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A d-dimensional RCA(1) process is a generalization of the d-dimensional AR(1) process, such that the
coefficients {Mt ; t = 1,2, . . .} are i.i.d. random matrices. In the case d = 1, under a nondegeneracy condi-
tion, Goldie and Maller gave necessary and sufficient conditions for the convergence in distribution of an
RCA(1) process, and for the almost sure convergence of a closely related sum of random variables called

a perpetuity. We here prove that under the condition ‖∏n
t=1 Mt‖ a.s.−→ 0 as n → ∞, most of the results of

Goldie and Maller can be extended to the case d > 1. If this condition does not hold, some of their results
cannot be extended.
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1. Introduction

In this paper, we consider a discrete time stochastic process called the d-dimensional RCA(1)

process, or random coefficient autoregressive process of order 1, which is a generalization
of the d-dimensional AR(1) process. We also consider a closely related infinite sum of d-
dimensional random variables, called a perpetuity. Since the appearance of [15], different aspects
of the RCA(1) process and the perpetuity have been studied by many authors; see, for example,
[1,3,4,7,8,12–14,21] and the references therein. In the present work, we will focus on conditions
for convergence in distribution of the RCA(1) process, and for almost sure convergence of the
perpetuity.

For each positive integer p, the d-dimensional RCA(p) process is defined as follows. Let
{(Mt,1, . . . ,Mt,p); t = 1,2, . . .} be an i.i.d. sequence of p-tuples of random matrices of dimen-
sion d × d (the coefficients); let {Zt ; t = 1,2, . . .} be i.i.d. d-dimensional random variables in-
dependent of the random matrices (the error variables); and let Z0 be a d-dimensional random
variable independent of everything else (the initial state). Define the d-dimensional RCA(p)
process {Xt ; t = 1,2, . . .} by

X0 = Z0; Xt =
p∧t∑
i=1

Mt,iXt−i + Zt ∀t = 1,2, . . . .
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If the distribution of (M1,1, . . . ,M1,p) is degenerate at a constant matrix p-tuple, the usual d-
dimensional AR(p) process is obtained. However, for the AR(p) process it is often assumed that
the error variables have finite second moments. Here, we make no such assumption.

The AR(p) process was originally proposed as a statistical model for time series, and it is
today one of the most widely used such models. The RCA(p) process was first considered as
a statistical model in [2]. A much studied problem is under what conditions on the coefficients
there exists an RCA(p) or AR(p) process which is (wide sense) stationary. For some answers
to this problem, and more information on these processes, see [2,3,5,6,20], and the references
therein.

The case p = 1 has received special attention, since the RCA(1) process is easily seen to be
a Markov chain on the state space (Rd,Rd). For such a process, it is natural to ask under what
conditions on the error variables and the random coefficient the process is (Harris) recurrent,
positive, or convergent in distribution. For some partial answers to these questions, see [19] and
the references therein. See also [10] for a connection between RCA(1) processes and Dirichlet
processes; this connection was exploited in [9] to construct a new method to carry out Bayesian
inference for an unknown finite measure, when a number of integrals with respect to this measure
has been observed.

The perpetuity associated with a d-dimensional RCA(1) process is defined as the almost sure
limit (if the limit exists) of the d-dimensional random sequence {Vt ; t = 1,2, . . .}, defined by:

Vt =
t∑

i=1

i−1∏
j=1

MjZi ∀t = 1,2, . . . .

The existence of the perpetuity is closely related to the convergence in distribution of the d-
dimensional RCA(1) process. In particular, it is shown in Section 2 that if ‖∏n

t=1 Mt‖ a.s.−→ 0 as
n → ∞ (a condition to be called C0 below), then the two convergence statements are equivalent.
Moreover, in the case d = 1, if P(Z1 = 0) < 1, it was shown in [12] that the existence of the
perpetuity implies C0.

The main result in [12], their Theorem 2.1, is a complete solution in the case d = 1 to the prob-
lem: under what conditions on the error variables and the random coefficients does the perpetuity
exist? Five different conditions on the random variables are given, which, if P(Z1 = 0) < 1, are
shown to be equivalent, and to imply both the existence of the perpetuity, and C0. Furthermore,
it is shown that under a certain “nondegeneracy” condition, the five conditions are necessary for
the convergence in distribution of the associated RCA(1) process.

The main result of the present paper, Theorem 2.1, is a generalization of most of Theorem 2.1
in [12] to the case d > 1. All except one of the conditions in the latter theorem are considered.
(It is unclear how the remaining condition, which involves the finiteness of a particular integral,
should be generalized to the case d > 1, if indeed this is possible at all.) It is shown that if C0
is assumed, the remaining conditions of Theorem 2.1 are equivalent, and imply the existence of
the perpetuity. However, contrary to the case d = 1, the conditions do not imply C0, and if C0
is not assumed, they are not all equivalent. Similarly, under C0, the existence of the perpetuity
is equivalent to the convergence in distribution of the associated d-dimensional RCA(1) process;
not so without C0.
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The remaining part of the paper is structured as follows: in Section 2, the main result is stated
and proven; in Section 3, some counterexamples and special cases are collected; and Section 4
contains some suggestions for future research.

2. Main result and proof

Let d be a positive integer. Denote by | · | the Euclidean norm on the space R
d . Let R

d×d be
the space of d × d-matrices with elements in R, and denote by ‖ · ‖ the matrix norm induced by
| · |, that is, ‖A‖ = max|x|=1 |Ax|. (This is known as the spectral norm, and is equal to the largest
singular value of A.) Denote by Id the identity d ×d-matrix. The following notation will be used
for matrix products:

n∏
j=m

Mj =
{

MmMm+1 · · ·Mn, if m ≤ n;
Id, if m > n.

In particular,
∏n−1

j=m Mn−j = Mn−mMn−m−1 · · ·M1 for each m < n, and
∏n−1

j=m Mn−j = Id for
each m ≥ n. Lastly, by convention a minimum over an empty set is defined as ∞.

Theorem 2.1. Let {(Mt ,Zt ); t = 1,2, . . .} be i.i.d. random elements in (Rd×d × R
d,Rd×d ×

Rd), and let Z0 be a random element in (Rd ,Rd) independent of {(Mt ,Zt ); t = 1,2, . . .}. Define
the random sequence {Xt ; t = 1,2, . . .} by

X0 = Z0; Xt = MtXt−1 + Zt ∀t = 1,2, . . . .

Under the condition C0: ‖∏n
t=1 Mt‖ a.s.−→ 0 as n → ∞, the following are equivalent:

(i) Xt converges in distribution as t → ∞;

(ii)
∞∑
t=1

∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ < ∞ a.s.;

(iii)
t∑

i=1

i−1∏
j=1

MjZi converges a.s. as t → ∞;

(iv)
t−1∏
j=1

MjZt
a.s.−→ 0 as t → ∞;

(v) sup
t=1,2,...

∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ < ∞ a.s.;

(vi)
∞∑
t=1

P

(
min

k=1,...,t−1

∣∣∣∣∣
t−1∏
j=k

MjZt

∣∣∣∣∣ > x

)
< ∞ ∀x > 0.
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Remark 2.1. Clearly, the implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) remain valid even if C0 does not
hold, and, as will be seen from the proof, so does the implication (iv) ⇒ (vi). It will be shown
in Example 3.4 that the implication (v) ⇒ (vi) need not hold if C0 does not hold. On the other
hand, in the case d = 1, it was shown in [12] that if P(Z1 = 0) < 1, then (vi) implies C0, and if
also P(|M1| = 1) < 1, then (v) implies C0; see Example 3.1 below. – The almost sure limit of
the sum in (iii) is called a perpetuity. Hence, (iii) is the statement that the perpetuity exists.

Proof of Theorem 2.1. (iii) ⇒ (i). As is easily shown by induction, we can write

Xt =
t−1∑
i=0

i−1∏
j=0

Mt−jZt−i +
t−1∏
j=0

Mt−jZ0 ∀t = 1,2, . . . .

Replacing (Mt−i ,Zt−i ) by (Mi+1,Zi+1) for i = 0,1, . . . , t − 1, we get, since the random se-
quence {(Mt ,Zt ); t = 1,2, . . .} is i.i.d.,

Xt
d=

t∑
i=1

i−1∏
j=1

MjZi +
t∏

j=1

MjZ0 ∀t = 1,2, . . . . (2.1)

C0 implies that
∏n

t=1 MtZ0
a.s.−→ 0 as n → ∞. Hence, the desired conclusion follows from (2.1)

and the Cramér–Slutsky theorem.
(i) ⇒ (iii). C0 implies that

∏n
t=1 MtZ0

a.s.−→ 0 as n → ∞, so by (2.1) and the Cramér–Slutsky
theorem,

∑t
i=1

∏i−1
j=1 MjZi converges in distribution as t → ∞. We need to prove that it also

converges a.s. We define, for brevity of notation,

Sm,n =
n∑

i=m+1

i−1∏
j=1

MjZi ∀0 ≤ m ≤ n,

where Sn,n = 0 for each n ≥ 0. The following facts will be important:

Sm,n =
n∑

i=m+1

i−1∏
j=1

MjZi =
m∏

j=1

Mj

n∑
i=m+1

i−1∏
j=m+1

MjZi ∀0 ≤ m < n (2.2)

and
n∑

i=m+1

i−1∏
j=m+1

MjZi
d=

n−m∑
i=1

i−1∏
j=1

MjZi ∀0 ≤ m < n. (2.3)

Also, since
∑t

i=1
∏i−1

j=1 MjZi converges in distribution as t → ∞, the associated sequence of
distributions is tight. Therefore, for each δ > 0, there exists K < ∞ such that

P

(∣∣∣∣∣
t∑

i=1

i−1∏
j=1

MjZi

∣∣∣∣∣ > K

)
<

δ

2
∀t = 1,2, . . . . (2.4)
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For each ε > 0, each δ > 0, and each n > m, we get, if K is chosen as in (2.4) and m is chosen
large enough,

P
(|Sm,n| > ε

) ≤ P

(∥∥∥∥∥
m∏

j=1

Mj

∥∥∥∥∥ >
ε

K

)
+ P

(∣∣∣∣∣
n∑

i=m+1

i−1∏
j=m+1

MjZi

∣∣∣∣∣ > K

)

= P

(∥∥∥∥∥
m∏

j=1

Mj

∥∥∥∥∥ >
ε

K

)
+ P

(∣∣∣∣∣
n−m∑
i=1

i−1∏
j=1

MjZi

∣∣∣∣∣ > K

)
≤ δ

2
+ δ

2
= δ.

Here, we used (2.2) in the first inequality, (2.3) in the equality, and C0 in the second inequality.
We conclude that

sup
n>m

P
(|Sm,n| > ε

) → 0 as m → ∞ ∀ε > 0. (2.5)

Our next goal is to show that, for each ε > 0 and m ≥ 0, if K is chosen so that (2.4) is satisfied
with δ = 2(1 − c), where 0 < c < 1, then:

cP

(
sup
n>m

|Sm,n| > 2ε
)

≤ sup
n>m

P
(|Sm,n| > ε

) + P

( ∞⋃
k=m+1

{∥∥∥∥∥
k∏

j=1

Mj

∥∥∥∥∥ >
ε

K

})
. (2.6)

To this end, we fix ε > 0 and m ≥ 0, and note that with this particular choice of K , (2.3) implies:

P

(∣∣∣∣∣
n∑

i=k+1

i−1∏
j=k+1

MjZi

∣∣∣∣∣ ≤ K

)
≥ c ∀0 ≤ k ≤ n,

which in turn gives

n∑
k=m+1

P

(
k−1⋂

j=m+1

{|Sm,j | ≤ 2ε
} ∩ {|Sm,k| > 2ε

})
P

(∣∣∣∣∣
n∑

i=k+1

i−1∏
j=k+1

MjZi

∣∣∣∣∣ ≤ K

)
(2.7)

≥ cP

(
max

m<k≤n
|Sm,k| > 2ε

)
∀n ≥ m.

In order to obtain an upper bound for the left-hand side of (2.7), we note that, by the triangle
inequality, |Sm,k| − |Sk,n| ≤ |Sm,n| for each m ≤ k ≤ n. This implies:

n∑
k=m+1

P

(
k−1⋂

j=m+1

{|Sm,j | ≤ 2ε
} ∩ {|Sm,k| > 2ε

} ∩ {|Sk,n| ≤ ε
})

= P

(
n⋃

k=m+1

(
k−1⋂

j=m+1

{|Sm,j | ≤ 2ε
} ∩ {|Sm,k| > 2ε

} ∩ {|Sk,n| ≤ ε
}))
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≤ P

(
n⋃

k=m+1

{|Sm,k| > 2ε
} ∩ {|Sk,n| ≤ ε

})

≤ P
(|Sm,n| > ε

) ∀n ≥ m.

Moreover, by (2.2),{∥∥∥∥∥
k∏

j=1

Mj

∥∥∥∥∥ ≤ ε

K

}
∩

{∣∣∣∣∣
n∑

i=k+1

i−1∏
j=k+1

MjZi

∣∣∣∣∣ ≤ K

}
⊂ {|Sk,n| ≤ ε

} ∀m ≤ k ≤ n.

Combining the last two results with the fact that the random sequence {(Mt ,Zt ); t = 1,2, . . .} is
i.i.d., we get the desired upper bound:

n∑
k=m+1

P

(
k−1⋂

j=m+1

{|Sm,j | ≤ 2ε
} ∩ {|Sm,k| > 2ε

})
P

(∣∣∣∣∣
n∑

i=k+1

i−1∏
j=k+1

MjZi

∣∣∣∣∣ ≤ K

)

=
n∑

k=m+1

P

(
k−1⋂

j=m+1

{|Sm,j | ≤ 2ε
} ∩ {|Sm,k| > 2ε

}

∩
{∣∣∣∣∣

n∑
i=k+1

i−1∏
j=k+1

MjZi

∣∣∣∣∣ ≤ K

})

=
n∑

k=m+1

P

(
k−1⋂

j=m+1

{|Sm,j | ≤ 2ε
} ∩ {|Sm,k| > 2ε

} ∩
{∥∥∥∥∥

k∏
j=1

Mj

∥∥∥∥∥ ≤ ε

K

}

∩
{∣∣∣∣∣

n∑
i=k+1

i−1∏
j=k+1

MjZi

∣∣∣∣∣ ≤ K

})

+
n∑

k=m+1

P

(
k−1⋂

j=m+1

{|Sm,j | ≤ 2ε
} ∩ {|Sm,k| > 2ε

} ∩
{∥∥∥∥∥

k∏
j=1

Mj

∥∥∥∥∥ >
ε

K

}

∩
{∣∣∣∣∣

n∑
i=k+1

i−1∏
j=k+1

MjZi

∣∣∣∣∣ ≤ K

})

≤ P
(|Sm,n| > ε

) + P

(
n⋃

k=m+1

{∥∥∥∥∥
k∏

j=1

Mj

∥∥∥∥∥ >
ε

K

})
∀n ≥ m.

Letting n → ∞ (and remembering that m ≥ 0 is fixed), the last result and (2.7) together imply
(2.6).
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Finally, by (2.6) and the triangle inequality,

P

(
sup

m<k,�

k<�

|Sk,�| > 4ε
)

≤ P

(
sup
n>m

|Sm,n| > 2ε
)

≤ 1

c
sup
n>m

P
(|Sm,n| > ε

)
+ 1

c
P

( ∞⋃
k=m+1

{∥∥∥∥∥
k∏

j=1

Mj

∥∥∥∥∥ >
ε

K

})
∀ε > 0,m ≥ 0.

By (2.5), the first term on the right-hand side converges to 0 as m → ∞, while the second term
converges to 0 as m → ∞ by C0. Hence, sup m<k,�

k<�
|Sk,�| converges in probability to 0 as m → ∞.

However, by definition, sup m<k,�
k<�

|Sk,�| decreases monotonically a.s. to a nonnegative random

variable as m → ∞. To avoid a contradiction, this random variable must be 0 with probability
1. It follows that, with probability 1, {∑t

i=1
∏i−1

j=1 MjZi; t = 1,2, . . .} is a Cauchy sequence, so

limt→∞
∑t

i=1
∏i−1

j=1 MjZi exists a.s.
(ii) ⇒ (iii) ⇒ (iv) ⇒ (v). Immediate.
(iv) ⇒ (vi). As stated in Remark 2.1, C0 is not needed to prove this implication. Instead, we

use the theorem in [17], also known as the Kochen–Stone lemma. By this theorem (or lemma),
for any sequence of events {At ; t = 1,2, . . .} such that

∑∞
t=1 P(At ) = ∞ and

lim sup
n→∞

(
∑n

t=1 P(At ))
2∑n

r=1
∑n

t=1 P(Ar ∩ At)
= c > 0, (2.8)

it holds that P(At i.o.) ≥ c. Define the random sequence {Yt ; t = 1,2, . . .} by:

Yt = min
k=1,...,t−1

∣∣∣∣∣
t−1∏
j=k

MjZt

∣∣∣∣∣ ∀t = 1,2, . . . .

Recall that by definition Y1 = ∞ (since it is the minimum over an empty set). Let x > 0, and
define the events {At ; t = 1,2, . . .} by: At = {Yt > x} ∀t = 1,2, . . . . We note that if (vi) does
not hold, then

∑∞
t=1 P(At ) = ∞ for some x > 0. We will show that in this case (2.8) holds with

c ≥ 1
2 , implying that P(|∏t−1

j=1 MjZt | > x i.o.) ≥ P(Yt > x i.o.) ≥ 1
2 > 0. Hence, (iv) does not

hold.
For the probabilities in the denominator of (2.8), we get, if 1 ≤ r < t ,

P
({Yr > x} ∩ {Yt > x}) = P

(
{Yr > x} ∩

{
min

k=1,...,t−1

∣∣∣∣∣
t−1∏
j=k

MjZt

∣∣∣∣∣ > x

})

≤ P(Yr > x)P

(
min

k=r+1,...,t−1

∣∣∣∣∣
t−1∏
j=k

MjZt

∣∣∣∣∣ > x

)
= P(Yr > x)P(Yt−r > x).
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This implies that

n∑
r=1

n∑
t=1

P
({Yr > x} ∩ {Yt > x})

≤
n∑

r=1

P(Yr > x) + 2
n−1∑
r=1

P(Yr > x)

n∑
t=r+1

P(Yt−r > x)

≤
n∑

r=1

P(Yr > x) + 2
n∑

r=1

P(Yr > x)

n∑
s=1

P(Ys > x).

Hence, we obtain:

lim sup
n→∞

(
∑n

t=1 P(Yt > x))2∑n
r=1

∑n
t=1 P({Yr > x} ∩ {Yt > x})

≥ lim
n→∞

(
∑n

t=1 P(Yt > x))2∑n
r=1 P(Yr > x) + 2(

∑n
t=1 P(Yt > x))2

= 1

2
.

(vi) ⇒ (ii). This part of the proof is divided into several steps. First, we prove that if
‖∏n

t=1 Mt‖ a.s.−→ 0 as n → ∞, then

∞∑
t=1

P

(
min

k=1,...,t−1

∥∥∥∥∥
t−1∏
j=k

Mj

∥∥∥∥∥ > x

)
< ∞ ∀x > 0. (2.9)

We use the Kochen–Stone lemma, as in the preceding part of the proof. Let

Ut = min
k=1,...,t−1

∥∥∥∥∥
t−1∏
j=k

Mj

∥∥∥∥∥ ∀t = 1,2, . . . .

Let x > 0, and define the events {At ; t = 1,2, . . .} by: At = {Ut > x} ∀t = 1,2, . . . . Assume that∑∞
t=1 P(At ) = ∞. As before, for the probabilities in the denominator of (2.8), we get:

P
({Ur > x} ∩ {Ut > x}) ≤ P(Ur > x)P(Ut−r > x) ∀1 ≤ r < t,

implying that

lim sup
n→∞

(
∑n

t=1 P(Ut > x))2∑n
r=1

∑n
t=1 P({Ur > x} ∩ {Us > x}) ≥ 1

2
,

so P(Ut > x i.o.) ≥ 1
2 . Hence, it cannot hold that ‖∏n

t=1 Mt‖ a.s.−→ 0 as n → ∞.
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Next, let as before Yt = mink=1,...,t−1 |∏t−1
j=k MjZt | ∀t = 1,2, . . . . Since∣∣∣∣∣

t−1∏
j=1

MjZt

∣∣∣∣∣ ≤
∥∥∥∥∥

k−1∏
j=1

Mj

∥∥∥∥∥
∣∣∣∣∣
t−1∏
j=k

MjZt

∣∣∣∣∣ ∀t = 1,2, . . . ; k = 1, . . . , t − 1,

it holds that ∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ ≤ sup
n≥0

∥∥∥∥∥
n∏

i=1

Mi

∥∥∥∥∥ min
k=1,...,t−1

∣∣∣∣∣
t−1∏
j=k

MjZt

∣∣∣∣∣ ∀t = 1,2, . . . ,

where, since ‖∏n
t=1 Mt‖ a.s.−→ 0 as n → ∞, supn≥0 ‖∏n

i=1 Mi‖ < ∞ a.s. This implies that in
order to prove (ii), it is sufficient to prove that

∑∞
t=1 Yt < ∞ a.s.

Furthermore, by Fubini’s theorem,

E
(
YtI {Yt ≤ 1}) =

∫
(0,1]

y dFYt (y)

=
∫ 1

0
P(x < Yt ≤ 1)dx (2.10)

≤
∫ 1

0
P(Yt > x)dx ∀t = 1,2, . . . ,

implying that
∞∑
t=1

E
(
YtI {Yt ≤ 1}) ≤

∫ 1

0

∞∑
t=1

P(Yt > x)dx. (2.11)

We note that, by (vi),
∑∞

t=1 P(Yt > x) < ∞ for each x > 0. We will prove that the right-hand
side of (2.11) is finite. By monotone convergence, this will imply that

E

( ∞∑
t=1

YtI {Yt ≤ 1}
)

=
∞∑
t=1

E
(
YtI {Yt ≤ 1}) < ∞,

from which it will follow that
∑∞

t=1 YtI {Yt ≤ 1} < ∞ a.s. Since, by (vi) and the Borel–Cantelli

lemma, Yt
a.s.−→ 0 as t → ∞, we will be able to conclude that

∑∞
t=1 Yt < ∞ a.s.

Define {Ỹt ; t = 1,2, . . .} by Ỹt = mink=1,...,t−1 |∏t−1
j=k Mt−j Z̃1| ∀t = 1,2, . . . , where Z̃1 is

a random variable independent of {(Mt ,Zt ); t = 1,2, . . .} such that Z̃1
d= Z1. By definition,

{Ỹt ; t = 1,2, . . .} is a nonincreasing random sequence, while clearly also Ỹt
d= Yt ∀t = 1,2, . . .

(in particular, Ỹ1 = Y1 = ∞, since they are both minima over empty sets). Define, for each x > 0,
the random variable

Tx = inf{t = 1,2, . . . ; Ỹt ≤ x} = inf

{
t = 1,2, . . . ;

∣∣∣∣∣
t−1∏
j=1

Mt−j Z̃1

∣∣∣∣∣ ≤ x

}
.
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Clearly, Tx is a stopping time with respect to the filtration {Gt ; t = 1,2, . . .}, defined by: Gt =
σ(Z̃1;M1, . . . ,Mt−1) ∀t = 1,2, . . . . Moreover,

∞∑
t=1

P(Yt > x) =
∞∑
t=1

P(Ỹt > x) =
∞∑
t=1

P(Tx > t) = E(Tx) − 1, (2.12)

so (vi) implies that E(Tx) < ∞ for each x > 0. Define, for each x > 0, the random variables
T

(1)
x = T1 and

T (2)
x = inf

{
t = 1,2, . . . ;

∥∥∥∥∥
t∏

j=1

MT1+t−j

∥∥∥∥∥ ≤ x

}
.

Since {Mt ; t = 1,2, . . .} are i.i.d. and independent of Z̃1, it holds that {Ms; s = t, t + 1, . . .} are
independent of Gt for each t = 1,2, . . . . Since T1 is an a.s. finite stopping time with respect to
{Gt ; t = 1,2, . . .}, we get:

P
({

T (2)
x > t

} ∩ {T1 = r})
= P

({
min

k=1,...,t

∥∥∥∥∥
t∏

j=k

MT1+t−j

∥∥∥∥∥ > x

}
∩ {T1 = r}

)

= P

({
min

k=1,...,t

∥∥∥∥∥
t∏

j=k

Mr+t−j

∥∥∥∥∥ > x

}
∩ {T1 = r}

)

= P

(
min

k=1,...,t

∥∥∥∥∥
t∏

j=k

Mj

∥∥∥∥∥ > x

)
P(T1 = r) ∀t = 1,2, . . . ; r = 1,2, . . . .

In particular,

P
(
T (2)

x > t
) = P

(
min

k=1,...,t

∥∥∥∥∥
t∏

j=k

Mj

∥∥∥∥∥ > x

)
∀t = 1,2, . . .

and

E
(
T (2)

x

) − 1 =
∞∑
t=1

P
(
T (2)

x > t
) =

∞∑
t=1

P

(
min

k=1,...,t

∥∥∥∥∥
t∏

j=k

Mj

∥∥∥∥∥ > x

)
< ∞ ∀x > 0,

where finiteness follows from (2.9).
Repeating this process, we define recursively, for each x > 0, the random variables {T (k)

x ; k =
2,3, . . .} by:

T (k)
x = inf

{
t = 1,2, . . . ;

∥∥∥∥∥
t∏

j=1

M
S

(k−1)
x +t−j

∥∥∥∥∥ ≤ x

}
∀k = 2,3, . . . ,
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where S
(k)
x = ∑k

i=1 T
(i)
x ∀k = 1,2, . . . . Since {Ms; s = t, t + 1, . . .} are independent of Gt for

each t = 1,2, . . . , and since {S(k)
x ; k = 1,2, . . .} are stopping times with respect to {Gt ; t =

1,2, . . .}, we see that {T (k)
x ; k = 2,3, . . .} are i.i.d. with finite mean.

We now observe that by the submultiplicative property,∣∣∣∣∣
S

(k+1)
x −1∏
j=1

M
S

(k+1)
x −j

Z̃1

∣∣∣∣∣ ≤
∣∣∣∣∣
T1−1∏
j=1

MT1−j Z̃1

∣∣∣∣∣
k+1∏
i=2

∥∥∥∥∥
T

(i)
x∏

j=1

M
S

(i)
x −j

∥∥∥∥∥ ≤ xk ∀k = 1,2, . . . ;x > 0,

which implies that

Tx ≤ S
(k+1)

x1/k = T1 + T
(2)

x1/k + · · · + T
(k+1)

x1/k ∀k = 1,2, . . . ;x > 0.

Taking expectations on both sides in this inequality gives:

E(Tx) ≤ E(T1) + kE
(
T

(2)

x1/k

) ∀k = 1,2, . . . ;x > 0.

Choosing a ∈ (0,1) and letting kx =  logx
loga

� ∀x ∈ (0,1), we get:

x1/kx = exp

(
logx

logx/loga�
)

≥ a ∀x ∈ (0,1),

implying that

E(Tx) ≤ E(T1) + kxE
(
T (2)

a

) ≤ E(T1) + E
(
T (2)

a

)( logx

loga
+ 1

)
∀x ∈ (0,1).

This combined with (2.12) implies that the right-hand side of (2.11) is finite, since∫ 1

0
logx dx = lim

ε→0

∫ 1

ε

logx dx = lim
ε→0

[x logx − x]1
ε = −1.

(v) ⇒ (iv). Since ∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ ≤
∥∥∥∥∥

m−1∏
j=1

Mj

∥∥∥∥∥
∣∣∣∣∣
t−1∏
j=m

MjZt

∣∣∣∣∣ ∀1 ≤ m ≤ t,

it holds for each ε > 0 and K > 0 that

P

(
n⋃

t=m

{∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ > ε

})
≤ P

(∥∥∥∥∥
m−1∏
j=1

Mj

∥∥∥∥∥ >
ε

K

)

+ P

(
n⋃

t=m

{∣∣∣∣∣
t−1∏
j=m

MjZt

∣∣∣∣∣ > K

})
∀1 ≤ m ≤ n.
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For the second term on the right-hand side, since the random sequence {(Mt ,Zt ); t = 1,2, . . .}
is i.i.d.,

P

(
n⋃

t=m

{∣∣∣∣∣
t−1∏
j=m

MjZt

∣∣∣∣∣ > K

})
= P

(
n⋃

t=m

{∣∣∣∣∣
t−1∏
j=m

Mj−m+1Zt−m+1

∣∣∣∣∣ > K

})

= P

(
n⋃

t=m

{∣∣∣∣∣
t−m∏
j=1

MjZt−m+1

∣∣∣∣∣ > K

})

= P

(
n−m+1⋃

t=1

{∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ > K

})

≤ P

(
sup

t=1,2,...

∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ > K

)
∀1 ≤ m ≤ n.

Fixing m ≥ 1 and letting n → ∞, we get:

P

( ∞⋃
t=m

{∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ > ε

})
≤ P

(∥∥∥∥∥
m−1∏
j=1

Mj

∥∥∥∥∥ >
ε

K

)

+ P

(
sup

t=1,2,...

∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ > K

)
∀m ≥ 1.

For each δ > 0, by (v), the second term on the right-hand side can be made less than δ
2 by

choosing K large enough. Similarly, using C0, the first term on the right-hand side can be made
less than δ

2 by choosing m large enough. This gives:

P

( ∞⋃
t=m

{∣∣∣∣∣
t−1∏
j=1

MjZt

∣∣∣∣∣ > ε

})
≤ δ

2
+ δ

2
= δ,

which implies (iv). �

3. Counterexamples and special cases

In this section, we consider some counterexamples, some special cases, and a condition on the
matrices {Mt ; t = 1,2, . . .} which is only sufficient for C0, but somewhat easier to validate.
In Example 3.1, it is shown that in the case d > 1, (ii) in Theorem 2.1 does not imply C0.
In Examples 3.2–3.4, it is shown that in the case d > 1, if C0 does not hold, not all of the
conclusions of Theorem 2.1 hold. The special cases considered are the case d = 1 (completely
solved in [12]), and the case when Mt = M ∀t = 1,2, . . . , where M is a (deterministic) constant
matrix.
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Example 3.1. Consider first the case d = 1. This case was completely solved in [12], where it
was shown that if P(Z1 = 0) < 1, then (vi) implies C0, and if also P(|M1| = 1) < 1, then (v)
implies C0. Moreover, if P(Z1 = 0) < 1, then clearly (iv) implies that P(|M1| = 1) < 1. As a
consequence, if d = 1 and P(Z1 = 0) < 1, then (ii), (iii), (iv), (v) combined with P(|M1| = 1) <

1, and (vi) are equivalent, and they all imply C0.
However, if d > 1, the following counterexample shows that even if P(Z1 = 0) < 1, (ii) does

not imply C0. Let d = 2, and let v1 and v2 be orthonormal column vectors in R
2. Let 0 < α < 1.

Define Mt = αv1v
T
1 + v2v

T
2 ∀t = 1,2, . . . , and Zt = v1 ∀t = 1,2, . . . . Then,

∏t−1
j=1 MjZt =

αt−1v1 ∀t = 1,2, . . . , so (ii) holds. On the other hand, ‖∏t
j=1 Mj‖ = 1 ∀t = 1,2, . . . , which

does not converge to 0 a.s. as t → ∞.

Example 3.2. If d > 1 and C0 does not hold, then the implication (ii) ⇒ (i) does not hold. To see
this, let d = 2, and let v1 and v2 be orthonormal column vectors in R

2. Let 0 < α < 1 < β < ∞.
Define Mt = αv1v

T
1 + βv2v

T
2 ∀t = 1,2, . . . , and Zt = v1 ∀t = 1,2, . . . . Let Z0 = v2. Then,∏t−1

j=1 MjZt = αt−1v1 ∀t = 1,2, . . . , so (ii) holds, and
∑t

i=1
∏i−1

j=1 MjZt converges a.s. to
1

1−α
v1 (a deterministic vector) as t → ∞. On the other hand, ‖∏t

j=1 Mj‖ = βt ∀t = 1,2, . . . ,
which does not converge to 0 a.s. as t → ∞. If (i) holds, then by (2.1), (ii) and the Cramér–
Slutsky theorem,

∏t
j=1 MjZ0 must converge in distribution as t → ∞. However,

∏t
j=1 MjZ0 =

βtv2 ∀t = 1,2, . . . , which does not converge in distribution as t → ∞ (the corresponding se-
quence of distributions is not tight). Hence, (i) does not hold.

Example 3.3. If C0 does not hold, then the implications (i) ⇒ (v) and (i) ⇒ (vi) do not hold. To
see this, let d = 1, |β| > 1 and c > 0. Define Mt = β ∀t = 1,2, . . . , Zt = (1 −β)c ∀t = 1,2, . . . ,
and Z0 = c. (This is an example where the “nondegeneracy” condition (2.7) in [12] does not
hold.) Then

t∑
i=1

i−1∏
j=1

MjZt +
t∏

j=1

MjZ0 = (1 − β)c
1 − βt

1 − β
+ cβt = c ∀t = 1,2, . . . ,

so by (2.1) (i) holds. On the other hand, ‖∏t
j=1 Mj‖ = |β|t ∀t = 1,2, . . . , which does not con-

verge to 0 a.s. as t → ∞. Also, |∏t−1
j=1 MjZt | = |(1 − β)|c|β|t−1 ∀t = 1,2, . . . , so neither (v)

nor (vi) holds.

Example 3.4. If d > 1 and C0 does not hold, then the implication (v) ⇒ (vi) does not hold.
To see this, we use the same setup as in Example 3.1, except that we now define Zt = v2
∀t = 1,2, . . . . Then,

∏t−1
j=1 MjZt = v2 ∀t = 1,2, . . . , so (v) holds, but not (vi). Moreover,

‖∏t
j=1 Mj‖ = 1 ∀t = 1,2, . . . .

Remark 3.1 (An open problem). Despite some effort, we have not been able to find a counterex-
ample showing that if d > 1 and C0 does not hold, the implication (vi) ⇒ (v) does not hold. It is
therefore possible that, if d > 1, even when C0 does not hold, (vi) implies one or several of (ii),
(iii), (iv) or (v). We leave it as an open problem to prove these assertions, or to disprove them by
means of counterexamples.
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Remark 3.2. Consider again the case d > 1. As pointed out in Remark 2.13 in [12], a sufficient
condition for (ii) to hold is that

∑∞
t=1

∏t−1
j=1 ‖Mj‖|Zt | < ∞ a.s. By Theorem 2.1 in [12] (see also

Example 3.1 above), the latter condition is equivalent to

∞∑
t=1

P

(
min

k=1,...,t−1

t−1∏
j=k

‖Mj‖|Zt | > x

)
< ∞ ∀x > 0

and to
∏t−1

j=1 ‖Mj‖|Zt | a.s.−→ 0 as t → ∞. If P(Z1 = 0) < 1, these equivalent conditions all imply

that
∏t

j=1 ‖Mj‖ a.s.−→ 0 as n → ∞, which clearly implies C0.

However, C0 does not imply that
∏t

j=1 ‖Mj‖ a.s.−→ 0 as t → ∞, as the following counterex-

ample shows. Let d = 2, and let v1 and v2 be orthonormal column vectors in R
2. Let {αt ; t =

1,2, . . .} be an i.i.d. random sequence such that P(αt = 1) = P(αt = 1
2 ) = 1

2 ∀t = 1,2, . . . , and
let Kt = ∑t

j=1 I {αj = 1} ∀t = 1,2, . . . . Define Mt = αtv1v
T
1 + ( 3

2 − αt )v2v
T
2 ∀t = 1,2, . . . .

Then ∥∥∥∥∥
t∏

j=1

Mj

∥∥∥∥∥ = max

(
1

2t−Kt
,

1

2Kt

)
∀t = 1,2, . . . .

By the second Borel–Cantelli lemma, Kt
a.s.−→ ∞ and t − Kt

a.s.−→ ∞ as t → ∞, implying that
‖∏t

j=1 Mj‖ a.s.−→ 0 as t → ∞. On the other hand,
∏t

j=1 ‖Mj‖ = 1 ∀t = 1,2, . . . .

Remark 3.3. As noted in Remark 3.2, the condition
∏t

j=1 ‖Mj‖ a.s.−→ 0 as t → ∞ implies C0.
By Proposition 2.6 in [12] (see also Section 4 in [12]), the former condition holds if and only if
one of the following two conditions hold:

(i) E
(∣∣log‖M1‖

∣∣) < ∞ and E
(
log‖M1‖

)
< 0;

(ii) E
(
log− ‖M1‖

) = ∞ and E

(
log+ ‖M1‖

AM(log+ ‖M1‖)
)

< ∞,

where AM(y) = ∫ y

0 P(− log‖M1‖ > x)dx ∀y > 0, log+ x = log(x ∨ 1) ∀x > 0, and log− x =
− log(x ∧ 1) ∀x > 0.

Remark 3.4. Under the condition E(log+‖M1‖) < ∞, Kingman’s subadditive ergodic theorem
can be used to show that

1

t
log

∥∥∥∥∥
t∏

j=1

Mj

∥∥∥∥∥ a.s.−→ λ = lim
n→∞

1

n
E

(
log

∥∥∥∥∥
n∏

j=1

Mj

∥∥∥∥∥
)

as t → ∞,

where λ ∈ [−∞,∞) is a deterministic constant; see Theorem 6 in [16] and Theorem 2 in [11].
(Recall that the matrix norm used in these papers is equivalent to the spectral norm.) The constant
λ is sometimes called the maximal Lyapunov exponent. In particular, if E(log+ ‖M1‖) < ∞,
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then C0 holds if λ < 0, and does not hold if λ > 0. For more information, see [11,16] and the
references therein.

Remark 3.5. Finally, consider the case when L (M1) is degenerate at a constant d × d-matrix
M , that is, the case when the RCA(1) process {Xt ; t = 1,2, . . .} is an AR(1) process. In this case,∏t

j=1 Mj = Mt ∀t = 1,2, . . . , and the following spectral representation holds:

Mt =
s∑

k=1

mk−1∑
j=0

[
dj

dxj
xt

]
x=λk

Zk,j ∀t = 1,2, . . . , (3.1)

where {λk; k = 1, . . . , s} are the distinct eigenvalues of M , and {mk; k = 1, . . . , s} are the multi-
plicities (all positive integers) of the eigenvalues as zeros of the minimal annihilating polynomial
of M . Moreover, {Zk,j ; k = 1, . . . , s; j = 0, . . . ,mk −1} are linearly independent d ×d-matrices
called the components of M ; for more information, see Section 9.5 in [18]. Assuming that λ1 is
an eigenvalue of maximum modulus, there are two possible cases. If |λ1| < 1, then, applying
the triangle inequality to the right-hand side of (3.1), we see that ‖Mt‖ → 0 as t → ∞. On the
other hand, if |λ1| ≥ 1, then ‖Mt‖ ≥ |Mtv1| = |λ1|t ≥ 1 ∀t = 1,2, . . . , where v1 is a normalized
eigenvector corresponding to λ1. Hence, C0 holds if and only if |λ1| < 1.

4. Suggestions for future research

We mention two possible research directions. First, the open problem stated in Remark 3.1: to
determine whether, in the case d > 1, (vi) in Theorem 2.1 implies one or several of (ii), (iii), (iv)
or (v), without condition C0 (or replacing C0 with an even less restrictive condition). Second, to
find a natural generalization (if it exists) of the integral condition (2.1) in Theorem 2.1 in [12] to
higher dimensions.
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