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Adaptive and interacting Markov Chains Monte Carlo (MCMC) algorithms are a novel class of non-
Markovian algorithms aimed at improving the simulation efficiency for complicated target distributions.
In this paper, we study a general (non-Markovian) simulation framework covering both the adaptive and
interacting MCMC algorithms. We establish a central limit theorem for additive functionals of unbounded
functions under a set of verifiable conditions, and identify the asymptotic variance. Our result extends all
the results reported so far. An application to the interacting tempering algorithm (a simplified version of the
equi-energy sampler) is presented to support our claims.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods generate samples from distributions known up to
a scaling factor.

In the last decade, several non-Markovian simulation algorithms have been proposed. In the
so-called adaptive MCMC algorithm, the transition kernel of the MCMC algorithm depends on a
finite dimensional parameter which is updated at each iteration from the past values of the chain
and the parameters. The prototypical example is the adaptive Metropolis algorithm, introduced in
[21] (see [32] and the references therein for recent references). Many other examples of adaptive
MCMC algorithms are presented in the survey papers by Andrieu and Thoms [6], Rosenthal [31],
Atchadé et al. [8].

In the so-called Interacting MCMC, several processes are simulated in parallel, each targeting
different distribution. Each process might interact with the whole past of its neighboring pro-
cesses. A prototypical example is the equi-energy sampler introduced in [24], where the different
processes target a tempered version of the target distribution. The convergence of this algorithm
has been considered in a series of papers by Andrieu et al. [1,2,4] and in [18]. Different vari-
ants of the interacting MCMC algorithm have been later introduced and studied in [12,14] and
[13]. These algorithms are so far limited to specific scenarios, and the assumptions used in these
papers preclude the applications of their results in the applications considered in this paper.
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The analysis of the convergence of these algorithms is involved. Whereas the basic building
blocks of these simulation algorithms are Markov kernels, the processes generated by these tech-
niques are no longer Markovian. Indeed, each individual process either interacts with its distant
past, or the distant past of some auxiliary processes.

The ergodicity and the consistency of additive functionals for adaptive and interacting Markov
Chains have been considered in several recent papers: see [18] and the references therein. Up
to now, there are much fewer works addressing central limit theorems (CLT). In [5] the authors
establish the asymptotic normality of additive functionals for a special class of adaptive MCMC
algorithms in which a finite dimensional parameter is adapted using a stochastic approximation
procedure. Atchadé [10] established a CLT for general adaptive MCMC samplers under stronger
conditions than in [5], by assuming simultaneous ergodicity of the transition kernels involved
in the adaptive algorithm. Some of the theoretical limitations of Andrieu and Moulines [5] have
been alleviated by Saksman and Vihola [32] for the so-called adaptive Metropolis algorithm,
which established a CLT for additive functionals for the Adaptive Metropolis algorithm (with a
proof specially tailored for this algorithm). The results presented in this contribution contain as
special cases these three earlier results.

The theory for interacting MCMC algorithms is up to now quite limited, despite the clear po-
tential of this class of methods to sample complicated multimodal target distributions. The law
of large numbers for additive functionals have been established in [3] for some specific inter-
acting algorithm. A wider class of interacting Markov chains has been considered in [14]. This
paper establishes the consistency of a form of interacting tempering algorithm and provides non-
asymptotic Lp-inequalities. The assumptions under which the results are derived are restrictive
and the results do not cover the interacting MCMC algorithms considered in this paper. More
recently, Fort et al. [18] have established the ergodicity and law of large numbers for a wide class
of interacting MCMC, under the weakest conditions known so far.

A functional CLT was derived in [12] for a specific class of interacting Markov Chains but
their assumptions do not cover the interactive MCMC considered in this paper (and in particular,
the interacting MCMC algorithm). A CLT for additive functionals is established by Atchadé [9]
for the interacting tempering algorithm; the proof of the main result in this paper, Theorem 3.3,
contains a serious gap (page 865) which seems difficult to correct, see the supplemental mate-
rial [20].

This paper aims at providing a theory removing the limitations mentioned above and covering
both adaptive and interacting MCMC in a common unifying framework. The paper is organized
as follows. In Section 2, we derive our main theorem (Theorem 2.3) which establishes CLTs for
adaptive and interacting MCMC algorithms. These results are applied in Section 3.2 to the 2-
chain interacting tempering algorithm which is a simplified version of the Equi-Energy sampler.
All the proofs are postponed in Section 4.

Notations

Let (X, X ) be a general state space and P be a Markov transition kernel (see, e.g., [27], Chap-
ter 3). P acts on bounded functions f on X and on σ -finite positive measures μ on X via

Pf (x)
def=

∫
P(x,dy)f (y), μP (A)

def=
∫

μ(dx)P (x,A).
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We denote by P n the n-iterated transition kernel defined inductively

P n(x,A)
def=

∫
P n−1(x,dy)P (y,A) =

∫
P(x,dy)P n−1(y,A);

where P 0 is the identity kernel. For a function V : X → [1,+∞), define the V -norm of a function
f : X → R by

|f |V def= sup
x∈X

|f |(x)

V (x)
.

When V = 1, the V -norm is the supremum norm denoted by |f |∞. Let LV be the set of
measurable functions such that |f |V < +∞. For μ a finite signed measure on (X, X ) and
V : X → [1,∞) such that |μ|(V ) < ∞ where |μ| is the variation of μ, we define ‖μ‖V the
V -norm of μ as

‖μ‖V = sup
f ∈LV ,|f |V ≤1

∣∣μ(f )
∣∣.

When V ≡ 1, the V -norm corresponds to the total variation norm.
For finite signed kernels P on (X, X ) and V : X → [1,∞) such that |P(x, ·)|(V ) < ∞ for any

x ∈ X, define

‖P‖V
def= sup

x∈X
V −1(x)

∥∥P(x, ·)∥∥
V
. (1)

Let (xn)n∈N be a sequence. For p ≤ q ∈ N
2, xp:q denotes the vector (xp, . . . , xq).

2. Main results

Let (�, T ) be a measurable space. Let {Pθ , θ ∈ �} be a collection of Markov transition kernels
on (X, X ) indexed by a parameter θ ∈ �. From here on, it is assumed that for any A ∈ X ,
(x, θ) �→ Pθ(x,A) is X ⊗ T /B([0,1]) measurable, where B([0,1]) denotes the Borel σ -field.
From here on, � is not necessarily a finite-dimensional vector space. It might be a function
space or a space of measures. We consider a X × �-valued process {(Xn, θn)}n∈N on a filtered
probability space (�, A, {Fn, n ≥ 0},P). It is assumed that

A1 The process {(Xn, θn)}n∈N is (Fn)n∈N-adapted and for any bounded measurable func-
tion h,

E
[
h(Xn+1)|Fn

] = Pθnh(Xn). (2)

Assumption A1 implies that conditional to the past (subsumed in the σ -algebra Fn), the distri-
bution of the next sample Xn+1 is governed by the current value Xn and the current parameter
θn. This assumption covers any adaptive and interacting MCMC algorithms; see [6,8,18] for ex-
amples. This assumption on the adaptation of the parameter (θn)n∈N is quite weak since it only
requires the parameter to be adapted to the filtration. In practice, it frequently occurs that the joint
process {(Xn, θn)}n∈N is Markovian but assumption A1 covers more general adaptation rules.
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We assume that the transition kernels {Pθ , θ ∈ �} satisfy a Lyapunov drift inequality and
smallness conditions:

A2 For all θ ∈ �, Pθ is phi-irreducible, aperiodic and there exists a function V : X →
[1,+∞), and for any θ ∈ � there exist some constants bθ ∈ (1,+∞), λθ ∈ (0,1) such
that for any x ∈ X,

PθV (x) ≤ λθV (x) + bθ .

In addition, for any d ≥ 1 and any θ ∈ �, the level sets {V ≤ d} are m-small for Pθ that
is, for any θ ∈ �, there exist κθ > 0 and a probability νθ such that for all x ∈ {V ≤ d},
P m

θ (x,A) ≥ κθνθ (A) for all A ∈ X .

In many examples considered so far (see [4,5,18,32]), this condition is satisfied. All the results
below can be established under assumptions insuring that the drift inequality and/or the smallness
condition are satisfied for some m-iterated P m

θ . Note that checking assumption on the iterated
kernel P m

θ is prone to be difficult because the expression of the m-iterated kernel is most often
rather involved.

A2 implies that, for any θ ∈ �, Pθ possesses an invariant probability distribution πθ and
the kernel Pθ is geometrically ergodic [27], Chapter 15. The following lemma summarizes the
properties of the family {Pθ , θ ∈ �} used hereafter (see, e.g., [16] and references therein for the
explicit control of ergodicity; and [27], Proposition 17.4.1 for the Poisson equation). For θ ∈ �,
denote by 
θ the operator which associates to any function f ∈ LV α the function 
θf given by:


θf
def=

∑
n≥0

P n
θ f − πθ (f ). (3)

Lemma 2.1. Assume A2. Then for any θ ∈ �, there exists a probability distribution πθ such that
πθPθ = πθ and πθ (V ) ≤ bθ (1 − λθ )

−1. In addition, for any α ∈ (0,1], the following property
holds.

P[α] For any θ ∈ �, there exist Cθ < ∞ and ρθ ∈ (0,1) such that, for any γ ∈ [α,1],∥∥P n
θ − πθ

∥∥
V γ ≤ Cθρ

n
θ .

For any α ∈ (0,1) and f ∈ LV α , the function 
θf exists and is in LV α . The function 
θf is the
unique solution up to an additive constant of the Poisson equation


θf − Pθ
θf = f − πθ (f ). (4)

It has been shown in [18], that under appropriate assumptions, when the sequence (θk)k∈N

converges to θ� ∈ � in an appropriate sense, n−1 ∑n
k=1 f (Xk) converges almost surely to πθ�(f ),

for any functions f belonging to a suitable class of functions M. The objective of this paper is
to derive a CLT for n−1/2 ∑n

k=1{f (Xk)−πθ�(f )} for functions f belonging to M. To that goal,
consider the following decomposition

n−1/2
n∑

k=1

{
f (Xk) − πθ�(f )

} = S(1)
n (f ) + S(2)

n (f ),
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where S
(1)
n (f ) and S

(2)
n (f ) are given by

S(1)
n (f )

def= n−1/2
n∑

k=1

{
f (Xk) − πθk−1(f )

}
, (5)

S(2)
n (f )

def= n−1/2
n−1∑
k=0

{
πθk

(f ) − πθ�(f )
}
. (6)

We consider these two terms separately. For the first term, we use a classical technique based on
the Poisson decomposition; this amounts to writing S

(1)
n (f ) as the sum of a martingale difference

and of a remainder term converging to zero in probability; see [5,7,14,18,32] for law of large
numbers for adaptive and interacting MCMC. Then we apply a classical CLT for martingale
difference array; see, for example, [22], Theorem 3.2.

The second term vanishes when πθ = πθ� for all θ ∈ � which is the case for example, for the
adaptive Metropolis algorithm [21]. In scenarios where θ �→ πθ is a non-trivial function of θ , the
weak convergence S

(2)
n (f ) relies on conditions which are quite problem specific. The application

detailed in Section 3.2, an elementary version of the interacting tempering algorithm, is a situa-
tion in which πθ� is known but the expression of πθ , θ �= θ�, is unknown, except in very simple
examples. The Wang–Landau algorithm [25,36] is an example of adaptive MCMC algorithm in
which θ �→ πθ is explicit. The results in this paper cover the case when the expression of πθ is
unknown: we rewrite S

(2)
n (f ) by showing that the leading term of the difference πθk

(f )−πθ�(f )

is πθ�(Pθk
−Pθ�)
θ�f where 
θ� is the operator defined by (3). Our approach covers much more

general set-up than the one outlined in [12].
The convergence of S

(1)
n (f ) is addressed under the following assumptions which are related

to the regularity in the parameter θ ∈ � of the ergodic behavior of the kernels {Pθ , θ ∈ �}.
A3 There exist α ∈ (0,1/2) and a subset of measurable functions MV α ⊆ LV α satisfying the

two following conditions
(a) for any f ∈ MV α ,

n−1/2
n∑

k=1

|Pθk

θk

f − Pθk−1
θk−1f |V αV α(Xk)
P−→ 0.

(b) n−1/2α
∑n−1

k=0 L
2/α
θk

Pθk
V (Xk)

P−→ 0 where Lθ is defined by (9) for the constants
Cθ,ρθ given by P[α].

A3(a) controls the regularity in the parameter θ of the Poisson solution 
θf . By [18],
Lemma 4.2,

‖Pθ
θ − Pθ ′
θ ′ ‖V α ≤ 5(Lθ ∨ Lθ ′)6πθ

(
V α

)
DV α

(
θ, θ ′), (7)

where

DV

(
θ, θ ′) def= ‖Pθ − Pθ ′ ‖V , (8)

Lθ
def= Cθ ∨ (1 − ρθ )

−1, (9)



462 G. Fort et al.

and ‖Pθ − Pθ ′ ‖V is defined by (1) and Cθ and ρθ are introduced in Lemma 2.1. This upper
bound relates the regularity in θ of the function θ �→ Pθ
θf to the ergodicity constants Cθ and
ρθ and to the regularity in θ of the function θ �→ Pθ from the parameter space � to the space of
Markov transition kernels equipped with the V -operator norm. Therefore, A3(a) corresponds to
a diminishing adaptation condition (see [29]).

A3(b) is a kind of containment condition (see [29]): when the ergodic behavior A2 is uniform
in θ so that λθ , bθ and the minorization constant of the Pθ -smallness condition do not depend on
θ , then the constant Lθ does not depend on θ and by A1 and the drift inequality A2,

n−1/2α

n−1∑
k=0

E
[
V (Xk+1)

] ≤ n1−1/2α
{
E

[
V (X0)

] + (1 − λ)−1b
} → 0.

Therefore, condition A3(b) holds provided the ergodic constant Lθk
is controlled by a slowly-

increasing function of k. Lemma A.2 in Appendix A provides sufficient conditions to obtain
upper bounds of θ �→ Lθ in terms of the constants appearing in the drift inequality A2.

We finally introduce a condition allowing to obtain a closed-form expression for the asymp-
totic variance of S

(1)
n (f ). For θ ∈ � and f ∈ LV α define

Fθ
def= Pθ(
θf )2 − [Pθ
θf ]2. (10)

A4 For any f ∈ MV α , n−1 ∑n−1
k=0 Fθk

(Xk)
P−→ σ 2(f ), where σ 2(f ) is a deterministic con-

stant.

Assumption A4 is typically established by using the Law of Large Numbers (LLN) for adap-
tive and interacting Markov Chain derived in [18]; see also Theorem B.1 in Appendix B.
Under appropriate regularity conditions on the Markov kernels {Pθ , θ ∈ �}, it is proved that
n−1 ∑n−1

k=0{Fθk
(Xk) − ∫

πθk
(dx)Fθk

(x)} converges in probability to zero. The second step con-
sists in showing that n−1 ∑n−1

k=0

∫
πθk

(dx)Fθk
(x) converges to a (deterministic) constant σ 2(f ):

when πθ is not explicitly known and the set X is Polish, Lemma A.3 in Appendix A is use-
ful to check this convergence. In practice, this may introduce a restriction of the set of func-
tions f ∈ LV α for which this limit holds (see, e.g., the example detailed in Section 3.2 where
MV α �= LV α ).

We can now state conditions upon which S
(1)
n (f ) is asymptotically normal.

Theorem 2.2. Assume A1 to A4. For any f ∈ MV α ,

1√
n

n∑
k=1

{
f (Xk) − πθk−1(f )

} D−→ N
(
0, σ 2(f )

)
.

The proof is in Section 4.1.1. When πθ = π for any θ , Theorem 2.2 provides sufficient condi-
tions for a CLT for additive functionals to hold.

When πθ is a function of θ ∈ �, we need now to obtain a joint CLT for (S
(1)
n (f ), S

(2)
n (f ))

(see (5) and (6)). To that goal, we replace A1 by the following assumption which implies that,
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conditionally to the process (θk)k∈N, (Xk)k∈N is an inhomogeneous Markov chain with transition
kernels (Pθj

, j ≥ 0):

A5 There exists an initial distribution ν such that for any bounded measurable function
f : Xn+1 → R,

E
[
f (X0:n)|θ0:n

] =
∫

· · ·
∫

ν(dx0)f (x0:n)
n∏

j=1

Pθj−1(xj−1,dxj ).

Assumption A5 is satisfied when {(Xn, θn)}n∈N is an interacting MCMC algorithm. Note that A5
implies A1.

The first step in the proof of the joint CLT consists in linearizing the difference πθn − πθ� .
Under A2, πθ (g) exists for any g ∈ LV α and θ ∈ � (see Lemma 2.1), and we have

πθ (g) − πθ�(g) = πθPθg − πθ�Pθ�g = πθ (Pθ − Pθ�)g + (πθ − πθ�)Pθ�g,

which implies that (πθ − πθ�)(I − Pθ�)g = πθ (Pθ − Pθ�)g. Let f ∈ LV α . Then 
θ�f ∈ LV α and
by applying the previous equality with g = 
θ�f , we have by (4)

πθ (f ) − πθ�(f ) = πθ (Pθ − Pθ�)
θ�f. (11)

We can iterate this decomposition, writing

πθ (f ) − πθ�(f ) = πθ�(Pθ − Pθ�)
θ�f + πθ

(
(Pθ − Pθ�)
θ�f

) − πθ�

(
(Pθ − Pθ�)
θ�f

)
.

Applying again (11), we obtain

πθ (f ) − πθ�(f ) = πθ�(Pθ − Pθ�)
θ�f + πθ (Pθ − Pθ�)
θ�(Pθ − Pθ�)
θ�f.

The first term in the RHS of the previous equation is the leading term of the error πθk
− πθ� ,

whereas the second term is a remainder. This decomposition naturally leads to the following
assumption.

A6 For any function f ∈ MV α ,
(a) there exists a positive constant γ 2(f ) such that

n−1/2
n∑

k=1

πθ�(Pθk
− Pθ�)
θ�f

D−→ N
(
0, γ 2(f )

)
. (12)

(b) n−1/2 ∑n
k=1 πθk

(Pθk
− Pθ�)
θ�(Pθk

− Pθ�)
θ�f
P−→ 0.

Theorem 2.3. Assume A2 to A6. For any function f ∈ MV α ,

1√
n

n∑
k=1

{
f (Xk) − πθ�(f )

} D−→ N
(
0, σ 2(f ) + γ 2(f )

)
.
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The proof of Theorem 2.3 is postponed to Section 4.1.2. It is worthwhile to note that, as a
consequence of A5, the variance is additive. This result extends Bercu et al. [12] which addresses
the case when Pθ(x,A) = Pθ(A), that is, the case when conditionally to the adaptation process
(θn)n∈N, the random variables (Xn)n∈N are independent (see [12], Equation (1.4)). Our result,
applied in this simpler situation, yields the same asymptotic variance.

3. Applications

3.1. Adaptive Metropolis (after Saksman and Vihola [32])

In this example, X = R
d and the densities are assumed to be w.r.t. the Lebesgue measure. For x ∈

R
d , |x| denotes the Euclidean norm. For κ > 0, let Cd

κ be the set of symmetric and positive definite
d × d matrices whose minimal eigenvalue is larger than κ . The parameter set � = R

d × Cd
κ is

endowed with the norm |θ |2 def= |μ|2 + Tr(�T �), where θ = (μ,�).
At each iteration, Xn+1 ∼ Pθn(Xn, ·), where Pθ is defined by

Pθ(x,A)
def=

∫
A

(
1 ∧ π(y)

π(x)

)
q�(y − x)dy

(13)

+ 1A(x)

[
1 −

∫ (
1 ∧ π(y)

π(x)

)
q�(y − x)dy

]
,

with q� the density of a Gaussian random variable with zero mean and covariance matrix
(2.38)2d−1�, and π is a density on R

d . The parameter θn = (μn,�n) ∈ � is the sample mean
and covariance matrix

μn+1 = μn + 1

n + 1
(Xn+1 − μn), μ0 = 0, (14)

�n+1 = n

n + 1
�n + 1

n + 1

{
(Xn+1 − μn)(Xn+1 − μn)

T + κId
}
, (15)

where Id is the identity matrix, �0 ≥ 0 and κ is a positive constant.
By construction, for any θ ∈ �, π is the stationary distribution for Pθ so that πθ = π for any θ .

As in [32], we consider the following assumption:

M1 π is positive, bounded, differentiable and

lim
r→∞ sup

|x|≥r

x

|x|ρ · ∇ logπ(x) = −∞

for some ρ > 1. Moreover, π has regular contours, that is, for some R > 0,

sup
|x|≥R

x

|x| · ∇π(x)

|∇π(x)| < 0.
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Saksman and Vihola [32], Proposition 15, establishes A2: the drift function V is proportional
to π−s , (for any) s ∈ (0,1); the constant bθ does not depend upon θ ; and any level set of V is
1-small for Pθ . Saksman and Vihola [32], Propositions 15, also establishes that there exists a
non-negative constant C such that for any θ ∈ �,

κ−1
θ ∨ (1 − λθ )

−1 ≤ C|θ |d/2.

This upper bound combined with [18], Lemma 2.3, implies that there exist finite constants C and
γ such that for any θ ∈ �,

Lθ ≤ C|θ |γ , (16)

where Lθ is defined by (9).
We now prove that A3 holds. Let α ∈ (0,1/2) and set MV α = LV α . By (7) and (16), there

exist positive constants C, γ̄ such that for any f ∈ LV α ,

n−1/2
n∑

k=1

|Pθk

θk

f − Pθk−1
θk−1f |V αV α(Xk)

≤ cn−1/2
n∑

k=1

(
1 + |θk| + |θk−1|

)γ̄
DV α (θk, θk−1)V

α(Xk).

In [32], Lemma 12, it is proved that under M1, the rate of growth of the parameters {θn, n ≥ 0}
is controlled. Namely, for any τ > 0,

sup
n≥1

n−τ |θn| < +∞, P-a.s. (17)

In addition, it is established in [18], Equation (12), that there exists a constant C < ∞ such that
for any n ≥ 1,

DV α(θn, θn−1) ≤ C

n

{
1 + lnn

n − 1

n−1∑
j=1

ln2 V (Xj ) + lnn
(
ln2 V (Xn) + ln2 V (Xn−1)

)}
.

Combining the above results show that A3(a) holds provided

1√
n

n∑
k=2

ln k

k1−τ γ̄

(
1

k − 1

k−1∑
j=1

ln2 V (Xj ) + ln2 V (Xk) + ln2 V (Xk−1)

)
V α(Xk)

P−→ 0 (18)

for some τ > 0. We prove that such a convergence occurs in L1. To that goal, observe that the
drift inequality PθV ≤ V + b implies that E[V (Xn)] ≤ E[V (X0)] + nb, which in turn yields,
by the Jensen inequality, supj (ln

p j)−1
E[lnp V (Xj )] < ∞ for any p ≥ 2. Then, by the Hölder

inequality,

sup
k

(
ln2 kkα

)−1
E

[(
1

k − 1

k−1∑
j=1

ln2 V (Xj ) + ln2 V (Xk) + ln2 V (Xk−1)

)
V α(Xk)

]
< ∞.
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Since α ∈ (0,1/2) and τ can be chosen arbitrarily small, (18) is established and thus yields the
condition A3(a).

We now consider A3(b). By (17), it is sufficient to prove that for some τ > 0 and any t > 0,

n−1/2α

n−1∑
k=0

L
2/α
θk

Pθk
V (Xk)1

{
sup
�≥1

�−τ |θ�| ≤ t
}

P−→ 0. (19)

By [18], Lemma 2.5, there exist a constant C (depending upon τ and t ) such that

E

[
V (Xn)1

{
sup

�≤n−1
�−τ |θ�| ≤ t

}]
≤ C

(
E

[
V (X0)

] + nτγ
)
,

where γ is defined in (16). Since 1/(2α) > 1, Equations (16) and (17) imply (19). This concludes
the proof of A3(b).

Let us consider A4. The proof of this condition is a consequence of the convergence of
{θn, n ≥ 0} and the regularity in θ of Fθ . Under M1 and the condition E[V (X0)] < ∞,
n−1 ∑n

k=1 f (Xk)
a.s.−→ π(f ) for any f ∈ LV a and a ∈ (0,1) (see [18], Theorem 2.10). Since

under M1 lim inf|x|→∞ lnV (x)/|x| > 0, this implies that the strong Law of Large Numbers
holds for functions f with quadratic growth at infinity. Therefore, {θn, n ≥ 0} converges w.p.1 to
θ� = (μ�,��) given by

μ�
def=

∫
xπ(x)dx, ��

def=
∫

(x − μ�)(x − μ�)
′π(x)dx + κI.

Set

σ 2(f )
def=

∫
Fθ�(x)dx =

∫ (
Pθ�(
θ�f )2(x) − [Pθ�
θ�f ]2(x)

)
dx. (20)

The proof of A4 is given in the supplementary material [20]. Combining the results above yields
the following theorem.

Theorem 3.1. Assume M1 and E[V (X0)] < +∞. Then, for any α ∈ (0,1/2) and any f ∈ LV α

1√
n

n∑
k=1

{
f (Xk) − π(f )

} D−→ N
(
0, σ 2

f

)
,

where σ 2(f ) is given by (20).

3.2. Interacting tempering algorithm

We consider the simplified version of the equi-energy sampler [24] introduced in [4]. This version
is referred to as the Interacting-tempering (IT) sampler. Recently, convergence of the marginals
and strong law of large numbers results have been established under general conditions (see
[18]). In this section, we derive a CLT under similar assumptions.



A central limit theorem for iMCMC 467

Let {πβk , k ∈ {1, . . . ,K}} be a sequence of tempered densities on X, where 0 < β1 < · · · <

βK = 1. At the first level, a process (Yk)k∈N with stationary distribution proportional to πβ1 is
run. At the second level, a process (Xk)k∈N with stationary distribution proportional to πβ2 is
constructed: at each iteration the next value is obtained from a Markov kernel depending on the
occupation measure of the chain (Yk)k∈N up to the current time-step. This 2-stages mechanism is
then repeated to design a process targeting πβk by using the occupation measure of the process
targeting πβk−1 .

For ease of exposition, it is assumed that (X, X ) is a Polish space equipped with its Borel
σ -field, and the densities are w.r.t. some σ -finite measure on (X, X ). We address the case K = 2
and discuss below possible extensions to the case K > 2.

We start with a description of the IT (case K = 2). Denote by � the set of the probability
measures on (X, X ) equipped with the Borel sigma-field T associated to the topology of weak
convergence. Let P be a transition kernel on (X, X ) with unique invariant distribution π (typi-
cally, P is chosen to be a Metropolis–Hastings kernel). Denote by ε ∈ (0,1) the probability of
interaction. Let (Yk)k∈N be a discrete-time (possibly non-stationary) process and denote by θn

the empirical probability measure:

θn
def= 1

n

n∑
k=1

δYk
. (21)

Choose X0 ∼ ν. At the nth iteration of the algorithm, two actions may be taken:

1. with probability (1 − ε), the state Xn+1 is sampled from the Markov kernel P(Xn, ·),
2. with probability ε, a tentative state Zn+1 is drawn uniformly from the past of the auxil-

iary process {Yk, k ≤ n}. This move is accepted with probability r(Xn,Zn+1), where the
acceptance ratio r is given by

r(x, z)
def= 1 ∧ π(z)π1−β(x)

π1−β(z)π(x)
= 1 ∧ πβ(z)

πβ(x)
. (22)

Define the family of Markov transition kernels {Pθ , θ ∈ �} by

Pθ(x,A)
def= (1 − ε)P (x,A)

(23)

+ ε

(∫
A

r(x, y)θ(dy) + 1A(x)

∫ {
1 − r(x, y)

}
θ(dy)

)
.

Then, the above algorithmic description implies that the bivariate process {(Xn, θn)}n∈N is such
that for any bounded function h on Xn+1

E
[
h(X0:n)|θ0:n

] =
∫

ν(dx0)Pθ0(x0,dx1) · · ·Pθn−1(xn−1,dxn)h(x0:n).

We apply the results of Section 2 in order to prove that the IT process (Xk)k∈N satisfies a
CLT. To that goal, it is assumed that the target density π and the transition kernel P satisfy the
following conditions:
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I1 π is a continuous positive density on X and |π |∞ < +∞.
I2 (a) P is a phi-irreducible aperiodic Feller transition kernel on (X, X ) such that πP = π .

(b) There exist τ ∈ (0,1), λ ∈ (0,1) and b < +∞ such that

PV (x) ≤ λV (x) + b with V (x)
def= (

π(x)/|π |∞
)−τ

. (24)

(c) For any p ∈ (0, |π |∞), the sets {π ≥ p} are 1-small (w.r.t. the transition kernel P ).
(d) For any γ ∈ (0,1/2) and any equicontinuous set of functions F ⊆ LV γ , the set of

functions {Ph :h ∈ F , |h|V γ ≤ 1} is equicontinuous.

From the expression of the acceptance ratio r (see Equation (22)) and the assumption I2(a), it
holds

πPθ� = π, (25)

where θ� ∝ π1−β . Therefore, when θn converges to θ�, it is expected that (Xk)k∈N behaves
asymptotically as π ; see [18].

Drift conditions for the symmetric random walk Metropolis (SRWM) algorithm are dis-
cussed in [30], [23] and [32]. Under conditions which imply that the target density π is super-
exponential in the tails and have regular contours, Jarner and Hansen [23] and Saksman and Vi-
hola [32] show that any functions proportional to π−s with s ∈ (0,1) satisfies a Foster–Lyapunov
drift inequality [23], Theorems 4.1 and 4.3. Under this condition, I2(b) is satisfied with any τ in
the interval (0,1). Assumptions I2(c) and I2(d) hold for the SRWM kernel under weak condi-
tions on the symmetric proposal distribution: the minorization condition is verified whenever the
proposal is positive and continuous (see, e.g., [26], Lemma 1.2) and the following lemma gives
sufficient conditions for I2(d). The proof is in Section 4.2.1.

Lemma 3.2. Assume I1. Let P be a Metropolis kernel with invariant distribution π and a sym-
metric proposal distribution q : X × X → R

+ such that sup(x,y)∈X2 q(x, y) < +∞ and the func-
tion x �→ q(x, ·) is continuous from (X, | · |) to the set of probability densities equipped with the
total variation norm. Then P satisfies I2(d) with any function V ∝ π−τ , τ ∈ [0,1), such that
π(V ) < +∞.

For a measurable function f : X → R such that θ�(|f |) < +∞, define the following sequence
of random processes on [0,1]:

t �→ Sn(f ; t) = n−1/2
�nt�∑
j=1

{
f (Yj ) − θ�(f )

}
. (26)

It is assumed that the auxiliary process {Yn,n ≥ 0} converges to the probability distribution θ� in
the following sense:

I3 (a) θ�(V ) < +∞ and supn E[V (Yn)] < +∞.
(b) There exists a space N of real-valued measurable functions defined on X such that

V ∈ N and for any function f ∈ N , θn(f )
a.s.−→ θ�(f ).
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(c) For any function f ∈ N , the sequence of processes (Sn(f, t), n ≥ 1, t ∈ [0,1]) con-
verges in distribution to (γ̃ (f )B(t), t ∈ [0,1]), where γ̃ (f ) is a non-negative constant
and (B(t) : t ∈ [0,1]) is a standard Brownian motion.

(d) For any α ∈ (0,1/2), there exist constants �0 and �1 such that, for any integers n, k ≥ 1,
for any measurable function h : Xk → R satisfying |h(y1, . . . , yk)| ≤ ∑k

j=1 V α(yj ),

E

(∫
· · ·

∫ k∏
j=1

[
θn(dyj ) − θ�(dyj )

]
h(y1, . . . , yk)

)2

≤ Akn
−k,

with lim supk lnAk/(k ln k) < ∞.

I3 is satisfied when (Yk)k∈N is i.i.d. with distribution θ� such that θ�(V ) < +∞. In that case,
I3(b) to I3(c) hold for any measurable function f such that θ�(|f |2) < +∞. I3(d) is satisfied
using [33], Lemma A, pages 190.

I3 is also satisfied when (Yk)k∈N is a geometrically ergodic Markov chain with transition
kernel Q. In that case, I3(a) to I3(c) are satisfied for any measurable function f such that
θ�(|f [(I − Q)−1f ]|) < +∞ (see, e.g., [27], Chapter 17). Condition I3(d) for a (non-stationary)
geometrically ergodic Markov chain is established in the supplementary paper [19].

The following proposition shows that under I1 and I2, condition A2 holds with the drift func-
tion V given by A2(b). It also provides a control of the ergodicity constants Cθ,ρθ in Lemma 2.1.
The proof is a direct consequence of [18], Proposition 3.1, Corollary 3.2, Lemmas 2.1 and A.2,
and is omitted.

Proposition 3.3. Assume I1 and I2(a)–(c). For any θ ∈ �, Pθ is phi-irreducible, aperiodic. In
addition, there exist λ̃ ∈ (0,1) and b̃ < +∞ such that, for any θ ∈ �,

PθV (x) ≤ λ̃V (x) + b̃θ(V ) for all x ∈ X. (27)

The property P[α] holds for any α ∈ (0,1/2), and there exists C such that for any θ ∈ �, Lθ ≤
Cθ(V ).

Assume in addition I3(a) and E[V (X0)] < +∞. Then, supn≥0 E[V (Xn)] < +∞.

The next step is to check assumptions A3 and A4.

Proposition 3.4. Assume I1, I2, I3(a)–(b) and E[V (X0)] < +∞. For any α ∈ (0,1/2), set MV α

be the set of continuous functions belonging to LV α ∩ N . Then, for any α ∈ (0,1/2), the condi-
tions A3 and A4 hold with

σ 2(f )
def=

∫
π(dx)Fθ�(x), (28)

where Fθ is given by (10).

The proof is postponed to Section 4.2.2. We can now apply Theorem 2.3 and prove a CLT for
the 2-levels IT.
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Theorem 3.5. Assume I1, I2, I3 and E[V (X0)] < +∞. Then, for any α ∈ (0,1/2) and any
continuous function f ∈ LV α ∩ N such that the function Gf given by

Gf (z)
def= ε

∫
π(dx)r(x, z)

(

θ�f (z) − 
θ�f (x)

)
,

is in N :

1√
n

n∑
k=1

(
f (Xk) − π(f )

) D−→ N
(
0, σ 2(f ) + 2γ̃ 2(Gf )

)
,

where σ 2(f ) and γ̃ 2(Gf ) are given by (28) and I3(c).

The proof is postponed to Appendix 4.2.3.
It may be possible to repeat the above argument to show a CLT for the K-level IT when K > 2

(see [18] for a similar approach in the proof of the ergodicity and the LLN for IT). Nevertheless,
the main difficulty is to iterate the control of the L2-moment for the V -statistics (see I3(d)) when
(Yk)k∈N is not a Markov chain or, more generally, a process satisfying some mixing conditions.
A similar difficulty has been reported in [4].

Theorem 3.5 shows that the asymptotic variance of sample path averages of the process
{Xn,n ≥ 0} for the functional f is the sum of two terms. The first term σ 2(f ) is the asymptotic
variance of sample path averages of a Markov chain with transition kernel Pθ� and functional
f (see, e.g., [27], Chapter 17). The second term γ̃ 2(Gf ) is the asymptotic variance of sam-
ple path averages of the auxiliary process {Yn,n ≥ 0} for the functional Gf . The expression of
this asymptotic variance can help in the choice of the probability of interaction ε. For example,
given the kernel P , a question is: is the asymptotic variance reduced when replacing the classical
MCMC chain with kernel P by the interacting process satisfying (2) with Pθ given by (23)? to
answer this question, first note that the derivative with respect to ε of σ 2(f ) + 2γ̃ 2(Gf ) at ε = 0
is equal to the derivative of σ 2(f ) at ε = 0. In addition, this derivative is of the sign of

−
∫

π(dx)h̄(x)
θ�(P − Kθ�)
θ� h̄(x) = −〈

θ�h̄, (P − Kθ�)
θ� h̄

〉
L2(π)

,

where Kθ is defined by Pθ = (1 − ε)P + εKθ and h̄ = h − π(h). Therefore, if P − Kθ� is a

positive operator on L2
0(π)

def= {h :π(h) = 0,π(h2) < ∞}, the 2-level IT algorithm with ε small
enough will improve on the MCMC sampler P . A sufficient condition for P −Kθ� to be a positive
operator is P ≤ Kθ� in the Peskun ordering of transition kernels (see, e.g., [34], Lemma 3). Note
that under this Peskun order assumption on P and Kθ� , the function ε �→ σ 2(f ) is non-increasing
on [0,1] for any function f ∈ L2

0(π) (see the proof of [34], Theorem 4). Figure 1 below shows
that this non-increasing property is balanced by the behavior of ε �→ 2γ̃ 2(Gf ). Figure 1 displays
an estimation of the variance of

√
N

∑N
k=1{f (Xk) − π(f )}, obtained from 300 independent

run of the process {Xn,n ≥ 0}. In this numerical application, N = 400k; π is a mixture of five
R

5-valued Gaussian distribution with means drawn in the range [−3;3]5 and covariance matrix
identity; f : R5 → R is defined by x = (x1, . . . , x5) �→ x5; P is a SRWM algorithm with proposal
kernel q(x, ·) ∼ N5(x, I); and {Yk, k ≥ 0} is a SRWM with proposal kernel q(x, ·) ∼ N5(x, I) and
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Figure 1. Estimation of the variance of
√

N
∑N

k=1{f (Xk) − π(f )}, as a function of the probability of
interaction ε. The plots have been obtained with 20 linearly spaced values of ε in the range [0,0.45]; and 6
linearly spaced values in the range [0.5,1].

invariant measure π0.2
θ�

. Figure 1 shows that the variance is minimal for some ε in [0.05;0.15]
and corroborates previous empirical results on the choice of ε (see, e.g., [24]).

4. Proofs

Note that under A2, for any α ∈ (0,1], any f ∈ LV α and any θ ∈ �,

|
θf |V α ≤ |f |V αL2
θ , (29)

where Lθ is defined by (9).

4.1. Proofs of the results in Section 2

4.1.1. Proof of Theorem 2.2

Let f ∈ MV α . Equation (4) yields S
(1)
n (f ) = �n(f ) + R

(1)
n (f ) + R

(2)
n (f ) with

�n(f )
def= 1√

n

n∑
k=1

{

θk−1f (Xk) − Pθk−1
θk−1f (Xk−1)

}
,

R(1)
n (f )

def= n−1/2
n∑

k=1

{
Pθk


θk
f (Xk) − Pθk−1
θk−1f (Xk)

}
,

R(2)
n (f )

def= n−1/2Pθ0
θ0f (X0) − n−1/2Pθn
θnf (Xn).
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We first show that the two remainders terms R
(1)
n (f ) and R

(2)
n (f ) converge to zero in probability.

We have ∣∣Pθ
θf (x) − Pθ ′
θ ′f (x)
∣∣ ≤ ∣∣Pθ
θf (x) − Pθ ′
θ ′f (x)

∣∣
V αV

α(x).

Assumption A3 implies that R
(1)
n (f ) converges to zero in probability. The drift inequality A2

combined with the Jensen’s inequality imply PθV
α ≤ λα

θ V α + bα
θ . By (29) and this inequality,

∣∣Pθ
θf (x)
∣∣ ≤ |f |V αL2

θPθV
α(x) ≤ |f |V αL2

θ

(
V α(x) + bα

θ

)
.

Then, Pθ0
θ0f (X0) is finite w.p.1 and n−1/2Pθ0
θ0f (X0)
a.s.−→ 0. By A3(b) and (29),

n−1/2Pθn
θnf (Xn)
P−→ 0. Hence, R

(2)
n (f )

P−→ 0.

We now consider �n(f ). Set Dk(f )
def= 
θk−1f (Xk) − Pθk−1
θk−1f (Xk−1). Observe that un-

der A1, Dk(f ) is a martingale-increment w.r.t. the filtration {Fk, k ≥ 0}. The limiting distribution
for �n(f ) follows from martingale CLT (see, e.g., [22], Corollary 3.1). We check the conditional
Lindeberg condition. Let ε > 0. Under A2, we have by (29)

Dk(f ) ≤ |f |V α

∣∣L2
θk−1

{
V α(Xk) + Pθk−1V

α(Xk−1)
}∣∣.

Set τ
def= 1/α − 2 > 0.

1

n

n∑
k=1

E
[
D2

k (f )1|Dk(f )|≥ε
√

n|Fk−1
]

≤
(

1

ε
√

n

)τ 1

n

n∑
k=1

E
[
D2+τ

k (f )|Fk−1
]

≤ |f |2+τ
V α

(
1

ε
√

n

)τ 1

n

n∑
k=1

E
[
L

2(2+τ)
θk−1

{
V α(Xk) + Pθk−1V

α(Xk−1)
}2+τ |Fk−1

]

≤ 22+τ |f |2+τ
V α

(
1

ε
√

n

)τ 1

n

n−1∑
k=0

L
2(2+τ)
θk

Pθk
V (Xk).

Under A3(b), the RHS converges to zero in probability thus concluding the proof of the condi-
tional Lindeberg condition. For the limiting variance condition, observe that

1

n

n∑
k=1

E
[
D2

k (f )|Fk−1
] = 1

n

n−1∑
k=0

Fθk
(Xk),

where Fθ is given by (10) and, under A4, n−1 ∑n
k=1 E[D2

k |Fk−1] P−→ σ 2(f ). This concludes the
proof.
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4.1.2. Proof of Theorem 2.3

We start by establishing a joint CLT for (S
(1)
n (f ), S

(2)
n (f )), where S

(1)
n (f ) and S

(2)
n (f ) are de-

fined in (5) and (6), respectively. Similar to the proof of Theorem 2.2, we write S
(1)
n (f ) =

�n(f ) + R
(1)
n (f ) + R

(2)
n (f ) and prove that R

(1)
n (f ) + R

(2)
n (f )

P−→ 0. We thus consider the

convergence of �n(f ) + S
(2)
n (f ). Set F θ

n
def= σ(θk, k ≤ n). Under A5,

E
[
ei(u1�n(f )+u2S

(2)
n (f ))

] = E
[
E

[
eiu1�n(f )|F θ

n

]
eiu2S

(2)
n (f )

]
.

Applying the conditional CLT [15], Theorem A.3, with the filtration Fn,k
def= σ(Y1, . . . , Yn,X1,

. . . ,Xk), yields:

lim
n→∞ E

[
eiu1�n(f )|F θ

n

] P−→ e−u2
1σ

2(f )/2; (30)

observe that under A5, the conditions (31) and (32) in [15] can be proved following the same
lines as in the proof of Theorem 2.2; details are omitted. Therefore,

E
[
ei(u1�n(f )+u2S

(2)
n (f ))

] = E
[(

E
[
eiu1�n(f )|F θ

n

] − e−u2
1σ

2(f )/2)eiu2S
(2)
n (f )

]
+ e−u1σ

2(f )/2
E

[
eiu2S

(2)
n (f )

]
.

By (30), the first term in the RHS of the previous equation converges to zero. Under A6,

limn→∞ E[eiu2S
(2)
n (f )] = e−u2

2γ
2(f )/2 and this concludes the proof.

4.2. Proofs of Section 3.2

Note that by (25), πθ� = π .

4.2.1. Proof of Lemma 3.2

Let γ ∈ (0,1/2) and F be an equicontinuous set of functions in LV γ . Let h ∈ F , |h|V γ ≤ 1.
By construction, the transition kernel of a symmetric random walk Metropolis with proposal
transition density q(x, ·) and target density π may be expressed as

Ph(x) =
∫

r(x, y)h(y)q(x, y)dy + h(x)

∫ {
1 − r(x, y)

}
q(x, y)dy,

where r(x, y)
def= 1 ∧ (π(y)/π(x)) is the acceptance ratio. Therefore, the difference Ph(x) −

Ph(x′) may be bounded by∣∣Ph(x) − Ph
(
x′)∣∣ ≤ 2

∣∣h(x) − h
(
x′)∣∣

+
∫ ∣∣h(y) − h

(
x′)∣∣∣∣r(x, y) − r

(
x′, y

)∣∣q(x, y)dy

+
∣∣∣∣
∫ (

h(y) − h
(
x′))r(x′, y

)(
q(x, y) − q

(
x′, y

))
dy

∣∣∣∣.
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Since |r(x, y) − r(x′, y)| ≤ π(y)|π−1(x) − π−1(x′)|,
∫ ∣∣h(y) − h

(
x ′)∣∣∣∣r(x, y) − r

(
x′, y

)∣∣q(x, y)dy

≤ ∣∣π−1(x) − π−1(x′)∣∣ ∫ ∣∣h(y) − h
(
x′)∣∣π(y)q(x, y)dy

≤
(

sup
(x,y)∈X2

q(x, y)
)∣∣π−1(x) − π−1(x′)∣∣(π(

V γ
) + V γ

(
x′)).

In addition,

∣∣∣∣
∫ (

h(y) − h
(
x′))r(x′, y

)(
q(x, y) − q

(
x′, y

))
dy

∣∣∣∣
=

∣∣∣∣
∫

{y:π(y)≤π(x′)}
(
h(y) − h

(
x′)) π(y)

π(x′)
(
q(x, y) − q

(
x′, y

))
dy

∣∣∣∣
+

∣∣∣∣
∫

{y:π(y)>π(x′)}
(
h(y) − h

(
x′))(q(x, y) − q

(
x′, y

))
dy

∣∣∣∣
≤ 4π−1(x′)∥∥q(x, ·) − q

(
x′, ·)∥∥TV sup

y∈X

∣∣h(y)π(y)
∣∣.

Since V ∝ π−τ and τ ∈ (0,1), supX |h|π ≤ 1 under I1. Therefore, there exists a constant C such
that for any h ∈ {h ∈ F , |h|V γ ≤ 1} and any x, x′ ∈ X,

∣∣Ph(x) − Ph
(
x′)∣∣ ≤ 2

∣∣h(x) − h
(
x′)∣∣

+ C
(∣∣π−1(x) − π−1(x′)∣∣ + ∥∥q(x, ·) − q

(
x′, ·)∥∥TV

)(
V γ

(
x′) + π−1(x′)),

thus concluding the proof.

4.2.2. Proof of Proposition 3.4

The proof is prefaced by several lemmas. The proof of Lemma 4.1 is omitted for brevity and
can be found in the supplementary material [20]. The proof of Lemma 4.2 is adapted from [18],
Lemma 5.1, and is omitted.

Lemma 4.1. Let α ∈ (0,1). Assume I1, I2(a)–(c), I3(a)–(b), and E[V (X0)] < +∞. Then for any
γ, γ ′ ∈ (0,1) and any δ > γ ,

n−δ
n∑

k=1

DV γ (θk, θk−1)V
γ ′

(Xk)
P−→ 0.
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Lemma 4.2. For any θ ∈ �, any measurable function f : X → R in LV α and any x, x′ ∈ X such
that π(x) ≤ π(x′)∣∣Pθf (x) − Pθf

(
x′)∣∣ ≤ ∣∣Pf (x) − Pf

(
x′)∣∣ + ∣∣f (x) − f

(
x′)∣∣

+ sup
X

π |f |V α

∣∣π−β(x) − π−β
(
x′)∣∣(V α

(
x′) + θ

(
V α

))
.

Proof of Proposition 3.4. Let α ∈ (0,1/2). By Proposition 3.3, A2 and P[α] hold. By I3(b),

lim sup
n

Lθn < +∞, P-a.s., (31)

where Lθ is given by (9) with Cθ,ρθ defined by P[α].
We first check A3(a). Let f ∈ N ∩ LV α . By Lemma A.1,

|Pθk

θk

f − Pθk−1
θk−1f |V α ≤ 5(Lθk
∨ Lθk−1)

6πθk

(
V α

)
DV α(θk, θk−1)|f |V α .

By Lemma 2.1, Proposition 3.3 and Assumptions I1, I2 and I3(b),

lim sup
n→∞

πθn(V ) ≤ b̃(1 − λ̃)−1 lim sup
n→∞

θn(V ) < ∞, P-a.s. (32)

Therefore, by (31) and (32), it suffices to prove that

n−1/2
n∑

k=1

DV α(θk, θk−1)V
α(Xk)

P−→ 0,

which follows from Lemma 4.1. We now check A3(b). By Proposition 3.3, it holds

n−1/(2α)

n∑
k=1

L
2/α
θk

Pθk
V (Xk) ≤ n−1/(2α)

n∑
k=1

L
2/α
θk

[
V (Xk) + b̃θk(V )

]
.

Under the stated assumptions, lim supn[θn(V ) + Lθn] < +∞ w.p.1 and by Proposition 3.3,
supk E[V (Xk)] < +∞. Since 2α < 1, this concludes the proof.

The proof of A4 is in two steps: it is first proved that

1

n

n−1∑
k=0

Fθk
(Xk) − 1

n

n−1∑
k=0

∫
πθk

(dx)Fθk
(x)

P−→ 0, (33)

and then it is established that∫
πθk

(dx)Fθk
(x)

a.s.−→
∫

πθ�(dx)Fθ�(x). (34)

Theorem B.1 in Appendix B applied with γ = 2α implies (33). The main tools for checking the
assumptions of Theorem B.1 are (31), (32), Lemma 4.1 and Lemmas A.1 and A.3. A detailed
proof can be found in the supplementary paper, see [20].
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The second step is to prove (34). To that goal, we have to strengthen the conditions on f by
assuming that f is continuous. For any θ ∈ �,

∫
πθ (dx)Fθ (x) = ∫

πθ (dx)Hθ(x) with

Hθ(x)
def= (
θf )2(x) − (Pθ
θf )2(x). (35)

We have to prove that there exists �� with P(��) = 1 and for any ω ∈ ��,

(I) for any continuous bounded function h, limn πθn(ω)(h) = πθ�(h),
(II) the set {Hθn(ω), n ≥ 0} is equicontinuous,

(III) supn πθn(ω)(|Hθn(ω)|1/(2α)) < +∞,
(IV) limn Hθn(ω)(x) = Hθ�(x) for any x ∈ X,
(V) πθ�(|Hθ� |) < +∞.

The proof is then concluded by application of Lemma A.3. Details of these steps are omitted for
brevity and can be found in the supplementary paper, see [20]. �

4.2.3. Proof of Theorem 3.5

We check the conditions of Theorem 2.3. A2 to A5 hold (see Propositions 3.3 and 3.4) and we
now prove A6. We first check condition A6(a). For any function f ∈ LV α ∩ N , define

Gf (z)
def= ε

∫ ∫ (
δz

(
dz′) − θ�

(
dz′))πθ�(dx)r

(
x, z′)(
θ�f

(
z′) − 
θ�f (x)

)
. (36)

Let f ∈ LV α ∩ N ; note that Gf ∈ LV α . Recall that by Equation (23), for any θ such that θ(V α) <

+∞,

Pθf (x) − Pθ�f (x) = ε

∫ [
θ(dy) − θ�(dy)

]
r(x, y)

(
f (y) − f (x)

)
. (37)

Then, using (36),

πθ�(Pθk
− Pθ�)
θ�f

= ε

∫ ∫
πθ�(dx)

[
θk(dz) − θ�(dz)

]
r(x, z)

[

θ�f (z) − 
θ�f (x)

] = θk(Gf ).

Therefore,

1√
n

n∑
k=1

πθ�(Pθk
− Pθ�)
θ�f

= 1

n

n∑
k=1

n

k

1√
n

k∑
j=1

Gf (Yj )

=
∫ 1

0
t−1Sn(Gf , t)dt +

n−1∑
k=1

∫ (k+1)/n

k/n

(
n

k
− 1

t

)
Sn(Gf , t)dt + 1

n
Sn(Gf ,1),
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with Sn(Gf , t)
def= n−1/2 ∑�nt�

j=1 Gf (Yj ). Note that

E

[∣∣∣∣∣
n−1∑
k=1

∫ (k+1)/n

k/n

(
n

k
− 1

t

)
Sn(Gf , t)dt

∣∣∣∣∣
]

≤ 1√
n

n∑
k=1

1

k + 1

1

k

k∑
j=1

E
[∣∣Gf (Yj )

∣∣].
Since Gf ∈ LV α , I3(a) implies that supk≥0 E[|Gf |(Yk)] < ∞. Therefore,

n−1∑
k=1

∫ (k+1)/n

k/n

(
n

k
− 1

t

)
Sn(Gf , t)dt + 1

n
Sn(Gf ,1)

P−→ 0.

Using I3(c), I3(d) and the Continuous mapping theorem ([35], Theorem 1.3.6), we obtain

1√
n

n∑
k=1

πθ�(Pθk
− Pθ�)
θ�f

D−→ γ̃ 2(f )

∫ 1

0
t−1Bt dt.

Since
∫ 1

0 t−1Bt dt = ∫ 1
0 log(t)dBt ,

∫ 1
0 t−1Bt dt is a Gaussian random variable with zero mean

and variance
∫ 1

0 log2(t)dt = 2.
We now check condition A6(b). Note that

n−1/2
n∑

k=1

πθk
(Pθk

− Pθ�)
θ�(Pθk
− Pθ�)
θ�f = n−1/2

n∑
k=1

πθk

(
G

f
θk

)
,

where

G
f
θ (x)

def= (Pθ − Pθ�)
θ�(Pθ − Pθ�)
θ�f (x). (38)

We write for any x ∈ X and any �k ∈ N,

πθk

(
G

f
θk

) = (
πθk

− P
�k

θk

)
G

f
θk

(x) + (
P

�k

θk
− P

�k

θ�

)
G

f
θk

(x) + P
�k

θ�
G

f
θk

(x).

By Proposition 3.3, P[α] holds and there exist Cθ,ρθ such that ‖P n
θ − πθ‖V α ≤ Cθρ

n
θ . Further-

more, Lemma A.2 and I3(b) imply that lim supn Cθn < +∞ w.p.1 and there exists a constant

ρ ∈ (0,1) such that lim supn ρθn ≤ ρ, w.p.1. Set �k
def= �� lnk� with � such that 1/2 + � lnρ < 0.

Let x ∈ X be fixed.
By Lemma 4.3 and I3(b), there exists an almost surely finite random variable C1 s.t.∣∣∣∣∣ 1√

n

n∑
k=1

(
πθk

− P
�k

θk

)
G

f
θk

(x)

∣∣∣∣∣ ≤ C1V
α(x)n−1/2

n∑
k=1

ρ�k .

Since n−1/2 ∑n
k=1 ρ�k ≤ ρ−1n−1/2 ∑n

k=1 k� lnρ →n→∞ 0, it holds

1√
n

n∑
k=1

(
πθk

− P
�k

θk

)
G

f
θk

(x)
a.s.−→ 0.
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By Lemma 4.5, there exist some positive constants C2, κ�, a such that

E

[(
n∑

k=1

{
P

�k

θk
− P

�k

θ�

}
G

f
θk

(x)

)2]1/2

≤ C2|f |V αV α(x)

n∑
k=1

1

k

�k−1∑
t=1

(
κ��k

k1/(2a)

)at

.

Since limk �a
k/k1/2 = 0, there exists k� such that for k ≥ k�, (κ��k)

a/k1/2 ≤ 1/2. Then,

1√
n

n∑
k=1

1

k

�k∑
t=1

(
κ��k

k1/(2a)

)at

≤ 1√
n

k�∑
k=1

1

k

�� ln k�∑
t=1

(
κ��k

k1/(2a)

)at

+ 2√
n

n∑
k=k�+1

1

k
.

The RHS tends to zero when n → +∞, which proves that n−1/2 ∑n
k=1{P �k

θk
−P

�k

θ�
}Gf

θk
(x)

P−→ 0.
Finally, by Lemma 4.6, there exists a constant C3 such that

E

[(
1√
n

n∑
k=1

P
�k

θ�
G

f
θk

(x)

)2]1/2

≤ C3V
α(x)

1√
n

n∑
k=1

�α
k

k
→

n→∞ 0,

thus implying that n−1/2 ∑n
k=1 P

�k

θ�
G

f
θk

(x)
P−→ 0.

Lemma 4.3. Assume I1 and I2(a)–(c). Let α ∈ (0,1/2). For any f ∈ LV α and θ ∈ �,

G
f
θ (x) =

∫
(θ − θ�)

⊗2(dz1:2)F (0)(x, z1, z2),

where G
f
θ is defined by (38); and there exists a constant C such that for any x ∈ X,

∣∣F (0)(x, z1, z2)
∣∣ ≤ C|f |V αV α∧(β/τ)(x)

(
V α(z1) + V α(z2)

)
.

In addition, there exists some constant C′ such that for any � ∈ N, any θ ∈ � and any f ∈ LV α ,∣∣(πθ − P �
θ

)
G

f
θ

∣∣
V α ≤ C′|f |V α

∥∥P �
θ − πθ

∥∥
V αθ

(
V α

)
.

Proof. Set γ
def= α ∧ (β/τ). Throughout this proof, let Lθ be the constant given by P[γ ]. We have

F (0)(x, z1, z2)
def= ε2r(x, z2)

[∫

θ�(z2,dy)r(y, z1)

(

θ�f (z1) − 
θ�f (y)

)

−
∫


θ�(x,dy)r(y, z1)
(

θ�f (z1) − 
θ�f (y)

)]
.

Note that |r(·, z1)|V γ ≤ 1 for any z1 so that by (29),∣∣∣∣
∫


θ�(z2,dy)r(y, z1)
θ�f (z1)

∣∣∣∣ ≤ L4
θ�

|f |V αV α(z1)V
γ (z2).
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In addition, since γ − β/τ ≤ 0, we have by definition of the acceptance ratio r (see (22))

r(x, z2)V
γ (z2) ≤ V γ (x).

Then, there exists a constant C such that

ε2r(x, z2)

∣∣∣∣
∫


θ�(z2,dy)r(y, z1)
θ�f (z1)

∣∣∣∣ ≤ C|f |V αV α(z1)V
γ (x).

Similar upper bounds can be obtained for the three remaining terms in F (0), thus showing the
upper bounds on F (0).

In addition, by P[γ ]

∣∣(πθ − P �
θ

)
G

f
θ f (x)

∣∣
V α ≤ ∥∥πθ − P �

θ

∥∥
V α

∣∣Gf
θ f

∣∣
V αV α(x).

The proof is concluded upon noting that |Gf
θ (x)| ≤ C|f |V αθ(V α). �

Lemma 4.4. Assume I1 and I2(a)–(c). Let α ∈ (0,1/2). There exist some constants C,κ� and
ρ� ∈ (0,1) such that for any t ≥ 1, any integers u1, . . . , ut and any f ∈ LV α ,

(Pθ − Pθ�)
(
P

ut

θ�
− πθ�

) · · · (Pθ − Pθ�)
(
P

u1
θ�

− πθ�

)
G

f
θ (x)

=
∫

· · ·
∫

(θ − θ�)
⊗(t+2)(dz1:t+2)F

(t)
u1:t (x, z1, . . . , zt+2),

where G
f
θ is defined in (38), and

∣∣F (t)
u1:t (x, z1, . . . , zt+2)

∣∣ ≤ C|f |V ακt
�ρ

∑t
j=1 uj

� V α∧(β/τ)(x)

t+2∑
j=1

V α(zj ). (39)

Proof. By repeated applications of Equation (37), it can be proved that the functions F
(t)
u1:t are

recursively defined as follows

F (t)
u1:t (x, z1, . . . , zt+2)

(40)
def= εr(x, zt+2)

∫ (
P

ut

θ�
(zt+2,dy) − P

ut

θ�
(x,dy)

)
F (t−1)

u1:t−1
(y, z1, . . . , zt+1),

where F
(0)
u1:0 = F (0) and F (0) is given by Lemma 4.3.

The proof of the upper bound is by induction. The property holds for t = 1. Assume it holds for

t ≥ 2. Set γ
def= α ∧ (β/τ); by Proposition 3.3 and the property P[γ ], there exist some constants
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C� and ρ� ∈ (0,1) such that ‖P �
θ�

− πθ�‖V γ ≤ Cθ�ρ
�
θ�

. Then,

∣∣F (t)
u1:t (x, z1:t+2)

∣∣ ≤ C|f |V ακt−1
� ρ

∑t−1
j=1 uj

θ�

(
t+1∑
j=1

V α(zj )

)

× r(x, zt+2)
[∥∥P

ut

θ�
− πθ�

∥∥
V γ V γ (zt+2) + ∥∥P

ut

θ�
− πθ�

∥∥
V γ V γ (x)

]
≤ C|f |V ακt−1

� εCθ�ρ

∑t
j=1 uj

θ�
r(x, zt+2)

{
V γ (zt+2) + V γ (x)

}
.

Since γ ≤ β/τ , r(x, zt+2)V
γ (zt+2) ≤ V γ (x) thus showing (39) with κ� = 2Cθ�ε. �

Lemma 4.5. Assume I1, I2(a)–(c) and I3. Let α ∈ (0,1/2). There exist positive constants C,κ, a

such that for any f ∈ LV α , any k, � ≥ 1 and any x ∈ X,

E
[({

P �
θk

− P �
θ�

}
G

f
θk

(x)
)2]1/2 ≤ C|f |V α

V α(x)

k

�−1∑
t=1

(
tκk−1/(2a)

)at
,

where G
f
θ is given by (38).

Proof. For any g ∈ LV α , k, � ≥ 1 and x ∈ X,

P �
θk

g(x) − P �
θ�

g(x)

=
�−1∑
t=1

∑
u1:t∈Ut

P
�−t−∑t

j=1 uj

θ�
(Pθk

− Pθ�)P
ut

θ�
· · · (Pθk

− Pθ�)P
u1
θ�

g(x)

=
�−1∑
t=1

∑
u1:t∈Ut

P
�−t−∑t

j=1 uj

θ�
(Pθk

− Pθ�)
(
P

ut

θ�
− πθ�

) · · · (Pθk
− Pθ�)

(
P

u1
θ�

− πθ�

)
g(x),

where Ut = {u1:t , uj ∈ N,
∑t

j=1 uj ≤ � − t}. Fix t ∈ {1, . . . , � − 1} and u1:t ∈ Ut . Then by
Lemma 4.4,

P
�−t−∑t

j=1 uj

θ�
(Pθk

− Pθ�)
(
P

ut

θ�
− πθ�

) · · · (Pθk
− Pθ�)

(
P

u1
θ�

− πθ�

)
G

f
θk

(x)

=
∫

(θk − θ�)
⊗(t+2)(dz1:t+2)

∫
P

�−t−∑t
j=1 uj

θ�
(x,dy)F (t)

u1:t (y, z1, . . . , zt+2).

Assumptions I3(b) and I3(d) and Lemma 4.4 show that there exist constants C,κ�,ρ� ∈ (0,1)

such that ∥∥∥∥
∫

(θk − θ�)
⊗(t+2)(dz1:t+2)

∫
P

�−t−∑t
j=1 uj

θ�
(x,dy)F (t)

u1:t (y, z1, . . . , zt+2)

∥∥∥∥
2

≤ C

k1+t/2
At |f |V ακt

�ρ

∑t
j=1 uj

� P
�−t−∑t

j=1 uj

θ�
V α(x).
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Finally, Proposition 3.3 implies that supj≥0 |P j
θ�

V α|V α < +∞. By combining these results, we
have for some constant C

∥∥P �
θk

G
f
θk

(x) − P �
θ�

G
f
θk

(x)
∥∥

2 ≤ Ck−1|f |V αV α(x)

�−1∑
t=1

Atκ
t
�k

−t/2
∑

u1:t∈Ut

ρ

∑t
j=1 uj

� .

Note that
∑

u1:t∈Ut
ρ

∑t
j=1 uj

� ≤ (1 − ρ�)
−t . Furthermore, there exists a > 0 such that At ≤ tat .

Therefore,

∥∥P �
θk

G
f
θk

(x) − P �
θ�

G
f
θk

(x)
∥∥

2

≤ Ck−1|f |V αV α(x)

�−1∑
t=1

(
tκ1/a(1 − ρ�)

−1/ak−1/(2a)
)at

.

This concludes the proof. �

Lemma 4.6. Assume I1, I2(a)–(c) and I3. Let α ∈ (0,1/2) and f ∈ LV α . Then, there exists a
constant C such that for any k, � ≥ 1 and any x ∈ X,

E
[(

P �
θ�

G
f
θk

(x)
)2]1/2 ≤ C�α|f |V αk−1V α(x).

Proof. We have

P �
θ�

G
f
θk

(x) =
∫ ∫

(θk − θ�)
⊗2(dz1:2)H�(x, z1, z2),

with H�(x, z1, z2)
def= P �

θ�
(x,F (0)(·, z1, z2)) where F (0) is given by Lemma 4.3. Lemma 4.3 also

implies that there exists a constant C such that

∣∣H�(x, z1, z2)
∣∣ ≤ C|f |V α

(
V α(z1) + V α(z2)

)
P �

θ�
V α(x). (41)

By I3, the variance of P �
θ�

G
f
θk

(x) is upper bounded by

C|f |2V α

(
P �

θ�
V α(x)

)2
k−2.

The proof is concluded by application of the drift inequality (27) and I3(a). �

Appendix A: Technical lemmas

The following lemma is (slightly) adapted from [18], Lemma 4.2.
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Lemma A.1. Assume A2. For any α ∈ (0,1) and θ, θ ′ ∈ �,

‖πθ − πθ ′ ‖V α ≤ 2(Lθ ′ ∨ Lθ)
4πθ

(
V α

)
DV α

(
θ, θ ′),

‖
θ − 
θ ′ ‖V α ≤ 3(Lθ ∨ Lθ ′)6πθ

(
V α

)
DV α

(
θ, θ ′),

‖Pθ
θ − Pθ ′
θ ′ ‖V α ≤ 5(Lθ ∨ Lθ ′)6πθ

(
V α

)
DV α

(
θ, θ ′),

where Lθ and 
θ are given by (9) and (3).

The following lemma can be obtained from [16,17,28] or [11] (see also the proof of [32],
Lemma 3, for a similar result).

Lemma A.2. Let {Pθ , θ ∈ �} be a family of phi-irreducible and aperiodic Markov kernels. As-
sume that there exist a function V : X → [1,+∞), and for any θ ∈ � there exist some constants
bθ < +∞, δθ > 0, λθ ∈ (0,1) and a probability measure νθ on X such that for any x ∈ X

PθV (x) ≤ λθV (x) + bθ ,

Pθ (x, ·) ≥ δθνθ (·)1{V ≤cθ }(x), cθ
def= 2bθ (1 − λθ )

−1 − 1.

Then there exists γ > 0 and for any θ , there exist some finite constants Cθ and ρθ ∈ (0,1) such
that ∥∥P n

θ (x, ·) − πθ

∥∥
V

≤ Cθρ
n
θ V (x)

and

Cθ ∨ (1 − ρθ )
−1 ≤ C

{
bθ ∨ δ−1

θ ∨ (1 − λθ )
−1}γ

.

Lemma A.3 is proved in [18], Section 4.

Lemma A.3. Let X be a Polish space endowed with its Borel σ -field X . Let μ and (mun)n∈N be
probability distributions on (X, X ). Let (hn)n∈N be an equicontinuous family of functions from X
to R. Assume

(i) the sequence (μn)n∈N converges weakly to μ,
(ii) for any x ∈ X, limn→∞ hn(x) exists, and there exists γ > 1 such that supn μn(|hn|γ ) +

μ(| limn hn|) < +∞.

Then, μn(hn) → μ(limn hn).

Appendix B: Weak law of large numbers for adaptive and
interacting MCMC algorithms

The proof of the theorem below is along the same lines as the proof of [18], Theorem 2.7, which
addresses the strong law of large numbers and details are omitted. Note that in this generalization,
we relax the condition supθ |F(·, θ)|V < +∞ of [18]. The proof is provided in the supplementary
material [19].
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Theorem B.1. Assume A1, A2 and let a ∈ (0,1). Let F : X × � → R be a measurable func-
tion. Assume that there exists a sequence of stopping-times {τm,m ≥ 1} such that P(

⋃
m{τm =

+∞}) = 1 and

(i) lim supn→∞ Lθn < ∞, P-a.s. where Lθ is defined in Lemma 2.1 applied with the closed
interval [a,1].

(ii) lim supn→∞ πθn(V
a) < ∞, P-a.s.

(iii) lim supn→∞ |Fθn |V a < +∞, P-a.s.
(iv) For any m ≥ 1, there exists t < 1/a − 1 such that supn≥1 n−t

E[V (Xn)1{n−1<τm}] < ∞.

(v) n−1 ∑n
k=1 DV a (θk, θk−1)V

a(Xk)
P−→ 0.

(vi) n−1 ∑n−1
k=1 |Fθk

− Fθk−1 |V aV a(Xk)
P−→ 0.

Then,

1

n

n−1∑
k=0

Fθk
(Xk) − 1

n

n−1∑
k=0

∫
πθk

(dx)Fθk
(x)

P−→ 0.
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Supplementary Material

Supplement to “A central limit theorem for adaptive and interacting Markov chains”
(DOI: 10.3150/12-BEJ493SUPP; pdf). We detail in this supplement: (1) the gap in the proof of
Atchade’s [9] theorem, (2) the proofs of technical Lemmas 4.1, 4.3, A.1–A.3, (3) some additional
proofs of [18], Section 3.1, (4) results on the variance of completely degenerated V-statistics of
asymptotically stationary Markov chains, and (5) the weak law of large number for adaptive and
interacting Markov chains.
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