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A famous characterization theorem due to C.F. Gauss states that the maximum likelihood estimator (MLE)
of the parameter in a location family is the sample mean for all samples of all sample sizes if and only
if the family is Gaussian. There exist many extensions of this result in diverse directions, most of them
focussing on location and scale families. In this paper, we propose a unified treatment of this literature
by providing general MLE characterization theorems for one-parameter group families (with particular
attention on location and scale parameters). In doing so, we provide tools for determining whether or not a
given such family is MLE-characterizable, and, in case it is, we define the fundamental concept of minimal
necessary sample size at which a given characterization holds. Many of the cornerstone references on this
topic are retrieved and discussed in the light of our findings, and several new characterization theorems are
provided. Of particular interest is that one part of our work, namely the introduction of so-called equivalence
classes for MLE characterizations, is a modernized version of Daniel Bernoulli’s viewpoint on maximum
likelihood estimation.

Keywords: location parameter; maximum likelihood estimator; minimal necessary sample size;
one-parameter group family; scale parameter; score function

1. Introduction

In probability and statistics, a characterization theorem occurs whenever a given law or a given
class of laws is the only one which satisfies a certain property. While probabilistic character-
ization theorems are concerned with distributional aspects of (functions of) random variables,
statistical characterization theorems rather deal with properties of statistics, that is, measurable
functions of a set of independent random variables (observations) following a certain distribution.
Examples of probabilistic characterization theorems include:

- Stein-type characterizations of probability laws, inspired from the classical Stein and Chen
characterizations of the normal and the Poisson distributions, see Stein [43], Chen [10];

- maximum entropy characterizations, see Cover and Thomas [12], Chapter 11;
- conditioning characterizations of probability laws such as, for example, determining the

marginal distributions of the random components X and Y of the vector (X,Y )′ if only the
conditional distribution of X given X + Y is known, see Patil and Seshadri [37].

The class of statistical characterization theorems includes:
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- characterizations of probability distributions by means of order statistics, see Galambos [19]
and Kotz [29] for an overview on the vast literature on this subject;

- Cramér-type characterizations, see Cramér [13];
- characterizations of probability laws by means of one linear statistic, of identically dis-

tributed statistics or of the independence between two statistics, see Lukacs [33].

Besides their evident mathematical interest per se, characterization theorems also provide a better
understanding of the distributions under investigation and sometimes offer unexpected handles
to innovations which might not have been uncovered otherwise. For instance, Chen and Stein’s
characterizations are at the heart of the celebrated Stein’s method, see the recent Chen, Goldstein
and Shao [11] and Ross [42] for an overview; maximum entropy characterizations are closely
related to the development of important tools in information theory (see Akaike [2,3]), Bayesian
probability theory (see Jaynes [25]) or even econometrics (see Wu [48], Park and Bera [36];
characterizations of probability distributions by means of order statistics are, according to Te-
icher [46], “harbingers of [. . . ] characterization theorems”, and have been extensively studied
around the middle of the twentieth century by the likes of Kac, Kagan, Linnik, Lukacs or Rao;
Cramér-type characterizations are currently the object of active research, see Bourguin and Tu-
dor [6]. This list is by no means exhaustive and for further information about characterization
theorems as a whole, we refer to the extensive and still relevant monograph Kagan, Linnik and
Rao [27], or to Kotz [29], Bondesson [5], Haikady [22] and the references therein.

In this paper, we focus on a family of characterization theorems which lie at the intersection
between probabilistic and statistical characterizations, the so-called MLE characterizations.

1.1. A brief history of MLE characterizations

We call MLE characterization the characterization of a (family of) probability distribution(s) via
the structure of the Maximum Likelihood Estimator (MLE) of a certain parameter of interest
(location, scale, etc.).

The first occurrence of such a theorem is in Gauss [20], where Gauss showed that the normal
(a.k.a. the Gaussian) is the only location family for which the sample mean x̄ = n−1 ∑n

i=1 xi

is “always” the MLE of the location parameter. More specifically, Gauss [20] proved that, in a
location family g(x − θ) with differentiable density g, the MLE for θ is the sample mean for all
samples x(n) = (x1, . . . , xn) of all sample sizes n if, and only if, g(x) = κλe−λx2/2 for λ > 0 some
constant and κλ the adequate normalizing constant. Discussed as early as in Poincaré [38], this
important result, which we will throughout call Gauss’ MLE characterization, has attracted much
attention over the past century and has spawned a spree of papers about MLE characterization
theorems, the main contributions (extensions and improvements on different levels, see below)
being due to Teicher [46], Ghosh and Rao [21], Kagan, Linnik and Rao [27], Findeisen [18],
Marshall and Olkin [34] and Azzalini and Genton [4]. (See also Hürlimann [24] for an alternative
approach to this topic.) For more information on Gauss’ original argument, we refer the reader
to the accounts of Hald [23], pages 354 and 355, and Chatterjee [9], pages 225–227. See Norden
[35] or the fascinating Stigler [45] for an interesting discussion on MLEs and the origins of this
fundamental concept.
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The successive refinements of Gauss’ MLE characterization contain improvements on two
distinct levels. Firstly, several authors have worked towards weakening the regularity assump-
tions on the class of distributions considered; for instance, Gauss requires differentiability of g,
while Teicher [46] only requires continuity. Secondly, many authors have aimed at lowering the
sample size necessary for the characterization to hold (i.e., the “always”-statement); for instance,
Gauss requires that the sample mean be MLE for the location parameter for all sample sizes
simultaneously, Teicher [46] only requires that it be MLE for samples of sizes 2 and 3 at the
same time, while Azzalini and Genton [4] only need that it be so for a single fixed sample size
n ≥ 3. Note that Azzalini and Genton [4] also construct explicit examples of non-Gaussian dis-
tributions for which the sample mean is the MLE of the location parameter for the sample size
n = 2. We already draw the reader’s attention to the fact that Azzalini and Genton’s [4] result
does not supersede Teicher’s [46], since the former require more stringent conditions (namely
differentiability of the g’s) than the latter. We will provide a more detailed discussion on this
interesting fact again at the end of Section 4.

Aside from these “technical” improvements, the literature on MLE characterization theorems
also contains evolutions in different directions which have resulted in a new stream of research,
namely that of discovering new (i.e., different from Gauss’ MLE characterization) MLE charac-
terization theorems. These can be subdivided into two categories. On the one hand, MLE charac-
terizations with respect to the location parameter but for other forms than the sample mean have
been shown to hold for densities other than the Gaussian. On the other hand, MLE characteri-
zations with respect to other parameters of interest than the location parameter have also been
considered. Teicher [46] shows that if, under some regularity assumptions and for all sample
sizes, the MLE for the scale parameter of a scale target distribution is the sample mean x̄ then
the target is the exponential distribution, while if it corresponds to the square root of the sample
arithmetic mean of squares ( 1

n

∑n
i=1 x2

i )1/2, then the target is the standard normal distribution.
Following suit on Teicher’s work, Kagan, Linnik and Rao [27] establish that the sample median
is the MLE for the location parameter for all samples of size n = 4 if and only if the parent
distribution is the Laplace law. Also, in Ghosh and Rao [21], it is shown that there exist distribu-
tions other than the Laplace for which the sample median at n = 2 or n = 3 is MLE. Ferguson
[17] generalizes Teicher’s [46] location-based MLE characterization from the Gaussian to a one-
parameter generalized normal distribution, and Marshall and Olkin [34] generalize Teicher’s [46]
scale-based MLE characterization of the exponential distribution to the gamma distribution with
shape parameter α > 0 by replacing x̄ as MLE for the scale parameter with x̄/α.

There also exist contributions by Buczolich and Székely [7] where they investigate situations
in which a weighted average of ordered sample elements can be an MLE of the location param-
eter. MLE characterizations in the multivariate setup have been proposed, inter alia, in Marshall
and Olkin [34] and Azzalini and Genton [4]. In parallel to all these “linear” MLE character-
izations there have also been a number of developments regarding MLE characterizations for
spherical distributions, that is distributions taking their values only on the unit hypersphere in
higher dimensions, see Duerinckx and Ley [16] and the references therein.

Finally, there exists a different stream of MLE characterization research, inspired by
Poincaré [38], in which one relaxes the assumptions made on the role of the parameter θ and
seeks to understand the conditions under which the MLE for this θ is an arithmetic mean. This
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approach to MLE characterization theorems is known as Gauss’ principle; quoting Campbell [8]
“by Gauss’ principle we shall mean that a distribution should be chosen so that the maximum
likelihood estimate of the parameter θ is the same as the arithmetic mean estimate given by
n−1 ∑n

k=1 T (xk)”, with θ = E(T (X)) for some known function T . When T is the identity func-
tion and one considers one-parameter location families then we recover the MLE characterization
problem solved by Gauss [20]. For general one-parameter families the corresponding problem
was solved in Poincaré [38]. Campbell [8] broadens Poincaré’s conclusion to general functions
T and to the multivariate setup, while Bondesson [5] further extends the above works to expo-
nential families with nuisance parameters. As pointed out by their authors, many of these results
remain valid for discrete distributions; for other MLE characterizations of discrete probability
laws, we also refer to Puig [39] and Puig and Valero [41].

1.2. Applications of MLE characterizations

Perhaps the most remarkable application of MLE characterizations is to be found in the very ori-
gins of this field of study, whose forefathers sought to define families of probability distributions
which were “natural” for a given important problem. For instance, the Gaussian distribution was
uncovered by Gauss through his effort of finding the location family for which the sample mean
x̄ is a most probable value for θ , the location parameter. Similarly, Poincaré in his “Calcul des
Probabilités” (2nd ed., 1912) derived in Chapter 10 (pages 147–168 in the 1896 edition) a partic-
ular case of the exponential families of distributions (see Lehmann and Casella [30], Section 1.5)
by asking for which distributions x̄ is the MLE of θ , without specifying the role of the parame-
ter. We refer to the historical remarks at the end of Bondesson [5] and the references therein for
more information on both the works of Gauss and Poincaré. Following Gauss’ ideas, von Mises
[47] defined the circular (i.e., spherical in dimension two) analogue of the Gaussian distribution
by looking for the circular distribution whose circular location parameter always has the circu-
lar sample mean as MLE; this led to the now famous Fisher–von Mises–Langevin (abbreviated
FvML) distribution on spheres.

Of an entirely different nature is Campbell’s [8] use of MLE characterizations. In his paper,
Campbell establishes an equivalence between MLE characterizations in the spirit of Gauss’ prin-
ciple and the minimum discrimination information estimation of probabilities. More recently,
Puig [40] has applied MLE characterizations in order to characterize the Harmonic Law as the
only statistical model on the positive real half-line that satisfies a certain number of requirements.
As a last example, we cite the work of Ley and Paindaveine [32] who solved a long-standing
problem on skew-symmetric distributions through an argument resting on Gauss’ MLE charac-
terization.

1.3. Purpose of the paper

As is perhaps intuitively clear, many of the results on MLE characterizations stem from a com-
mon origin. As a matter of fact many authors often follow the same “smart path” that can be
summarized in three steps: (a) choose the role of the parameter of interest θ (location or scale);
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(b) choose a remarkable form for the MLE for θ (e.g., sample mean, variance or median); (c) use
the freedom of choice in the samples as well as the sample size (two samples of respective sizes
2 and 3, one sample of size 3, all samples of all sizes, . . .) to obtain the largest class of distribu-
tions satisfying certain assumptions (continuous at a single point, continuous, differentiable, . . .)
which share this specific MLE. While similar, the arguments leading to the different results nev-
ertheless are largely ad hoc and rest upon crafty manipulations of the explicit given form of the
MLE. Moreover, step (c) contains assumptions on the minimal sample size and on the properties
of the distributions being characterized, the necessity of which is barely addressed.

The purpose of the present paper is to unify this important literature by explaining the mech-
anism behind this “smart path” in the more general context of one-parameter group families
(as defined in Section 6) although still with particular focus on location and scale families. In
doing so, we will introduce the concept of minimal covering sample size (MCSS), a quantity
whose value depends on the structure of the support of the target distribution and from which
one deduces the a priori minimal necessary sample size (MNSS) at which an MLE characteri-
zation holds for a given family of distributions (see Duerinckx and Ley [16] where this notion
was introduced). As we shall see, the MCSS and MNSS explain many of the differences in the
“always”-statements appearing throughout the literature on MLE characterization. Moreover our
unified perspective on MLE characterizations not only permits to identify the minimal sufficient
conditions under which group families are characterized by their MLEs (MLE-characterizable)
but also provide tools for (easily) constructing new MLE characterizations of many important
families of distributions.

In a nutshell, our goal is to (i) propose a unified perspective on MLE characterizations
for one-parameter group families, (ii) answer the question of which such families are MLE-
characterizable and find their MNSS, (iii) retrieve, improve on and better understand existing
results via our general analysis, and (iv) construct new MLE characterization results. Our con-
tribution to the important literature on MLE characterizations unifies the cornerstone references
Teicher [46], Ferguson [17], Kagan, Linnik and Rao [27], Marshall and Olkin [34], Azzalini and
Genton [4] (to cite but these) and complements the understanding brought by the seminal works
of Poincaré [38], Campbell [8] and Bondesson [5].

1.4. Outline of the paper

In Section 2 we describe the framework of our study, give all necessary notations and introduce
the so-called equivalence classes. In Section 3 we establish and interpret the above-mentioned
notion of MCSS which will be central to this paper. In Section 4, we derive the MLE char-
acterization for univariate location families, while in Section 5 we proceed in a similar way
with univariate scale families. In Section 6 we obtain MLE characterizations for general one-
parameter group families, allowing us to study other roles of the parameter (e.g., skewness). In
Section 7 we apply our findings to particular families of distributions. We conclude the paper
with a discussion, in Section 8, of the different possible extensions that are yet to be explored.
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2. Notations and generalities on ML estimators, equivalence
classes

Throughout we consider observations X(n) = (X1,X2, . . . ,Xn) that are sampled independently
from a distribution P

f
θ (with density f ) which we suppose to be entirely known up to a parameter

θ ∈ � ⊂ R. The true parameter value θ0 ∈ � is estimated by ML estimation on basis of X(n). As
explained in the Introduction, our aim consists in determining which classes of distributions are
identifiable by means of the MLE of the parameter of interest θ , a parameter that can, in principle,
be of any nature (i.e., location, scale, etc.). On the target family of distributions {P f

θ : θ ∈ �} we
make the following general assumptions:

- (A1) The parameter space � contains an open set �0 of which the true parameter θ0 is an
interior point.

- (A2) For each θ ∈ �0, the distribution P
f
θ has support S independent of θ .

- (A3) For all 1 ≤ i ≤ n the random variable Xi has a density f (xi; θ) with respect to the
(dominating) Lebesgue measure.

- (A4) For θ �= θ ′ ∈ �0, we have P
f
θ �= P

f

θ ′ .

These assumptions are taken from Lehmann and Casella [30], page 444.

Remark 2.1. Although typically we will be concerned with either location families with den-
sities of the form f (x; θ) = f (x − θ) for θ ∈ R the location parameter, or scale families with
densities of the form f (x; θ) = θf (xθ) for θ ∈ R+

0 the scale parameter, other roles for θ (skew-
ness, tail behavior. . . ) can also be considered; see Section 6 where we detail our approach for
one-parameter group families.

Remark 2.2. While throughout the paper we restrict our attention to the univariate setting, it is
easy to see that our arguments are in some cases transposable word-by-word to the multivariate
case. We discuss this matter briefly in Section 8.

Remark 2.3. Assumption (A2) implies that only densities with full support R may be considered
for ML estimation of a location parameter, while only densities with support either R, R+ or R−
may be considered for ML estimation of a scale parameter. Despite the fact that these restrictions
are natural in the present context they can, if deemed necessary, be lifted. We will briefly discuss
this topic in Section 8.

We define, for a fixed sample size n ≥ 1, the MLE of the parameter θ as (if it exists) the
measurable function

θ̂
(n)
f :Sn := S × · · · × S → �0 : x(n) := (x1, . . . , xn) 	→ θ̂

(n)
f

(
x(n)

)
for which

n∏
i=1

f
(
xi; θ̂ (n)

f

(
x(n)

)) ≥
n∏

i=1

f (xi; θ) (1)
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for all θ ∈ �0 and all samples x(n) ∈ Sn of size n. It is not trivial to provide minimal conditions
on f under which θ̂

(n)
f (x(n)) exists, is uniquely defined and satisfies the necessary measurability

conditions. Consistency of the MLE is also a delicate matter and further regularity conditions are
required for the problem to make sense. As in Cramér [14,15] one may suppose that, for almost
all x, the density f (x; θ) is differentiable with respect to θ . This allows to define the MLE as the
solution of the local likelihood equation

n∑
i=1

ϕf (xi; θ) = 0, (2)

where

ϕf (x; θ) := ∂

∂θ
logf (x; θ)

is the score function of the density f associated with the parameter θ (we set this function to 0
outside the support of f ). The solution to (2) has, at least asymptotically, the required properties
(see Lehmann and Casella [30], Theorem 6.3.7). Furthermore, this way of proceeding allows
for a simple sufficient condition for uniqueness of the MLE: the mapping x 	→ ϕf (x; θ) has to
be strictly monotone and to cross the x-axis. Note that this requirement coincides with strong
unimodality or log-concavity of the density f when θ is a location parameter (see Lehmann and
Casella [30], Exercise 6.3.15).

Remark 2.4. Although in general there is no explicit expression for the MLE of a given paramet-
ric family, there exist several important distributions that not only satisfy all the above require-
ments but also allow for MLEs which take on a remarkable form. Taking f = φ the standard nor-
mal density, the MLE for the location parameter is x̄ := 1

n

∑n
i=1 xi , the sample arithmetic mean,

while that for the scale parameter is ( 1
n

∑n
i=1 x2

i )1/2, the square root of the sample arithmetic
mean of squares. Taking f the exponential density, the MLE for the scale parameter becomes x̄.

As outlined in Section 1.3, our objective in this paper is to determine minimal conditions
under which a given form of MLE for a given type of parameter identifies a specific probability
distribution. Upon making this statement there immediately arises a trivial identification problem
(due to our definition of maximum likelihood estimators) which we first need to evacuate. Indeed
if θ̂

(n)
f maximizes the f -likelihood function, then it also maximizes the g-likelihood function for

any function g = cf d with d > 0 and c a normalizing constant. In fact, from our definitions (1)
and (2), it is immediate that any two parametric densities f (x; θ) and g(x; θ) with same support
S and such that

ϕg(x; θ) = dϕf (x; θ) ∀x ∈ S (3)

for some d > 0 share the same MLE for θ . This seemingly trivial and innocuous observation
leads us to the introduction of a concept that happens to be fundamental for this paper and
for MLE characterizations in general: the concept of (parameter-dependent) equivalence classes
(e.c. hereafter), meaning that two densities are equivalent if their score functions satisfy (3). It
is obvious that e.c.’s constitute a partition of the space of distributions. Stated simply, without
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further conditions or specifications on the density associated with the target distribution P
f
θ (the

target density f ) and on the functions g, MLE characterization theorems identify an e.c. of
distributions rather than a single well-specified distribution.

Remark 2.5. Considering, for example, Gauss’ MLE characterization, both Teicher [46] and
Azzalini and Genton [4], to cite but these, identify the Gaussian distribution with respect to its
location parameter only up to an unknown variance. On the contrary, when dealing with scale
characterizations, Teicher [46] imposes a tail-constraint in order to be able to single out the
standard exponential and the standard Gaussian distribution.

The use of e.c.’s are far from new in the context of ML estimation. Indeed Daniel Bernoulli,
who is considered to be one of the first authors to introduce the idea underlying the concept of
maximum likelihood, noted as early as in 1778 that the roots of his “likelihood function” would
not change by squaring the semi-circular density he used (see Stigler [44], Chapter 16). Further
ideas of Bernoulli can be found in Kendall [28], Section 19, and they clearly demonstrate that
the equivalence (3) can be viewed as a modern expression of Bernoulli’s early thoughts.

In what follows, we shall state our results in the most general possible way, without (at least
in the main results) considering additional identification constraints. As will become clear from
the subsequent sections, the nature of the parameter of interest θ heavily influences the partition
of the space of distributions, so that, for each type of parameter, one needs to identify the e.c.’s
(see the beginnings of Sections 4 and 5 for an illustration).

The framework we have developed so far allows us to reformulate the question underpinning
the present article in a more transparent form, namely “Do there exist two distinct e.c.’s F (θ) and
G(θ) such that the distributions P

f
θ and P

g
θ for f ∈ F (θ) and g ∈ G(θ) share a given MLE of the

parameter of interest θ”? As is perhaps already clear, the answer to this question is negative – at
least in the interesting cases. To see why this ought to be the case let F (θ) and G(θ) be two e.c.’s
which share an MLE for some sample size n ≥ 1, in other words suppose that, for some n ≥ 1,
some f ∈ F (θ) and some g ∈ G(θ), the estimator θ̂

(n)
g coincides with θ̂

(n)
f , that is,

n∑
i=1

logg
(
xi; θ̂ (n)

f

(
x(n)

)) ≥
n∑

i=1

logg(xi; θ) (4)

for all θ ∈ �0 and all samples x(n) ∈ Sn of size n. Then clearly the only way for f and g to
satisfy (4) for all samples of size n is that they be strongly related to one another; as we will see,
under reasonable conditions, one can go one step further and deduce that if (4) holds true for a
“sufficiently large n” then f and g must belong to the same e.c. This intuition is the heart of all
the literature on MLE characterizations.

3. The minimal covering sample size

The first step towards establishing our general MLE characterizations is to gain a better under-
standing of the meaning of “sufficiently large n” for (4) to induce a characterization theorem. We
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use the notation Hn to denote the hyperplane

Hn =
{

b(n) = (b1, . . . , bn) ∈ Rn

∣∣∣∣
n∑

j=1

bj = 0

}

and associate, with any parametric distribution P
f
θ satisfying the requirements of Section 2, the

collection(s) of sets

B
f,θ
n (A) = {

b(n) ∈ Hn|∃x(n) ∈ An with bj = ϕf (xj ; θ) for all 1 ≤ j ≤ n
}
, (5)

where An = A × · · · × A is the n-fold cartesian product of A ⊆ S, the support of the target f ,
and θ ∈ �0. The interplay between the sets B

f,θ
n and the hyperplanes Hn determines the minimal

sample size n for a characterization theorem to hold. The following lemma is crucial to our
approach.

Lemma 3.1. Suppose that for some θ ∈ �0 the mapping x 	→ ϕf (x; θ) is strictly monotone
over some interval X ⊂ S and that the (restricted) image If,θ (X ) := {ϕf (x; θ)|x ∈ X } is of
the form (−P −

f,θ ,P
+
f,θ ), for positive constants P −

f,θ ,P
+
f,θ (possibly infinite). Then, for all n ≥ 1,

B
f,θ
n (X ) = Hn ∩ (If,θ (X ))n. Also, letting

Nf,θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if P −
f,θ = P +

f,θ ,⌈max(P +
f,θ ,P

−
f,θ )

min(P +
f,θ ,P

−
f,θ )

+ 1

⌉
, if P −

f,θ �= P +
f,θ and P −

f,θ ,P
+
f,θ < +∞,

∞, otherwise,

(6)

we get:

• for n < Nf,θ , the orthogonal projections 
xj
(B

f,θ
n (X )) � (−P −

f,θ ,P
+
f,θ ) for all j =

1, . . . , n;
• for all n ≥ Nf,θ , 
xj

(B
f,θ
n (X )) = (−P −

f,θ ,P
+
f,θ ) for all j = 1, . . . , n.

The number Nf,θ is called the minimal covering sample size (MCSS) associated to the interval X .

The MCSS, which is by definition greater than 2, is the smallest possible value of the sample
size n that ensures that all the projections of B

f,θ
n (X ) onto the distinct subspaces generated by

each observation xj , j = 1, . . . , n, cover entirely If,θ (X ). For ease of reference we will say,

whenever this property holds true, that B
f,θ
n (X ) is projectable.

Example 3.1. Take f (x; θ) = φ(x − θ) the standard Gaussian density with θ ∈ R a location
parameter. We have S = R, ϕφ(x; θ) = x − θ (and θ̂

(n)
φ = x̄, the sample mean). Then ϕφ(x; θ) is

invertible over R, Iφ,θ (R) = R (for all θ ) and easy computations show that B
φ,θ
n (R) = Hn for

all n. Note that we always have 
xj
(B

φ,θ
n (R)) = R; in other words, B

φ,θ
n (R) is projectable for

all n ≥ 2 (and all θ ) and hence MCSS = 2.
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Figure 1. The sets B
f,θ
2 (R) when If,θ = [−1,1] (left plot) and If,θ = [−1,3] (right plot). The red lines

indicate the marginal projections.

Example 3.2. Take ϕf (·; θ) to be monotone on S = R with symmetric image (−1,1), say, in-

dependently of θ . Then clearly B
f,θ

2 (R) is the intersection between the line H2 ≡ x + y = 0

(see Figure 1) and the square (−1,1)2, while B
f

3 (R) is the intersection between the plane

H3 ≡ x + y + z = 0 and the cube (−1,1)3. Consequently, the coordinates of points on B
f,θ

2 (R)

and B
f,θ

3 (R) cover the full image (−1,1). Hence, MCSS = 2.

Example 3.3. Take ϕf (·; θ) to be monotone on S = R with skewed image (−1,3), say, indepen-

dently of θ . Then, while B
f,θ

2 (R) and B
f,θ

3 (R) remain defined as in Example 3.2 (with (−1,3)

replacing (−1,1)), coordinates of points in these domains do not cover the full image. In fact, in
B

f,θ

2 (R) these coordinates only cover the interval (−1,1) (see Figure 1), in B
f,θ

3 (R) these coor-
dinates only cover the interval (−1,2) and it is only from n ≥ 4 onwards that the coordinates of
points in B

f,θ
n (R) cover the full image. Hence, MCSS = 4.

Example 3.4. Take f (x; θ) = θφ(θx) the Gaussian density with θ ∈ R+
0 a scale parameter. We

have S = R, ϕφ(x; θ) = 1
θ
(1 − θ2x2). Then ϕφ(·; θ) is invertible over R+

0 and R−
0 , separately,

and If,θ (R
±
0 ) = (−∞,1/θ). Note that we have 
xj

(B
f,θ
n (R±

0 )) = (−(n − 1)/θ,1/θ) for all

j , all θ and all n ≥ 2. In other words, B
f,θ
n (R±

0 ) is only asymptotically projectable. Hence,
MCSS = +∞.

Proof of Lemma 3.1. The assumptions on the image of ϕf (·; θ) guarantee the existence of

a point in X where ϕf crosses the x-axis so that B
f,θ

1 (X ) = {0}. Also, for all n ≥ 1, we

have B
f,θ
n (X ) = Hn ∩ (If,θ (X ))n; this follows by definition. Regarding the MCSS, first take

P −
f,θ = P +

f,θ = P (possibly infinite). Then, for all n ≥ 2, Hn ∩ (−P,P )n contains for each of
the n coordinates the full interval (−P,P ) (see Figure 1); hence MCSS = 2. Next suppose
that P −

f,θ < P +
f,θ < ∞ and consider a “worst-case scenario” by taking a point at the extreme of
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Hn ∩ (If,θ (X ))n, with one coordinate set to b1 = P +
f,θ − ε for some ε > 0. Then, in order to

construct a sample satisfying
∑n

i=1 bi = 0, it is necessary to choose the remaining n − 1-tuple
(b2, . . . , bn) so as to satisfy

∑n
i=2 bi = −b1. Since the best choice in this respect consists in

setting all bi near the other extremum −P −
f,θ + ε′ for ε′ > 0, we see that, depending on the mag-

nitude of the ratio P +
f,θ /P

−
f,θ , a given sample size n may not be large enough for the equality to

hold. In order to palliate this it suffices to take Nf,θ to be the smallest natural number such that
P +

f,θ − (Nf,θ − 1)P −
f,θ ≤ 0, that is, Nf,θ = �P +

f,θ /P
−
f,θ + 1�. The case P +

f,θ < P −
f,θ < ∞ follows

along the same lines, and hence

MCSS =
⌈max(P +

f,θ ,P
−
f,θ )

min(P +
f,θ ,P

−
f,θ )

+ 1

⌉
.

The same argumentation applies in the case where either one of P +
f,θ or P −

f,θ is infinite, this time
with MCSS = +∞. This concludes the proof. �

Now look at the connection between the MCSS and MLE characterizations. Let f and g

be two representatives of distinct e.c.’s with f the target density. Under the assumption of θ -
differentiability of g, the defining equation (4) can be re-expressed as

n∑
i=1

ϕg

(
xi; θ̂ (n)

f

(
x(n)

)) = 0 for all x(n) ∈ Sn,

which in turn can be rewritten as

n∑
i=1

ϕg(xi; θ) = 0 for all θ and all x(n) such that
n∑

i=1

ϕf (xi; θ) = 0 (7)

(here θ and x(n) are interdependent) or, equivalently,

n∑
i=1

h(yi; θ) = 0 for all θ and all y(n) ∈ B
f,θ
n (X ) (8)

for each interval X on which y 	→ ϕf (y; θ) is invertible for all θ , with h(y; θ) = ϕg(ϕ
−1
f (y;

θ); θ). Equation (8) completely identifies the function h (and hence the interconnection between
g and f ), at least when B

f,θ
n (X ) is sufficiently rich. This richness depends strongly on the MCSS

introduced in Lemma 3.1. Indeed supposing that (8) is only valid for a sample size smaller than
the MCSS implies that portions of the images If,θ (X ) cannot be reached, so that h cannot be
identified over its entire support. This necessarily implies that MNSS ≥ MCSS. It is, however,
pointless to try to solve (8) in all generality and it is now necessary to specify the role of θ in order
to pursue. We will do so in detail in the next sections, first in the case of location parameters; our
arguments will afterwards adapt directly to other parameter choices.
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4. MLE characterization for location parameter families

We start by identifying the e.c.’s for θ a location parameter. In such a case, �0 = S = R, and
the location score functions are of the form ϕf (x; θ) = ϕf (x − θ) = −f ′(x − θ)/f (x − θ) over
R, so that equation (3) turns into a simple first-order differential equation whose solution yields
g(x) = c(f (x))d for some d > 0 and c the normalizing constant. Thus, all densities which are
linked one to another via that relationship belong to a same e.c. We here attract the reader’s
attention to the fact that, for f = φ the standard Gaussian density, such transformations reduce
to a non-specification of the variance, which is clearly in line with Gauss’ MLE characterization
as stated by Teicher [46] or Azzalini and Genton [4].

Our first main theorem is, in essence, a generalization of Gauss’ MLE characterization from
the Gaussian distribution to the entire class of log-concave distributions with continuous score
function.

Theorem 4.1. Let F (loc) and G(loc) be two distinct location-based e.c.’s and let their respective
representatives f and g be two continuously differentiable densities with full support R. Let
x 	→ ϕf (x) = −f ′(x)/f (x) be the location score function of f . If ϕf is invertible over R and

crosses the x-axis then there exists N ∈ N such that, for any n ≥ N , we have θ̂
(n)
f = θ̂

(n)
g for

all samples of size n if and only if there exist constants c, d ∈ R+
0 such that g(x) = c(f (x))d

for all x ∈ R, that is, if and only if F (loc) = G(loc). The smallest integer for which this holds
(the minimal necessary sample size) is MNSS = max{Nf ,3}, with Nf the MCSS as defined in
Lemma 3.1.

Proof. The sufficient condition is trivial. To prove necessity first note how our assumptions on f

ensure that the score function ϕf is strictly increasing on the whole real line R and has a unique
root. This allows us to write the image Im(ϕf ) as (−P −

f ,P +
f ) with 0 < P −

f ,P +
f ≤ ∞. The

differentiability of g and the nature of the parameter θ permit us to rewrite, for any admissible θ ,
(7) as

n∑
i=1

ϕg(xi − θ) = 0 for all x(n) ∈ Rn such that
n∑

i=1

ϕf (xi − θ) = 0, (9)

where ϕg(x) = −g′(x)/g(x). Using the strict monotonicity of ϕf one then concludes that (9) is
equivalent to requiring that g satisfies

n∑
i=1

h(bi) = 0 for all (b1, . . . , bn) ∈ B
f,θ
n (R), (10)

where h = ϕg ◦ ϕ−1
f and bi = ϕf (xi − θ), i = 1, . . . , n, as in (5). In what follows, we shall use

our liberty of choice among all n-tuples b(n) ∈ B
f,θ
n (R) in order to gain sufficient information on

h to conclude.
First, suppose that P −

f,θ = P +
f,θ = P , hence that the image of ϕf is symmetric. We know from

Lemma 3.1 that the corresponding MCSS equals 2, hence that two observations suffice to make
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B
f,θ
n (R) projectable. Therefore, for any n ≥ 2, we can always build an n-tuple b1, . . . , bn such

that b2 = −b1 for all b1 ∈ (−P,P ) and bi = 0 for i = 3, . . . , n. From (10) we then deduce that
h satisfies the equality h(−a) = −h(a) for all a ∈ (−P,P ), hence that h is odd on (−P,P ).
Evidently this leaves h undetermined, hence the MNSS must at least equal 3. For n ≥ 3, choose
an n-tuple such that b3 = −b1 − b2 and bi = 0 for i = 4, . . . , n, for b1, b2 ∈ (−P,P ) such that
b1 +b2 ∈ (−P,P ). Using (10) combined with the antisymmetry of h we deduce that this function
must satisfy

h(b) + h(c) = h(b + c) (11)

for all b, c ∈ (−P,P ) such that b + c ∈ (−P,P ). One recognizes in (11) a (restricted) form
of the celebrated Cauchy functional equation. Assume that P < ∞; then h(P/2), say, is finite
and standard arguments (see, e.g., Aczél and Dhombres [1]), imply that our solution h satisfies
h(uP/2) = uh(P/2) for all u ∈ (−2,2) and we conclude that h(x) = dx for all x ∈ (−P,P ),
with d = h(P/2)/(P/2) ∈ R. Considering x = ϕf (y) for y ∈ ϕ−1

f (−P,P ) = R, we obtain that

ϕg(y) = dϕf (y). Solving this first-order differential equation gives g(y) = c(f (y))d for all
y ∈ R, with c a constant. In order for the function g to be integrable over R, the constant d

must be strictly positive; in order for g to be positive and integrate to 1, the constant c must
be a normalizing constant. Thus, for P < ∞, the problem is solved. For P = ∞, the situation
becomes even simpler as (11) is then precisely the Cauchy functional equation, and one may
immediately draw the same conclusion as for finite P .

Let us now consider the case where ϕf has a skewed image and set P = min(P −
f ,P +

f ) (note
that P is necessarily finite as otherwise Im(ϕf ) would be symmetric). First restricting our at-
tention to (−P,P ), we can repeat the above arguments to deduce that g(y) = c(f (y))d for all
y ∈ ϕ−1

f (−P,P ) � R. We thus further need to investigate the behavior of h on the remaining

part of Im(ϕf ) which, for the sake of simplicity, we denote as Out(P ) (it is either (−P −
f ,−P)

or (P,P +
f )). To this end, we precisely need to know the MCSS and hence call upon Lemma 3.1.

Fixing n ≥ Nf and taking a sample (b1, . . . , bn) such that
∑n

i=1 bi = 0 with b1 ∈ Out(P ) and
(b2, . . . , bn) ∈ (−P,P )n−1, we can apply (10) to get h(b1) + ∑n

i=2 h(bi) = 0 and hence, from
our knowledge about the behavior of h on (−P,P ), we deduce that

h(b1) = −
n∑

i=2

bih(P )/P = b1h(P )/P,

since h(P ) is necessarily finite. Consequently we get h(y) = yh(P )/P for all y ∈ (−P,P ) ∪
Out(P ) = Im(ϕf ) and g(y) = c(f (y))d for all y ∈ R, and the conclusion follows.

The proof of the theorem is nearly complete: all that remains is to show that the MNSS =
max{3,Nf } is minimal and sufficient. The latter is immediate since if the result holds true for
any sample of size N = MNSS then, for any larger sample size M > MNSS, one can always
consider x(M) such that ϕf (x(M)) = b(M) ∈ B

f,θ
M (R) is of the form (b1, . . . , bN ,0, . . . ,0) and

(b1, . . . , bN) ∈ B
f,θ
N (R), and work as above to characterize the density. To prove the minimality

of the MNSS it suffices to exhibit specific counter-examples. This is done in Examples 4.1 and 4.2
below. �
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Example 4.1. To see that N = 3 is minimal when Im(ϕf ) is symmetric, we need to construct
two distributions g1, g2 which share f ’s MLE for all samples of size 2. Construct g1 as in the
proof of Theorem 4.1. To construct g2, it suffices to replace the function h from (10) with any
odd function and to solve the resulting equation in g (while ensuring integrability of g). If, for
example, we choose h(x) = dx3, then we readily obtain g(y) = c exp(−d

∫ x

−∞(ϕf (y))3 dy); this
is however not a density for all f , though a good choice for f = φ the Gaussian (for which
ϕφ(x) = x). Another way of proceeding is to work as in Azzalini and Genton [4] and to choose
h(y) = y + w′(y) for some differentiable even function w.

Example 4.2. Suppose that θ̂
(n)
f = θ̂

(n)
g for all samples of size n for some n < Nf when Nf > 3.

Then, as is clear from Lemma 3.1, the whole domain (i.e., R) of f is not identified by our tech-
nique and it suffices to choose any density which is equal to f on the maximal identifiable subdo-
main but differs elsewhere. Expressed in terms of h for the case P −

f < P +
f , we can only identify

h on some interval (−P −
f ,P −

f + a(n)), say, with 0 < a(n) < P +
f − P −

f . On the remaining part

(P −
f + a(n),P +

f ), h is undetermined and hence can take any possible form, implying that the

relationship between g and f can only be established on the part ϕ−1
f (−P −

f ,P −
f + a(n)) � R.

As in Azzalini and Genton [4], it is sufficient to require in Theorem 4.1 that g be continuously
differentiable at a single point for everything to run smoothly. Pursuing in this vein, it is of course
natural to enquire whether the result still holds if no such regularity assumption is imposed on g,
that is, if we only suppose that the target density f is differentiable but g is a priori not. Put
simply the question becomes that of enquiring whether the condition

n∑
i=1

logg
(
xi − θ̂

(n)
f

(
x(n)

)) ≥
n∑

i=1

logg(xi − θ) (12)

for all x(n) ∈ Rn and all θ ∈ R suffices to determine g. This is the approach adopted, for example,
in Teicher [46], Kagan, Linnik and Rao [27] or Marshall and Olkin [34], where it is shown
that having the likelihood condition (12) with θ̂

(n)
f the sample mean implies g is the Gaussian

as soon as the result holds for all samples of sizes 2 and 3 simultaneously. Interestingly, in
our framework, this arguably more general assumption on g comes with a cost: our method of
proof then necessitates imposing more restrictive assumptions on f and requiring the likelihood
equations to hold for two sample sizes simultaneously.

Theorem 4.2. Let F (loc) and G(loc) be two distinct location-based e.c.’s and let their respective
representatives f and g be two continuous densities with full support R. Suppose that f is
symmetric and continuously differentiable, and assume that its location score function ϕf (x) is

invertible over R and crosses the x-axis. Then we have θ̂
(n)
f = θ̂

(n)
g for all samples of sizes 2 and

n ≥ 3 simultaneously if and only if there exist constants c, d ∈ R+
0 such that g(x) = c(f (x))d for

all x ∈ R, that is, if and only if F (loc) = G(loc).

Proof. Our proof, which extends that of Teicher [46] from the Gaussian case to the entire class
of symmetric log-concave densities f , proceeds in two main steps: we first show that our as-
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sumptions on g in fact entail that g is continuously differentiable, and then conclude by applying
Theorem 4.1. The additional sample size n = 2 needed here stems from the first step.

Condition (12) can be rewritten as

n∑
i=1

logg(yi) ≥
n∑

i=1

logg(yi − θ)

for all θ ∈ R and y1, . . . , yn satisfying
∑n

i=1 ϕf (yi) = 0. The latter expression in turn is equiva-
lent to

n−1∑
i=1

logg(yi) + logg

(
ϕ−1

f

(
−

n−1∑
j=1

ϕf (yj )

))

(13)

≥
n−1∑
i=1

logg(yi − θ) + logg

(
ϕ−1

f

(
−

n−1∑
j=1

ϕf (yj )

)
− θ

)
.

Arguing as in Teicher [46], it is sensible to confine our attention at first to symmetric densities g.
Using the assumed symmetric nature of f (and hence the oddness of ϕ−1

f ), considering the
sample size n = 2 and setting observation y1 equal to some y ∈ R, (13) simplifies into

2 logg(y) ≥ logg(y − θ) + logg(y + θ) (14)

for all y, θ ∈ R. Since logg is everywhere finite, concave according to (14), and inherits mea-
surability from g, it is an a.e.-continuously differentiable function. Arrived at this point, we may
apply Theorem 4.1 to conclude (note that the oddness of ϕf makes Theorem 4.1 hold with MNSS
equal to 3).

Finally, for non-necessarily symmetric densities g, we can follow exactly the argumentation
from Teicher [46] and derive that the previously obtained solution is the only one, hence the
claim holds. �

We stress the fact that, as in Teicher [46], we may further weaken our assumptions on g by only
requiring that it is lower semi-continuous at the origin and need not have full support R. Indeed,
as shown in Teicher’s proof, continuity and a.e.-positivity ensue from the above arguments.

One may wonder whether the symmetry assumption on the target density f is necessary or
whether this second general location MLE characterization theorem may in fact hold for the
entire class of log-concave densities as well. Our method of proof indeed requires this assumption
so as to enable us to deal with such quantities as ϕ−1

f (−∑n−1
j=1 ϕf (yj )) in (13); without any

assumption on f , for n = 2, this expression does not simplify into the agreeable form −y1.
Similarly, one may wonder whether it is necessary to suppose the result to hold for two sample
sizes simultaneously or whether one single sample size N ≥ 3 might not suffice. We leave as
open problems the question whether these assumptions are necessary or simply sufficient.

Finally, our Theorems 4.1 and 4.2 do not cover target densities whose location score function
is monotone but not invertible over the entire real line, that is, piecewise constant. We do not con-
sider explicitly such setups here since they do not assure that the MLE is defined in a unique way.
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The strategy we however suggest consists in applying our results on the monotonicity intervals,
to draw the necessary conclusions and express g in terms of f on those intervals. If we add the
condition of monotonicity of ϕg , the equality ϕg(x) = dϕf (x) has to hold over the entire support
R as monotonicity imposes ϕg to be constant outside the above-mentioned intervals. Since we
here do not implicitly use the intervals where ϕf is constant, there might exist better strategies,
and consequently the smallest possible sample size we obtain by following this scheme is an
upper bound for the true MNSS. The most extreme situation takes place when the target is a
Laplace distribution, in which case ϕf (x) = sign(x); we refer to Kagan, Linnik and Rao [27] for
a treatment of this particular distribution. We will return to these matters briefly in Section 8.

5. MLE characterization for scale parameter families

As for location parameter families, we start by identifying the e.c.’s when θ plays the role of
a scale parameter. In such a setup, �0 = R+

0 , S = R, R+
0 or R−

0 in view of assumption (A2),
and the scale score functions are of the form ϕf (x; θ) = 1

θ
ψf (θx) := 1

θ
(1 + θxf ′(θx)/f (θx))

over S, so that equation (3) turns into another quite simple first-order differential equation whose
solution leads to g(x) = c|x|d−1(f (x))d for some d > 0 (such that g is integrable) and c the
normalizing constant. This relationship defines the scale-based e.c.’s. It is to be noted that c =
d = 1 when the origin belongs to the support, that is, when S = R, in which case the e.c.’s reduce
to singletons {f }.

Our main scale MLE characterization theorem is the exact equivalent of Theorem 4.1 with ψf

replacing ϕf , hence its proof is omitted.

Theorem 5.1. Let F (sca) and G(sca) be two distinct scale-based e.c.’s and let their respective
representatives f and g be two continuously differentiable densities with common support S

(either R,R+
0 or R−

0 ). Let ψf (x) = 1 + xf ′(x)/f (x) be the scale score function of f . If ψf

is invertible over S and crosses the x-axis then there exists N ∈ N such that, for any n ≥ N ,
we have θ̂

(n)
f = θ̂

(n)
g for all samples of size n if and only if there exist constants c, d ∈ R+

0 such

that g(x) = c|x|d−1(f (x))d for all x ∈ S (with c = d = 1 for S = R), that is, if and only if
F (sca) = G(sca). The smallest integer for which this holds is MNSS = max{Nf ,3}, with Nf the
MCSS as defined in Lemma 3.1.

As in the case of a location parameter, requiring differentiability of the g’s is not indispensable.
One could indeed restrict the class of target distributions under consideration, as in Teicher [46].
We leave this as an easy exercise.

When dealing with scale families it is natural to work as in Teicher [46] and add a scale-
identification condition of the form

lim
x→0

g(λx)/g(x) = lim
x→0

f (λx)/f (x) ∀λ > 0. (15)

Imposing this condition in Theorem 5.1 allows, at least when the limit is finite, positive and does
not equal 1/λ (which occurs only for pathological cases; we leave as an exercise to the reader
to see why this type of limiting behavior precludes identifications), to deduce that c = d = 1
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for S = R+
0 and R−

0 , and hence g = f in all cases. Interestingly Teicher already remarks that
this “seemingly ad hoc condition appears to be crucial”; this is clearly the case for a complete
identification of the family of densities which share a scale MLE.

The invertibility condition imposed on ψf is as natural in a scale family context as the in-
vertibility condition on ϕf in a location family setup (see Lehmann and Casella [30], page 502).
Unfortunately it suffers from one major drawback for S = R: requiring invertibility of ψf over
the whole real line forces us to discard several interesting cases such as, for example, the stan-
dard normal density φ, for which ψφ(x) = 1−x2 is only invertible over the positive and negative
real half-lines, respectively. More generally any symmetric density f for which ϕf is invertible
over R will suffer from that same problem and hence will not be characterizable by means of
Theorem 5.1. This flaw is nevertheless easily fixed, since Lemma 3.1 is applicable even if ψf is
only invertible over portions of its support. This leads to our next general result (whose proof is
omitted).

Theorem 5.2. Let F (sca) and G(sca) be two distinct scale-based e.c.’s and let their respective
representatives f and g be two continuously differentiable densities with full support R. Let
the scale score function ψf (x) = 1 + xf ′(x)/f (x) be invertible and cross the x-axis over R+

0

and R−
0 , respectively. Then there exists N ∈ N such that, for any n ≥ N , we have θ̂

(n)
f = θ̂

(n)
g for

all samples of size n if and only if g(x) = f (x) for all x ∈ R. Moreover the MNSS is given by
max{MNSS−,MNSS+}, where MNSS− and MNSS+, respectively, stand for the MNSS required
on each half-line.

It should be noted that the scale condition (15) is not necessary here since we are working
on the entire support S = R which imposes that d = 1 as otherwise the non-vanishing density g

would vanish at 0.
Finally note that the separation of the two real half-lines is tailored for scale families because

both R+
0 and R−

0 are invariant under the action of the scale parameter, which permits us to work
on each half-line separately and put the ends together by continuity. The same would not hold
true for location families due to a lack of invariance, that is, we could not “glue together” location
characterizations valid on complementary subsets of the support.

6. MLE characterization for one-parameter group families

The relevance of our approach is not confined to location and scale families, but can be used for
other θ -parameter families with θ neither a location nor a scale parameter. In this section, we
shall consider general one-parameter group families and provide them with MLE characteriza-
tion results. Group families play a central role in statistics as they contain several well-known
parametric families (location, scale, several types of skew distributions as shown in Ley and
Paindaveine [31], . . .) and allow for significant simplifications of the data under investigation
(see Lehmann and Casella [30], Section 1.4, for more details). To the best of the authors’ knowl-
edge, there exist no MLE characterizations for group families other than the location and scale
families.
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A univariate group family of distributions is obtained by subjecting a scalar random variable
with a fixed distribution to a suitable family of transformations. More prosaically, let X be a
random variable with density f defined on its support S and consider a transformation group H
(meaning that it is closed under both composition and inversion) of monotone increasing func-
tions Hθ :D ⊆ R → S depending on a single real parameter θ ∈ �0. The family of random
variables {H−1

θ (X),Hθ ∈ H} is called a group family. These variables possess densities of the
form

fH(x; θ) := H ′
θ (x)f

(
Hθ(x)

)
, (16)

where H ′
θ stands for the derivative of the mapping x 	→ Hθ(x) (which we therefore also suppose

everywhere differentiable); their support D does not depend on θ . We call θ a H-parameter for
f (x; θ). The most prominent examples are of course Hloc := {Hθ(x) = x − θ, x, θ ∈ R}, leading
to location families, and Hsca := {Hθ(x) = θx, x ∈ S, θ ∈ R+

0 } for S = R,R+
0 and R−

0 , yielding
scale families. For further examples, we refer to Lehmann and Casella [30], Section 1.4, and the
references therein.

Let us now determine the e.c.’s for H-parameter families. Assuming that the mappings θ 	→
Hθ(x) and θ 	→ H ′

θ (x) are differentiable, the H-score function associated with densities of the
form (16) corresponds to

ϕH
f (x; θ) := ∂θH

′
θ (x)

H ′
θ (x)

+ ∂θHθ (x)f ′(Hθ (x))

f (Hθ (x))
(17)

over D (it is set to 0 outside D). Extracting e.c.’s from equation (3) is all but evident here, as
(i) there is no structural reason for ∂θHθ (x) to cross the x-axis so as to allow to fix d to 1 as in
the scale case over R, and (ii) the generality of the model hampers a clear understanding of the
role of θ inside the densities. Especially the latter point is crucial, as e.c.’s cannot depend on the
parameter. We thus need to further specify the form of fH(x; θ) or, more exactly, the form of
the transformations in H and thus the action of θ inside the densities. We choose to restrict our
attention to transformations Hθ satisfying the following two factorizations:⎧⎪⎨

⎪⎩
∂θHθ (x) = T (θ)U1

(
Hθ(x)

)
,

∂θH
′
θ (x)

H ′
θ (x)

= T (θ)U2
(
Hθ(x)

)
,

where T , U1 and U2 are real-valued functions. At first sight, such restrictions might seem severe,
but there exist numerous one-parameter transformations enjoying these factorizations, including:

- transformations of the form Hθ(x) = a1(x)+a2(θ) defined over the entire real line, with a1

a monotone increasing differentiable function over R and a2 any real-valued differentiable
function. These transformations lead to “generalized location families” and satisfy the above
factorizations with T (θ) = a′

2(θ), U1(x) = 1 and U2(x) = 0;
- transformations of the form Hθ(x) = a1(x)a2(θ) defined over R,R+

0 or R−
0 , with a1 a

monotone increasing differentiable function over the corresponding domain and a2 a pos-
itive real-valued differentiable function. These transformations lead to “generalized scale
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families” and satisfy the above factorizations with T (θ) = a′
2(θ)/a2(θ), U1(x) = x and

U2(x) = 1;
- transformations of the form Hθ(x) = sinh(arcsinh(x)+ θ) defined over R. These are the so-

called sinh–arcsinh transformations put to use in Jones and Pewsey [26] in order to define
sinh–arcsinh distributions which allow to cope for both skewness and kurtosis. The above
factorizations are verified for T (θ) = 1, U1(x) = √

1 + x2 and U2(x) = x/
√

1 + x2.

Under these premisses, equation (3) becomes

d

(
U2

(
Hθ(x)

) + U1
(
Hθ(x)

)f ′(Hθ (x))

f (Hθ (x))

)

= U2
(
Hθ(x)

) + U1
(
Hθ(x)

)g′(Hθ (x))

g(Hθ (x))
∀x ∈ D,

which can be rewritten as

d

(
U2(x) + U1(x)

f ′(x)

f (x)

)
= U2(x) + U1(x)

g′(x)

g(x)
∀x ∈ S.

This first-order differentiable equation admits as solution g(x) = c exp((d − 1)
∫ x

U2(y)/

U1(y)dy)(f (x))d for some d > 0 (such that g is integrable) and c a normalizing constant. This
relationship establishes the H-based e.c.’s. As for the scale case, c = d = 1 when there exists
x0 ∈ S such that U1(x0) = 0, yielding e.c.’s constituted of singletons {f }.

For each transformation group H, we obtain the following MLE characterization theorem for
one-parameter group families. The proof of this result contains nothing new and is thus omitted.

Theorem 6.1. Let F (H) and G(H) be two distinct H-based e.c.’s and let their respective
representatives f and g be two continuously differentiable densities with common full sup-
port S. Let ϕH

f := U2(x) + U1(x)f ′(x)/f (x) be the H-score function of f . If ϕH
f is invert-

ible over S then there exists N ∈ N such that, for any n ≥ N , we have θ̂
(n)
f = θ̂

(n)
g for all

samples of size n if and only if there exist constants c, d ∈ R+
0 such that g(x) = c exp((d −

1)
∫ x

U2(y)/U1(y)dy)(f (x))d for all x ∈ S (with c = d = 1 if there exists x0 ∈ S such that
U1(x0) = 0), that is, if and only if F (H) = G(H). The smallest integer for which this holds is
MNSS = max{Nf ,3}, with Nf the MCSS as defined in Lemma 3.1.

Aside from location- and scale-based characterizations (or variations thereof) which are al-
ready available from Theorems 4.1 and 5.1, Theorem 6.1 allows, inter alia, to characterize asym-
metric distributions (namely the sinh–arcsinh distributions of Jones and Pewsey [26]) with re-
spect to their skewness parameter.

7. Examples

In this section, we analyze and discuss several examples of absolutely continuous distributions
in light of the findings of the previous sections. We indicate, in each case, the corresponding
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MNSS. As we shall see, we hereby retrieve a wide variety of existing results, and obtain several
new ones. We stress that, in each case discussed below, the minimal sample size provided is
optimal in the sense that counter-examples can be constructed if the results only are supposed to
hold true for smaller sample sizes. Moreover, we attract the reader’s attention to the fact that, in
some examples of scale-based characterizations, we need the scale-identification condition (15),
whereas in others it is superfluous, as explained in Section 5.

For the sake of clarity, we will adopt in this section the commonly used notations μ̂
(n)
f and

σ̂
(n)
f for location and scale ML estimators.

7.1. The Gaussian distribution

Consider the Gaussian distribution whose MLE characterizations for both the location and the
scale parameter have been extensively discussed in the literature. For φ the standard Gaussian
density, we get ϕφ(x) = x which is invertible over R and has image Im(ϕφ) = R. As already

mentioned several times, the MLE μ̂
(n)
φ is given by the sample arithmetic mean x̄. Thus, Theo-

rems 4.1 and 4.2 apply, with MNSS = 3 since P +
φ = P −

φ = ∞. The first corresponds to Azzalini
and Genton [4], Theorem 1, the second to Teicher [46], Theorem 1. Regarding the scale charac-
terization for σ̂

(n)
φ = (n−1 ∑n

i=1 x2
i )1/2, direct calculations reveal that ψφ(x) = 1 − x2 which is

invertible over both R+
0 and R−

0 and maps both domains onto (−∞,1). The conditions of The-
orem 5.2 are thus fulfilled and yield that the MNSS equals ∞. Hence we retrieve Teicher [46],
Theorem 3.

7.2. The gamma distribution

Consider the gamma distribution with tail parameter α > 0, whose density is given by

f (x) = 1

�(α)
xα−1 exp(−x)I(0,∞)(x),

where IA represents the indicator function of the set A. The exponential density is a special
case of gamma densities obtained by setting α = 1. Gamma distributions are not natural location
families; this can be seen, for instance, by considering the exponential case, where ϕf (x) = 1
and hence the location likelihood equations make no sense. Within the framework of the current
paper, we anyway do not provide a location-based MLE characterization of gamma densities,
since their support is only R+

0 instead of R. On the contrary, gamma densities allow for agreeable
scale characterizations. Indeed easy computations show that ϕf (x) = (−α + 1)/x + 1, ψf (x) =
α − x, which is thus invertible over R+

0 , Im(ψf ) = (−∞, α) and σ̂
(n)
f = α−1x̄. We can therefore

use Theorem 5.1 in combination with the scale-identification condition (15) to obtain that the
gamma distribution with shape α is characterizable w.r.t. its scale MLE α−1x̄ for an infinite
MNSS. We hereby recover Teicher [46], Theorem 2, and the univariate case of Marshall and
Olkin [34], Theorem 5.1.
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7.3. The generalized Gaussian distribution

Consider the one-parameter generalization of the normal distribution proposed in Ferguson [17],
with density

f (x) = |γ |αα

�(α)
exp

(
αγ x − α exp(γ x)

)
,

where α > 0 and γ , the additional parameter, differs from zero (Ferguson has proved that, for
γ → 0, this density converges to the Gaussian). This probability law is in fact strongly related
to the gamma distribution, as it is defined as γ −1 log(X) with X ∼ Gamma(α). Now, direct cal-
culations yield ϕf (x) = −αγ (1 − exp(γ x)), invertible over R, Im(ϕf ) = sign(γ )(−α|γ |,∞)

and μ̂
(n)
f = γ −1 log(n−1 ∑n

i=1 exp(γ xi)). Hence, from Theorem 4.1, we deduce that these dis-
tributions can be characterized in terms of their location parameter, with MNSS equal to ∞; we
retrieve Ferguson [17], Theorem 5. Concerning the scale part, ψf (x) = αγ x(1 − exp(γ x)) + 1
is not invertible over the whole real line, but invertible over both R+

0 and R−
0 , and maps both

half-lines onto (−∞,1). Consequently, Theorem 5.2 reveals that this distribution admits as well
a scale MLE characterization result, with infinite MNSS.

7.4. The Laplace distribution

Consider the Laplace distribution with density

f (x) = exp
(−|x|)/2.

One easily obtains ϕf (x) = sign(x) and ψf (x) = −x sign(x) + 1. While the former function is
clearly not invertible at all (but allows for a location MLE characterization; see the end of Sec-
tion 5), the latter is invertible on both R−

0 and R+
0 with Im(ψf ) = (−∞,1). Hence Theorem 5.2

applies and reveals that the Laplace distribution is also MLE-characterizable w.r.t. its scale pa-
rameter (with infinite MNSS), which complements the existing results on MLE characterizations
of the Laplace distribution from Ghosh and Rao [21], Kagan, Linnik and Rao [27], Marshall and
Olkin [34].

Corollary 7.1. The statistic

σ̂
(n)
f =

(
n−1

n∑
i=1

|xi |
)−1

is the MLE of the scale parameter σ within scale families over R for all samples of all sample
sizes if and only if the samples are drawn from a Laplace distribution.

For the sake of readability we will, here and in the sequel, content ourselves with such informal
statements of our characterization results; rigorous statements are straightforward adaptations of
the corresponding theorems from the previous sections.
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7.5. The Weibull distribution

Consider the Weibull distribution with density

f (x) = kxk−1 exp
(−xk

)
I(0,∞)(x),

where k > 0 is the shape parameter. As for gamma distributions, we do not provide a location-
based MLE characterization for this distribution on the positive real half-line. Regarding the
scale part, we have ϕf (x) = − k−1

x
+ kxk−1, ψf (x) = k(1 − xk), clearly invertible over R+

0 , and
Im(ψf ) = (−∞, k). Thus, all conditions for Theorem 5.1 are satisfied, from which we derive,
under the scale-identification condition (15), the following, to the best of our knowledge new,
MLE characterization of the Weibull distribution.

Corollary 7.2. Let condition (15) hold. Then the statistic

σ̂
(n)
f =

(
n−1

n∑
i=1

xk
i

)−1/k

is the MLE of the scale parameter σ within scale families over R+
0 for all samples of all sample

sizes if and only if the samples are drawn from a Weibull distribution with shape parameter k.

7.6. The Gumbel distribution

Consider the Gumbel distribution with density

f (x) = exp
(−x − exp(−x)

)
.

Straightforward manipulations yield ϕf (x) = 1 − exp(−x), invertible over R and Im(ϕf ) =
(−∞,1). Thus, all conditions for Theorem 4.1 are satisfied, from which we derive the following,
to the best of our knowledge new, MLE characterization of the Gumbel distribution (actually, of
the power-Gumbel distribution).

Corollary 7.3. The statistic

μ̂
(n)
f = log

[(
n−1

n∑
i=1

exp(−xi)

)−1]

is the MLE of the location parameter μ within location families over R for all samples of all
sample sizes if and only if the samples are drawn from a power-Gumbel distribution with density
c exp(−dx − d exp(−x)) for c, d ∈ R+

0 .

As for the scale part, it follows that ψf (x) = x(−1 + exp(−x))+ 1, non-invertible over R but
invertible over both R+

0 and R−
0 , and Im(ψf ) = (−∞,1). Consequently, Theorem 5.2 applies
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and shows that the Gumbel distribution (here not a general power-Gumbel distribution) allows as
well for a MLE characterization with respect to its scale parameter (with corresponding MNSS
equal to ∞).

7.7. The Student distribution

Consider the Student distribution with ν > 0 degrees of freedom, with density

f (x) = κ(ν)

(
1 + x2

ν

)−(ν+1)/2

for κ(ν) the appropriate normalizing constant. Then although the support of f is the whole real
line, the location score function ϕf (x) = (ν+1) x

ν+x2 is not invertible and thus we cannot provide
a location characterization. On the other hand straightforward computations yield

ψf (x) = 1 − (ν + 1)
x2

ν + x2
= −ν + ν(ν + 1)

ν + x2
.

This function is invertible over both the positive and the negative real half-line with Im(ψf ) =
(−ν,1) and thus the Student distribution with ν degrees of freedom is by virtue of Theorem 5.2
scale-characterizable with

MNSS =

⎧⎪⎪⎨
⎪⎪⎩

⌈
1 + 1

ν

⌉
, if ν < 1,

3, if ν = 1,

�1 + ν�, if ν > 1.

This result generalizes the scale characterization of the Gaussian distribution, which is a partic-
ular case of the Student distributions when ν tends to infinity. Note that the expression above
then indeed yields an infinite MNSS. Moreover, the Cauchy distribution, obtained for ν = 1, is
MLE-characterizable w.r.t. its scale parameter with an MNSS of 3.

7.8. The logistic distribution

Consider the logistic distribution, whose density is given by

f (x) = e−x

(1 + e−x)2
.

Straightforward manipulations yield ϕf (x) = tanh(x/2), which is invertible over R and
Im(ϕf ) = (−1,1). Theorem 4.1 applies and yields the (to the best of our knowledge) first MLE
characterization of the (power-)logistic distribution with respect to its location parameter (with
corresponding MNSS equal to 3).

Further, ψf (x) = 1 − x tanh(x/2) is not invertible over the whole real line, but is invertible
over both R+

0 and R−
0 , and maps both half-lines onto (−∞,1). Consequently, Theorem 5.2
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applies and yields the (to the best of our knowledge) first scale MLE characterization of the
logistic distribution, with infinite MNSS.

7.9. The sinh–arcsinh skew-normal distribution

As a final example, we consider the sinh–arcsinh skew-normal distribution of Jones and Pewsey
[26] whose density is given by

f (x) = 1√
2π

(1 + sinh2(arcsinh(x) + δ))1/2

(1 + x2)1/2
e− sinh2(arcsinh(x)+δ)/2,

where δ ∈ R is a skewness parameter regulating the asymmetric nature of the distribution.
Clearly, for δ = 0, corresponding to the symmetric situation, one retrieves the standard normal
distribution. Now, straightforward but tedious calculations provide us with expressions for ϕf

and ψf which can both be seen to be non-invertible. Hence, no location-based nor scale-based
characterizations can be obtained. However, the sinh–arcsinh skew-normal distribution can be
characterized w.r.t. its skewness parameter. As shown in Section 6, the sinh–arcsinh transform
belongs to the class of transforms leading to group families. Consequently, its skewness score
function is given by

ϕH
f (x) = U2(x) + U1(x)

φ′(x)

φ(x)
= −x3

(1 + x2)1/2

with φ the standard Gaussian density. This mapping is invertible over R with symmetric image R.
Theorem 6.1 therefore applies and yields the (to the best of our knowledge) first MLE charac-
terization of the sinh–arcsinh skew-normal distribution (with respect to its skewness parameter)
with an MNSS equal to 3.

8. Discussion and open problems

In this article, we have provided a unified treatment of the topic of MLE characterizations for
one-parameter group families of absolutely continuous distributions satisfying certain regularity
conditions. A natural question of interest is then in how far our methodology can be adapted
to other distributions which do not satisfy these assumptions. Of particular interest are (i) para-
metric families whose score function is either not invertible or not differentiable at a countable
number of points (such as, e.g., the Laplace distribution w.r.t. its location parameter), (ii) families
depending on more than one parameter and (iii) discrete families. Although we will not cover
these questions in full here, we conclude the paper by providing a number of intuitions on these
questions; in all cases it seems clear that our methodology provides – at least in principle – the
path towards a satisfactory answer.

Regarding the first point, an interesting issue to investigate is how the non-invertibility of the
score function influences the MNSS. Indeed in the case of a Laplace target the MNSS is known
to be equal to 4 (see Ghosh and Rao [21], Kagan, Linnik and Rao [27]). This increase is due
to the fact that the Laplace score function only takes on two distinct non-zero values so that
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having (9) for three sample points forces one of the observations to be 0 (otherwise the equality
cannot hold) and therefore the case n = 3 provides no more information than the case n = 2 (and
thus MNSS ≥ 4). It would of course be interesting to understand the influence of the number
of distinct values taken by a given score function on the corresponding MNSS. One would,
moreover, need to deal in this case with commensurability issues in order for the corresponding
identity (9) to hold; this would most certainly lead to interesting discussions. Aside from these
issues, however, the question of characterizability is, to the best of our understanding, covered
by our approach (see the end of Section 4).

Regarding the second point, it seems straightforward (but clearly requires some care) to extend
our method to a multi-dimensional location parameter, as is already done in Marshall and Olkin
[34] for a Gaussian target density. In a nutshell, it suffices to project the now multi-dimensional
location score function onto distinct-directional unit vectors and then proceed “as in the univari-
ate case”. On the contrary, dealing with a high-dimensional scale parameter seems more difficult,
as the scale parameter becomes a matrix-valued scatter or shape parameter. One possibility could
be to try to adapt Marshall and Olkin’s [34] working scheme, who have been able to provide an
MLE characterization for the scatter parameter of a multinormal distribution. Along these lines
a final issue that we have not considered is that of MLE characterizations of univariate target
distributions with respect to multivariate parameters (such as the Gaussian in terms of its two
parameters (μ,σ )). In support of our optimism for these multivariate setups, see Duerinckx and
Ley [16] where our methodology was successfully applied to the (perhaps more complex) case
of the spherical location parameter families.

Finally concerning the discrete setup, it seems clear that our approach again yields in principle
a satisfactory answer for discrete group families, although this will require a certain amount of
work. We defer the systematic treatment of this interesting question to later publications.

We conclude this paper by an intriguing question suggested by an anonymous referee, which
is the following: do characterization results survive mixtures of distributions? More concretely,
if a given distribution is MLE-characterizable w.r.t. a given parameter of interest, under which
conditions will mixtures of this distribution remain MLE-characterizable? This question is all
but straightforward to answer. Indeed, we have seen in Section 7 that the Student distribution is
only characterizable w.r.t. its scale parameter, whereas the logistic distribution admits an MLE
characterization w.r.t. both the location and scale parameter; the Student and the logistic distri-
bution are both scale mixtures of the Gaussian distribution, which is MLE-characterizable both
as a location and scale family. We leave this question as an open problem.
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