exit easy to detect, even with a uniform discretization.

We study the performance of our adaptive algorithm for various values of γ , and compare it
to the standard uniform discretization. When interpreting the results of simulations, one needs to
distinguish between the actual error (i.e., the difference between the computed value and the true
value), and the theoretical value of the bias (computed as explained in Remark 4.1 above), which
does not require the knowledge of the true value. As an estimate of the true value, we use the
value computed in an independent simulation by uniform discretization with 16 384 points and
107 trajectories, which is approximately equal to 0.38935 with a standard deviation of 10−4. The
difference between the values for 8192 and 16 384 points (on the same trajectories) is smaller
than 10−4, hence one can presume that, for all practical purposes, convergence up to this preci-
sion has been achieved.
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Figure 1. Illustration for Example 1. Left: values returned by the uniform discretization algorithm and the
adaptive algorithm, as function of the computational time for 106 paths, measured in seconds. Different
points on the graph correspond to different numbers of discretization dates for the uniform discretization
(ranging from 32 to 8192) and different values of the tolerance parameter γ for the adaptive algorithm
(ranging from 7 to 7 × 10−4). The curve for the uniform discretization is smooth because all the points
have been generated using the same trajectories, while for the adaptive discretization different paths have
been used. Right: comparison of the theoretical bias of the adaptive algorithm with the actual discretization
bias of the uniform discretization.

Figure 1 shows the dependence of the values computed by the two algorithms on the compu-
tational time required for 106 MC trajectories, for different numbers of discretization points (for
the uniform discretization) and different values of the tolerance parameter γ (for the adaptive al-
gorithm). While the uniform discretization algorithm exibits a clear bias which decreases as the
number of discretization dates increases, the adaptive algorithm removes the bias completely; all
values returned by this algorithm are within confidence bounds of the true value.

The theoretical bias, computed as explained in Remark 4.1, is greater than the actual error,
because the error estimates of Appendix C are upper bounds, and because it does not take into
account the possible cancellation of errors on different intervals. Figure 1, right graph, compares
the theoretical estimate of the bias of the adaptive algorithm with the actual bias of the uniform
discretization. One can see that for small computational times, the theoretical bias for the adaptive
algorithm is greater than the error of the uniform discretization, however, the theoretical bias
converges to zero much faster, and for relatively large computational times is actually smaller
than the error of the uniform discretization. The empirical convergence rate (estimated from the
slope of the straight lines) is T −0.81 for the uniform discretization and T −3.4 for the theoretical
bias of the adaptive algorithm.

Example 2. In our second example, we evaluate the probability P[sup0≤s≤1 Xs ≤ 10−2], which
again can be expressed in terms of the function (4.1) by taking T = 1, F(X1) = 1, and the domain
(a, b) = (−∞,10−2). In contrast to Example 1, here we consider a situation where the starting
point is close to the boundary. In this case, as we shall see below, the advantage of the adaptive
algorithm is more striking, since the process can cross the boundary and come back while it is
still close to the starting point and, hence, a very fine discretization will be necessary to detect
this event with uniformly spaced observations. As a result, for the uniform discretization we do
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Figure 2. Illustration for Example 2. Left: values returned by the uniform discretization algorithm and the
adaptive algorithm, as function of the computational time for 106 paths, measured in seconds. Different
points on the graph correspond to different numbers of discretization dates for the uniform discretization
(ranging from 256 to 16384) and different values of the tolerance parameter γ for the adaptive algorithm
(ranging from 9 to 9 × 10−3). Right: comparison of the theoretical bias of the adaptive algorithm with the
actual discretization bias of the uniform discretization.

not observe convergence to a sufficient precision even with 16 384 points, and therefore the true
value cannot be estimated as in the previous example. Instead, we shall use as the true value the
value produced by the adaptive algorithm with 107 Monte Carlo paths and equal to 0.0360, with
standard deviation of 6 × 10−5 and theoretical bias of 3 × 10−5.

Similarly to the previous example, Figure 2 shows the dependence of the values computed
by the two algorithms on the computational time required for 106 MC trajectories. Here, the
adaptive algorithm exhibits the same kind of behavior as in the Example 1 above: all the points
generated by the algorithm are within the confidence bounds of the true value. However, for
the uniform discretization, the convergence is much slower than before and only the last value
obtained with 16384 discretization points falls within the confidence bounds. Figure 2, right
graph, compares the theoretical estimate of the bias of the adaptive algorithm with the actual bias
of the uniform discretization. Once again, the behavior of the adaptive algorithm is roughly the
same as in the previous example, showing that the method is robust with respect to the parameters
on the problem. On the other hand, as expected, the uniform discretization presents a significant
bias in this case (the convergence rates are similar to those obtained in the previous example, but
the constant for the uniform discretization is much bigger).

Appendix A: Proofs of Section 2

A.1. Proof of Theorem 2.1

Throughout the proof, we shall use the notation

Ȳt := sup
0≤s≤t

Ys and Y t := inf
0≤s≤t

Ys (A.1)
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for a given cádlág process (Yt )t≥0. Without loss of generality (by considering separately the
positive and the negative part), we can and will assume that ϕ is nonnegative. Additionally,
assume that a ∈ (−∞,0) and b ∈ (0,∞). The cases a = −∞ and b = ∞ will be evident from
the proof below. We also let ‖ϕ‖∞ := ess supx ϕ(x), ‖ϕ‖Lip be the Lipschitz norm of ϕ, Iδ(y) :=
(y − δ, y + δ), η := δ0/2, c = b ∧ |a|, B := {τ ≤ t} = {X̄t ≥ b or Xt ≤ a}, Uε

t := sups≤t |Xε
s |,

and aε := supx sε(x), which are finite in light of (2.1). In what follows, F ε
t := σ(Xε

s : s ≤ t) ∨ N
where N denotes the null sets of F . To lighten the notation below, whenever the ess sup of a
function g, defined L-a.e. in some region, is considered, we shall simply write supu g(u) instead
of ess supu g(u).

The idea is to condition on the number of jumps of the compound Poisson component Zε . To
this end, let us denote

Ak(t) = E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nε

t =k}
)

for k = 0,1,2,

A3(t) = E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nε

t ≥3}
)
,

so that clearly

E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y)}

) = A0(t) + · · · + A3(t). (A.2)

Note that each of the terms on the right-hand side of the previous equation can be expressed as

Ak(t) =
∫ y+δ

y−δ

P k
t (u)du (k = 0, . . . ,3) (A.3)

for some nonnegative functions P k
t (u). Indeed, for k = 0,1,2, by the standard definition of

conditional expectation,

Ak(t) = E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nε

t =k}
) = E

(
E

(
ϕ(Xτ )1{τ≤t,Nε

t =k}|Xt

)
1{Xt∈Iδ(y)}

)
(A.4)

=
∫ y+δ

y−δ

E
(
ϕ(Xτ )1{τ≤t,Nε

t =k}|Xt = u
)
ft (u)du =:

∫ y+δ

y−δ

P k
t (u)du.

The case k = 3 is treated in the same way. Let us analyze each of the four terms in the right-hand
side of (A.2).

(1) No big jump. Note that, on the event Nε
t = 0, Xs = Xε

s for all s ≤ t and, thus, {τ ≤ t} =
{τ ε ≤ t}, where τ ε := inf{u ≥ 0: Xε

u /∈ (a, b)}. Therefore,

A0(t) = E
(
ϕ
(
Xε

τε

)
1{τε≤t,Xε

t ∈Iδ(y),Nε
t =0}

)
= E

(
ϕ
(
Xε

τε

)
1{τε≤t,Xε

t ∈Iδ(y)}
)
P
(
Nε

t = 0
)
,

where in the last equality we used the independence of Xε and Nε . Next, conditioning on F ε
τε , it

follows that

A0(t) = e−λεtE
(
ϕ
(
Xε

τε

)
1{τε≤t,Xε

t ∈Iδ(y)}
) = e−λεtE

(
E

(
1{Xε

t ∈Iδ(y)}|F ε
τε

)
ϕ
(
Xε

τε

)
1{τε≤t}

)
.
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By Markov’s property,

A0(t) = e−λεtE
(
E

(
1{Xε

t −Xε
τε +Xε

τε ∈Iδ(y)}|F ε
τε

)
ϕ
(
Xε

τε

)
1{τε≤t}

)
= e−λεtE

(
F

(
Xε

τε , t − τ ε
)
ϕ
(
Xε

τε

)
1{τε≤t}

)
,

where F(z, s) = P(z + Xε
s ∈ Iδ(y)). Note that if τ ε = t , then F(Xε

τε , t − τ ε) = 0 since Xε
τε ∈

(a, b)c and Iδ(y) ⊂ (a, b). On the other hand, on the event τ ε < t ,

F
(
Xε

τε , t − τ ε
) =

∫ y+δ

y−δ

f ε
t−τε

(
u − Xε

τε

)
du ≤

∫ y+δ

y−δ

sup
0<s≤t

sup
x∈(a,b)c

f ε
s (u − x)du,

since again Xε
τε ∈ (a, b)c . Putting the two previous cases together and recalling (A.3), we have

A0(t) =
∫ y+δ

y−δ

P 0
t (u)du ≤

∫ y+δ

y−δ

(
e−λεt‖ϕ‖∞ sup

0<s≤t

sup
x∈(a,b)c

f ε
s (u − x)

)
du

(A.5)

=:
∫ y+δ

y−δ

P̄ 0
t (u)du,

implying that P 0
t (u) ≤ P̄ 0

t (u), for L-a.e. u ∈ (a + δ0, b − δ0). Furthermore, using (2.4)(ii),

sup
a+δ0<u<b−δ0

P 0
t (u) ≤ sup

a+δ0<u<b−δ0

P̄ 0
t (u) ≤ ‖ϕ‖∞c3(δ0, ε)t

3 (t < t0).

(2) One big jump. Let τi and Yi be the time and size of the ith jump of Zε . Clearly, on the
event {Nε

t = 1},
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nε

t =1} = ϕ
(
Xε

τ

)
1{τ<τ1,X

ε
t +Y1∈Iδ(y),Nε

t =1}
+ ϕ

(
Xε

τ + Y1
)
1{τ1≤τ≤t,Xε

t +Y1∈Iδ(y),Nε
t =1}

≤ ‖ϕ‖∞1{Xε
t +Y1∈Iδ(y),Nε

t =1}1{X̄ε
t ≥b or Xε

t ≤a}
+ ‖ϕ‖∞1{Xε

t +Y1∈Iδ(y),Nε
t =1}1{X̄ε

t +Y1≥b or Xε
t +Y1≤a}.

It follows that

0 ≤ A1(t) ≤ ‖ϕ‖∞E(1{Uε
t ≥c,Xε

t +Y1∈Iδ(y),Nε
t =1})

+ ‖ϕ‖∞E(1{Y1≥b−X̄ε
t or Y1≤a−Xε

t }1{Xε
t +Y1∈Iδ(y),Nε

t =1})

= e−λεt‖ϕ‖∞λεtE(1{Uε
t ≥c,Xε

t +Y1∈Iδ(y)})︸ ︷︷ ︸
A1,1(t)

+ e−λεt‖ϕ‖∞λεtE(1{Y1≥b−X̄ε
t or Y1≤a−Xε

t }1{Xε
t +Y1∈Iδ(y)})︸ ︷︷ ︸

A1,2(t)

,
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where in the last equality we use the joint independence of Nε , Y1, and Xε . Conditioning on
σ(Xε

s : s ≥ 0) and applying Fubini,

A1,1(t) = e−λεt‖ϕ‖∞tE

(
1{Uε

t ≥c}
∫ y+δ−Xε

t

y−δ−Xε
t

sε(v)dv

)
(A.6)

=
∫ y+δ

y−δ

e−λεt‖ϕ‖∞tE
(
1{Uε

t ≥c}sε
(
u − Xε

t

))︸ ︷︷ ︸
P̄

1,1
t (u)

du.

Using (2.1) and Lemma 2.1, supu P̄
1,1
t (u) ≤ e−λεt t‖ϕ‖∞aεP(Uε

t ≥ c) ≤ e−λεt aε‖ϕ‖∞ ×
C2(c, ε)t

3, where ε > 0 is chosen small enough. Similarly, conditioning on σ(Xε
s : s ≥ 0), mak-

ing the substitution u = Xε
t + v, and applying Fubini,

A1,2(t) = e−λεt‖ϕ‖∞tE

(∫
1{v≤a−Xε

t or v≥b−X̄ε
t }1{y−δ<Xε

t +v≤y+δ}sε(v)dv

)
(A.7)

=
∫ y+δ

y−δ

e−λεt‖ϕ‖∞tE
(
1{u≤a+Xε

t −Xε
t or u≥b+Xε

t −X̄ε
t }sε

(
u − Xε

t

))
︸ ︷︷ ︸

P̄
1,2
t (u)

du.

Using again Lemma 2.1,

sup
u∈(a+δ0,b−δ0)

P̄
1,2
t (u) ≤ e−λεt‖ϕ‖∞taεP

(
Xε

t − Xε
t ≥ δ0 or X̄ε

t − Xε
t ≥ δ0

)
≤ e−λεt‖ϕ‖∞taεP

(
X̄ε

t − Xε
t ≥ δ0

)
(A.8)

≤ e−λεt‖ϕ‖∞taεP

(
sup
s≤t

∣∣Xε
s

∣∣ ≥ δ0/2
)

≤ e−λεt‖ϕ‖∞aεC2(δ0/2, ε)t3.

Therefore, recalling from (A.3), the nonnegative function P 1
t (u) is such that,for L-a.e. u ∈ (a +

δ0, b − δ0), 0 ≤ P 1
t (u) ≤ ∑2

�=1 P̄
1,�
t (u) ≤ ‖ϕ‖∞aεt

3(C2(c, ε) + C2(η, ε)).
(3) Two big jumps. As before, let τi and Yi be the time and size of the ith jump of Zε . Clearly,

ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nε
t =2} = ϕ

(
Xε

τ

)
1{τ<τ1,X

ε
t +Y1+Y2∈Iδ(y),Nε

t =2}
+ ϕ

(
Xε

τ + Y1
)
1{τ1≤τ<τ2,X

ε
t +Y1+Y2∈Iδ(y),Nε

t =2}
+ ϕ

(
Xε

τ + Y1 + Y2
)
1{τ2≤τ≤t,Xε

t +Y1+Y2∈Iδ(y),Nε
t =2}

≤ ‖ϕ‖∞1{∃s<τ1: Xε
s /∈(a,b);Xε

t +Y1+Y2∈Iδ(y);Nε
t =2}

+ ϕ
(
Xε

τ + Y1
)
1{∃s∈[τ1,τ2): Xε

s +Y1 /∈(a,b);Xε
t +Y1+Y2∈Iδ(y);Nε

t =2}
+ ‖ϕ‖∞1{∃s∈[τ2,t]: Xε

s +Y1+Y2 /∈(a,b);Xε
t +Y1+Y2∈Iδ(y);Nε

t =2}.
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Then, using the independence of Nε , the Yi ’s, and Xε in the first and last terms, we have the
inequality:

A2(t) ≤ e−λεt
(
t2/2

)
λ2

ε‖ϕ‖∞E(1{Uε
t ≥c,Xε

t +Y1+Y2∈Iδ(y)})

+ E
(
ϕ
(
Xε

τ + Y1
)
1{X̄ε

t +Y1≥b or Xε
t +Y1≤a;Xε

t +Y1+Y2∈Iδ(y);Nε
t =2}

)
(A.9)

+ e−λεt
(
t2/2

)
λ2

ε‖ϕ‖∞E(1{X̄ε
t +Y1+Y2≥b or Xε

t +Y1+Y2≤a;Xε
t +Y1+Y2∈Iδ(y)}),

=: A2,1(t) + A2,2(t) + A2,3(t).

As before, conditioning on σ(Xε
s : s ≥ 0), changing variable from w to u = Xε

t + v + w, and
applying Fubini,

A2,1(t) = e−λεt2−1‖ϕ‖∞t2E

(∫ ∫
1{Uε

t ≥c}1{y−δ<Xε
t +w+v<y+δ}sε(v)sε(w)dv dw

)

=
∫ y+δ

y−δ

e−λεt2−1‖ϕ‖∞t2
∫ ∞

−∞
sε(v)E

(
1{Uε

t ≥c}sε
(
u − Xε

t − v
))

dv du (A.10)

=:
∫ y+δ

y−δ

P̄
2,1
t (u)du,

and, hence,

sup
u

P̄
2,1
t (u) ≤ e−λεt2−1‖ϕ‖∞t2λεaεP

(
Uε

t ≥ c
) ≤ e−λεt2−1‖ϕ‖∞λεaεC1(c, ε)t

3.

Similarly, A2,3(t) can be written as

e−λεt2−1‖ϕ‖∞t2E

(∫ ∫
1{X̄ε

t +v+w≥b or Xε
t +v+w≤a}1{y−δ<Xε

t +w+v<y+δ}sε(v)sε(w)dv dw

)

=
∫ y+δ

y−δ

e−λεt2−1‖ϕ‖∞t2

(A.11)

×
∫

E
(
1{X̄ε

t −Xε
t +u≥b or Xε

t −Xε
t +u≤a}sε

(
u − Xε

t − v
))

sε(v)dv du

=:
∫ y+δ

y−δ

P̄
2,3
t (u)du,

and, thus, as in (A.8),

sup
u∈[a+δ0,b−δ0]

P̄
2,3
t (u) ≤ e−λεt2−1‖ϕ‖∞t2λεaεP

(
Xε

t − Xε
t ≥ δ0 or X̄ε

t − Xε
t ≥ δ0

)
≤ e−λεt2−1‖ϕ‖∞λεaεC1(δ0/2, ε)t3.
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Finally, we provide an upper bound for A2,2(t). First, we use the bound ϕ(Xε
τ + Y1) ≤ ϕ(Y1) +

‖ϕ‖LipU
ε
t and again the independence of Nε , the Yi ’s, and Xε to get

A2,2(t) ≤ e−λεt
(
t2/2

)
λ2

εE
({

ϕ(Y1) + ‖ϕ‖LipU
ε
t

}
1{X̄ε

t +Y1≥b or Xε
t +Y1≤a;Xε

t +Y1+Y2∈Iδ(y)}
)
.

Next, by conditioning on σ(Xε
s : s ≥ 0) ∨ σ(Y1), we may write2 A2,2(t) as

e−λεt
(
t2/2

)
λεE

({
ϕ(Y1) + ‖ϕ‖LipU

ε
t

}
1{X̄ε

t +Y1≥b or Xε
t +Y1<a}

∫ y+δ−Xε
t −Y1

y−δ−Xε
t −Y1

sε(w)dw

)

= e−λεt
(
t2/2

)
E

(∫
(a−Xε

t ,b−X̄ε
t )

c

{
ϕ(v) + ‖ϕ‖LipU

ε
t

}
sε(v)

∫ y+δ−Xε
t −v

y−δ−Xε
t −v

sε(w)dw dv

)
.

Next, changing variables and applying Fubini,

A2,2 =
∫ y+δ

y−δ

e−λεt2−1t2E

(∫
(a−Xε

t ,b−X̄ε
t )

c

{
ϕ(v) + ‖ϕ‖LipU

ε
t

}
sε(v)sε

(
u − Xε

t − v
)

dv

)
du

(A.12)

=:
∫ y+δ

y−δ

P̄
2,2
t (u)du.

In order to find a lower bound for A2(t), note that

ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nε
t =2} ≥ ϕ

(
Xε

τ + Y1
)
1{τ1≤τ<τ2,X

ε
t +Y1+Y2∈Iδ(y),Nε

t =2}
≥ ϕ

(
Xε

τ + Y1
)
1{Y1+Xε

t ≥b or X̄ε
t +Y1≤a}1{X̄ε

t <b,Xε
t >a}1{Xε

t +Y1+Y2∈Iδ(y),Nε
t =2}.

Using the previous inequality and the lower bound ϕ(Xε
τ + Y1) ≥ ϕ(Y1) − ‖ϕ‖LipU

ε
t together

with the independence of Nε , the Yi ’s, and Xε , it follows that

A2(t) ≥ e−λεt
(λεt)

2

2
E

({
ϕ(Y1) − ‖ϕ‖LipU

ε
t

}
1{Y1∈(a−X̄ε

t ,b−Xε
t )

c,X̄ε
t <b,Xε

t >a,Xε
t +Y1+Y2∈Iδ(y)}

)
=:

∫ y+δ

y−δ

P 2
t (u)du,

where P 2
t (u) is defined as

e−λεt2−1t2E

(
1{X̄ε

t <b,Xε
t >a}

∫
(a−X̄ε

t ,b−Xε
t )

c

{
ϕ(v) − ‖ϕ‖LipU

ε
t

}
sε(v)sε

(
u − Xε

t − v
)

dv

)
.

As it will be proved in Lemma A.1 below, P̄
2,2
t (u) and P 2

t (u) are such that

lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣ 1

t2
P̄

2,2
t (u) − 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u − v)dv

∣∣∣∣ = 0, (A.13)

2Here and below we use the convention (x, y) = ∅ and (x, y)c = (−∞,∞) for x > y.
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lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣ 1

t2
P 2

t (u) − 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u − v)dv

∣∣∣∣ = 0. (A.14)

Using (A.9), (A.14) and the corresponding bounds for P̄
2,1
t (u) and P̄

2,3
t (u), it follows that the

nonnegative function P 2
t (u) defined in (A.3) is such that

lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣ 1

t2
P 2

t (u) − 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u − v)dv

∣∣∣∣ = 0. (A.15)

(4) Three or more big jumps. As before, we have the following bound

0 ≤ E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nε

t =n}
) ≤ ‖ϕ‖∞E(1{Xε

t +
∑n

i=1 Yi∈Iδ(y),Nε
t =n})

= ‖ϕ‖∞P
(
Nε

t = n
)∫ y+δ

y−δ

E
(
s∗n
ε

(
u − Xε

t

))
du.

Using the previous inequality and (A.3), we have

A3(t) =
∫ y+δ

y−δ

P 3
t (u)du ≤

∫ y+δ

y−δ

[ ∞∑
n=3

e−λεt
tn

n! ‖ϕ‖∞E
(
s∗n
ε

(
u − Xε

t

))]
du =:

∫ y+δ

y−δ

P̄ 3
t (u)du.

Since ‖s∗n
ε ‖∞ ≤ λn−1

ε aε ,

sup
u

P̄ 3
t (u) ≤ e−λεt aε‖ϕ‖∞

∞∑
n=3

tn

n!λ
n−1
ε ≤ C(ε)t3 (A.16)

for some constant C(ε) < ∞, and we conclude that 0 ≤ P 3
t (u) ≤ C(ε)t3 for L-a.e. u.

Putting the four previous steps together, we conclude that E(ϕ(Xτ )1{τ≤t,Xt∈(y−δ,y+δ)}) =∫ y+δ

y−δ
Pt (u)du, for a function Pt(u) such that

lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣ 1

t2
Pt (u) − 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u − v)dv

∣∣∣∣ = 0.

Finally, it is easy to see that for any u ∈ (a+δ0, b−δ0) and a < 0 < b, there exists an ε0 > 0 small
enough such that

∫
(a,b)c

ϕ(v)sε(v)sε(u − v)dv = ∫
(a,b)c

ϕ(v)s(v)s(u − v)dv, for all 0 < ε < ε0.
This concludes the proof. �

Lemma A.1. Verification of (A.13) and (A.14).

Proof. Let 0 < ε < 1 and Mε
t := Xε

t −μεt be the martingale component of Xε . We shall analyze
the expressions appearing inside the absolute values on the right-hand side of equations (A.13)
and (A.14). Define the random intervals Ī := (a − Xε

t , b − X̄ε
t ), I := (a − X̄ε

t , b − Xε
t ), and the
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corresponding limiting interval J = (a, b), under the convention (x, y) = ∅ if y < x. Denote

D1
t (u) = E

(∫
Ī c

{
ϕ(v) + ‖ϕ‖LipU

ε
t

}
sε(v)sε

(
u − Xε

t − v
)

dv

)
−

∫
J c

ϕ(v)sε(v)sε(u − v)dv,

D2
t (u) = E

(
1{X̄ε

t <b,Xε
t >a}

∫
I c

{
ϕ(v) − ‖ϕ‖LipU

ε
t

}
sε(v)sε

(
u − Xε

t − v
)

dv

)

−
∫

J c

ϕ(v)sε(v)sε(u − v)dv.

Let us first analyze D1
t . Clearly,

D1
t (u) = ‖ϕ‖LipE

(
Uε

t

∫
Ī c

sε(v)sε
(
u − Xε

t − v
)

dv

)

+ E

(∫
Ī c\J c

ϕ(v)sε(v)sε
(
u − Xε

t − v
)

dv

)

+ E

(∫
J c

ϕ(v)sε(v)
[
sε

(
u − Xε

t − v
) − sε(u − v)

]
dv

)
,

and, therefore, using that Ī c \J c ⊂ (a, a−Xε
t )∪(b−X̄ε

t , b), under the convention (−∞,−∞) =
(∞,∞) = ∅,∣∣D1

t (u)
∣∣ ≤ aελε‖ϕ‖LipEUε

t + a2
ε‖ϕ‖∞E

(
X̄ε

t − Xε
t

) + λε‖ϕ‖∞
∥∥s′

ε

∥∥∞E
∣∣Xε

t

∣∣
≤ (

aελε‖ϕ‖Lip + 2‖ϕ‖∞a2
ε

)(
E sup

s≤t

∣∣Mε
s

∣∣ + |με|t
)

+ ‖ϕ‖∞λε

∥∥s′
ε

∥∥∞
(
E

∣∣Mε
t

∣∣ + |με|t
)
.

Using the trivial inequalities (E sups≤t |Mε
s |)2 ≤ E sups≤t (M

ε
s )2 and (E|Mε

s |)2 ≤ E(Mε
s )2, to-

gether with Doob’s inequality, we then get the bound∣∣D1
t (u)

∣∣ ≤ [
2aελε‖ϕ‖Lip + 4‖ϕ‖∞a2

ε + ‖ϕ‖∞λε

∥∥s′
ε

∥∥∞
]
σεt

1/2

(A.17)
+ [

aελε‖ϕ‖Lip + 2‖ϕ‖∞a2
ε + ‖ϕ‖∞λε

∥∥s′
ε

∥∥∞
]|με|t,

where σ 2
ε := σ 2 + ∫

c̄ε(x)x2ν(dx). For D2
t (u), note that

D2
t (u) = −E

(
1{X̄ε

t ≥b or Xε
t ≤a}

∫
I c

ϕ(v)sε(v)sε
(
u − Xε

t − v
)

dv

)

+ ‖ϕ‖LipE

(
1{X̄ε

t <b,Xε
t >a}U

ε
t

∫
I c

sε(v)sε
(
u − Xε

t − v
)

dv

)

+ E

(∫
I c

ϕ(v)sε(v)sε
(
u − Xε

t − v
)

dv

)
−

∫
J c

ϕ(v)sε(v)sε(u − v)dv.
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Defining c = |a| ∧ b and following the same steps as above, it is easy to verify that |D2
t (u)|

admits the following upper bound:∣∣D2
t (u)

∣∣ ≤ ‖ϕ‖∞λεaεP
(
Uε

t ≥ c
) + aελε‖ϕ‖LipEUε

t + 2a2
ε‖ϕ‖∞EUε

t + λε‖ϕ‖∞
∥∥s′

ε

∥∥∞E
∣∣Xε

t

∣∣
≤ ‖ϕ‖∞λεaεC1(c, ε)t + [

2aελε‖ϕ‖Lip + 4‖ϕ‖∞a2
ε + ‖ϕ‖∞λε

∥∥s′
ε

∥∥∞
]
σεt

1/2 (A.18)

+ [
aελε‖ϕ‖Lip + 2‖ϕ‖∞a2

ε + ‖ϕ‖∞λε

∥∥s′
ε

∥∥∞
]|με|t,

where we had used the tail probability bound in (2.4). �

A.2. Proof of Proposition 2.1

We use the notation introduced at the beginning of Section A.1 above and, as before, we assume
without loss of generality that ϕ is nonnegative. As it was done in (A.2), by partitioning the
space into the different values that Nε

t can take on, we can decompose E(ϕ(Xτ )1{Xt∈Iδ(y)}) into
three terms: no big jumps, one big jump, and two or more big jumps. These terms can in turn be
expressed as integrals of the form (A.3) using a procedure similar to (A.4). The term with no big
jumps is such that ∫ y+δ

y−δ

P 0
t (u)du := E

(
ϕ(Xτ )1{Xt∈Iδ(y),Nε

t =0}
)

≤ ‖ϕ‖∞P
(
Xε

t ∈ Iδ(y),Nε
t = 0

)
=

∫ y+δ

y−δ

e−λεt‖ϕ‖∞f ε
t (u)du,

which yields an upper bound for P 0
t (u) of the form P̄ 0

t (u) := e−λεt‖ϕ‖∞f ε
t (u). Using (2.4)(ii),

we can further upper bound P̄ 0
t (u) by ‖ϕ‖∞c2(c, ε)t

2 uniformly in (a − δ0, b + δ0)
c . The term

with two or more big jumps can be bounded similarly to the term with three or more big jumps
in the previous section. Concretely, this term satisfies∫ y+δ

y−δ

P 2
t (u)du := E

(
ϕ(Xτ )1{Xt∈Iδ(y),Nε

t ≥2}
)

≤
∫ y+δ

y−δ

[ ∞∑
n=2

e−λεt
tn

n! ‖ϕ‖∞E
(
s∗n
ε

(
u − Xε

t

))]
du =:

∫ y+δ

y−δ

P̄ 2
t (u)du,

and, using that ‖s∗n
ε ‖∞ ≤ λn−1

ε aε , we can further upper bound P̄ 2
t (u) by C(ε)t2 for a constant

C(ε) < ∞. The term with exactly one jump is decomposed as follows:∫ y+δ

y−δ

P 1
t (u)du := E

(
ϕ(Xτ )1{Xt∈Iδ(y),Nε

t =1}
)

= E
(
ϕ
(
Xε

τ

)
1{Xt∈Iδ(y);τ<τ1;Nε

t =1}
) + E

(
ϕ(Xτ )1{Xt∈Iδ(y);τ≥τ1;Nε

t =1}
)
,
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where τ1 is the time of the first big jump. Out of these two terms, the first one satisfies

E
(
ϕ
(
Xε

τ

)
1{Xt∈Iδ(y);τ<τ1;Nε

t =1}
) ≤ ‖ϕ‖∞P

[∃s ∈ [0, t]: Xε
s /∈ D;Xε

t + Y1 ∈ Iδ;Nε
t = 1

]
= e−λεtλεt‖ϕ‖∞P

[∃s ∈ [0, t]: Xε
s /∈ D;Xε

t + Y1 ∈ Iδ

]
≤

∫ y+δ

y−δ

e−λεt t‖ϕ‖∞E
[
1Uε

t ≥csε
(
u − Xε

t

)]
du,

where the integrand P̄
1,1
t (u) := e−λεt t‖ϕ‖∞E[1Uε

t ≥csε(u − Xε
t )] is uniformly bounded by

‖ϕ‖∞aεC1(c, ε)t
2. As for the second term

E
(
ϕ(Xτ )1{Xt∈Iδ(y);τ≥τ1;Nε

t =1}
) = E

(
ϕ
(
Xε

τ + Y1
)
1{Xε

t +Y1∈Iδ(y);τ≥τ1;Nε
t =1}

)
,

it can be bounded from above by

E
(
ϕ(Y1)1{Xε

t +Y1∈Iδ(y);Nε
t =1}

) + ‖ϕ‖LipE
(
Uε

t 1{Xε
t +Y1∈Iδ(y);Nε

t =1}
)

=
∫ y+δ

y−δ

{
e−λεt tE

[
ϕ
(
u − Xε

t

)
sε

(
u − Xε

t

)] + e−λεt t‖ϕ‖LipE
[
Uε

t sε
(
u − Xε

t

)]}
du

≤
∫ y+δ

y−δ

{
tϕ(u)sε(u) + t

(‖ϕ‖Lipaε + ‖ϕ‖∞
∥∥s′

ε

∥∥∞
)
E

[∣∣Xε
t

∣∣] + t‖ϕ‖LipaεE
[
Uε

t

]}
du.

Similarly, this can be bounded from below by

E
(
ϕ(Y1)1{Xε

t +Y1∈Iδ(y);X̄ε
t <b;Xε

t >a;Nε
t =1}

) − ‖ϕ‖LipE
(
Uε

t 1{Xε
t +Y1∈Iδ(y);Nε

t =1}
)

=
∫ y+δ

y−δ

{
e−λεt tE

(
ϕ
(
u − Xε

t

)
sε

(
u − Xε

t

)
1{X̄ε

t <b,Xε
t >a}

) − e−λεt t‖ϕ‖LipE
(
Uε

t sε
(
u − Xε

t

))}
du

≥
∫ y+δ

y−δ

{
tϕ(u)sε(u) − ‖ϕ‖∞aελεt

2 − t
(‖ϕ‖Lipaε + ‖ϕ‖∞

∥∥s′
ε

∥∥∞
)
E

[∣∣Xε
t

∣∣]
− t‖ϕ‖LipaεE

[
Uε

t

] − t‖ϕ‖∞aεC1(c, ε)t
}

du.

To conclude, we estimate E[|Xε
t |] and E[Uε

t ] as in the proof of Lemma A.1 above.

Appendix B: Proofs of Section 3

In this part, we provide the building blocks to develop an upper bound for the remainder Rt (u)

appearing in (2.5).
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B.1. Proof of Lemma 3.1

Let us first assume that μ ≥ 0 so that Xt := Mt + μt is a submartingale. By Doob’s inequality,
for all c > 0,

P

(
sup
s≤t

Xs ≥ η
)

= P

(
sup
s≤t

ecXs ≥ ecη
)

≤ E[ecXt ]
ecη

= etψ(c)−cη (B.1)

with ψ(c) = μc + σ 2c2

2 + ∫
|z|≤ε

(ecz − 1 − cz)ν(dz). Minimizing the right-hand side over all
c > 0, we get, as in Rüschendorf and Woerner [38] (see page 87 therein),

inf
c>0

etψ(c)−cη = exp

(
−t

∫ η/t

ψ ′(0)

τ (z)dz

)
= exp

(
−t

∫ η/t

μ

τ (z)dz

)
, (B.2)

where we are taking t < η/μ and τ : [0,∞) → R is the inverse function of

ψ ′(x) = μ + σ 2x +
∫

|z|≤ε

z
(
ezx − 1

)
ν(dz). (B.3)

As in Houdré [25], note that, for x ≥ 0,

0 ≤
∫

|z|≤ε

z
(
ezx − 1

)
ν(dz) ≤

∫
|z|≤ε

|z|(e|z|x − 1
)
ν(dz) ≤

∫
|z|≤ε

|z|
∞∑

k=1

(|z|x)k

k! ν(dz)

≤
∫

|z|≤ε

|z|2ν(dz)

∞∑
k=1

εk−1xk

k! =
∫

|z|≤ε

|z|2ν(dz)
1

ε

(
eεx − 1

)
.

From the previous inequality, for x ≥ 0,

0 ≤ ψ ′(x) ≤ μ + σ 2x +
∫

|z|≤ε

|z|2ν(dz)
1

ε

(
eεx − 1

) ≤ μ + eεx − 1

ε
σ 2

ε ,

where we used the fact that σ 2
ε = σ 2 + ∫

|z|≤ε
|z|2ν(dz). This implies that

τ(z) ≥ 1

ε
log

{
1 + z − μ

σ 2
ε

ε

}
,

and therefore, substituting this into (B.1) and (B.2) and using that v ln(v) ≤ (1 + v) ln(1 + v) and
e−v logv ≤ ee−1

for all v > 0, we have

P

[
sup
s≤t

Xs ≥ η
]

≤ exp

{
− tσ 2

ε

ε2

∫ ε(η−μt)/(tσ 2
ε )

0
log(1 + s)ds

}

= exp

{
− tσ 2

ε

ε2

((
1 + ε(η − μt)

tσ 2
ε

)
log

(
1 + ε(η − μt)

tσ 2
ε

)
− ε(η − μt)

tσ 2
ε

)}
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≤ exp

{
−η − μt

ε
log

(
ε(η − μt)

eσ 2
ε t

)}

≤ tη/εe(μ/ε)e−1
exp

{
−η − μt

ε
log

(
ε(η − μt)

eσ 2
ε

)}
,

The above inequality proves the statement (2)(i) for the case μ = 0. Next, it is easy to check that
the function u → (u/ε) log(εu/eσ 2

ε ) is strictly convex in (0,∞) and reaches its global minimum
value of −σ 2

ε /ε2 at u = σ 2
ε /ε. Hence, whenever η − μt ≥ 0,

P

[
sup
s≤t

Xs ≥ η
]

≤ tη/εe(μ/ε)e−1
eσ 2

ε /ε2
,

which proves the statement (1) for μ ≥ 0. Also, if μ > 0, t < η/μ, and η < σ 2
ε /ε, we have that

exp

{
−η − μt

ε
log

(
ε(η − μt)

eσ 2
ε

)}
≤ sup

0≤u≤η

exp

{
−u

ε
log

(
εu

eσ 2
ε

)}
=

(
eσ 2

ε

εη

)η/ε

,

which proves the statement (2)(ii). Finally, we consider the case μ < 0. In that case, obviously,
Mt + μt ≤ Mt and

P

(
sup
s≤t

(Ms + μs) ≥ η
)

≤ P

(
sup
s≤t

Ms ≥ η
)

≤ tη/ε

(
eσ 2

ε

εη

)η/ε

≤ tη/εeσ 2
ε /ε2

,

where in the second inequality we used the case (2)(i) with μ = 0 that was proved above. The
previous inequality proves the bounds (2)(i) and (1) for μ < 0.

B.2. Proof of Theorem 3.1

To prove the estimate (3.11) for the remainder Rt (y), we analyze each of the four terms in (A.2)
contributing to it.

(No big jump). The first component of the error is due to P 0
t which, as seen in (A.5), can be

bounded by

e(0)(0, y, t) := e−λεt‖ϕ‖∞ sup
0<u≤t

sup
x∈(a,b)c

f ε
u (y − x) = e−λεt‖ϕ‖∞ sup

0<u≤t

sup
z∈(y−b,y−a)c

f ε
u (z).

Next, recalling the notation 
y = (b − y) ∧ (y − a) > 0 and employing our hypothesis that Xε
t

has unimodal distribution, we can further apply the bound (3.10) to get

e(0)(0, y, t) ≤ e−λεt
4‖ϕ‖∞


y

sup
0<u≤t

P

[∣∣Xε
u

∣∣ ≥ 
y

2

]
≤ 8e−λεt‖ϕ‖∞


y

C(
y/4, ε)t
y/(4ε)

for t < t0(ε,
y/2) ∧ t1(ε,
y/2).
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(One big jump). There are two sub-components to the error in this case. The first is due to P̄ 1,1

in (A.6). This term can be bounded by

e(1,1)(0, y, t) := ‖ϕ‖∞e−λεt tE
(
1{Uε

t ≥c}sε
(
y − Xε

t

))
≤ ‖ϕ‖∞e−λεt taεP

(
Uε

t ≥ c
)

≤ 2‖ϕ‖∞e−λεt aεC(c/2, ε)t1+c/(2ε)

for t < t0(ε, c/2). The other sub-component is due to P̄ 1,2 in (A.7), which can be bounded, for
t < t0(ε,
y/2), as follows:

e(1,2)(0, y, t) := ‖ϕ‖∞e−λεt tE
(
1{X̄ε

t −Xε
t +y≥b or Xε

t −Xε
t +y≤a}sε

(
y − Xε

t

))
≤ ‖ϕ‖∞e−λεt taεP

(
sup
u≤t

∣∣Xε
u

∣∣ ≥ 
y

2

)
≤ 2‖ϕ‖∞e−λεt aεC(
y/4, ε)t1+
y/(4ε).

(Three or more big jumps). This component can be bounded as in (A.16):

e(3)(0, y, t) := ‖ϕ‖∞e−λεt
∞∑

n=3

tn

n!E
(
s∗n
ε

(
u − Xε

t

))
(B.4)

≤ ‖ϕ‖∞aελ
−1
ε

(
1 − e−λεt

[
1 + λεt + (λεt)

2/2
])

.

(Two big jumps). There are three sub-components to the error in this case. From (A.10),

e(2,1)(0, y, t) := ‖ϕ‖∞e−λεt
t2

2

∫ ∞

−∞
sε(v)E

{
1{Uε

t ≥c}sε
(
y − Xε

t − v
)}

dv

(B.5)
≤ ‖ϕ‖∞e−λεt aελεC(c/2, ε)t2+c/(2ε)

for t < t0(ε, c). Similarly, from (A.11),

e(2,3)(0, y, t)

:= ‖ϕ‖∞e−λεt
t2

2

∫ ∞

−∞
sε(v)E

{
1{X̄ε

t −Xε
t +y≥b or Xε

t −Xε
t +y≤a}sε

(
y − Xε

t − v
)}

dv (B.6)

≤ ‖ϕ‖∞e−λεt
t2

2
aελεP

(
sup
u≤t

∣∣Xε
u

∣∣ ≥ 
y

2

)
≤ ‖ϕ‖∞e−λεt aελεC(
y/4, ε)t2+
y/(4ε)

for t < t0(ε,
y/2). Next, we consider the error due to the limits (A.13)–(A.14). These were
bounded in Lemma A.1. Hence, by taking the maximum of (A.17) and (A.18), after some sim-
plification, we get the following expression for the error term e(2,2)(0, y, t):

e−λεt t2
(

‖ϕ‖∞λεaεC(c/2, ε)tc/(2ε)

+ [
aελε‖ϕ‖Lip + 2‖ϕ‖∞a2

ε + ‖ϕ‖∞λε

∥∥s′
ε

∥∥∞
](

σεt
1/2 + |με|

2
t

))
.
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Finally, we also need to take into account the error due to approximating

e−λεt
t2

2

∫
(a,b)c

ϕ(v)sε(v)sε(y − v)dv

by t2

2

∫
(a,b)c

ϕ(v)sε(v)sε(y − v)dv, which is of order ‖ϕ‖∞λ2
εaεt

3/2. Putting all the previous
bounds together, we obtain the overall bound (3.11).

Appendix C: Finding the estimate ef (0,y, t) for the Cauchy
process

In this paragraph, our aim is to find an explicit bound for the Cauchy process with Lévy density
ν(x) = c

|x|2 (and no drift), which is used in the numerical illustrations. For simplicity, we shall
only consider the one-sided case (a = −∞). Setting cε(x) = 1|x|>ε , we get με = 0 for all ε, and
the law of the process is symmetric, which means that t0(ε, η) = t1(ε, η) = +∞ for all ε > 0
and η > 0. Moreover, σ 2

ε = 2cε and Lemma 3.1 implies that P[sups≤t Xt ≥ η] ≤ tη/εC(η, ε) and
P[sups≤t |Xt | ≥ η] ≤ 2tη/εC(η, ε) with C(η, ε) = ( 2ce

η
)η/ε . The results of the above section can

now be improved to

e(0)(0, y, t) ≤ ‖ϕ‖∞
4e−λεt

b − y
C

(
ε, (b − y)/2

)
t (b−y)/(2ε),

e(1,1)(0, y, t) ≤ ‖ϕ‖∞e−λεt aεC(ε, b)t1+b/ε,

e(1,2)(0, y, t) ≤ 2‖ϕ‖∞e−λεt aεC
(
ε, (b − y)/2

)
t1+(b−y)/(2ε),

e(2,1)(0, y, t) ≤ ‖ϕ‖∞
2

e−λεt aελεC(b, ε)t2+b/ε,

e(2,3)(0, y, t) ≤ ‖ϕ‖∞e−λεt aελεC
(
(b − y)/2, ε

)
t2+(b−y)/(2ε).

To estimate e(2,2) more precisely, let ε0 <
b−y−ε

2 ∧ (b − ε). Then

∣∣D1
t (y)

∣∣ ≤ 2‖ϕ‖∞aελεP
(
Uε

t ≥ ε0
) + 2‖ϕ‖LipE

[
Uε

t

∫ ∞

b

sε
(
v − X̄ε

t

)
sε

(
y − v + X̄ε

t − Xε
t

)
dv

]

+ ‖ϕ‖∞E

[
1Uε

t <ε0

∫ ∞

b

(
sε

(
v − X̄ε

t

)
sε

(
y − v + X̄ε

t − Xε
t

) − sε(v)sε(y − v)
)

dv

]
≤ 2aελε

(‖ϕ‖∞P
(
Uε

t ≥ ε0
) + ‖ϕ‖LipE

[
Uε

t

])
− ‖ϕ‖∞E

[
Uε

t

] ∫ ∞

b

s′
ε(v − ε0)sε(y − v + 2ε0)dv

+ 2‖ϕ‖∞E
[
Uε

t

] ∫ ∞

b

sε(v)s′
ε

(
y − v + b − y

2

)
dv
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≤ 2aελε

(‖ϕ‖∞P
(
Uε

t ≥ ε0
) + ‖ϕ‖LipE

[
Uε

t

])
+ 2‖ϕ‖∞E

[
Uε

t

]
sε(b − ε0)sε(b − y − 2ε0).

A similar argument shows that∣∣D2
t (y)

∣∣ ≤ sε(b)λε

(
2‖ϕ‖LipE

[
Uε

t

] + ‖ϕ‖∞P
[
X̄ε

t ≥ b
]) + ‖ϕ‖∞E

[
Uε

t

]
sε(b)sε(b − y),

which means that the bound for |D1
t (y)| always dominates. Using the former bound, we finally

find the following upper bound for e(2,2)(0, y, t):

2‖ϕ‖∞e−λεt aελεC(ε0, ε)t
2+ε0/ε

+ 2e−λεt t5/2σε

{
sε(b − ε0)sε(b − y − 2ε0)‖ϕ‖∞ + aελε‖ϕ‖Lip

}
.

To specialize the estimate e(3), we upper bound λn
εP(X̄t ≥ b,Xt ∈ Iδ(y)|Nε

t = n) by

λn
εP

(
X̄ε

t + max
0≤k≤n

k∑
i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)

)

≤ λn
ε

n∑
k=0

P

(
X̄ε

t +
k∑

i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)

)
.

The cases k = 0 and k = n are treated separately:

λn
εP

(
X̄ε

t ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)

)

≤ δP

(
sup
u≤t

Xε
u ≥ b

)
sup
x

s∗n
ε (x) ≤ δC(b, ε)tb/ε sup

x
s∗n
ε (x),

λn
εP

(
X̄ε

t +
n∑

i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)

)

≤ δP
(
X̄ε

t − Xε
t + y + δ ≥ b

)
sup
x

s∗n
ε (x) ≤ 2δC

(
(b − y)/2, ε

)
t (b−y)/(2ε) sup

x
s∗n
ε (x).

For 0 < k < n,

P

(
X̄ε

t +
k∑

i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)

)

= E

[∫ y+δ

y

du

∫ ∞

b−X̄ε
t

dv s∗k
ε (v)s∗(n−k)

ε

(
u − v − Xε

t

)]

≤ δ sup
x

s∗n
ε (x)P

(
Uε

t ≥ ε0
) + δs̄∗k

ε (b − ε0)

∫ ∞

b

dv s̄∗(n−k)
ε (y − v + 2ε0 + δ),
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where s̄ε is any function which is increasing on (−∞,0), decreasing on (0,∞) and satisfies
s̄ε(x) ≥ sε(x) for all x. For the Cauchy process, one can take s̄ε(x) = 2c

x2+ε2 so that

s̄∗k
ε (x) = 1

π

(
2πc

ε

)k
εk

(εk)2 + x2
,

∫ ∞

b

s̄∗k
ε (v)dv = 1

π

(
2πc

ε

)k

arctan
εk

b
.

Assembling all the estimates together, we finally get

e(3)(0, y, t) ≤ ‖ϕ‖∞
6

aελ
2
εt

3(C(b, ε)tb/ε

+ 2C
(
(b − y)/2, ε

)
t (b−y)/(2ε) + 2C(ε0, ε)t

ε0/ε
)

+ 16πc3t3‖ϕ‖∞
3ε(b − ε0)2(b − y − 2ε0)

e2πct/ε−λεt .

The above estimates satisfy condition (2.6) for ε <
b−y

4 ∧b. In the numerical examples discussed

in the paper, we have taken ε = b−y
8 ∧ b

2 and ε0 = b−y
4 ∧ b

2 .
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