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Assume that one observes the kth, 2kth, . . . , nkth value of a Markov chain X1,h, . . . ,Xnk,h. That means
we assume that a high frequency Markov chain runs in the background on a very fine time grid but that
it is only observed on a coarser grid. This asymptotics reflects a set up occurring in the high frequency
statistical analysis for financial data where diffusion approximations are used only for coarser time scales.
In this paper, we show that under appropriate conditions the L1-distance between the joint distribution
of the Markov chain and the distribution of the discretized diffusion limit converges to zero. The result
implies that the LeCam deficiency distance between the statistical Markov experiment and its diffusion
limit converges to zero. This result can be applied to Euler approximations for the joint distribution of
diffusions observed at points �,2�, . . . , n�. The joint distribution can be approximated by generating
Euler approximations at the points �k−1,2�k−1, . . . , n�. Our result implies that under our regularity
conditions the Euler approximation is consistent for n → ∞ if nk−2 → 0.

Keywords: deficiency distance; diffusion processes; Euler approximations; high frequency time series;
Markov chains

1. Introduction

In this paper, we consider approximations of the joint distribution of a partially observed Markov
chain by the law of a discretely observed diffusion. More precisely we consider a Markov chain
X1,h, . . . ,Xnk,h with values at nk time points. This time points are equal to h,2h, . . . , nkh where
h is a time interval that converges to zero. We assume that this process is only observed at each
kth point, that is, at the time points kh,2kh, . . . , nkh. That means we assume that a high fre-
quency Markov chain runs in the background on a very fine time grid but that it is only observed
on a coarser grid. This asymptotics reflects a set up occurring in the high frequency statistical
analysis for financial data where diffusion approximations are used for coarser time scales. For
the finest scale, discrete pattern in the price processes become transparent that could not be mod-
eled by diffusions. The joint distribution of the observed values of the Markov chain is denoted by
Ph. We assume that this joint distribution can be approximated by the distribution of (Y ∗

1 , . . . , Y ∗
n )

where Y ∗
1 , . . . , Y ∗

n are the values of a diffusion Y on the equidistant grid kh,2kh, . . . , nkh, that
is, Y(ikh) = Y ∗

i . The joint distribution of (Y ∗
1 , . . . , Y ∗

n ) is denoted by Qh.
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In this paper, we show that

‖Ph − Qh‖1 → 0

under some regularity conditions if
n

k
→ 0.

This result can be applied to the asymptotic study of Markov experiments (Ph,θ : θ ∈ �) where �

is a finite or infinite-dimensional parameter set. Suppose that for this family of Markov chains our
assumptions apply uniformly for θ ∈ �. Then one gets that supθ∈� ‖Ph,θ − Qh,θ‖1 → 0 where
Qh,θ is the distribution of the discretized limiting diffusion. This implies that the Markov experi-
ment (Ph,θ : θ ∈ �) and the diffusion experiment (Qh,θ : θ ∈ �) are asymptotically equivalent in
the sense of Le Cam’s statistical theory of asymptotic equivalence of experiments. Asymptotic
equivalence of nonparametric experiments has been discussed in a series of papers starting with
[2] and [14]. Work of statistical experiments that converge to diffusions include [3,6,7,10,13,16].
Recently, Reiss [15] provided asymptotic equivalence of a stochastic volatility model with mi-
crostructure noise to a Gaussian shift experiment and a regression model whereas Buchmann
and Müller [4] considered the relation between GARCH and COGARCH in the framework of
statistical equivalence. Our result justifies approximating diffusion models for high frequency
financial processes that are observed on a coarser grid. We also outline that the Markov experi-
ment and its diffusion approximation differ in first order if n/k does not converge to zero. Then
skewness properties of the Markov chain do not vanish in first order. For a related paper see [8].
They consider estimation of the intensity of a discretely observed compound Poisson process
with symmetric Bernoulli jumps. For this model, they discuss limit experiments under different
assumptions on the limit of the difference between neighbored time points.

We only discuss Markov chains with continuous state space. The distribution of Markov
chains with discrete state space cannot be approximated by the distribution of continuous dif-
fusions. For asymptotic equivalence of the experiments (Ph,θ : θ ∈ �) and (Qh,θ : θ ∈ �), one
has to show that there exist Markov kernels Kn and Ln with supθ∈� ‖KnPh,θ − Qh,θ‖1 → 0
and supθ∈� ‖Ph,θ − LnQh,θ‖1 → 0. We expect that such results could be shown by using ex-
pansions for transition densities of Markov random walks. The approach of this paper is based
on expansions developed in [12]. The latter paper only considers Markov chains with continuous
state space. To treat Markov random walks, their approach has to be carried over to the case of
discrete state spaces.

2. The main result

We consider a Markov chain Xl,h in R that runs on very fine time grid and has the following
form

Xl+1,h = Xl,h + m(Xl,h)h + √
hξl+1,h, X0,h = x0 ∈ R, l = 0, . . . , nk − 1. (1)

The innovation sequence (ξl,h)l=1,...,nk is assumed to satisfy the Markov assumption: the con-
ditional distribution of ξl+1,h given the past Xl,h = xl, . . . ,X0,h = x0 depends only on the last
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value Xl,h = xl and has a conditional density q(xl, ·). The conditional variance corresponding to
this density is denoted by σ 2(xl) and the conditional νth order moment by μν(xl). The transition
densities of (Xr,h) given (Xl,h) are denoted by ph(rh − lh, xl, ·).

In the following, C denotes a finite strictly positive constant whose meaning may vary from
line to line. We make the following assumptions.

(A1) It holds that
∫

R
yq(x, y)dy = 0 for x ∈ R.

(A2) There exist positive constants σ� and σ� such that the variance σ 2(x) = ∫
R

y2q(x, y)dy

satisfies

σ� ≤ σ 2(x) ≤ σ�

for all x ∈ R.
(A3) There exist a positive integer S′ > 1 and a real nonnegative function ψ(y), y ∈ R satis-

fying supy∈R ψ(y) < ∞ and
∫

R
|y|Sψ(y)dy < ∞ with S = 2S′ + 4 such that∣∣Dν

yq(x, y)
∣∣ ≤ ψ(y), x, y ∈ R,0 ≤ ν ≤ 4.

Moreover, for all x, y ∈ R, j ≥ 1∣∣Dν
xq(j)(x, y)

∣∣ ≤ Cj−1/2ψ
(
j−1/2y

)
, 0 ≤ ν ≤ 3

for a constant C < ∞. Here, q(j)(x, y) denotes the usual j -fold convolution of q for
fixed x as a function of y:

q(j)(x, y) =
∫

q(j−1)(x, u)q(x, y − u)du,

q(1)(x, y) = q(x, y).

Note that the last condition is very weak. It is motivated by (A2) and the classical local limit
theorem.

(A4) The functions m(x) and σ(x) and their derivatives up to the order six are continuous and
bounded. Furthermore, D6

xσ (x) is Hölder continuous of order 0 < α < 1.
(A5) There exists κ < 1

5 and a constant C > 0 such that

C−1k−κ < hk < C.

The Markov chain Xl,h, see (1), is an approximation to the following stochastic differential
equation in R:

dYs = m(Ys)ds + σ(Ys)dWs, Y0 = x0 ∈ R, s ∈ [0, T ], (2)

where (Ws)s≥0 is the standard Wiener process. The conditional density of Yt , given Ys = x is
denoted by p(t − s, x, ·). We also write Y(s) for Ys . The joint distribution of Y on the equidistant
grid kh,2kh, . . . , nkh is denoted by Qh.

Our main result is stated in the following theorem.
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Theorem 1. Assume (A1)–(A5) and nk−1 → 0. Then it holds that ‖Ph − Qh‖1 → 0.

Remark 1. Theorem 1 can be generalized to higher dimensions and to the nonhomogenous case.
We only treat the univariate homogenous case for simplicity. In our proof, we make use of the
representation (4) from [5] that is only available for the univariate case. For multivariate reducible
diffusions, one can apply the Hermite expansion given in [1].

Remark 2. The assumptions of Theorem 1 allow to apply second order expansions for the tran-
sition densities of Markov chains that have been developed in [12]. In the proof of Theorem 1,
we make only use of first order expansions. For this reason, the assumptions could be weakened.
For example, we expect that one needs only four derivatives in (A4) instead of six. We do not
pursue this here because we will need the second order expansions for getting the results in the
following theorem.

Theorem 2. Assume (A1)–(A5), nh1+δ → 0 and nk−2 → 0, where δ > 0 is chosen such that the
statement of Theorem 4 holds for this choice. Suppose that the third conditional moment μ3(x)

of innovations of the Markov chain fulfills μ3(x) ≡ 0. Then it holds that ‖Ph − Qh‖1 → 0.

Remark 3. This result can be applied to Euler approximations of diffusions and to Markov
chains with symmetric innovations. For Euler schemes that approximate the joint density of a
diffusion at points �,2�, . . . , n� it means that one has to generate Euler approximations of
the diffusions at points �k−1,2�k−1, . . . , n� where k → ∞ is chosen such that nk−2 → 0 and
n(�/k)1+δ → 0. The joint distribution of the Euler values at the points �,2�, . . . , n� is then
the approximation of the joint distribution of the diffusion at these points. Under the regularity
assumptions of Theorem 2, the Euler approximation is consistent. A more detailed discussion of
the necessity of the above assumptions on k will be given elsewhere.

We now show that our assumption on the growth of k in Theorem 1 is sharp. For this purpose,
we consider a simple model of Markov chains that converge to a Gaussian process and we show
that for this case ‖Ph − Qh‖1 does not converge to zero if the condition on the growth of k in
Theorem 1 is not met.

Theorem 3. Assume (A1)–(A5) for Markov chains with m(x) ≡ 1 and innovation density
q(x, ·) = q(·) not depending on x. We assume that nk−1 → c for a constant c �= 0. Further-
more, suppose, that μ3(x) = μ3 �= 0 and that kh → 0. Then ‖Ph − Qh‖1 does not converge to
zero.

3. Proofs

The proof of Theorem 1 will be divided into several lemmas. For the proof, we will make use
of the results in [12] where Edgeworth type expansions of ph were given for nonhomogenous
Markov chains in R

d for d ≥ 1. We now restate their main result for one-dimensional homoge-
nous Markov chains. To formulate their result, we need some additional notation.
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We will use the following differential operators L and L̃:

Lf (t, x, y) = 1

2
σ 2(x)

∂2f (t, x, y)

(∂x)2
+ m(x)

∂f (t, x, y)

∂x
,

(3)

L̃f (t, x, y) = 1

2
σ 2(y)

∂2f (t, x, y)

(∂x)2
+ m(y)

∂f (t, x, y)

∂x
.

We also need the following convolution type binary operation ⊗:

f ⊗ g(t, x, y) =
∫ t

0
du

∫
R

f (u, x, z)g(t − u, z, y)dz.

We now introduce the following differential operators

F1[f ](t, x, y) = μ3(x)

6
D3

xf (t, x, y),

F2[f ](t, x, y) = μ4(x) − 3σ 4(x)

24
D4

xf (t, x, y).

The Gaussian transition densities p̃(t, x, y) are defined as

p̃(t, x, y) = (2π)−1/2σ(y)−1t−1/2 exp

(
− 1

2t

(
y − x − tm(y)

)2
σ(y)−2

)
.

We are now in the position to state the Edgeworth type expansion for Markov chain transition
densities from [12].

Theorem 4 ([12]). Assume (A1)–(A5). Then there exists a constant δ > 0 such that the following
expansion holds:

sup
x,y∈R

(kh)1/2
(

1 +
∣∣∣∣y − x√

kh

∣∣∣∣S′)
× ∣∣ph(kh, x, y) − p(kh, x, y) − h1/2π1(kh, x, y) − hπ2(kh, x, y)

∣∣ = O
(
h1+δ

)
,

where S′ is defined in Assumption (A3) and where

π1(t − s, x, y) = (
p ⊗ F1[p])(t − s, x, y),

π2(t − s, x, y) = (
p ⊗ F2[p])(t − s, x, y) + p ⊗ F1

[
p ⊗ F1[p]](t − s, x, y)

+ 1
2p ⊗ (

L2
� − L2)p(t − s, x, y).

Here the operator L� is defined as L̃, but with the coefficients “frozen” at the point x, that is,

L2
�f (t, x, y) = 1

4
σ 4(x)

∂4f (t, x, y)

(∂x)4
+ σ 2(x)m(x)

∂3f (t, x, y)

(∂x)3
+ m(x)2 ∂2f (t, x, y)

(∂x)2
.
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We will apply this theorem for transition densities over the interval (ikh, (i + 1)kh]. The
expansion of the theorem holds uniformly over 0 ≤ i ≤ n − 1.

We denote now the signed measure on R
n defined by the products of p + h1/2π1 as Q1

h and
the signed measure defined by the products of p + h1/2π1 + hπ2 as Q2

h.

Proof of Theorem 1. Theorem 1 immediately follows from the following two lemmas. �

In all lemmas of this section, we make the assumptions of Theorem 1.

Lemma 1. It holds that: ∥∥Q1
h − Qh

∥∥
1 = o(1) for n → ∞.

Lemma 2. It holds that: ∥∥Ph − Q1
h

∥∥
1 = o(1) for n → ∞.

The hard part of these two lemmas is the proof of Lemma 1. For the proof of the two lemmas,
we will use a series of lemmas that are stated and proved now. We will come back to the proofs
of Lemmas 1 and 2 afterwards.

In our proofs, we make use of the following representation of transition densities. For the
transition density p(t − s, x, ξ) of the diffusion (2), the following formula holds, see formula
(3.2) in [5]

p(t − s, x, y) = p̂(t − s, x, y)
(4)

× E exp

[
(t − s)

∫ 1

0
g
[
zδ

(
S(x), S(y)

) + √
(t − s)Bδ

]
dδ

]
,

where for 0 ≤ δ ≤ 1 Bδ is a Brownian bridge. Furthermore, for u ≥ 0 we put g(u) = − 1
2 (C2(u)+

C′(u)) and zδ(x, y) = (1 − δ)x + δy with

p̂(t − s, x, y) = 1√
2π(t − s)σ (y)

exp

[
− (S(y) − S(x))2

2(t − s)
+ H(y) − H(x)

]
, (5)

S(x) =
∫ x

0

du

σ(u)
,

(6)

H(x) =
∫ S(x)

0
C(u)du with C(u) = m(u)

σ(u)
− 1

2
σ ′(u)

for x, y, s, t ∈ R.
Note that under our assumptions g is bounded, |g(x)| ≤ M, and, hence, for t − s ≤ kh

E exp

[
(t − s)

∫ 1

0
g
[
zδ

(
S(x), S(ξ)

) + √
(t − s)Bδ

]
dδ

]
≤ exp[Mkh] ≤ C∗ (7)
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for some constant C∗ > 0 because of (A5). For the proof of Lemma 1 we make use of the follow-
ing lemmas. These lemmas make use of some further technical lemmas, given in Section 4 that
bound δ1(x, y) = √

hπ1(kh, x, y)/p(kh, x, y), δ2(x, y) = hπ2(kh, x, y)/p(kh, x, y) and partial
derivatives of the transition densities.

Lemma 3. Put �i = δ1(Y ((i − 1)kh),Y (ikh)). Then we have for all p ≥ 1 that under Qh

sup
1≤i≤n

EQh
|�i |p ≤ Cpk−p/2

for some constants Cp depending on p.

Proof of Lemma 3. This lemma directly follows from Lemma 9 and the representation (4).
Using these results, the moments of �i can be easily bounded by Gaussian moments. �

Lemma 3 implies that for all ρ > 0 under Qh

sup
1≤i≤n

|�i | = Op

(
k−1/2nρ

)
.

This bound would suffice for our purposes but for completeness we state the following sharper
bound that follows (from our Lemma 9 and) from Theorem 1 in [9], where bounds for moments
for the modulus of continuity of diffusions are given.

Lemma 4. We have that under Qh that

sup
1≤i≤n

|�i | = Op

(
k−1/2(logn)3/2).

We now state a result on the order of sums of �i ’s.

Lemma 5. Under Qh it holds that

n∑
i=1

�i = Op

(√
n

k

)
.

Proof. We have that EQh
[�i�j ] = 0 for i �= j because the definition of �i implies that

EQh
[�i |Yj : j ≤ i − 1] = 0. Thus, it holds

EQh

[(
n∑

i=1

�i

)2]
=

n∑
i=1

EQh

[
(�i)

2] = O
(
nk−1).

This follows from Lemma 3. �

Put An = {(Y (kh), . . . , Y (nkh)) : sup1≤i≤n |�i | ≤ τn

√
n
k
, |∑n

i=1 �i | ≤ τn

√
n
k
}, where τn →

∞ with τn

√
n
k

→ 0.
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Then we get from Lemmas 4–5 that

Qh(An) → 1. (8)

For the proof of Lemma 1, we need the following additional simple lemma.

Lemma 6. Consider the set Bn = {x ∈ R
n : |xi | ≤ τn

√
n
k

for i = 1, . . . , n; |∑n
i=1 xi | ≤ τn

√
n
k
} ⊂

R
n, where τn → ∞ with τn

√
n
k

→ 0. Then it holds that

sup
x∈Bn

∣∣∣∣∣1 −
n∏

i=1

(1 + xi)

∣∣∣∣∣ → 0 for n → ∞.

The lemma implies that

max
1≤j≤n

sup
x∈Bnj

∣∣∣∣∣1 −
j∏

i=1

(1 + xi)

∣∣∣∣∣ → 0 for n → ∞,

where Bnj = {x ∈ R
j : |xi | ≤ τn

√
n
k

for i = 1, . . . , j ; |∑j

i=1 xi | ≤ τn

√
n
k
} ⊂ R

n. This follows by

putting xi = 0 for i = j + 1, . . . , n.
The next lemma states that the expansion (8) also holds under the measure Q1

h.

Lemma 7. It holds that ∣∣Q1
h

∣∣(An) → 1.

Here, |Q1
h| means the total variation measure of Q1

h.

Proof. By application of Lemma 6, we get that

∣∣∣∣Q1
h

∣∣(An) − Qh(An)
∣∣ ≤

∫
I (An)

∣∣dQ1
h − dQh

∣∣
=

∫ ∣∣∣∣∣1 −
n∏

i=1

(1 + �i)

∣∣∣∣∣I (An)dQh

= o(1).

This implies the statement of the lemma because of (8). �

We now prove Lemma 1.
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Proof of Lemma 1. We have that

∥∥Q1
h − Qh

∥∥
1 = EQh

[∣∣∣∣∣1 −
n∏

i=1

(1 + �i)

∣∣∣∣∣
]

= EQh

[∣∣∣∣∣1 −
n∏

i=1

(1 + �i)

∣∣∣∣∣I (An)

]
+ o(1),

because of (8) and Lemma 7. Now the lemma follows from Lemma 6. �

It remains to prove Lemma 2.

Proof of Lemma 2. We can write Ph = Ph,1 × · · · × Ph,n and Q1
h = Q1

h,1 × · · · × Q1
h,n where

Ph,j , Q1
h,j are suitably defined (signed) Markov kernels. By using a telescope argument, we get

with constants C∗,C∗∗ > 0 that for n large enough

∥∥Ph − Q1
h

∥∥
1 =

∫ ∣∣ph(kh, x, z1) × · · · × ph(kh, zn−1, zn)

− (
p + h1/2π1

)
(kh, x, z1) × · · · × (

p + h1/2π1
)
(kh, zn−1, zn)

∣∣dz1 · · · dzn

≤
∫ ∣∣(ph − p − h1/2π1

)
(kh, x, z1)

∣∣
× ph(kh, z1, z2) × · · · × ph(kh, zn−1, zn)dz1 · · · dzn

+
∫ ∣∣p + h1/2π1

∣∣(kh, x, z1)
∣∣(ph − p − h1/2π1

)
(kh, z1, z2)

∣∣
× ph(kh, z2, z3) × · · · × ph(kh, zn−1, zn)dz1 · · · dzn

+ · · · +
∫ ∣∣p + h1/2π1

∣∣(kh, x, z1) × · · · × ∣∣p + h1/2π1
∣∣(kh, zn−2, zn−1)

× ∣∣(ph − p − h1/2π1
)
(kh, zn−1, zn)

∣∣dz1 · · · dzn

≤ C∗

k

(
1 +

n−1∑
j=1

EQh

[
j∏

i=1

(|1 + �i |
)])

≤ C∗

k

(
1 +

n∑
j=1

∥∥Q1
h,j

∥∥
1

)

≤ n
C∗

k

(
1 + o(1)

) ≤ C∗∗n
k

= o(1), n → ∞,
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where ‖Q1
h,j‖1 = ∫ |p + h1/2π1|(kh, x, z1) × · · · × |p + h1/2π1|(kh, x, zj )dz1 · · · · · dzj . We

used that

sup
x

∫ ∣∣(ph − p − h1/2π1
)
(kh, x, z)

∣∣dz ≤ C∗

k
(9)

for some constant C∗ > 0 and that uniformly in 1 ≤ j ≤ n, ‖Q1
h,j‖1 ≤ ‖Qh,j‖1 + ‖Q1

h,j −
Qh,j‖1 = 1 + ‖Q1

h,j − Qh,j‖1 = 1 + o(1). For the last equality, we used Lemma 1.
From Theorem 4, we get that the left-hand side of the inequality can be bounded by:

sup
x

∫ ∣∣hπ2(kh, x, z)
∣∣dz + O

(
h1+δ

)
sup
x

∫
(kh)−1/2

(
1 +

∣∣∣∣z − x√
kh

∣∣∣∣S′)−1

dz. (10)

According to Assumption (A5) hk is bounded. Thus, the second term in (10) is of order
O(h1+δ) = O((hk)1+δk−1−δ) = O(k−1−δ) = O(k−1).

For the first term, we have the following bound from Lemma 11:

O
(
k−1) sup

x

∫
p(kh, x, z)

[
1 +

( |z − x|√
kh

)7]
dz.

Now, the second factor of this bound is of order O(1) because of (4). Thus, the bound is of order
O(k−1). This shows claim (9) and concludes the proof of the lemma. �

Proof of Theorem 2. It is enough to prove that∥∥Qh − Q2
h

∥∥
1 → 0, n → ∞ (11)

and ∥∥Ph − Q2
h

∥∥
1 ≤ Cnh1+δ. (12)

Claim (12) can be shown with arguments similar to the ones used in the proof of Lemma 2.
Instead of the bound 10, one now uses the expansion of Theorem 4.

The proof of (11) is close to the proof of Lemma 1. With �
(2)
i = δ2(Y ((i − 1)kh),Y (ikh)),

we obtain as it was done before

sup
1≤i≤n

E
∣∣�(2)

i

∣∣p ≤ Cpk−p, (13)

sup
1≤i≤n

∣∣�(2)
i

∣∣ = Op

(
k−1(logn)7/2), (14)

n∑
i=1

�
(2)
i = Op

(√
n

k

)
(15)

and the assertion of Theorem 2 follows with the same arguments as used in the proof of Theo-
rem 1. �
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Proof of Theorem 3. Without loss of generality, we assume that
∫

x2q(x)dx = 1. Suppose that
‖Ph −Qh‖1 does converge to zero. This implies that the loglikelihood log(dPh/dQh) converges
to zero in Qh-probability. Thus, we have that

n∑
i=1

log
(
1 + �i + �

(2)
i

) Qh→ 0.

Note that the bounds (13)–(15) remain valid under the assumptions of Theorem 3. We now apply
Lemma 4 and (14). With a Taylor expansion of the logarithm, we get from the last expression
that

n∑
i=1

�i − 1

2
�2

i + �
(2)
i

Qh→ 0.

Because of (15) this shows that

n∑
i=1

�i − 1

2
�2

i

Qh→ 0. (16)

We will show that under Qh

n∑
i=1

�i
d→ N

(
0, σ 2) (17)

with σ 2 = 22cμ2
3 > 0 where c is the limit of n/k. Note that (17) contradicts (16) because these

two limit statements would imply that

1

2

n∑
i=1

�2
i

d→ N
(
0, σ 2).

This is not possible because non negative random variables cannot converge in distribution to a
normal limit with strictly positive variance. Thus for the statement of the theorem, it remains to
prove (17).

For the proof of (17), we will use a martingale central limit theorem for the martingale∑i
j=1 �j with σ -field Fh,i = σ(Y (0), Y (kh), . . . , Y (ikh)). According to Theorem 3.2 and

Corollary 3.1 in [11], we have for (17) to check that

n∑
i=1

E
[
�2

i |Fh,i−1
] → σ 2, in probablity, (18)

max
1≤i≤n

�2
i → 0, in probablity, (19)

E
[

max
1≤i≤n

�2
i

]
= O(1). (20)
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Claims (19)–(20) follow directly from Lemmas 3–4. Here, for the proof of (20) one can use the
simple bound max1≤i≤n �2

i ≤ ∑n
i=1 �2

i . Thus for the statement of the theorem it only remains
to prove (18).

For the limiting diffusion Ys we get that dYs = ds + dWs . For this case, it holds that
p(s, t, x, y) = p̂(s, t, x, y) = (2π(t − s))−1/2 exp(−(y − x − (t − s))2(2(t − s))−1). We now
give an estimate for

6h−1/2δ1(x, y)p(kh, x, y) = μ3

∫ kh

0
du

∫
p(u,x, ξ)

∂3

∂ξ3
p(kh − u, ξ, y)dξ. (21)

Calculations close to the proof of (33) give the following estimate with a constant C > 0:∣∣∣∣∂3p(t, x, y)

∂x3
+ ∂3p(t, x, y)

∂y3

∣∣∣∣ ≤ Cp(t, x, y)√
t

(
1 +

∣∣∣∣y − x√
t

∣∣∣∣3)
.

Using this estimate in (21), we obtain

6h−1/2δ1(x, y)p(kh, x, y) = I (x, y) + II(x, y),

where

II(x, y) = −μ3

∫ kh

0
du

∫
p(u,x, ξ)

∂3

∂y3
p(kh − u, ξ, y)dξ

= −μ3
∂3

∂y3

∫ kh

0
du

∫
p(u,x, ξ)p(kh − u, ξ, y)dξ

= −μ3kh
∂3

∂y3
p(kh, x, y) (22)

= −μ3
p(kh, x, y)√

kh

((√
kh − y − x√

kh

)3

− 2

(√
kh − y − x√

kh

)2

−
(√

kh − y − x√
kh

))
= −μ3

p(kh, x, y)√
kh

Q3

(√
kh − y − x√

kh

)
with Q3(z) = z3 − 2z2 − z. For the term I (x, y), we have the following bound with a (new)
constant C > 0:

∣∣I (x, y)
∣∣ ≤ C

∫ kh

0
du

∫
p(u,x, ξ)p(kh − u, ξ, y)√

kh − u

(
1 +

∣∣∣∣ y − x√
kh − u

∣∣∣∣3)
dξ.

Using the same substitution as in the proof of Lemma 9, we obtain the following estimate

∣∣I (x, y)
∣∣ ≤ C

√
khp(kh, x, y)P3

(∣∣∣∣y − x√
kh

∣∣∣∣) (23)
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for a polynomial P3(z) of degree 3 with positive coefficients. Put now

�1,i = h1/2I (Y ((i − 1)kh),Y (ikh))

6p(kh,Y ((i − 1)kh),Y (ikh))
,

�2,i = h1/2II(Y ((i − 1)kh),Y (ikh))

6p(kh,Y ((i − 1)kh),Y (ikh))
.

We will show that

n∑
i=1

E
[
�2

1,i |Fh,i−1
] → 0, in probablity, (24)

n∑
i=1

E
[
�2

2,i |Fh,i−1
] → σ 2, in probablity. (25)

Because of �i = �1,i + �2,i this shows (18).
We get from (23) with a new constant C > 0 that

E
[
�2

1,i |Fh,i−1
] ≤ Ckh2E

[
P3

(∣∣∣∣Y(ikh) − Y((i − 1)kh)√
kh

∣∣∣∣)2∣∣∣Fh,i−1

]
. (26)

Conditionally given Fh,i−1, (Y (ikh) − Y((i − 1)kh))/
√

kh has a normal distribution with
mean

√
kh and variance 1. Because of kh → 0 (by assumption), we get that the expectation on

the right hand side of (26) is uniformly bounded, for 1 ≤ i ≤ n,n ≥ 1. Furthermore, we have that
nkh2 = (n/k)(kh)2 → 0. Thus, (26) implies (24).

It remains to check (25). For the proof of this claim, we apply the explicit expression (22) and
we get that

n∑
i=1

E
[
�2

2,i |Fh,i−1
] = 1

k
μ2

3

n∑
i=1

E

[
Q3

(√
kh − Y(ikh) − Y((i − 1)kh)√

kh

)2∣∣∣Fh,i−1

]

= n

k
μ2

3
1√
2π

∫ (
z6 + 2z4 + z2)e−z2/2 dz

= 22
nμ2

3

k
.

Now, because of n/k → c, we get that the right-hand side of this equation converges to σ 2. This
concludes the proof. �

4. Some technical lemmas

This section collects some technical lemmas that were used in the proofs of the last section. In
all lemmas of this section, we make the assumptions of Theorem 1.
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Lemma 8. For all c > 0 there exists a constant C > 0 such that the following estimates hold for
0 ≤ t − s ≤ c ∣∣∣∣ ∂

∂x
p(t − s, x, y)

∣∣∣∣ ≤ C
p(t − s, x, y)√

t − s

(√
t − s + |y − x|√

t − s

)
, (27)∣∣∣∣ ∂

∂y
p(t − s, x, y)

∣∣∣∣ ≤ C
p(t − s, x, y)√

t − s

(√
t − s + |y − x|√

t − s

)
, (28)

∣∣∣∣ ∂2

∂y2
p(t − s, x, y)

∣∣∣∣ ≤ C
p(t − s, x, y)

t − s

(
1 + √

t − s + |y − x|√
t − s

)2

, (29)

∣∣∣∣ ∂2

∂x2
p(t − s, x, y)

∣∣∣∣ ≤ C
p(t − s, x, y)

t − s

(
1 + √

t − s + |y − x|√
t − s

)2

, (30)

∣∣∣∣ ∂3

∂x3
p(t − s, x, y)

∣∣∣∣ ≤ C
p(t − s, x, y)

(t − s)3/2

(
1 + √

t − s + |y − x|√
t − s

)3

, (31)

∣∣∣∣ ∂4

∂x2 ∂y2
p(t − s, x, y)

∣∣∣∣ ≤ C
p(t − s, x, y)

(t − s)2

(
1 + √

t − s + |y − x|√
t − s

)4

, (32)∣∣∣∣( ∂2

∂x ∂y
− ∂2

∂x2

)
p(t − s, x, y)

∣∣∣∣ ≤ C
p(t − s, x, y)√

t − s
(33)

×
(

1 + |y − x|√
t − s

+
∣∣∣∣ y − x√

t − s

∣∣∣∣2

+
∣∣∣∣ y − x√

t − s

∣∣∣∣3)
.

Proof. We prove the second, the third and the last inequality. The remaining inequalities can be
proved exactly in the same way. From (5), we obtain

∂

∂y
p̂(t − s, x, y) = − σ ′(y)√

2π(t − s)σ 2(y)
exp

[
− (S(y) − S(x))2

2(t − s)
+ H(y) − H(x)

]

+ 1√
2π(t − s)σ (y)

exp

[
− (S(y) − S(x))2

2(t − s)
+ H(y) − H(x)

]
(34)

×
(

H ′(y) − (S(y) − S(x))

(t − s)σ (y)

)
= p̂(t − s, x, y)

[
−σ ′(y)

σ (y)
+ H ′(y) − S(y) − S(x)

(t − s)σ (y)

]
,

∂2

∂y2
p̂(t − s, x, y) = ∂

∂y
p̂(t − s, x, y)

[
−σ ′(y)

σ (y)
+ H ′(y) − S(y) − S(x)

(t − s)σ (y)

]
+ p̂(t − s, x, y)

[
(σ ′(y))2 − σ(y)σ ′′(y)

σ 2(y)
+ H ′′(y)
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− 1 − σ ′(y)(S(y) − S(x))

(t − s)σ 2(y)

]
(35)

= p̂(t − s, x, y)

[
−σ ′(y)

σ (y)
+ H ′(y) − S(y) − S(x)

(t − s)σ (y)

]2

+ p̂(t − s, x, y)

[
(σ ′(y))2 − σ(y)σ ′′(y)

σ 2(y)
+ H ′′(y)

− 1

(t − s)σ 2(y)
+ (S(y) − S(x))

(t − s)

σ ′(y)

σ 2(y)

]
.

It follows from (34) and (35) and our assumptions that∣∣∣∣ ∂

∂y
p̂(t − s, x, y)

∣∣∣∣ ≤ C
p̂(t − s, x, y)√

t − s

(√
t − s + |S(y) − S(x)|√

t − s

)
, (36)

∣∣∣∣ ∂2

∂y2
p̂(t − s, x, y)

∣∣∣∣ ≤ C
p̂(t − s, x, y)

t − s

(
1 + √

t − s + |S(y) − S(x)|√
t − s

)2

. (37)

It is easy to see that∣∣∣∣ ∂

∂y
E exp

[
(t − s)

∫ 1

0
g
[
zδ

(
S(x), S(y)

) + √
(t − s)Bδ

]
dδ

]∣∣∣∣
(38)

≤ C(t − s)E exp

[
(t − s)

∫ 1

0
g
[
zδ

(
S(x), S(y)

) + √
(t − s)Bδ

]
dδ

]
,∣∣∣∣ ∂2

∂y2
E exp

[
(t − s)

∫ 1

0
g
[
zδ

(
S(x), S(y)

) + √
(t − s)Bδ

]
dδ

]∣∣∣∣
(39)

≤ C(t − s)2E exp

[
(t − s)

∫ 1

0
g
[
zδ

(
S(x), S(y)

) + √
(t − s)Bδ

]
dδ

]
.

The second and the third inequality of the statement of the lemma now follow from our assump-
tions and from (4), (7), (36)–(39).

It remains to show (33). For a proof of this claim, note that(
∂2

∂x ∂y
− ∂2

∂x2

)
p̂(t − s, x, y)

= p̂(t − s, x, y)

[(
S(y) − S(x)

(t − s)σ (x)
− H ′(x)

)
×

(
−σ ′(y)

σ (y)
+ H ′(y) − H ′(x) + (S(y) − S(x))(σ−1(x) − σ−1(y))

t − s

)
+

(
−H ′′(x) − σ ′(x)

σ 2(x)

(S(y) − S(x))

t − s
− 1

σ(x)

σ−1(x) − σ−1(y)

t − s

)]
.
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Claim (33) follows from our assumptions and (4). �

Put

δ1(x, y) = √
h

π1(kh, x, y)

p(kh, x, y)
.

We will also make use of the following bound.

Lemma 9. There exists a constant C such that for x, y ∈ R

∣∣δ1(x, y)
∣∣ ≤ C√

k

(
1 + |y − x|√

kh

)3

.

Proof. Note that by definition of π1:

6h−1/2δ1(x, y)p(kh, x, y) =
∫ kh

0
du

∫
p(u,x, ξ)μ3(ξ)

∂3

∂ξ3
p(kh − u, ξ, y)dξ

=
∫ kh/2

0
du · · · +

∫ kh

kh/2
du · · · (40)

� �1 + �2.

We now apply the estimates of Lemma 8 to obtain the upper bounds for �1 and �2 in (40). For
u ∈ [ kh

2 , kh], we apply two times integrations by parts. From our assumptions on μ3(ξ) and from
(7), (28) and (29) we obtain that

|�2| =
∣∣∣∣∫ kh

kh/2
du

∫
∂2

∂ξ2

[
p(u,x, ξ)μ3(ξ)

] ∂

∂ξ
p(kh − u, ξ, y)dξ

∣∣∣∣
≤

∫ kh

kh/2
du

∫ ∣∣∣∣ ∂2

∂ξ2

[
p(u,x, ξ)μ3(ξ)

]∣∣∣∣∣∣∣∣ ∂

∂ξ
p(kh − u, ξ, y)

∣∣∣∣dξ

≤ C

∫ kh

kh/2
du

∫
p(u,x, ξ)

u

(
1 + √

u + |S(ξ) − S(x)|√
u

)2

(41)

× p(kh − u, ξ, y)√
kh − u

(√
kh − u + |S(y) − S(ξ)|√

kh − u

)
dξ

≤ C

kh
exp[2Mkh]

∫ kh

kh/2

du√
kh − u

∫
p̂(u, x, ξ)p̂(kh − u, ξ, y)

(
1 + √

u + |S(ξ) − S(x)|√
u

)2

×
(√

kh − u + |S(y) − S(ξ)|√
kh − u

)
dξ.
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For u ∈ [0, kh
2 ] we get from (7), (28) and (29) again by applying integration by parts:

|�1| =
∫ kh/2

0
du

∫ ∣∣∣∣ ∂

∂ξ

[
p(u,x, ξ)μ3(ξ)

]∣∣∣∣∣∣∣∣ ∂2

∂ξ2
p(kh − u, ξ, y)

∣∣∣∣dξ

≤ C

∫ kh/2

0
du

∫
p(u,x, ξ)√

u

(√
u + |S(ξ) − S(x)|√

u

)

× p(kh − u, ξ, y)

kh − u

(
1 + √

kh − u + |S(y) − S(ξ)|√
kh − u

)2

dξ (42)

≤ C

kh
exp[2Mkh]

∫ kh/2

0

du√
u

∫
p̂(u, x, ξ)p̂(kh − u, ξ, y)

(√
u + |S(ξ) − S(x)|√

u

)

×
(

1 + √
kh − u + |S(y) − S(ξ)|√

kh − u

)2

dξ.

We now use the following substitution:

u′ = kh − u,

z(ξ) =
(

kh

kh − u′

)1/2
(S(ξ) − S(y))√

u′

+
(

u′

kh − u′

)1/2
(S(y) − S(x))√

kh
.

Note that

dξ = (
kh − u′)1/2(

u′)1/2
(kh)−1/2σ(ξ)dz, (43)

z2 + (S(y) − S(x))2

kh
= kh

(kh − u′)
(S(ξ) − S(y))2

(u′)

+ (u′)
(kh − u′)

(S(y) − S(x))2

kh

+ 2
(S(ξ) − S(y))(S(y) − S(x))

kh − u′ + (S(y) − S(x))2

kh
(44)

= (S(ξ) − S(y))2

u′ + (S(ξ) − S(y))2

kh − u′

+ 2
(S(ξ) − S(y))(S(y) − S(x))

kh − u′ + (S(y) − S(x))2

kh − u′

= (S(ξ) − S(y))2

u′ + (S(ξ) − S(x))2

kh − u′ .
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From (43) and (44), we get that

|�1| ≤ C

kh
exp[2Mkh] exp

[
H(y) − H(x)

]
×

∫ kh

kh/2

du′
√

kh − u′

∫
1√

2π(kh − u′)σ (ξ)

1√
2π(u′)σ (y)

× exp

[
− (S(ξ) − S(x))2

2(kh − u′)
− (S(y) − S(ξ))2

2(u′)

]
×

(√
kh − u′ + |S(ξ) − S(x)|√

kh − u′

)

×
(

1 + √
u′ + |S(y) − S(ξ)|√

u′

)2

dξ

≤ C

kh
exp[2Mkh]exp[H(y) − H(x)]√

2πkhσ(y)
exp

(
− (S(y) − S(x))2

2kh

)

×
∫ kh

kh/2

du′
√

kh − u′

∫
dz√
2π

exp

(
−z2

2

)
(45)

×
(

1 + √
u′ +

√
u′
kh

|S(y) − S(x)|√
kh

+ |z|
√

kh − u′
kh

)2

×
(√

kh − u′ +
√

kh − u′
kh

|S(y) − S(x)|√
kh

+ |z|
√

u′
kh

)
≤ C

kh
exp[2Mkh]p̂(kh, x, y)

∫ kh

kh/2

du′
√

kh − u′

∫
dz√
2π

exp

(
−z2

2

)

×
(

1 + √
kh + |S(y) − S(x)|√

kh
+ |z|

)2(√
kh + |S(y) − S(x)|√

kh
+ |z|

)

≤ C√
kh

exp[2Mkh]p̂(kh, x, y)

∫
dz√
2π

exp

(
−z2

2

)(
1 + √

kh + |S(y) − S(x)|√
kh

+ |z|
)3

≤ C√
kh

p(kh, x, y)

(
1 + |S(y) − S(x)|√

kh

)3

.

By similar calculations, we obtain that

|�2| ≤ C√
kh

p(kh, x, y)

(
1 + |S(y) − S(x)|√

kh

)3

. (46)

The lemma now follows from our assumptions on σ, (40), (45) and (46). �
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We will also make use of the following bound.

Lemma 10. For any polynomials Pl(x) and Pm(x) of degrees l and m, there exists a constant
C, depending only on l, m and the coefficients of the polynomials, such that uniformly for w ∈
[0, kh/4) the following inequalities hold∫ kh/4

0
u−1/2

∫
p(u,x, z)Pl

(∣∣∣∣z − x√
u

∣∣∣∣)p(kh − w − u, z, y)Pm

(∣∣∣∣ y − z√
kh − w − u

∣∣∣∣)dz du

≤ C
√

khp(kh − w,x, y)

(
1 +

∣∣∣∣ y − x√
kh − w

∣∣∣∣l+m)
.

Proof. These bounds can be easily shown by using the representation (4) and calculations of
similar convolution integrals for Gaussian densities. �

Put

δ2(x, y) = h
π2(kh, x, y)

p(kh, x, y)
.

We now state a bound for δ2(x, y).

Lemma 11. There exists a constant C such that for x, y ∈ R

∣∣δ2(x, y)
∣∣ ≤ C

k

[
1 +

( |y − x|√
kh

)7]
.

Proof. Note that the function π2(kh, x, y) can be written as

π2(kh, x, y) = �3 + �4,

where

�3 =
4∑

i=1

∫ kh

0
du

∫
p(u,x, ξ)fi(ξ)

∂i

∂ξ i
p(kh − u, ξ, y)dξ,

with f4(ξ) = μ4(ξ)−3σ 4(ξ) and fi(ξ), i = 1,2,3, depending on the coefficients of the operator
L and their derivatives up to the order 2. Furthermore, the term �4 is defined as

�4 = 1

36

∫
u+w≤kh;u,w≥0

p
(
u,x, ξ∗)μ3

(
ξ∗) ∂3

(∂ξ∗)3
p
(
kh − u − w,ξ∗, ξ

)
μ3(ξ)

× ∂3

(∂ξ)3
p(w, ξ, y)dξ dξ∗ dudw.
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Applying the same arguments as in the proof of Lemma 9, we get∣∣∣∣∣
3∑

i=1

∫ kh

0
du

∫
p(u,x, ξ)fi(ξ)

∂i

∂ξ i
p(kh − u, ξ, y)dξ

∣∣∣∣∣ ≤ C√
kh

p(kh, x, y)

(
1 + |y − x|√

kh

)3

.

For i = 4, we have to estimate the integral∫ kh

0
du

∫
p(u,x, ξ)f4(ξ)

∂4

∂ξ4
p(kh − u, ξ, y)dξ.

With calculations very similar to the ones used in the proof of Lemma 9 we get

|�3| ≤ C

kh
p(kh, x, y)

[
1 +

( |y − x|√
kh

)4]
. (47)

It remains to bound �4. We write

�4 = �4a + �4b + �4c,

where

�4a = 1

36

∫
Ia

· · · dξ dξ∗ dudw,

�4b = 1

36

∫
Ib

· · · dξ dξ∗ dudw,

�4c = 1

36

∫
Ic

· · · dξ dξ∗ dudw,

Ia = {(
u,w, ξ, ξ∗) :u,w, ξ, ξ∗ ∈ R;u + w ≤ kh;0 ≤ u; kh/4 ≤ w

}
,

Ib = {(
u,w, ξ, ξ∗) :u,w, ξ, ξ∗ ∈ R;u + w ≤ kh; kh/4 ≤ u;0 ≤ w < kh/4

}
,

Ic = {(
u,w, ξ, ξ∗) :u,w, ξ, ξ∗ ∈ R;u + w ≤ kh;0 ≤ u < kh/4;0 ≤ w < kh/4

}
.

We now show that for some constant C > 0

|�4c| ≤ C

kh
p(kh, x, y)

[
1 +

( |y − x|√
kh

)4]
. (48)

For this estimate one applies the following bound that follows by partial integration:

|�4c| ≤ 1

36

∣∣∣∣∫
Ic

∂

∂ξ∗
[
p
(
u,x, ξ∗)μ3

(
ξ∗)] ∂4

(∂ξ∗)2(∂ξ)2
p
(
kh − u − w,ξ∗, ξ

)
μ3(ξ)

× ∂

∂ξ
p(w, ξ, y)dξ dξ∗ dudw

∣∣∣∣.
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The integrand can be bounded with the help of (27), (28) and (32). Because of the bounds of
Lemma 10 this implies (48).

To bound �4a we use that:

36|�4a | ≤
∣∣∣∣∫

Ia

∂

∂ξ∗
[
p
(
u,x, ξ∗)μ3(ξ)

][ ∂2

(∂ξ∗)2
− ∂2

(∂ξ∗)(∂ξ)

]
p
(
kh − u − w,ξ∗, ξ

)
μ3(ξ)

× ∂3

(∂ξ)3
p(w, ξ, y)dξ dξ∗ dudw

∣∣∣∣
+

∣∣∣∣∫
Ia

∂

∂ξ∗
[
p
(
u,x, ξ∗)μ3(ξ)

] ∂

∂ξ∗ p
(
kh − u − w,ξ∗, ξ

) ∂

∂ξ
μ3(ξ)

× ∂3

(∂ξ)3
p(w, ξ, y)dξ dξ∗ dudw

∣∣∣∣
+

∣∣∣∣∫
Ia

∂

∂ξ∗
[
p
(
u,x, ξ∗)μ3(ξ)

] ∂2

(∂ξ∗)(∂ξ)

[
p
(
kh − u − w,ξ∗, ξ

)
μ3(ξ)

]
× ∂3

(∂ξ)3
p(w, ξ, y)dξ dξ∗ dudw

∣∣∣∣
= �4aa + �4ab + �4ac.

These terms can be easily bounded by using the bounds of Lemma 8. Because of the bounds of
Lemma 10, this implies

|�4a | ≤ C

kh
p(kh, x, y)

[
1 +

( |y − x|√
kh

)7]
. (49)

To get a bound for �4ac we use that by partial integration:

�4ac =
∣∣∣∣∫

Ia

∂

∂ξ∗
[
p
(
u,x, ξ∗)μ3(ξ)

] ∂

∂ξ∗
[
p
(
kh − u − w,ξ∗, ξ

)
μ3(ξ)

]
× ∂4

(∂ξ)4
p(w, ξ, y)dξ dξ∗ dudw

∣∣∣∣.
Similarly one shows that

|�4b| ≤ C

kh
p(kh, x, y)

[
1 +

( |y − x|√
kh

)7]
. (50)

The statement of Lemma 11 follows now from (47), (49), (50) and (48). �
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