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A Fourier analysis of extreme events
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The extremogram is an asymptotic correlogram for extreme events constructed from a regularly varying
stationary sequence. In this paper, we define a frequency domain analog of the correlogram: a periodogram
generated from a suitable sequence of indicator functions of rare events. We derive basic properties of the
periodogram such as the asymptotic independence at the Fourier frequencies and use this property to show
that weighted versions of the periodogram are consistent estimators of a spectral density derived from the
extremogram.
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1. Introduction

In this paper, we study an analog of the periodogram for extremal events. In classical time series
analysis, the periodogram is a method of moments estimator of the spectral density of a sec-
ond order stationary time series (Xt ); see, for example, the standard monographs Brillinger [8],
Brockwell and Davis [9], Grenander and Rosenblatt [24], Hannan [26], Priestley [42]. The no-
tions of spectral density and periodogram are the respective frequency domain analogs of the
autocorrelation function and the sample autocorrelation function in the time domain. In the con-
text of extremal events, these notions are not meaningful since second order characteristics are
not suited for describing the occurrence of rare events.

However, Davis and Mikosch [15] introduced a time domain analog of the autocorrelation
function, the extremogram for rare events. For an R

d -valued strictly stationary time series (Xt )

and a Borel set A bounded away from zero, the extremogram at lag h ≥ 0 is given as the
limit

ρA(h) = lim
x→∞P

(
x−1Xh ∈ A|x−1X0 ∈ A

)
. (1.1)

This definition requires that the support of X (here and in what follows, X denotes a generic
element of any stationary sequence (Xt )) is unbounded and, more importantly, that the limit on
the right-hand side exists. In general, these limits do not exist. A sufficient condition for their
existence is regular variation of all pairs (X0,Xh) or, more generally, regular variation of the
finite-dimensional distributions of the process (Xt ). A precise definition of regular variation will
be given in Section 2.1. Since A is assumed to be bounded away from zero, the probabilities
P(x−1X ∈ A) converge to zero as x → ∞. Then the following calculation is straightforward
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for A:

lim
x→∞ corr(I{x−1X0∈A}, I{x−1Xh∈A}) = lim

x→∞
P(x−1X0 ∈ A,x−1Xh ∈ A) − [P(x−1X ∈ A)]2

P(x−1X ∈ A)(1 − P(x−1X ∈ A))

= lim
x→∞P

(
x−1Xh ∈ A|x−1X0 ∈ A

) = ρA(h).

For fixed x, (I{x−1Xt∈A})t∈Z constitutes a strictly stationary sequence. The limit sequence (ρA(h))

inherits the property of correlation function from (corr(I{x−1X0∈A}, I{x−1Xh∈A})). Therefore, in
an asymptotic sense, one can use the notions of classical time series analysis (such as the auto-
correlation function) for the sequences of indicator functions (I{x−1Xt∈A})t∈Z. Of course, there
are several crucial differences to classical time series analysis.

• The notion of autocorrelation function is only defined in an asymptotic sense.
• The strictly stationary sequence of indicator functions (I{x−1Xt∈A})t∈Z depends on the

threshold x, that is, we are dealing with an array of strictly stationary processes.
• By definition, the values ρA(h) cannot be negative.

Davis and Mikosch [15,16] introduced the extremogram and calculated the extremogram for
various standard regularly varying time series models such as the GARCH model, stochastic
volatility and linear processes with regularly varying noise, and infinite variance stable pro-
cesses; see also Section 3. They studied the basic asymptotic properties of the extremogram
(consistency, asymptotic normality) and also introduced a frequency domain analog of the cor-
relation function ρA given as the Fourier series

fA(λ) =
∑
h∈Z

ρA(h)e−ihλ, λ ∈ [0,π]. (1.2)

A natural estimator of fA(λ) is found by replacing the correlations ρA(h) by sample analogs.
The convergence in the mean square sense of such an analog of the classical periodogram es-
timator towards the spectral density fA(λ) at a fixed frequency λ was shown in [15]. However,
the periodogram of (I{x−1Xt∈A})t∈Z used in [15] had to be truncated to achieve consistency; the
truncation level depended on some mixing rate which is unknown for real-life data. In this pa-
per, we overcome this inconvenience. In addition, we study the periodogram ordinates of the
indicator functions at finitely many frequencies. We show that the limiting vector of the peri-
odogram ordinates at distinct fixed or Fourier frequencies converges in distribution to a vector of
independent exponential random variables. This property parallels the asymptotic theory for the
periodogram of a second order stationary sequence; see, for example, Brockwell and Davis [9],
Chapter 10.

In classical time series analysis, the asymptotic independence of the periodogram at distinct
frequenc ies is the theoretical basis for consistent estimation of the spectral density via weighted
averages or kernel based methods. We show that weighted average estimators of the periodogram
evaluated at Fourier frequencies in the neighborhood of a fixed non-zero frequency are consistent
estimators of the limiting spectral density.

The paper is organized as follows. In Section 2, we introduce basic notions and conditions
used throughout this paper. In Section 2.1, we define regular variation of a strictly stationary
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sequence. In Section 2.2, we consider those mixing conditions which are relevant for the results
of this paper. The periodogram of extreme events is introduced in Section 2.3. In Section 3, we
discuss some regularly varying strictly stationary sequences. Among them are linear, stochastic
volatility and max-moving average processes with regularly varying noise. We give expressions
for the extremogram and, if possible, for the corresponding spectral density. In Section 4, we give
the main results of this paper. We start in Section 4.1 by showing that the periodogram ordinates
of extreme events are asymptotically uncorrelated at distinct fixed or Fourier frequencies in the
interval (0,π). Next, in Section 4.2 we show that the periodogram ordinates at distinct fixed
or Fourier frequencies converge to independent exponential random variables. This property is
exploited in Section 5 to show that weighted averages of periodogram ordinates evaluated at
Fourier frequencies in a small neighborhood of a fixed frequency yield consistent estimates of
the underlying spectral density at the given frequency. In Section 6, we give a short discussion of
work related to the extremogram or the spectral analysis of sequences of indicator functions. The
proofs depend on various calculations involving formulas for sums of trigonometric functions.
Some of these formulas and related calculations are given in the Appendix.

2. Preliminaries

2.1. Regular variation

It was mentioned in Section 1 that one needs conditions to ensure that the limits ρA(h) in (1.1)
exist. A sufficient condition for this to hold is regular variation of the strictly stationary sequence
(Xt ). Regular variation is a convenient tool for modeling multivariate heavy-tail phenomena and
serial extremal dependence in a time series; see Resnick’s monographs [44,45], Resnick [43],
Basrak and Segers [4,5], Davis and Hsing [11], Embrechts et al. [20], Jakubowski [30,31],
Bartkiewicz et al. [2], and the references therein. Regular variation is particularly useful for
modeling extremes in financial time series; see Basrak et al. [3], Mikosch and Stărică [39], Davis
and Mikosch [12–14]; cf. Andersen et al. [1] and the references therein. See also the examples
in Section 3.

A random vector X with values in R
d for some d ≥ 1 is regularly varying if there exists a

non-null Radon measure μ on the Borel σ -field of R
d

0 = R
d \ {0}, where R = R ∪ {∞,−∞},

such that

P(x−1X ∈ ·)
P (|X| > x)

v→ μ(·), x → ∞. (2.1)

Here
v→ denotes vague convergence on the Borel σ -field of R

d

0 ; for definitions see Kallen-
berg [33], Resnick [43,44]. In this context, bounded sets are those which are bounded away
from zero and the Radon measure μ charges finite mass to these sets. Then, necessarily, there

exists an α ≥ 0 such that μ(tA) = t−αμ(A), t > 0, for all A in the Borel σ -field of R
d

0 . We
refer to regular variation of X with limiting measure μ and index α. A multivariate t -distributed
random vector is regularly varying and the index α is the degree of freedom. Other well known
multivariate regularly varying distributions are the multivariate F - and Fréchet distributions; see
Resnick [44], Chapter 5, in particular Section 5.4.2.
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We will often use an equivalent sequential version of (2.1): there exists (an) such that an → ∞
as n → ∞ and

nP
(
a−1
n X ∈ ·) v→ μ(·), n → ∞. (2.2)

A possible choice of (an) is given by the (1 − 1/n)-quantile of |X|.
Now, a strictly stationary d-dimensional sequence (Xt ) is regularly varying if the lagged vec-

tors Yh = vec(X0, . . . ,Xh), h ≥ 0, are regularly varying with index α. Of course, the limiting
non-null Radon measures μh in (2.1) now depend on the lag h and the normalization in (2.2)
would also change with h. In the context of this paper it is convenient to choose the normaliza-
tions of the rare event probabilities independently of h. In particular, we will use the following
relations for h ≥ 0,

P(x−1Yh ∈ ·)
P (|X0| > x)

v→ μh(·), x → ∞,

nP
(
a−1
n Yh ∈ ·) v→ μh(·), n → ∞,

where (an) satisfies nP (|X0| > an) → 1, as n → ∞. These relations are equivalent to the defini-
tions (2.1) and (2.2) of regular variation of Yh.

Now we are in the position to verify that the limits ρA(h) in (1.1) exist for any Borel set

A ⊂ R
d

0 bounded away from zero. Write Ã = A × R
dh

0 and B̃ = A × R
d(h−1)

0 × A. These sets

are bounded away from zero in R
d(h+1)

0 . If these sets are continuity sets with respect to μh we
obtain from the sequential definition of regular variation of Yh for h ≥ 0,

ρA(h) = lim
n→∞P

(
a−1
n Xh ∈ A|a−1

n X0 ∈ A
)

= lim
n→∞

nP (a−1
n Yh ∈ B̃)

nP (a−1
n Yh ∈ Ã)

= μh(B̃)

μh(Ã)
.

2.2. The mixing and dependence conditions (M), (M1) and (M2)

The results in Davis and Mikosch [15,16] were proved under the following mixing/dependence
condition on the sequence (Xt ).

(M) The sequence (Xt ) is strongly mixing with rate function (ξt ). There exist m = mn → ∞
and rn → ∞ such that mn/n → 0 and rn/mn → 0 and

lim
n→∞mn

∞∑
h=rn

ξh = 0, (2.3)

and for all ε > 0,

lim
k→∞ lim sup

n→∞
mn

rn∑
h=k

P
(|Xh| > εam, |X0| > εam

) = 0. (2.4)
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Condition (2.4) is similar in spirit to condition (2.8) used in Davis and Hsing [11] for establishing
convergence of a sequence of point processes to a limiting cluster point process. It is much
weaker than the anti-clustering condition D′(εan) of Leadbetter which is well known in the
extreme value literature; see Leadbetter et al. [34] or Embrechts et al. [20]. Since we choose (an)

such that nP (|X| > an) → 1 as n → ∞, (2.4) is equivalent to

lim
k→∞ lim sup

n→∞

∞∑
h=k

P
(|Xh| > εam||X0| > εam

) = 0, ε > 0.

In addition, we also need the following technical condition, using the same notation as in (M).

(M1) The sequences (mn), (rn), kn = [n/mn] from (M) also satisfy the growth conditions
knξrn → 0, and mn = o(n1/3).

Remark 2.1. Some of the examples in Section 3 are strongly mixing with geometric rate, that
is, there exists a ∈ (0,1) such that ξh ≤ ah for sufficiently large h. Then (2.3) is satisfied if
mna

rn = o(1). If mn = nγ for some γ ∈ (0,1) then (2.3) is satisfied for rn = c logn if c is chosen
sufficiently large and (M1) trivially holds as well. If ξh ≤ h−s for some s > 1 and sufficiently
large h then (2.3) is satisfied if mnr

−s+1
n = o(1). Thus, if mn = nγ for some γ ∈ (0,1) and

rn = nδ for some δ ∈ (γ /(s − 1), γ ), some s > 2, then (2.3) holds. Condition (M1) is satisfied if
(1 + s)−1 < γ < 1/3 and δ ∈ ((1 − γ )/s, γ ). Thus (2.3) and (M1) are always satisfied if s can
be chosen arbitrarily large.

For our main result on the smoothed periodogram (see Theorem 5.1), we finally need the condi-
tion:

(M2) The sequences (mn), (rn) from (M) also satisfy the growth conditions

m2
nn

n∑
h=rn+1

ξh → 0, mnr
3
n/n → 0.

Remark 2.2. Condition (M2) is stronger than (2.3). If (Xt ) is strongly mixing with geometric or
polynomial rate, a similar argument as in Remark 2.1 shows that (M2) holds for suitable choices
of (rn) and (mn).

2.3. The periodogram of extreme events

In this section, we recall some of the results from Davis and Mikosch [15] concerning the esti-
mation of the spectral density fA defined in (1.2). Write

It = I{Xt/am∈A}, Ĩt = It − p0, p0 = EIt = P
(
a−1
m X ∈ A

)
, t = 1, . . . , n
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for some sequence m = mn → ∞ such that mn/n → 0 as in condition (M) above. We suppress
the dependence of It on A and am. We introduce the estimators

InA(λ) = mn

n

∣∣∣∣∣
n∑

t=1

Ĩte
−itλ

∣∣∣∣∣
2

, λ ∈ [0,π] and P̂m(A) = mn

n

n∑
t=1

It . (2.5)

It follows from Theorem 3.1 in [15] that

P̂m(A) = mn

n

n∑
t=1

It
L2→ μ0(A) = lim

n→∞mnP
(
a−1
m X ∈ A

)
, (2.6)

provided A is a continuity set with respect to the limiting measure μ0. The conditions mn → ∞
and mn/n → 0 cannot be avoided since we need that EP̂m(A) = mnP (a−1

m X ∈ A) → μ0(A)

and then we also get var(P̂m(A)) = O(mn/n).
Davis and Mikosch [15], Theorem 5.1, also proved that the lag-window estimator or truncated

periodogram

f̂nA(λ) = γ̃n(0) + 2
rn∑

h=1

cos(λh)γ̃n(h) (2.7)

with γ̃n(0) = (m/n)
∑n

t=1 It and γ̃n(h) = (m/n)
∑n−h

t=1 Ĩt Ĩt+h, h > 0, for fixed λ ∈ (0,π), satis-
fies the relations

Ef̂nA(λ) → μ0(A)fA(λ) and E
(
f̂nA(λ) − μ0(A)fA(λ)

)2 → 0 (2.8)

under condition (M), if A is a μ0-continuity set and the sets A × R
k−1
0 × A are continuity sets

with respect to μk , k ≥ 1, and mnr
2
n = O(n). If we combine (2.6) and (2.8) we have for fixed

λ ∈ (0,π),

f̂nA(λ)

P̂m(A)

P→ fA(λ). (2.9)

A natural self-normalized estimator of the spectral density fA(λ) in (1.2) is the following
analog of the periodogram

ĨnA(λ) = InA(λ)

P̂m(A)
= |∑n

t=1 Ĩte−itλ|2∑n
t=1 It

, λ ∈ [0,π],

In contrast to f̂nA(λ) one does not need to know the quantities mn and rn which appear in the
definition of f̂nA(λ) and are hard to determine for practical estimation purposes. We call ĨnA(λ)

the standardized periodogram. However, we know from theory for the classical periodogram of
the stationary process (Xt ), given by

Jn,X(λ) = n−1

∣∣∣∣∣
n∑

t=1

Xte
−itλ

∣∣∣∣∣
2

, λ ∈ [0,π],
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that Jn,X(λ) is not a consistent estimator of the spectral density fX(λ) of the process (Xt ) even
in the case when (Xt ) is i.i.d. and has finite variance; see, for example, Proposition 10.3.2 in
Brockwell and Davis [9]. To achieve consistent estimation of fX(λ) one needs to truncate the
periodogram, similarly to f̂nA(λ), or to apply smoothing techniques to neighboring periodogram
ordinates. A similar observation applies to the periodogram for extremal events, In,A(λ); see
Section 4.

3. Examples

In this section, we collect some examples of regularly varying stationary time series models,
give their extremograms (1.1) and, if possible, give an explicit expression of the corresponding
spectral density (1.2). However, in general, the extremogram is too complicated and one can-
not calculate the Fourier series (1.2). Some of the examples below are taken from Davis and
Mikosch [15].

3.1. IID sequence

Consider an i.i.d. real-valued sequence (Zt ) such that

P(Z > x) ∼ px−αL(x) and P(Z ≤ −x) ∼ qx−αL(x), x → ∞, (3.1)

where α > 0, p,q ≥ 0, p + q = 1 and L is a slowly varying function. It is well known (e.g.,
Resnick [43,44]) that (Zt ) is regularly varying with index α. The limiting measures μh are con-
centrated on the axes:

μh(dx0, . . . ,dxh) =
h∑

i=0

λα(dxi)
∏
i �=j

ε0 dxj ,

where εy denotes Dirac measure at y, λα(x,∞] = px−α , λα[−∞,−x] = qx−α , x > 0. Then for
any A bounded away from zero,

ρA(h) = 0, h ≥ 1 and fA ≡ 1.

The conditions (M), (M1) and (M2) are trivially satisfied in this case.

3.2. Stochastic volatility model

Let (σt ) be a strictly stationary sequence of non-negative random variables with Eσα+δ < ∞ for
some δ > 0, independent of the i.i.d. regularly varying sequence (Zt ) with index α > 0, satisfying
the tail balance condition (3.1). The process

Xt = σtZt , t ∈ Z,
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is a stochastic volatility process. It is a regularly varying sequence with index α and limiting
measures concentrated on the axes. The extremogram and the spectral density coincide with these
quantities in the i.i.d. case; see Davis and Mikosch [12]. As discussed in Davis and Mikosch [14],
the process (Xt ) inherits the strong mixing property and the same rate function from the volatil-
ity process (σt ). In particular, if (σt ) is strongly mixing with geometric rate, (Xt ) is also strongly
mixing with geometric rate, and then the conditions (2.3), (M1) and (M2) are satisfied; see Re-
marks 2.1 and 2.2. Condition (2.4) also holds if Eσ 4α < ∞; see Davis and Mikosch [15].

The situation of a vanishing ρA is rather incomplete information about tail dependence.
Hill [28] proposed to use an alternative lag-wise dependence measure of the form
limx→∞ P(Xh > x,X0 > x)/[P(X0 > x)]2 − 1 which in general does not vanish. This mea-
sure is in agreement with the asymptotic tail independence conditions of Ledford and Tawn [35].

The mentioned literature [12,14] focuses on stochastic volatility processes with i.i.d. regu-
larly varying noise (Zt ) with index α and stochastic volatility satisfying the moment condition
Eσα+δ < ∞ for some δ > 0. Mikosch and Rezapur [37] consider regularly varying stochas-
tic volatility processes with index α when the sequence (σt ) is regularly varying with index α,
E|Z|α+δ < ∞ for some δ > 0 and they give examples with ρA �= 0 and fA �≡ 1 for A bounded
away from zero. The aforementioned comments about mixing also apply in this setting.

3.3. ARMA process

Consider the linear process

Xt =
∞∑

j=0

ψjZt−j , t ∈ Z, (3.2)

where (Zt ) is an i.i.d. one-dimensional regularly varying sequence with index α > 0 and
tail balance condition (3.1). We choose the coefficients from the ARMA equation ψ(z) =
1 + ∑∞

i=1 ψiz
i = θ(z)/φ(z), z ∈ C, where

φ(z) = 1 − φ1z − · · · − φrz
r and θ(z) = 1 + θ1z + · · · + θsz

s

for integers r, s ≥ 0, and the coefficients θi, φi are chosen such that φ(z) and θ(z) have no com-
mon zeros and φ(z) �= 0 for |z| ≤ 1. It is well known that X is regularly varying with index α; see,
for example, Appendix A3.3 in Embrechts et al. [20] or Mikosch and Samorodnitsky [38]. The
proofs in the latter references use the fact that X

(s)
t = ∑s

j=0 ψjZt−j , s ≥ 1, is regularly varying
as a simple consequence of the fact that linear combinations of i.i.d. regularly varying random
variables are regularly varying; see Feller [22], page 278; cf. Lemma 1.3.1 in [20]. Moreover,

lim
s→∞ lim sup

n→∞
nP

(
a−1
n

∣∣Xt − X
(s)
t

∣∣ > ε
) = 0, ε > 0. (3.3)

Then it follows from Lemma 3.6 in Jessen and Mikosch [32] that Xt is regularly varying.
The vector (X

(s)
0 , . . . ,X

(s)
h ) is also regularly varying with index α. This fact follows from

an application of a multivariate version of Breiman’s lemma [7] (see Basrak et al. [3]) or the
fact that linear operations preserve regular variation; see Lemma 4.6 in [32]. Since (3.3) holds a
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straightforward multivariate extension of Lemma 3.6 in [32] yields that (X0, . . . ,Xh) is regularly
varying for every h ≥ 0.

The same arguments leading to the asymptotic tail behavior of Xt (see, e.g., Appendix A3.3
in Embrechts et al. [20], Mikosch and Samorodnitsky [38]) yield for A = (1,∞),

ρA(h) =
∑∞

i=0[p(min(ψ+
i ,ψ+

i+h))
α + q(min(ψ−

i ,ψ−
i+h))

α]∑∞
i=0[p(ψ+

i )α + q(ψ−
i )α] , h ≥ 1. (3.4)

This formula was given in [15] for symmetric Z when p = q = 0.5.
Doukhan [19], Theorem 6 on page 99, shows that (Xt ) is β-mixing, hence strongly mixing,

with geometric rate if Z has a positive Lebesgue density in some neighborhood of the expected
value of Z (provided it exists) and Pham and Tran [41] proved the same statement under the
condition that Z has a Lebesgue density and a finite pth moment for some p > 0. Hence (2.3),
(M1) and (M2) are satisfied under these conditions; see Remarks 2.1 and 2.2. Next, we verify
condition (2.4). We observe that it trivially holds for an s-dependent sequence for any integer
s ≥ 1. Hence, it is satisfied for any moving average of order s, in particular for the truncated se-
quence (X

(s)
t ). For ease of presentation, we assume ε = 1. Since X

(h−1)
h and X0 are independent

we have

P
(|Xh| > am||X0| > am

) ≤ P
(∣∣X(h−1)

h

∣∣ > 0.5am

) + P
(∣∣Xh − X

(h−1)
h

∣∣ > 0.5am, ||X0| > am

)
≤ I1 + I2.

Recall that there exist ϕ ∈ (0,1) such that |ψi | ≤ ϕi for i sufficiently large; see Brockwell and
Davis [9], Chapter 3. We have for a positive constant c > 0, for every k ≥ 1,

rn∑
h=k+1

I1 ≤ rnP

( ∞∑
i=0

|ψi ||Zi | > 0.5am

)

∼ crnP
(|Z| > am

) = o(1) as n → ∞.

(Here and in what follows, c denotes any constant whose value is not of interest.) For sufficiently
large k, we have in view of the uniform convergence theorem for regularly varying functions (see
Bingham et al. [6], Section 1.2),

rn∑
h=k+1

I2 ≤ cmn

rn∑
h=k+1

P

( ∞∑
i=h+1

|ψi ||Zi | > 0.5am

)

≤ cmn

rn∑
h=k+1

P

(
ϕh

∞∑
i=0

ϕi |Zi | > 0.5am

)

≤ c

rn∑
h=k+1

ϕαh ≤ cϕα(k+1)/
(
1 − ϕα

)
,
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and the right-hand side converges to zero as k → ∞. Thus we proved that (M), (M1) and (M2)
hold for ARMA processes if the noise has some Lebesgue density.

If var(X) < ∞ relation (3.4) bears some similarity with the autocorrelation function of
(Xt ) given by ρ(h) = ∑∞

i=1 ψiψi+h/
∑∞

i=1 ψ2
i . Replacing ρA in (1.2) by ρ, one obtains the

well-known spectral density of a causal ARMA process (up to a constant multiple): fX(λ) =
(2π)−1|θ(e−iλ)|2/|φ(e−iλ)|2, λ ∈ [0,π]. Such a compact formula can in general not be derived
for fA. An exception is a causal ARMA(1,1) process; see Section B. There are various analogies
between the functions ρ and ρA for causal invertible ARMA processes. In this case, ψh → 0 as
h → ∞ at an exponential rate and therefore both ρ(h) and ρA(h) decay exponentially fast to
zero as well. The latter property also makes the spectral densities fX and fA analytical functions
bounded away from infinity. We also mention that for an MA(q) process, ρ(h) = ρA(h) = 0 for
h > q .

3.4. Max-moving averages

Consider a regularly varying i.i.d. sequence (Zt ) with index α > 0 and tail balance parame-
ters p,q; see (3.1). For a real-valued sequence (ψj ), the process

Xt =
∞∨
i=0

ψiZt−i , t ∈ Z, (3.5)

is a max-moving average. We will also assume that |ψj | ≤ c, j ≥ 0, for some constant c and
ψ0 = 1. Obviously, if X is finite a.s., (Xt ) constitutes a strictly stationary process. The random
variable X does not assume the value ∞ if limx→∞ P(X > x) = 0. We have

P(X > x) = P

( ∞∨
i=0

ψiZi > x

)
= 1 − lim

n→∞

n∏
i=0

P(ψiZ ≤ x).

The product
∏∞

i=0 P(ψiZ ≤ x) converges if
∑∞

i=0 P(ψiZ > x) < ∞. By regular variation of Z,
this amounts to the condition

ψ+ =
∞∑
i=0

[
p
(
ψ+

i

)α + q
(
ψ−

i

)α]
< ∞.

A Taylor expansion and regular variation of Z yield

P(X > x) = 1 − e−(1+o(1))P (|Z|>x)ψ+ ∼ P
(|Z| > x

)
ψ+ → 0, x → ∞. (3.6)

We also have P(X ≤ −x) = O(P (|Z| > x)). Hence, X is regularly varying with index α if
0 < ψ+ < ∞. We always assume the latter condition.

We show that (Xt ) is regularly varying. Consider the truncated max-moving average process
for s ≥ 0,

X
(s)
t =

s∨
i=0

ψiZt−i , t ∈ Z.
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Regular variation of (X
(s)
0 , . . . ,X

(s)
h ) is a consequence of regular variation of (Zt ) and the fact

that regular variation is preserved under the max-operation acting on independent components.
Moreover,

lim
s→∞ lim sup

n→∞
nP

(
a−1
n

∞∨
i=s+1

ψiZt−i > x

)
= c lim

s→∞

∞∑
i=s+1

[
p
(
ψ+

i

)α + q
(
ψ−

i

)α] = 0.

Then an application of Lemma 3.6 in Jessen and Mikosch [32] shows that (X0, . . . ,Xh) is regu-
larly varying with index α for every h ≥ 0.

Next, we determine the extremogram ρA corresponding to the set A = (1,∞). For h ≥ 1, we
have

P(Xh > x,X0 > x) = P

( ∞∨
i=0

ψiZ−i > x,

−1∨
i=−h

ψi+hZ−i ∨
∞∨
i=0

ψi+hZ−i > x

)

= P

( ∞∨
i=0

(ψiZ−i ) ∧ (ψi+hZ−i ) > x

)
+ o

(
P

(|Z| > x
))

∼ P
(|Z| > x

) ∞∑
i=0

[
p
(
min

(
ψ+

i ,ψ+
i+h

))α + q
(
min

(
ψ−

i ,ψ−
i+h

))α]
.

Finally, in view of (3.6), ρA(h) is given by (3.4), that is, the linear process (3.2) and the max-
moving average (3.5) have the same extremogram provided the coefficients (ψj ) and the distri-
bution of Z are the same. Hence, their spectral densities fA are the same as well.

As for ARMA processes, mixing conditions for infinite max-moving processes are not eas-
ily verified and additional conditions on the noise (Zt ) are needed. Assume that (Zt ) is i.i.d.
with common Fréchet distribution �α(x) = e−x−α

, x > 0, for some α > 0. Then (Xt ) consti-
tutes a stationary max-stable process. For such processes, Dombry and Eyi-Minko [18] proved
rather general sufficient conditions for β-mixing, implying strong mixing. An application of their
Corollary 2.2 implies that the condition |ψh| ≤ c0e−c1h, h ≥ 1, for suitable constants c1, c2 > 0
implies strong mixing of (Xt ) with geometric rate function (ξh). In this situation, (M), (M1)
and (M2) are satisfied.

4. Basic properties of the periodogram

In this section, we study some basic properties of the periodogram InA(λ) for extremal events
defined in (2.5). Notice that

InA(λ) = 1
2

[(
αn(λ)

)2 + (
βn(λ)

)2]
,
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where αn(λ) and βn(λ) denote the normalized and centered cosine and sine transforms of
(It )t=1,...,n:

αn(λ) =
(

2mn

n

)1/2 n∑
t=1

Ĩt cos(λt),

βn(λ) =
(

2mn

n

)1/2 n∑
t=1

Ĩt sin(λt).

Here we suppress the dependence of αn and βn on am and the set A which is bounded away
from zero. For practical purposes, the periodogram will typically be evaluated at some Fourier
frequencies λ = 2πj/n for some integer j . If λ ∈ (0,π) is such a Fourier frequency, then

n∑
t=1

eiλt = 0,

and therefore the It ’s in αn(λ) and βn(λ) are automatically centered by their (in general un-
known) expectations EIt = p0 = P(a−1

m X ∈ A).

4.1. The periodogram ordinates at distinct frequencies are asymptotically
uncorrelated

Our first result is an analog of the fact that the sine and cosine transforms of a stationary sequence
at distinct fixed or Fourier frequencies in (0,π) are asymptotically uncorrelated.

Proposition 4.1. Consider a strictly stationary R
d -valued sequence (Xt ) which is regularly

varying with index α > 0 and satisfies the mixing condition (M). Let A ⊂ R
d

0 be bounded away

from zero such that A is a continuity set with respect to μ0 and A × R
dh

0 and A × R
d(h−1)

0 × A

are continuity sets with respect to the limiting measures μh for every h ≥ 1; see Section 2.1. Also
assume that

∑
h≥1 ρA(h) < ∞. Let λ,ω be either any two Fourier or fixed frequencies in (0,π).

(1) If λ,ω are distinct then the covariances of the pairs (αn(λ),βn(ω)), (αn(λ),αn(ω)),
(βn(λ),βn(ω)) converge to zero as n → ∞.

(2) The covariance of (αn(λ),βn(λ)) converges to zero as n → ∞.
(3) If λ ∈ (0,π) is fixed and if (λn) are Fourier frequenc ies such that λn → λ, then the

asymptotic variances are given by

var
(
αn(λn)

) ∼ var
(
αn(λ)

) ∼ var
(
βn(λn)

) ∼ var
(
βn(λ)

)
∼ μ0(A)

[
1 + 2

∞∑
h=1

cos(λh)ρA(h)

]
= μ0(A)fA(λ).

Remark 4.2. The smoothness condition on the set A ensures that the extremogram ρA with
respect to A is well defined; see Section 2.1.
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Remark 4.3. Since Eαn(λ) = Eβn(λ) = 0 an immediate consequence of part (3) is that

EInA(λ) = 1

2

[
var

(
αn(λ)

) + var
(
βn(λ)

)] ∼ μ0(A)

[
1 + 2

∞∑
h=1

cos(λh)ρA(h)

]
= μ0(A)fA(λ).

Following the lines of the proof below, one can see that the error one encounters in the above
approximation is uniform for λ ∈ [a, b] ⊂ (0,π). The same remark applies to the quantities
EInA(λn) evaluated at Fourier frequencies λn → λ ∈ (0,π).

Proof. We start by calculating the asymptotic covariances. Any of the covariances can be written
in the form

J = 2mn

n
E

[
n∑

s=1

n∑
t=1

(
IsIt − p2

0

)
f1(λs)f2(ωt)

]

= 2mn

n

( ∑
1≤t=s≤n

+
∑

1≤s �=t≤n

)(
p|s−t | − p2

0

)
f1(λs)f2(ωt)

= J1 + J2,

where f1 and f2 are cosine or sine functions and

p|t−s| = P
(
a−1
m Xs ∈ A,a−1

m Xt ∈ A
)

for any s, t .

We estimate J1 separately for each possible combination of sine and cosine functions f1, f2. We
start with f1(x) = cosx and f2(x) = sinx. Then, if λ,ω are Fourier frequencies, so are λ ± ω

and therefore

J1 = (
p0 − p2

0

)2mn

n

n∑
t=1

cos(λt) sin(ωt)

= (
p0 − p2

0

)mn

n

n∑
t=1

[
sin

(
(λ + ω)t

) − sin
(
(ω − λ)t

)] = 0.

If λ,ω are fixed frequencies, we conclude from (A.2) that the sum on the right-hand side is
bounded. Hence, J1 = O(n−1).

For f1(x) = f2(x) = cosx, we get

J1 = (
p0 − p2

0

)2mn

n

n∑
t=1

cos(λt) cos(ωt)

= (
p0 − p2

0

)mn

n

n∑
t=1

[
cos

(
(λ + ω)t

) + cos
(
(ω − λ)t

)]
.
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If λ,ω are Fourier frequencies, so are λ±ω and then the right-hand side vanishes unless λ+ω =
π. However, if λ + ω = π the second sum vanishes and the first sum is bounded. Therefore,
J1 = O(n−1). If λ �= ω are fixed it follows from (A.1) that the sum on the right-hand side is
bounded and therefore J1 = O(n−1).

For f1(x) = f2(x) = sinx we have

J1 = (
p0 − p2

0

)2mn

n

n∑
t=1

sin(λt) sin(ωt)

= (
p0 − p2

0

)mn

n

n∑
t=1

[
cos

(
(λ − ω)t

) − cos
(
(λ + ω)t

)]
.

The same arguments as above show that J1 = O(n−1) both for Fourier and fixed frequencies
λ �= ω.

Next, we consider J2. We start with cov(αn(λ),βn(λ)). If λ is a Fourier frequency, we have
sin(λn) = 0. Hence, by (A.7),

J2 = 2mn

n

n−1∑
h=1

(
ph − p2

0

) n−h∑
s=1

[
sin(λs) cos

(
λ(s + h)

) + cos(λs) sin
(
λ(s + h)

)]

= −2mn

n

n−1∑
h=1

(
ph − p2

0

)
sin(λh).

By definition of strong mixing, |ph − p2
0| ≤ ξh. Then, by condition (M),

|J2| ≤ 2mn

n

∞∑
h=1

ξh = O(mn/n).

The same argument applies for a fixed frequency λ since the expressions in (A.7) are bounded
for every n and h < n.

If λ �= ω are fixed frequencies, we conclude from (A.8)–(A.10) and condition (M) that there
exist constants c(λ,ω) such that

|J2| =
∣∣∣∣∣2mn

n

n−1∑
h=1

(
ph − p2

0

) n−h∑
s=1

(
f1(λs)f2

(
ω(s + h)

) + f1
(
λ(s + h)

)
f2(ωs)

)∣∣∣∣∣
≤ c(λ,ω)

mn

n

n−1∑
h=1

∣∣ph − p2
0

∣∣ ≤ c(λ,ω)
mn

n

∞∑
h=1

ξh = O(mn/n).

Now we consider the case of two distinct Fourier frequencies λ,ω. We start with f1(x) = cosx

and f2(x) = sinx. If λ+ω and |λ−ω| are bounded away from zero, we can use the argument for
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general distinct frequencies. Now assume that λ+ω ≤ 0.1 say. Since λ,ω are Fourier frequencies
a glance at (A.8)–(A.10) shows that one has to find suitable bounds for

| sin((n − h + 1)(λ + ω)/2)|
| sin((λ + ω)/2)| = | sin((−h + 1)(λ + ω)/2)|

| sin((λ + ω)/2)| .

If h(λ + ω) ≤ 0.1 Taylor expansions for the nominator and the denominator show that the right-
hand side is bounded by ch. If h(λ + ω) > 0.1 bound the nominator by 1 and Taylor expand the
denominator to conclude that the right-hand side is bounded by ch for some constant c > 0 as
well. Then, by (A.8), for fixed k,

|J2| ≤ c

[
mn

n

k∑
h=1

∣∣ph − p2
0

∣∣ + mn

rn∑
h=k+1

∣∣ph − p2
0

∣∣ + mn

∞∑
h=rn+1

ξh

]
.

The right-hand side vanishes by virtue of condition (M), first letting n → ∞ and then k → ∞.
The case of small |λ − ω|, |λ − ω| ≤ 0.1 say, can be treated analogously.

The remaining cases f1(x) = f2(x) = cosx and f1(x) = f2(x) = sinx can be treated in the
same way by exploiting (A.9) and (A.10).

Now we turn to the asymptotic variances. We restrict ourselves to αn(λ) for fixed λ ∈ (0,π);
the variance of βn(λ) and the case of Fourier frequencies can be treated analogously. Write

We have

var
(
αn(λ)

) = 2mn

n

[(
p0 − p2

0

) n∑
t=1

(
cos(λt)

)2 + 2
n−1∑
h=1

(
ph − p2

0

) n−h∑
t=1

cos(λt) cos
(
λ(t + h)

)]
.

For any frequency λ ∈ (0,π) bounded away from zero and π, the relation n−1 ∑n
t=1(cos(λt))2 ∼

0.5 holds. Moreover, cos(λt) cos(λ(t +h)) = 0.5[cos(λh)+cos(λ(2t +h))]. Similar calculations
as above yield

var
(
αn(λ)

) ∼ mnp0 + 2mn

n−1∑
h=1

(
ph − p2

0

)
(1 − h/n) cos(λh)

∼ μ0(A)

[
1 + 2

∞∑
h=1

ρA(h) cos(λh)

]
.

This concludes the proof. �

4.2. Central limit theorem

Our next result shows that the periodogram ordinates at distinct frequencies are asymptotically
independent and exponentially distributed.
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Theorem 4.4. Consider a strictly stationary R
d -valued sequence (Xt ) which is regularly vary-

ing with index α > 0. Let A ⊂ R
d

0 be bounded away satisfying the smoothness conditions of
Proposition 4.1. Assume that the conditions (M), (M1) and

∑
h≥1 ρA(h) < ∞ hold. Consider

any fixed frequencies 0 < λ1 < · · · < λN < π for some N ≥ 1. Then the following central limit
theorem holds:

Zn = (
αn(λi), βn(λi)

)
i=1,...,N

d→ (
α(λi), β(λi)

)
i=1,...,N

, n → ∞, (4.1)

where the limiting vector has N(0,�N) distribution with

�N = μ0(A)diag
(
fA(λ1), fA(λ1), . . . , fA(λN), fA(λN)

)
.

The limit relation (4.1) remains valid if the frequencies λi , i = 1, . . . ,N , are replaced by distinct
Fourier frequencies ωi(n) → λi ∈ (0,π) as n → ∞. The limits λi do not have to be distinct.

Then the following result is immediate.

Corollary 4.5. Assume the conditions of Theorem 4.4. Let (Ei) be a sequence of i.i.d. standard
exponential random variables.

1. Consider any fixed frequencies 0 < λ1 < · · · < λN < π for some N ≥ 1. Then the following
relations hold:(

InA(λi)
)
i=1,...,N

d→ μ0(A)
(
fA(λi)Ei

)
i=1,...,N

, n → ∞,(
ĨnA(λi)

)
i=1,...,N

d→ (
fA(λi)Ei

)
i=1,...,N

, n → ∞.

2. Consider any distinct Fourier frequencies ωi(n) → λi ∈ (0,π) as n → ∞, i = 1, . . . ,N .
The limits λi do not have to be distinct. Then the following relations hold:

(
InA

(
ωi(n)

))
i=1,...,N

d→ μ0(A)
(
fA(λi)Ei

)
i=1,...,N

, n → ∞,(
ĨnA

(
ωi(n)

))
i=1,...,N

d→ (
fA(λi)Ei

)
i=1,...,N

, n → ∞.

Proof of the Theorem 4.4. We will prove (4.1) by applying the Cramér–Wold device, that is,
we will show that for any choice of constants c ∈ R

2N ,

c′Zn
d→ N

(
0, c′�Nc

)
. (4.2)

The proof of the result for distinct converging Fourier frequencies is analogous and therefore
omitted. We will prove (4.2) by applying the method of small and large blocks. The difficulty
we encounter here is that, due to the presence of sine and cosine functions, we are dealing with
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partial sums of non-stationary sequences. For t = 1, . . . , n, we write

Ynt =
(

2mn

n

)1/2

Ĩt

N∑
j=1

[
c2j−1 cos(λj t) + c2j sin(λj t)

]
, t = 1, . . . , n. (4.3)

For ease of presentation, we always assume that n/mn = kn is an integer; the general case can
be treated in a similar way. Consider the large blocks

Kni = {
(i − 1)mn + 1, . . . , imn

}
, i = 1, . . . , kn,

the index sets K̃ni , which consist of all but the first rn elements of Kni , and the small blocks
Jni = Kni \ K̃ni . In view of condition (M), rn/mn → 0 and mn → ∞, the sets K̃ni and Jni

are non-empty for large n. For any set B ⊂ {1, . . . , n}, we write Sn(B) = ∑
t∈B Ynt . First, we

show that the joint contribution of the sums over the small blocks to c′Zn is asymptotically
negligible. �

Lemma 4.6. Under the conditions of Theorem 4.4, the following relation holds:

var

(
kn∑

i=1

Sn(Jni)

)
→ 0, n → ∞. (4.4)

Proof. We have

var

(
kn∑

i=1

Sn(Jni)

)
≤

kn∑
i=1

var
(
Sn(Jni)

) + 2
∑

1≤i1<i2≤kn

∣∣cov
(
Sn(Jni1), Sn(Jni2)

)∣∣
= P1 + P2.

Due to the sum structure of Ynt given in (4.3) each of the sums Sn(Jni) can be written as a sum of
2N subsums where each of these subsums only involves either the functions cos(λj t) or sin(λj s)

for some j ≤ N . Then each of the terms var(Sn(Jni)) and | cov(Sn(Jni1), Sn(Jni2))| is bounded
by a linear combination of the variances/covariances of such subsums. In other words, it suffices
to prove (4.4) for N = 1. We give the corresponding calculations only for the functions cos(λt)

where λ stands for any of the frequencies λj . The calculations are similar to those in the proof
of Proposition 4.1. For any i ≤ kn and fixed k ≥ 1, condition (M) ensures that there is a constant
c(k) such that for large n,

var
(
Sn(Jni)

) = 2mn

n

[
(i−1)mn+rn∑

s=(i−1)mn+1

var(Is)
(
cos(λs)

)2

+ 2
rn−1∑
h=1

(i−1)mn+rn−h∑
s=(i−1)mn+1

cov(Is, Is+h) cos(sλ) cos
(
λ(s + h)

)]
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≤ 2mn

n

(
rn

(
p0 − p2

0

) + 2
rn−1∑
h=1

(rn − h)
∣∣ph − p2

0

∣∣)

≤ c
rn

n

(
mn

k∑
h=0

ph + mn

rn∑
h=k+1

ph

)
≤ c(k)(rn/n),

and the right-hand side does not depend on i. Consequently, P1 ≤ c(k)knrn/n = c(k)rn/mn → 0
for every fixed k. Similarly, for i1 < i2,∣∣cov

(
Sn(Jni1), Sn(Jn,i2)

)∣∣
= 2mn

n

∣∣∣∣∣
[

(i1−1)mn+rn∑
s=(i1−1)mn+1

(i2−1)mn+rn∑
t=(i2−1)mn+1

cov(It , Is) cos(λs) cos(λt)

]∣∣∣∣∣
≤ c

mn

n

(i2−i1)mn+rn−1∑
q=(i2−i1)mn−(rn−1)

(
rn − ∣∣q − (i2 − i1)mn

∣∣)∣∣pq − p2
0

∣∣
≤ c

mnrn

n

(i2−i1)mn+rn−1∑
q=(i2−i1)mn−(rn−1)

ξq,

where (ξt ) is the mixing rate function. Hence for large n, in view of condition (M),

|P2| ≤ c
mnrn

n

kn∑
i1=1

kn∑
i2=i1+1

(i2−i1)mn+rn−1∑
q=(i2−i1)mn−(rn−1)

ξq

≤ c
mnrn

n

kn−1∑
i1=1

∞∑
q=mn+1−rn

ξq ≤ crn

∞∑
q=rn+1

ξq = o(1).

This proves (4.4). �

Relation (4.4) implies that c′Zn and
∑kn

i=1 Sn(K̃ni) have the same limit distribution provided

such a limit exists. Let S̃n(K̃ni)
d= Sn(K̃ni) for i = 1, . . . , kn and assume that (S̃n(K̃ni))i=1,...,kn

has independent components. A telescoping sum argument yields∣∣∣∣∣E
kn∏
l=1

eitSn(K̃nl ) − E

kn∏
s=1

eit S̃n(K̃ns )

∣∣∣∣∣
=

∣∣∣∣∣
kn∑
l=1

E

[(
eitSn(K̃nl ) − eit S̃n(K̃nl )

) l−1∏
s=1

eit S̃n(K̃ns )

kn∏
s=l+1

eitSn(K̃ns )

]∣∣∣∣∣
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≤
kn∑
l=1

∣∣∣∣∣E
(

l−1∏
s=1

eit S̃n(K̃ns )
(
eitSn(K̃nl ) − eit S̃n(K̃nl )

) kn∏
s=l+1

eitSn(K̃ns )

)∣∣∣∣∣
≤ 4knξrn → 0.

In the last step, we used Theorem 17.2.1 in Ibragimov and Linnik [29] and condition (M1).
Hence,

∑kn

l=1 Sn(K̃nl) and
∑kn

l=1 S̃n(K̃nl) have the same limits in distribution provided these lim-
its exist. In view of (4.4) and the last conclusion the central limit theorem (4.2) holds if and only if

the same limit relation holds for
∑kn

i=1 S̃n(Kni), where S̃n(Kni)
d= Sn(Kni) and (S̃n(Kni))i=1,...,kn

has independent components. Thus, we may apply a classical central limit theorem for triangular
arrays of independent random variables; see, for example, Theorem 4.1 in Petrov [40].

According to this result, the central limit theorem

Zn =
kn∑

i=1

S̃n(Kni)
d→ N

(
0, c′�N c

)
,

holds if and only if the following three conditions are satisfied: EZn = 0, var(Zn) → c′�N c and
for every ε > 0,

kn∑
i=1

E
[(

Sn(Kni)
)2

I{|S(Kni )|>ε}
] → 0. (4.5)

The condition EZn = 0 holds since EĨt = 0, hence ES̃n(Kni) = 0 for every i. As for (6.8) in
Davis and Mikosch [15], a trivial bound of the left-hand side in (4.5) is given by

c
m3

n

n

kn∑
i=1

P
(∣∣Sn(Kni)

∣∣ > ε
) ≤ c

m3
n

n

kn∑
i=1

I{c(m3
n/n)0.5>ε}.

In view of (M1), m3
n/n = o(1), and therefore the right-hand side vanishes for sufficiently large n.

Therefore, (4.5) holds.

Lemma 4.7. Under the conditions of Theorem 4.4,

var(Zn) =
kn∑

i=1

var
(
Sn(Kni)

) → c′�N c.

Proof. We proceed in a similar way as for Proposition 4.1. It will be convenient to introduce the
following notation for λ ∈ (0,π),

α̃n(λ) =
(

2mn

n

)1/2 kn∑
i=1

∑
t∈Kni

cos(λt)Ĩt (i),
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β̃n(λ) =
(

2mn

n

)1/2 kn∑
i=1

∑
t∈Kni

sin(λt)Ĩt (i),

where for each i ≤ kn,

(I1, . . . , Imn)
d= (

I(i−1)mn+1(i), . . . , Iimn(i)
)

the vectors on the right-hand side are mutually independent for i ≤ kn and the quantities Ĩt (i)

are the mean corrected versions of It (i), that is, Ĩt (i) = It (i) − p0. The statement of the
lemma is proved if we can show that the pairs (̃αn(λ), β̃n(ω), (̃αn(λ), α̃n(ω), (β̃n(λ), β̃n(ω),
(̃αn(λ), β̃n(λ)), are asymptotically uncorrelated for λ �= ω and that

var
(̃
αn(λ)

) ∼ var
(
β̃n(λ)

) ∼ μ0(A)

[
1 + 2

∞∑
h=1

ρA(h) cos(λh)

]
. (4.6)

We check the asymptotic variance of α̃n(λ) and omit similar calculations for var(β̃n(λ)). By
independence of the sums over the blocks Kni we have for fixed k ≥ 1,

var
(̃
αn(λ)

)
= 2

mn

n

kn∑
i=1

var

( ∑
t∈Kni

cos(λt)Ĩt

)

= 2
mn

n

[
kn∑

i=1

∑
t∈Kni

var(It )
(
cos(λt)

)2 +
kn∑

i=1

∑
(i−1)mn+1≤t �=s≤imn

cov(It , Is) cos(λt) cos(λs)

]

= 2
mn

n

(
p0 − p2

0

) n∑
t=1

(
cos(λt)

)2

+ 2
mn

n

kn∑
i=1

mn−1∑
h=1

mn−h∑
t=1

(
ph − p2

0

)
(cos(λh) + cos

(
λh + 2λ

(
t + (i − 1)mn

))
= P1 + P21 + P22.

Then we have by (M) and regular variation of (Xt ),

P1 + P21 ∼ μ0(A) + 2
mn−1∑
h=1

(
ph − p2

0

)
(mn − h) cos(λh) ∼ μ0(A)fA(λ).

We have for fixed k ≥ 1,

2
mn

n

∣∣∣∣∣
kn∑

i=1

mn−1∑
h=k+1

mn−h∑
t=1

(
ph − p2

0

)
cos

(
λh + 2λ

(
t + (i − 1)mn

))∣∣∣∣∣ ≤ cmn

mn−1∑
h=k+1

∣∣ph − p2
0

∣∣,
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and the right-hand side is negligible in view of (M) by first letting n → ∞ and then k → ∞.
Thus, it suffices to consider only finitely many h-terms in P22. In view of (A.1), for fixed k as
n → ∞,∣∣∣∣∣2mn

n

kn∑
i=1

k∑
h=1

(
ph − p2

0

)mn−h∑
t=1

cos
(
λh + 2λ

(
t + (i − 1)mn

))∣∣∣∣∣ ≤ c

k∑
h=1

∣∣ph − p2
0

∣∣ = o(1).

This proves (4.6).
Next, we consider the case of two different frequencies λ,ω ∈ (0,π) and show that the fol-

lowing covariances vanish as n → ∞:

cov
(̃
αn(λ), α̃n(ω)

)
= 2mn

n

kn∑
i=1

cov

(
mn∑
t=1

Ĩt cos
(
λ
(
t + (i − 1)mn

))
,

mn∑
t=1

Ĩt cos
(
ω

(
t + (i − 1)mn

)))

= 2mn

n

n∑
t=1

(
p0 − p2

0

)
cos(λt) cos(ωt)

+ 2mn

n

kn∑
i=1

mn−1∑
h=1

mn−h∑
t=1

(
ph − p2

0

)[
cos

(
λ
(
t + (i − 1)mn + h

))
cos(ω

(
t + (i − 1)mn

)
+ cos

(
λ
(
t + (i − 1)mn

))
cos

(
ω

(
t + (i − 1)mn + h

))]
= Q1 + Q2.

In view of (A.1) and since λ �= ω,

|Q1| = mn

n

(
p0 − p2

0

)∣∣∣∣∣
n∑

t=1

(
cos

(
(λ + ω)t

) + cos
(
(λ − ω)t

))∣∣∣∣∣ ≤ c
mn

n

(
p0 − p2

0

) = O
(
n−1).

Similarly, multiple application of (A.1), first summing over t , then over l, yields

|Q2| = mn

n

∣∣∣∣∣
mn∑
h=1

(
ph − p2

0

) kn−1∑
l=0

mn−h∑
t=1

(
cos

(
(λ + ω)(t + h + lmn) + λh

)
+ cos

(
(λ − ω)(t + h + lmn) + λh

)
+ cos

(
(λ + ω)(t + h + lmn) + ωh

)
+ cos

(
(λ − ω)(t + h + lmn) − ωh

))∣∣∣∣∣
≤ c0

mn∑
h=1

∣∣ph − p2
0

∣∣ ≤ c
rn

mn

(mnp0) + c
rn

m2
n

(mnp0)
2 + c

mn∑
h=rn+1

ξh → 0,
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where c0 = 4 max{1/ sin((λ + ω)/2),1/ sin(|λ − ω|/2)} + 4. Thus cov(̃αn(λ), α̃n(ω)) = o(1).
Using similar arguments, it also follows that the covariances of the pairs (̃αn(λ), β̃n(ω)),
(β̃n(λ), β̃n(ω)) and (̃αn(λ), β̃n(λ)) are asymptotically negligible. This proves the lemma. �

5. Smoothing the periodogram

Corollary 4.5 is analogous to the asymptotic theory for the periodogram of a stationary sequence;
see Brockwell and Davis [9], Section 10.4, where the corresponding results are proved for the
periodogram ordinates of a general linear processes with i.i.d. innovations. These results are then
employed for showing that smoothed versions of the periodogram are consistent estimators of
the spectral density at a given frequency. Our next goal is to prove a similar result.

We start by introducing the smoothed periodogram. For a fixed frequency λ ∈ (0,π) define

λ0 = min{2πj/n: 2πj/n ≥ λ} and λj = λ0 + 2πj/n, |j | ≤ sn.

Here we suppress the dependence of λj on n. In what follows, we will assume that sn → ∞ and

sn/n → 0 as n → ∞. For a given set A ⊂ R
d

0 bounded away from zero and any non-negative
weight function w = (wn(j))|j |≤sn satisfying the conditions∑

|j |≤sn

wn(j) = 1 and
∑

|j |≤sn

w2
n(j) → 0 as n → ∞, (5.1)

we introduce the smoothed periodogram

f̃nA(λ) =
∑

|j |≤sn

wn(j)InA(λj ).

Theorem 5.1. Assume the conditions of Theorem 4.4, (5.1) on the weight function w and (M2).
Then for every fixed frequency λ ∈ (0,π), as n → ∞,

f̃nA(λ)
L2→ μ0(A)fA(λ) and

f̃nA(λ)

P̂m(A)

P→ fA(λ).

In Figures 1 and 2 we show the extremogram, the standardized periodogram and the cor-
responding smoothed periodogram for some simulated and real-life data. The data underly-
ing Figure 1 are simulated from an ARMA(1,1) process (Xt ) with parameters φ = 0.8 and
θ = 0.1 and i.i.d. t -distributed noise (Zt ) with 3 degrees of freedom, hence (Xt ) is regularly
varying with α = 3. The top-left graph shows the sample extremogram based on a sample
of size n = 31,757 and the threshold is chosen as the 98% empirical quantile of the data.
The top-right graph visualizes the theoretical spectral density fA for A = (1,∞) (see Ap-
pendix B for an expression) and the raw periodogram which exhibits rather erratic behavior.
The bottom graph shows the smoothed periodogram with Daniell window wn(i) = 1/(2sn + 1),
|i| ≤ sn = 50. We also show the curves fA(λ)(1 ± 1.96/

√
2sn + 1), which constitute a confi-

dence band based on the following heuristic argument. In the proof of Theorem 5.1, we show
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Figure 1. Top-Left: The sample extremogram of an ARMA(1,1) process with parameters φ = 0.8, θ = 0.1
and i.i.d. t-distributed noise with 3 degrees of freedom. We choose A = (1,∞). Top-Right: The corre-
sponding raw periodogram and the theoretical spectral density fA (solid line). Bottom: The smoothed peri-
odogram with Daniell window, sn = 50.

that var(f̃nA(λ)) ∼ ∑
|j |≤sn

w2
n(j)μ2

0(A)f 2
nA(λ) for every λ ∈ (0,π). Furthermore, we know that

P̂m(A)
P→ μ0(A). Based on these calculations, we take

∑
|j |≤sn

w2
n(j)f 2

nA(λ) as a surrogate

quantity for the unknown variance of f̃n(λ)/P̂m(A).
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Figure 2. Left: The sample extremogram of 5-min returns of BAC stock price for A = (1,∞). Right:
The smoothed periodogram with Daniell window, sn = 50. The confidence bands are constructed from the
smoothed periodograms of 99 permutations of the data.

The data underlying Figure 2 are 5-min returns for the stock price of Bank of America (BAC)
with the sample size n = 31,757, and am is chosen as the 98% empirical quantile of the data.
We provide the same type of analysis as in Figure 1 for these data. The largest peak in the peri-
odogram at the frequency 0.29 corresponds to an extremal cycle length of 6 hours, this is roughly
the length of a trading day. We also show 95% pointwise confidence bands for the smoothed peri-
odogram. They are not asymptotic since we do not have a central limit theorem for the smoothed
periodogram yet. They are constructed from the distribution of the corresponding smoothed peri-
odogram s based on 99 random permutations of the data. If the data were i.i.d., any permutation
would not change the dependence structure of the data and one would expect that the estimated
spectral density stays inside the band, but this is obviously not the case, indicating that the data
exhibit some significant extremal dependence.

Proof of Theorem 5.1. We mentioned in Remark 4.3 that

EInA(λ) → μ0(A)fA(λ) as n → ∞ uniformly on sets [a, b] ⊂ (0,π). (5.2)

Therefore, since max|j |≤sn |λj − λ| → 0 and fA is continuous, we have

Ef̃nA(λ) =
∑

|j |≤sn

wn(j)EInA(λj ) → μ0(A)fA(λ), n → ∞.

The statement of the theorem then follows if we can show that var(f̃n(λ)) → 0. We observe that

var
(
f̃nA(λ)

) =
∑

|j |≤sn

w2
n(j)cjj +

∑
−sn≤j1 �=j2≤sn

wn(j1)wn(j2)cj1j2 .
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In view of condition (5.1) it suffices to show that cj1j2 = cov(InA(λj1), InA(λj2)) → 0 and

cjj = var
(
InA(λj )

) → (
μ0(A)fA(λ)

)2 uniformly for j, j1, j2 ∈ [−sn, sn], j1 �= j2. (5.3)

We will only show (5.3); the proof of cj1,j2 → 0 for j1 �= j2 is similar and therefore omitted.
Since (5.2) holds, we have to show that

E
(
I 2
nA(λj )

) → 2
(
μ0(A)fA(λ)

)2
. (5.4)

Recall f̂nA(λ) from (2.7) and define

ĝnA(λ) = 2
n−1∑

h=rn+1

cos(λh)γ̃n(h).

We will study the decomposition

E
(
I 2
nA(λj )

) = Ef̂ 2
nA(λj ) + 2E

(
f̂nA(λj )ĝnA(λj )

) + Eĝ2
nA(λj ).

Following the lines of the proof of Theorem 5.1 in [15], we conclude that

Ef̂ 2
nA(λj ) → (

μ0(A)fA(λ)
)2

, (5.5)

uniformly for the considered frequencies λj . Then (5.4) is proved if we can show that

E
(
f̂nA(λj )ĝnA(λj )

) → 0, (5.6)

Eĝ2
nA(λj ) → (

μ0(A)fA(λ)
)2

. (5.7)

Throughout we will use the notation, for h1, h2, h3 ≥ 0,

ph1h2h3 = P(X0 > am,Xh1 > am,Xh1+h2 > am,Xh1+h2+h3 > am),

ph1h2 = ph1h20, ph1 = ph10,

and we observe that

ph = (
ph − p2

0

) + p2
0, (5.8)

ph1h2 = (ph1h2 − ph1p0) + ph1p0 = ph1h2 − p0ph2 + p0ph2
(5.9)

= (ph1h2 − p0ph2) + p0
(
ph2 − p2

0

) + p3
0,

ph1h2h3 = (ph1h2h3 − p0ph2h3) + p0ph2h3
(5.10)

= (ph1h2h3 − p0ph2h3) + p0(ph2h3 − p0ph3) + p2
0ph3 .
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Proof of (5.6)

We have

E
(
f̂nA(λj )ĝnA(λj )

) = E

[
2γ̃n(0)ĝnA(λj ) + 4ĝnA(λj )

rn∑
h=1

cos(λjh)γ̃n(h)

]
= J1 + J2,

where

J1 = 4
m2

n

n2

n∑
t1=1

n−1∑
h=rn+1

n−h∑
t2=1

E[It1It2It2+h] cos(λjh),

J2 = 8
m2

n

n2

n−1∑
t1=1

rn∑
h1=1

n−1∑
h2=rn+1

n−h2∑
t2=1

E[It1It1+h1It2It2+h2 ] cos(λjh1) cos(λjh2).

Proof that J1 is negligible

We observe, that depending on the values h, t1, t2, E[It1It2It2+h] may simplify: if t1 = t2 or
t1 = t2 + h, E[It1It2It2+h] = ph; if t1 < t2, E[It1It2It2+h] = pt2−t1,h; if t2 < t1 < t2 + h,
E[It1It2It2+h] = pt1−t2,h−t1+t2 ; if t1 > t2 + h, E[It1It2It2+h] = ph,t1−h−t2 . If we take into ac-
count these different cases, we obtain

J1 = 4
m2

n

n2

n−1∑
h=rn+1

(n − h)(2ph) cos(λjh) + 4
m2

n

n2

n−2∑
h2=rn+1

n−h2−1∑
h1=1

(n − h1 − h2)ph1h2 cos(λjh2)

+ 4
m2

n

n2

n−1∑
h2=rn+1

h2−1∑
h1=1

(n − h2)ph1,h2−h1 cos(λjh2)

+ 4
m2

n

n2

n−2∑
h2=rn+1

n−h2−1∑
h1=1

(n − h1 − h2)ph2h1 cos(λjh2)

=
4∑

i=1

J1i .

Applying (5.8), the mixing condition (M2) and Lemma A.1 imply that

J11 ≤ cmn

∞∑
h=rn+1

ξh + c
(mnp0)

2

n(sin(λj /2))2
= o(1).
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As regards J12, apply (5.9) and split the h1-index set into h1 ≤ rn and h1 > rn. Then (M2) and
Lemma A.1 imply that

|J12| ≤ cm2
n

n−1∑
h2=rn+1

ξh2

+ c

∣∣∣∣∣m2
n

n2

n−2∑
h2=rn+1

(min(rn,n−h2−1)∑
h1=1

+
n−h2−1∑
h1=rn+1

)
(n − h1 − h2)

(
ph1 ± p2

0

)
p0 cos(λjh2)

∣∣∣∣∣
≤ o(1) + c

rn

n
(mnp0)

2(sin(λj /2)
)−2 + c(mnp0)mn

n−1∑
h1=rn+1

ξh1 + c
(mnp0)

3

mn

= o(1).

Now consider J13. Abusing notation, we will write h2 instead of h2 − h1. Introduce the index
sets

K1 = {
(h1, h2): 1 ≤ hi ≤ rn, i = 1,2

}
,

K2 = {
(h1, h2): 1 ≤ h1 ≤ rn, rn < h2 < n − h1

}
,

K3 = {
(h1, h2): rn < h1 ≤ n − 1,1 ≤ h2 ≤ min(rn, n − h1 − 1)

}
,

K4 = {
(h1, h2): rn < h1 ≤ n − 1, rn < h2 < n − h1

}
.

Now introduce the mixing coefficients ξh and use Lemma A.1:

|J13| ≤ c
m2

n

n2

∣∣∣∣∣
n−2∑
h1=1

n−h1−1∑
h2=max(1,rn+1−h1)

(n − h1 − h2)ph1h2 cos
(
λj (h1 + h2)

)∣∣∣∣∣
≤ c

m2
n

n2

4∑
i=1

∣∣∣∣∣∑
Ki

(n − h1 − h2)ph1h2 cos
(
λj (h1 + h2)

)∣∣∣∣∣
≤ c

mnr
2
n

n
(mnp0) + c

[
mnrn

n
mn

n−1∑
h2=rn+1

ξh2 + rn

n
(mnp0)

2(sin(λj /2)
)−2

]

+ c

[
mnrn

n
mn

n−1∑
h1=rn+1

ξh1 + rn

n
(mnp0)

2(sin(λj /2)
)−2

]

+ c

[
m2

n

n−1∑
h1=rn+1

ξh1 + (mnp0)mn

n−1∑
h2=rn+1

ξh2 + 1

mn

(mnp0)
3(sin(λj /2)

)−2

]
.

The right-hand side vanishes as n → ∞ by virtue of (M2). The same idea of proof applies to the
relation J14 = o(1). Thus, we showed that J1 = o(1).
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Proof that J2 is negligible

We split the summation over disjoint index sets, depending on the ordering of {t1, t1 +h1, t2, t2 +
h2}: t1 = t2, t1 + h1 = t2 + h2, t1 + h1 = t2, t1 = t2 + h2, t1 < t2 < t1 + h1 < t2 + h2, t2 < t1 <

t1 + h1 < t2 + h2, t2 < t1 < t2 + h2 < t1 + h1, t1 + h1 < t2 and t2 + h2 < t1. Consider the index
sets (we recycle the notation h1, h2 here)

L1 = {
(h1, h2): 1 ≤ h1 ≤ rn, rn < h2 < n

}
,

L2 = {
(h1, h2): 1 ≤ h1 ≤ rn, rn < h2 < n − h1

}
,

L3 = {
(h1, h2, h3): 2 ≤ h1 ≤ rn, rn < h2 < n − h1 − 1,1 ≤ h3 < h1

}
,

L4 = {
(h1, h2, h3): 1 ≤ h1 ≤ rn, rn < h2 < n,1 ≤ h3 < h2

}
,

L5 = {
(h1, h2, h3): 1 ≤ h1 ≤ rn, rn < h2 < n − 1, h2 − h1 < h3 ≤ min(n,h2 + h1 − 1)

}
,

L6 = {
(h1, h2, h3): 1 ≤ h1 ≤ rn, rn < h2 < n − h1 − 1,1 ≤ h3 < n − h1 − h2

}
.

We write for short fh1h2 = cos(λj1h1) cos(λj1h2). Then

J2 = 8
m2

n

n2

[∑
L1

(n − h2)(ph1,h2−h1 + ph2−h1,h1)fh1h2 +
∑
L2

(n − h1 − h2)(ph2h1 + ph1h2)fh1h2

+
∑
L3

(n − h2 − h3)ph3,h1−h3,h2−h1+h3fh1h2 +
∑
L4

(n − h2)ph3,h1,h2−h1fh1h2

+
∑
L5

(n − h1 − h3)ph3,h2−h3,h1−h2+h3fh1h2

+
∑
L6

(n − h1 − h2 − h3)(ph1h3h2 + ph2h3h1)fh1h2

]

=
6∑

i=1

J2i .

The terms J2i , i = 1,2, involve probabilities of the form pkl . These terms can be treated in the
same way as J1 and shown to be negligible. We omit details.

The remaining J2i ’s contain probabilities of the form pkls . We illustrate how one can deal with
these pieces. We start with

|J23| = 8

∣∣∣∣∣m2
n

n2

rn−1∑
h1=1

rn−h1∑
h3=1

(
rn∑

h2=rn+1−h3

+
n−h1−h3−1∑

h2=rn+1

)
(n − h1 − h2 − h3)ph1h3h2fh1+h3,h2+h3

∣∣∣∣∣
≤ c

mnr
3
n

n
(mnp0) +

[
c
m2

n

n

rn−1∑
h1=1

rn−h1∑
h3=1

n−h1−h3−1∑
h2=rn+1

|ph1h3h2 − ph1h3p0|
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+ c
m2

n

n2
p0

rn−1∑
h1=1

rn−h1∑
h3=1

ph1h3 cos
(
λj1(h1 + h3)

)

×
n−h1−h3−1∑

h2=rn+1

(n − h1 − h2 − h3) cos
(
λj1(h1 + h2)

)]

≤ c
mnr

3
n

n
+ c

m2
nr

2
n

n

∞∑
h2=rn+1

ξh2 + c
r2
n

n
(mnp0)

2(sin(λj /2)
)−2

.

In the last step we used Lemma A.1. The right-hand side in the latter relation converges to zero
in view of the assumptions on rn,mn and (M2). The remaining expressions J2i which contain
probabilities pkls over index sets such that k, l > rn, s ≤ rn or k > rn, l, s ≤ rn can be shown to be
negligible by using similar arguments. We omit details. Those sums which contain probabilities
pkls over index sets such that k, l, s > rn are most difficult to deal with. The corresponding
bounds follow from the next lemma.

Lemma 5.2. Let λ,ω ∈ [a, b], 0 < a < b < π, possibly depending on n, and x1, x2 be real
numbers. Assume that

m2
nn

n∑
h=rn+1

ξh → 0, n → ∞, (5.11)

where (ξt ) is the mixing rate function. Then

Q0 = m2
n

n2

∑
h1,h2,h3>rn

(n − h1 − h2 − h3)+ph1h2h3 cos(λh1 + x1) cos(ωh3 + x2) → 0, (5.12)

m2
n

n2

∑
h1,h2,h3>rn

(n − h1 − h2 − h3)+ph1h2h3 sin(λh1 + x1) sin(λh3 + x2) → 0. (5.13)

Proof. Recall (5.10). Write gh1h3 = cos(λh1 + x1) cos(ωh3 + x2). Then we have

|Q0| ≤ m2
n

n2

∑
h1,h2,h3>rn

(n − h1 − h2 − h3)+|ph1h2h3 − ph1ph3 |

+
∣∣∣∣∣m2

n

n2

n−2rn−3∑
h3=rn+1

n−h3−rn−2∑
h1=rn+1

n−h1−h3−1∑
h2=rn+1

(n − h1 − h2 − h3)
(
ph1 − p2

0

)(
ph3 − p2

0

)
gh1h3

∣∣∣∣∣
+

∣∣∣∣∣m2
n

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h3=rn+1

n−h2−h3−1∑
h1=rn+1

(n − h1 − h2 − h3)p
2
0

(
ph3 − p2

0

)
gh1h3

∣∣∣∣∣
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+
∣∣∣∣∣m2

n

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h1=rn+1

n−h1−h2−1∑
h3=rn+1

(n − h1 − h2 − h3)p
2
0

(
ph1 − p2

0

)
gh1h3

∣∣∣∣∣
+

∣∣∣∣∣m2
n

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h1=rn+1

n−h1−h2−1∑
h3=rn+1

(n − h1 − h2 − h3)p
4
0gh1h3

∣∣∣∣∣
=

5∑
i=1

Qi.

By virtue of (5.11), Q1 is negligible. Similarly, Q2 ≤ m2
n(

∑n
h=rn+1 ξh)

2 → 0. As to Q3,
Lemma A.1 and mixing imply that

Q3 ≤ c
(mnp0)

2

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h3=rn+1

(n − h2 − h3)
∣∣ph3 − p2

0

∣∣(sin(λ/2)
)−2 ≤ cn

n∑
h3=rn+1

ξh3 → 0.

A similar bound applies to Q4. A double application of Lemma A.1 yields

Q5 ≤ c
(mnp0)

4

m2
n

(
sin(ω/2) sin(λ/2)

)−2 → 0.

Collecting these bounds, we proved (5.12). Similar arguments apply to (5.13). �

Thus, we showed that J1 and J2 are negligible as n → ∞. Hence, (5.6) holds.

Proof of (5.7)

Following the steps for showing that J2 is negligible, we decompose Eĝ2
nA(λj ) into sums over

disjoint index sets depending on the ordering of {t1, t1 + h1, t2, t2 + h2}: t1 = t2 and h1 = h2;
t1 = t2 and h1 > h2; t1 = t2 and h1 < h2; t1 + h1 = t2 + h2 and t1 > t2; t1 + h1 = t2 + h2 and
t1 < t2; t1 = t2 + h2; t2 = t1 + h1; t1 < t2 < t1 + h1 < t2 + h2; t2 < t1 < t2 + h2 < t1 + h1;
t1 < t2 < t2 + h2 < t1 + h1; t2 < t1 < t1 + h1 < t2 + h2; t1 > t2 + h2; t2 > t1 + h1. Consider the
index sets (we recycle the notation h1, h2 here)

B1 = {h: rn < h < n},
B2 = {

(h1, h2): rn < h1 < n − rn,1 ≤ h2 < n − h1
}
,

B3 = {
(h1, h2): rn < h1 < n − rn − 1, rn < h2 < n − h1

}
,

B4 = {
(h1, h2, h3): 1 ≤ h1 < n − rn − 2, rn < h2 < n − h1 − 1,1 ≤ h3 < n − h1 − h2

}
,

B5 = {
(h1, h2, h3): 1 ≤ h1 < n − rn − 1,max(1, rn + 1 − h1) ≤ h2 < n − h1 − 1,

max(1, rn + 1 − h2) ≤ h3 < n − h1 − h2
}
,

B6 = {
(h1, h2, h3): rn < h1 < n − rn − 2, rn < h3 < n − 1 − h1,1 ≤ h2 < n − h1 − h3

}
.
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Then we have

Eĝ2
nA(λj ) = 4

m2
n

n2

∑
B1

(n − h)phfhh + 4
m2

n

n2

∑
B2

(n − h1 − h2)(ph1h2 + ph2h1)fh1+h2,h1

+ 4
m2

n

n2

∑
B3

(n − h1 − h2)(ph1h2 + ph2h1)fh1h2

+ 8
m2

n

n2
(n − h1 − h2 − h3)

∑
B4

ph1h2h3fh1+h2+h3,h2

+ 8
m2

n

n2

∑
B5

(n − h1 − h2 − h3)ph1h2h3fh1+h2,h2+h3

+ 8
m2

n

n2

∑
B6

(n − h1 − h2 − h3)ph1h2h3fh1h3

=
6∑

i=1

Gi.

Proof that G3 and G6 are negligible

Using mixing and Lemma A.1, we have as n → ∞,

|G3| = 8
m2

n

n2

∣∣∣∣∑
B3

(n − h1 − h2)
(
(ph1h2 − p0ph2) + p0

(
ph2 − p2

0

) + p3
0

)
fh1h2

∣∣∣∣
≤ cm2

n

n∑
h1=rn+1

ξh1 + c
mn

n

n∑
h2=rn+1

ξh2 + c
(mnp0)

3

mn(sin(λj /2))2
= G′

3 → 0.

We also have

|G6| ≤ c
m2

n

n2

∣∣∣∣∣
n−rn−3∑
h1=rn+1

n−h1−2∑
h3=rn+1

(
rn∑

h2=1

+
n−h1−h3−1∑

h2=rn+1

)
(n − h1 − h2 − h3)ph1h2h3fh1h2

∣∣∣∣∣
= G61 + G62.

By (5.12), G62 is negligible and the same arguments as for G3 show that G61 ≤ rnG
′
3 → 0. Thus,

G6 is negligible as n → ∞.
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The non-negligible contributions of G1,G2,G4,G5.

First, observe that

Ef̂ 2
nA(λj1) = (mnp0)

2 + 4m2
np0

rn∑
h=1

n − h

n
ph cos(λjh)

+ 4
m2

n

n2

rn∑
h1=1

rn∑
h2=1

(n − h1)(n − h2)ph1ph2fh1h2

= P1 + P2 + P3,

and we also know that (5.5) holds. Thus, (5.7) is proved if we can show that G1 − P1, G2 − P2
and G4 + G5 − P3 are negligible. Observe that cos2 λ = 0.5(1 + cos(2λ)). Then by mixing and
Lemma A.1,

|G1 − P1| = 4
m2

n

n2

∣∣∣∣∣
n−1∑

h=rn+1

(n − h)
((

ph − p2
0

) + p2
0

)
0.5

(
1 + cos(2λjh)

) − (mnp0)
2

∣∣∣∣∣
≤ c

mn

n
mn

n−1∑
h=rn+1

ξh + c(mnp0)
2

∣∣∣∣∣ 1

2n2

n−1∑
h=rn+1

(n − h) − 1

∣∣∣∣∣ + c
1

n
(mnp0)

2 → 0.

As to G2, we split the index set B2 into the disjoint parts for h2 ≤ rn and h2 > rn. The sum
over B2 restricted to h2 > rn can be shown to be bounded by cG′

3. Recall that 2fh1+h2,h1 =
cos(λjh2) + cos(λj (2h1 + h2)). Then

|G2 − P2| ≤ cG′
3 +

∣∣∣∣∣2m2
n

n2

rn∑
h2=1

n−h2−1∑
h1=rn+1

(n − h1 − h2)(ph1h2 + ph2h1)

× (
cos(λjh1) + cos

(
λj (2h2 + h1)

))
− 4m2

np0

rn∑
h=1

n − h

n
ph cos(λjh)

∣∣∣∣∣
≤ cG′

3 + c
r2
n

n
(mnp0)

2 + c
mnrn

n
mn

n−1∑
h2=rn+1

ξh2 + c(mnp0)
2 rn

n(sin(λj ))2
→ 0.

Here we used (5.9) to rewrite ph1h2 such that the mixing condition and Lemma A.1 can be
applied.

Finally, we turn to G4 and G5. By virtue of (5.12) and (5.13), we can neglect those parts
of G4 + G5 which contain (h1, h2, h3)-indices with h1, h2, h3 > rn. Those parts of G4 + G5
for which two indices out of (h1, h2, h3) exceed rn we can deal with like J23, and a similar
argument applies when either h1 > rn or h3 > rn. Thus, we need to study those summands in
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G4 +G5 indexed on {1 ≤ h1, h3 ≤ rn, rn < h2 < n−h1 −h3}. We write G4+5 for the remaining
sum. Recall that

fh1+h2+h3,h2 + fh1+h2,h2+h3 = fh1h3 + cos
(
λj (h1 + 2h2 + h3)

)
.

Then we have

|G4+5 − P3| =
∣∣∣∣∣4m2

n

n2

rn∑
h1=1

rn∑
h3=1

n−h1−h3−1∑
h2=rn+1

(n − h1 − h2 − h3)
(
(ph1h2h3 − ph1ph3) + ph1ph3

)
× (

2fh1h3 + 2 cos
(
λj1(h1 + 2h2 + h3)

))
− 4

m2
n

n2

n−1∑
h1=rn+1

n−1∑
h2=rn+1

(n − h1)(n − h2)ph1ph2fh1h2

∣∣∣∣∣
≤ c

r3
n

n
(mnp0)

2 + c
mnr

2
n

n
mn

n−1∑
h3=rn+1

ξh3 + c
r2
n

n(sin(λj1))
2
(mnp0)

2.

Thus we also proved that G4 + G5 − P3 is negligible.
Collecting all the arguments above, we finally proved the theorem. �

6. A discussion of related results and possible extensions

Extremogram-type quantities for time series have been introduced by various authors. Led-
ford and Tawn [35] discussed ρ(1,∞) as a possible measure of extremal dependence for uni-
variate stationary processes with unit Fréchet marginals under the regular variation condition
P(X0 > x,Xt > x) = Lt(x)x−1/ηt , for slowly varying Lt and ηt ∈ (0,1]. They were particu-
larly interested in the case of asymptotic independence when ρ(1,∞)(t) = 0 and P(X0 > x,Xt >

x)/[P(X > x)]2 → 1 as x → ∞ and also suggested diagnostic conditions in this situation.
Hill [28] proposed the quantities limx→∞[P(X0 > x,Xt > x)/[P(X > x)]2 − 1] as alterna-
tive measure of serial extremal dependence in the case when the extremogram vanishes. Fasen et
al. [21] considered lag-dependent tail dependence coefficients under regular variation conditions
on the process (Xt ). These coefficients can be interpreted as special extremograms. Hill [27]
showed a pre-asymptotic functional central limit theorem for the sample extremogram of uni-
variate time series over classes of upper quadrants. His mixing and domain of maximum domain
of attraction are not directly comparable with strong mixing and regular variation od stationary
sequence s but the results are similar in spirit to Theorem 3.2 in Davis and Mikosch [15], where
multivariate time series can be treated but uniform convergence over certain classes of sets was
not considered.

Recently, various articles on the spectral analysis of indicator functions and their covariances
based on a strictly stationary time series were written; see, for example, Dette et al. [17] and the
references therein, Hagemann [25], Lee and Subba Rao [36]. The results are similar to those of
classical time series analysis. The aforementioned papers do not deal with the spectral analysis



836 T. Mikosch and Y. Zhao

of serial extremal dependence. In particular, they do not involve sequences of indicator functions
of the form (I{a−1

m Xt∈A}) for sets A bounded away from zero. Therefore, these papers do not
need additional conditions such as regular variation of (Xt ) which are typical for extreme value
theory and they do not require to consider the normalization m/n of the periodogram but use the
classical 1/n constants.

The present paper focuses on the basic properties of the extremal periodogram. These prop-
erties parallel the results of classical time series analysis, but the proofs are different because of
the triangular array nature of the stochastic processes (I{a−1

m Xt∈A}). In particular, the calculation
of sufficiently high moments necessary to prove central limit theorems becomes rather technical.
The central limit theorem for the smoothed periodogram is still an open question.

The (smoothed) periodogram as such contains information about the length of random cycles
between extremal events {a−1

m Xt ∈ A}. But it also opens the door to the methods and procedures
of classical time series analysis, including the rich theory related to the integrated periodogram
with applications to parameter estimation (e.g., Whittle estimation), goodness-of-fit tests, change
point analysis, detection of long-range dependence effects and other problems. The solution to
these problems is again rather technical and will be treated in future work.

Appendix A: Some trigonometric sum formulas

Equations (A.1) and (A.2) are given in Gradshteyn and Ryzhik [23], 1.341 on page 29; (A.3) and
(A.4) are 1.352 on page 31; and (A.5) and (A.6) are listed as 1.353 on page 31. For any λ,x and
n ≥ 1, the following identities hold

n−1∑
k=0

cos(x + kλ) = cos(x + (n − 1)λ/2) sin(nλ/2)

sin(λ/2)
, (A.1)

n−1∑
k=0

sin(x + kλ) = sin(x + (n − 1)λ/2) sin(nλ/2)

sin(λ/2)
, (A.2)

n−1∑
k=1

k cos(kλ) = n sin((2n − 1)λ/2)

2 sin(λ/2)
− 1 − cosnλ

4(sin(λ/2))2
, (A.3)

n−1∑
k=1

k sin(kλ) = sin(nλ)

4(sin(λ/2))2
− n cos((2n − 1)λ/2)

2 sin(λ/2)
, (A.4)

n−1∑
k=1

pk sin(kλ) = p sin(λ) − pn sin(nλ) + pn+1 sin((n − 1)λ)

1 − 2p cos(λ) + p2
, (A.5)

n−1∑
k=0

pk cos(kλ) = 1 − p cos(λ) − pn cos(nλ) + pn+1 cos((n − 1)λ)

1 − 2p cos(λ) + p2
. (A.6)
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Using these formulas, direct calculation yields for any frequency λ,

n−h∑
s=1

[
cos(λs) sin

(
λ(s + h)

) + cos
(
λ(s + h)

)
sin(λs)

]
(A.7)

=
n−h∑
s=1

sin(2λs + λh) = sin(λn) sin(λ(n − h + 1))

sinλ
− sin(λh).

For distinct frequencies λ,ω, we then obtain

n−h∑
s=1

[
cos(λs) sin

(
ω(s + h)

) + cos
(
λ(s + h)

)
sin(ωs)

]
= 0.5

n−h∑
s=1

[
sin

(
(λ + ω)s + ωh

) − sin
(
(λ − ω)s − ωh

)]

+ 0.5
n−h∑
s=1

[
sin

(
(λ + ω)s + λh

) − sin
(
(λ − ω)s + λh

)]
= − sin(ωh)

(A.8)
+ 0.5

sin((n − h + 1)(λ + ω)/2)

sin((λ + ω)/2)

× [
sin

(
ωh + (n − h)(λ + ω)/2

) + sin
(
λh + (n − h)(λ + ω)/2

)]
− 0.5

sin((n − h + 1)(λ − ω)/2)

sin((λ − ω)/2)

× [
sin

(−ωh + (n − h)(λ − ω)/2
) + sin

(
λh + (n − h)(λ − ω)/2

)]
,

n−h∑
s=1

[
cos(λs) cos

(
ω(s + h)

) + cos
(
λ(s + h)

)
cos(ωs)

]
= 0.5

n−h∑
s=1

[
cos

(
(λ + ω)s + ωh

) + cos
(
(λ − ω)s − ωh

) + cos
(
(λ + ω)s + λh

)
+ cos

(
(λ − ω)s + λh

)]
= − cos(ωh) − cos(λh)

(A.9)
+ 0.5

sin((n − h + 1)(λ + ω)/2)

sin((λ + ω)/2)

× [
cos

(
ωh + (n − h)(λ + ω)/2

) + cos
(
λh + (n − h)(λ + ω)/2

)]
+ 0.5

sin((n − h + 1)(λ − ω)/2)

sin((λ − ω)/2)

× [
cos

(−ωh + (n − h)(λ − ω)/2
) + cos

(
λh + (n − h)(λ − ω)/2

)]
,
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n−h∑
s=1

[
sin(λs) sin

(
ω(s + h)

) + sin
(
λ(s + h)

)
sin(ωs)

]

= 0.5
n−h∑
s=1

[
cos

(
(λ + ω)s + ωh

) − cos
(
(λ − ω)s − ωh

) + cos
(
(λ + ω)s + λh

)
− cos

(
(λ − ω)s + λh

)]
= 0.5

sin((n − h + 1)(λ − ω)/2)

sin((λ − ω)/2)
(A.10)

× [
cos

(−ωh + (n − h)(λ − ω)/2
) + cos

(
λh + (n − h)(λ − ω)/2

)]
− 0.5

sin((n − h + 1)(λ + ω)/2)

sin((λ + ω)/2)

× [
cos

(
ωh + (n − h)(λ + ω)/2

) + cos
(
λh + (n − h)(λ + ω)/2

)]
.

Next, assume the conditions of Theorem 5.1. Then a direct application of (A.1)–(A.4) yields for
λ ∈ (0,π) the following relations:

n∑
s=rn+1

(n − s) sin(λs + x)

= n

(
sin(x + (n − 1))λ/2 sin(nλ/2)

sin(λ/2)

− sin(x + rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)

)
+ sin(x)

(
n sin((2n − 1)λ/2)

2 sin(λ/2)
− (rn + 1) sin((2rn − 1)λ/2)

2 sin(λ/2)

− cos((rn + 1)λ) − cos(nλ)

4(sin(λ/2))2

)
+ cos(x)

(
n cos((2n − 1)λ/2)

2 sin(λ/2)
− (rn + 1) cos((2rn − 1)λ/2)

2 sin(λ/2)

− sin(nλ) − sin((rn + 1)λ)

4(sin(λ/2))2

)
n∑

s=rn+1

(n − s) cos(λs + x)

= n

(
cos(x + (n − 1)λ/2) sin(nλ/2)

sin(λ/2)
− cos(x + rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)

)
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− cos(x)

(
n sin((2n − 1)λ/2)

2 sin(λ/2)
− (rn + 1) sin((2rn − 1)λ/2)

2 sin(λ/2)

− cos((rn + 1)λ) − cos(nλ)

4(sin(λ/2))2

)
+ sin(x)

(
n cos((2n − 1)λ/2)

2 sin(λ/2)
− (rn + 1) cos((2rn − 1)λ/2)

2 sin(λ/2)

− sin(nλ) − sin((rn + 1)λ)

4(sin(λ/2))2

)
.

Lemma A.1. Under the assumptions of Theorem 5.1 the following relations hold uniformly for
λ ∈ (0,2π), as n → ∞,

n−1∑
h=rn+1

(n − h) cos(λh + x)

= n cos(x + (n − 1)λ/2) sin(nλ/2)

sin(λ/2)
− n − n sin((2n − 1)λ/2)

2 sin(λ/2)
+ 1 − cos(nλ)

4(sin(λ/2))2

− n cos(x + rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)
− n + (rn + 1) sin((2rn + 1)λ/2)

2 sin(λ/2)

− 1 − cos(rn + 1)λ

4(sin(λ/2))2

= O
(
n/

(
sin(λ/2)

)2)
,

n−1∑
h=rn+1

(n − h) sin(λh + x)

= n sin(x + (n − 1)λ/2) sin(nλ/2)

sin(λ/2)
− sin(nλ)

4(sin(λ/2))2
+ n cos((2n − 1)λ/2)

2 sin(λ/2)

− n sin(x + rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)
+ sin(rnλ)

4(sin(λ/2))2
− n cos((2rn + 1)λ/2)

2 sin(λ/2)

= O
(
n/

(
sin(λ/2)

)2)
.

Appendix B: The spectral density fA of an ARMA(1,1) process

In this section, we calculate the spectral density fA for an ARMA(1,1) process and the set
A = (1,∞). The process (Xt ) is given as the stationary causal solution to the difference equation

Xt = φXt−1 + Zt + θZt−1, t ∈ Z,
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where 0 < |φ| < 1 and θ ∈ R. From Brockwell and Davis [10], (2.3.3), we obtain the coefficients
(ψj ) of the linear process representation of (Xt ) (cf. (3.2)):

ψ0 = 1, ψj = φj−1(φ + θ), j ≥ 1.

We assume that (Zt ) is an i.i.d. regularly varying sequence with index α > 0.

The case φ ∈ (0,1), θ + φ > 0, p > 0. A direct application of (3.4) yields that

ρA(h) = min(1,ψα
h ) + ∑∞

i=h+1 ψα
i∑∞

i=0 ψα
i

= min(1, φα(h−1)(θ + φ)α) + φαh(θ + φ)α(1 − φα)−1

1 + (θ + φ)α(1 − φα)−1
, h ≥ 1.

Define h0 = min{h ≥ 0: φαh(θ + φ)α < 1} and write (see Appendix A)

L(1)(n, x,λ) =
n∑

h=1

cos(x + hλ)

=
⎧⎨⎩

cos(x + nλ) sin((n + 1)λ/2)

sin(λ/2)
− 1, n ≥ 1,

0, n = 0;

L(2)(n, x,α,λ)

=
n∑

h=1

|φ|αh cos(x + hλ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|φ|α cos(x + λ) − |φ|2α cos(x) − |φ|α(n+1) cos(x + (n + 1)λ) + |φ|α(n+2) cos(x + nλ)

|1 − |φ|αe−iλ|2 ,

n ≥ 1,

0, n = 0,

|φ|α cos(x + λ) − |φ|2α cos(x)

|1 − |φ|αe−iλ|2 ,

n = ∞.

Then

ρA(h) =
{

c
(1)
α (φ, θ) + φαhc

(2)
α (φ, θ), h ≤ h0,

φα(h−1)c
(2)
α (φ, θ), h > h0,

where

c(1)
α (φ, θ) = 1 − φα

1 − φα + (φ + θ)α
and c(2)

α (φ, θ) = (φ + θ)α

1 − φα + (φ + θ)α
.
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The corresponding spectral density is given by

fA(λ) = 1 + 2c(1)
α (φ, θ)

h0∑
h=1

cos(hλ) + 2
(
1 − φ−α

)
c(2)
α (φ, θ)

h0∑
h=1

φαh cos(hλ)

+ 2φ−αc(2)
α (φ, θ)

∞∑
h=1

φαh cos(hλ)

= 1 + 2c(1)
α (φ, θ)L(1)(h0,0, λ) + 2

(
1 − φ−α

)
c(2)
α (φ, θ)L(2)(h0,0, α,λ)

+ 2φ−αc(2)
α (φ, θ)L(2)(∞,0, α,λ).

The case φ ∈ (0,1), θ + φ < 0, q > 0. In view of (3.4), we have

ρA(h) = q
∑∞

i=0 φαh+αi |φ + θ |α
p + q

∑∞
i=0 φαi |φ + θ |α = qφαh|φ + θ |α

p(1 − φα) + q|φ + θ |α = φαhc(3)
α (φ, θ), h ≥ 1,

fA(λ) = 1 + 2c(3)
α (φ, θ)L(2)(∞,0, α,λ).

The case φ ∈ (−1,0), θ + φ > 0, p > 0. If h = 2k + 1 for integer k ≥ 0 the summand
p(min(ψ+

i ,ψ+
i+h))

α + q(min(ψ−
i ,ψ−

i+h))
α in (3.4) vanishes for i ≥ 1. Thus,

ρA(h) = p min(1, |ψh|α)

p + ∑∞
i=1[p|ψ2i−1|α + q|ψ2i |α] .

For h = 2k > 0,

ρA(h) =
∑∞

i=1[p|ψ2i+h−1|α + q|ψ2i+h|α]
p + ∑∞

i=1[p|ψ2i−1|α + q|ψ2i |α] .

Define k1 = min{k ≥ 0: |φ|2k(θ + φ) < 1}. Then,

ρA(h) =

⎧⎪⎨⎪⎩
c
(4)
α (φ, θ), h = 2k − 1,1 ≤ k ≤ k1,

φα(h−1)c
(5)
α (φ, θ), h = 2k − 1, k > k1,

φαhc
(6)
α (φ, θ), h = 2k, k ≥ 1,

where

c(4)
α = p(1 − |φ|2α)

p(1 − |φ|2α + (φ + θ)α) + q|φ|α(φ + θ)α
,

c(5)
α = p(φ + θ)α(1 − |φ|2α)

p(1 − |φ|2α + (φ + θ)α) + q|φ|α(φ + θ)α
,

c(6)
α = p(φ + θ)α + q|φ|α(φ + θ)α

p(1 − |φ|2α + (φ + θ)α) + q|φ|α(φ + θ)α
.
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The corresponding spectral density is

fA(λ) = 1 + 2c(4)
α (φ, θ)

k1∑
k=1

cos
(
(2k − 1)λ

) + 2|φ|−2αc(5)
α (φ, θ)

∞∑
k=k1+1

|φ|α(2k) cos
(
(2k − 1)λ

)

+ 2c(6)
α (φ, θ)

∞∑
k=1

|φ|2kα cos(2kλ)

= 1 + 2c(4)
α (φ, θ)L(1)(k1,−λ,2λ)

+ 2|φ|−2αc(5)
α

[
L(2)(∞,−λ,2α,2λ) − L(2)(k1,−λ,2α,2λ)

]
+ 2c(6)

α (φ, θ)L(2)(∞,0, α,2λ).

The case φ ∈ (−1,0), θ + φ < 0, p > 0. If h = 2k + 1 for integer k ≥ 0 the summand
p(min(ψ+

i ,ψ+
i+h))

α + q(min(ψ−
i ,ψ−

i+h))
α in (3.4) vanishes for i ≥ 0. Thus,

ρA(h) = 0.

For h = 2k > 0,

ρA(h) = p min(1, |ψh|α) + ∑∞
i=0[p|ψ2i+h+2|α + q|ψ2i+h+1|α]∑∞

i=0[p|ψ2i |α + q|ψ2i+1|α] .

Define k2 = min{k ≥ 0: |φ|2k+1|θ + φ| < 1}. Then

ρA(2k) =
{

c
(7)
α + |φ|2αkc

(8)
α , k ≤ k2 ,

|φ|2αkc
(9)
α , k > k2 ,

where

c(7)
α = p(1 − |φ|2α)

p(1 − |φ|2α) + p|φ|α|φ + θ |α + q|φ + θ |α ,

c(8)
α = p|φ|α|φ + θ |α + q|φ + θ |α

p(1 − |φ|2α) + p|φ|α|φ + θ |α + q|φ + θ |α ,

c(9)
α = p|φ|−α|φ + θ |α + q|φ + θ |α

p(1 − |φ|2α) + p|φ|α|φ + θ |α + q|φ + θ |α .

The corresponding spectral density is

fA(λ) = 1 + 2c(7)
α

k2∑
k=1

cos(2kλ) + 2
(
c(8)
α − c(9)

α

) k2∑
k=1

|φ|2kα cos(2kλ) + 2c(9)
α

∞∑
k=1

|φ|2kα cos(2kλ)

= 1 + 2c(7)
α L(1)(k2,0,2λ) + 2

(
c(8)
α − c(9)

α

)
L(2)(k2,0,2α,2λ) + 2c(9)

α L(2)(∞,0,2α,2λ).
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