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In this paper, the area swept under the workload graph is analyzed: with {Q(t): t ≥ 0} denoting the station-
ary workload process, the asymptotic behavior of

πT (u)(u) := P

(∫ T (u)

0
Q(r)dr > u

)

is analyzed. Focusing on regulated Brownian motion, first the exact asymptotics of πT (u)(u) are given for
the case that T (u) grows slower than

√
u, and then logarithmic asymptotics for (i) T (u) = T

√
u (relying

on sample-path large deviations), and (ii)
√

u = o(T (u)) but T (u) = o(u). Finally, the Laplace transform
of the residual busy period are given in terms of the Airy function.

Keywords: area; Laplace transform; large deviations; queues; workload process

1. Introduction

Queueing models form an important branch within applied probability, having applications in
production, storage, and inventory systems, as well as in communication networks. At the same
time, there is a strong link with various models that play a crucial role in finance and risk theory,
see, for instance, [11].

In more formal terms, the workload process of a queue is commonly defined as follows. Let
(X(t))t∈R be a stochastic process, that is often assumed to have stationary increments; without
loss of generality we assume it has zero mean. Let c > 0 be the drain rate of the queue. Then the
corresponding workload process (Q(t))t∈R is defined through

Q(t) = sup
s≤t

X(t) − X(s) − c(t − s).

A sizable body of literature is devoted to the analysis of the probabilistic properties of this work-
load process, both in terms of its stationary behavior and its transient characteristics.

One of the key metrics of the queueing system under consideration is the mean stationary
workload. In many situations, this cannot be computed explicitly, and one then often resorts to
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simulation. A commonly used estimator is

Q̄T := 1

T

T∑
i=1

Q(i);

one could set up the situation such that at time 0 the queue has already run for a substantial
amount of time, such that one can safely assume the workload is in stationarity. In the simula-
tion literature, this type of estimators (and related ones) have been analyzed in detail; see, for
example, [3]. Results are in terms of laws of large numbers and central limit theorems.

Recently, attention shifted to the large deviation properties of the above type of estimators.
It is observed that the subsequent observations are in general dependent, which considerably
complicates the analysis. More specifically, standard large-deviations techniques do not apply
here; the Gärtner–Ellis theorem [8], that allows only a mild dependence between the increments,
is therefore not of any use. Even in cases in which the correlation of the stationary workload
exhibits roughly exponential decay (being a manifestation of the queue’s input process having
short-range dependent properties), it turns out that the probability of the sample mean Q̄T de-
viating from the mean stationary workload, say q , under quite general circumstances, does not
decay exponentially.

Let us consider a few more detailed results. In a random walk setting (i.e., in which Q(0) =
0 and Q(t + 1) = max{Q(t) + Y(t),0} for an i.i.d. sequence Y(t)), Meyn [13,14] proved an
intriguing (asymmetric) result. ‘Below the mean’ there is, under mild regularity assumptions,
exponential decay, in that

lim sup
T →∞

1

T
log P(Q̄T ≤ a) < 0

for each a < q , whereas ‘above the mean’ there is ‘subexponential decay’, that is,

lim
T →∞

1

T
logP(Q̄T ≥ a) = 0

for each a > q . Subsequently, Duffy and Meyn [10], proved that the right scaling was quadratic,
in the sense that in their setting T −2 ∑T

i=1 Q(i) satisfies a large deviations principle with a non-
trivial rate function. The square can intuitively be understood from the fact that one essentially
considers the right scaling for the area under the graph of the workload.

The above motivates the interest in tail probabilities of the type

πT (u)(u) := P

(∫ T (u)

0
Q(t)dt > u

)

for various types of interval lengths T (u), and u → ∞; here the workload is assumed to be in
stationarity at time 0. As indicated above, for T (u) be in the order of

√
u and the queue’s input

process having i.i.d. increments, the tail probability πT (u)(u) decaying roughly like exp(−α
√

u)

for some α ∈ (0,∞). On the other hand, for the case u = o(T (u)) it is seen that π(u) tends to 1
for u large.
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The queueing system we consider in this paper is reflected (or: regulated) Brownian motion,
also referred to as Brownian storage; this means that the driving process (X(t))t∈R is a (standard)
Brownian motion. In more detail, our contributions are the following.

• We first, in Section 3, consider the short timescale regime, that is, we assume T (u) =
o(

√
u). The main intuition here is that, in this regime, with overwhelming probability the

queue does not idle in [0, T (u)], and as a consequence, Q(s) behaves as Q(0) + X(s) − cs

for s ∈ [0, T (u)]. This essentially enables us to compute the so-called exact asymptotics of
πT (u)(u), that is, we find an explicit function ϕ(u) such that πT (u)(u)/ϕ(u) → 1 as u → ∞.

• The second contribution concerns the intermediate timescale regime, in which T (u) is pro-
portional to

√
u. As a function of this proportionality constant, we determine in Section 4

the decay rate

−α = lim
u→∞

1√
u

logπT (u)(u),

such that πT (u)(u) roughly looks like exp(−α
√

u) for u large. A crucial observation is that
the probability under study can be translated into a related probability in the so-called many-
sources regime. This means that sample-path large deviations for Brownian motion can be
applied here, for example, Schilder’s theorem. Apart from determining the decay rate, also
the associated most likely path is identified, complementing results in [10].

• Section 5 considers the long timescale, that is
√

u = o(T (u)) but T (u) = o(u). Relying on
the intuition that essentially one ‘big’ busy period causes the rare event under considera-
tion, we prove that (like in the intermediate timescale regime) πT (u)(u) roughly decays like
exp(−α

√
u) for some constant α > 0. The proof techniques are reminiscent of those used

to establish an analogous property in the M/M/1 queue [5].
• We then consider in Section 6 the integral over the remaining busy period (rather than a

given horizon T (u)), again with Brownian motion input (cf. the results for ‘traditional’
single-server queues in [7]). It turns out to be possible to explicitly compute its Laplace
transform, in terms of the so-called Airy function, which also enables closed-form expres-
sions for the corresponding mean value.

2. Notation and model description

Let the stochastic process {B(t): t ∈ R} be a standard Brownian motion (i.e., EB(t) = 0 and
VarB(t) = t ); N denotes a standard Normal random variable.

In this paper, we consider a fluid queue fed by B(·) and drained with a constant rate c > 0. Let
{Q(t): t ∈ R} denote the stationary buffer content process, that is, the unique stationary solution
of the following Skorokhod problem:

S1 Q(t) = Q(0) + B(t) − ct + L(t), for t ≥ 0;
S2 Q(t) ≥ 0, for t ≥ 0;
S3 L(0) = 0 and L is nondecreasing;
S4

∫ ∞
0 Q(s)dL(s) = 0.
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We recall that the solution to the above Skorokhod problem is

Q(t) = sup
s≤t

(
B(t) − B(s) − c(t − s)

)
.

The primary focus of this paper concerns the tail asymptotics

πT (u)(u) := P

(∫ T (u)

0
Q(r)dr > u

)

for functions T (·) : R → R+.

3. Short timescale

In this section, we focus on the analysis of πT (u)(u) as u → ∞ and T (u) = o(
√

u). The main
intuition in this timescale is that with overwhelming probability the queue does not idle in
[0, T (u)]. Therefore, Q(r) essentially behaves as Q(0) + B(r) − cr for r ∈ [0, T (u)], so that
πT (u)(u) looks like (u large)

P

(∫ T (u)

0

[
Q(0) + B(r) − cr

]
dr > u

)
.

This idea is formalized in the following theorem.

Theorem 1. Let T (u) = o(
√

u). Then, as u → ∞,

πT (u)(u) = exp

(
− 2cu

T (u)
− 1

3
c2T (u)

)(
1 + o(1)

)
.

The following lemma plays an important role in the proof of Theorem 1.

Lemma 1. For any T (·) : R → R+, as u → ∞,

P

(∫ T (u)

0

[
Q(0) + B(r) − cr

]
dr > u

)
= exp

(
− 2cu

T (u)
− 1

3
c2T (u)

)(
1 + o(1)

)
.

Proof. Recalling that we assumed that the workload process is in steady-state at time 0, it is
well-known that

P
(
Q(0) > u

) = exp(−2cu), (1)

see, for example, Section 5.3 in [12]. The distributional equality, for T (u) > 0,

∫ T (u)

0
B(t)dt

d=
(

T (u)

3

)1/2

N (2)
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implies

P

(∫ T (u)

0

[
Q(0) + B(r) − cr

]
dr > u

)
= P

(
T (u)Q(0) + T (u)3/2

√
3

N > u + 1

2
cT (u)2

)
.

Denote

A1(u) :=
√

3(u + (1/2)c(T (u))2)

(T (u))3/2
.

Integrating with respect to the distribution of N , and using (1), we obtain that

P

(
T (u)Q(0) + (T (u))3/2

√
3

N > u + 1

2
c
(
T (u)

)2
)

= 1√
2π

∫ ∞

−∞
P

(
Q(0) >

u

T (u)
+ 1

2
cT (u) −

(
T (u)

3

)1/2

x

)
e−x2/2 dx = I1 + I2,

with

I1 := 1√
2π

exp

(
− 2cu

T (u)
− c2T (u)

)∫ A1(u)

−∞
exp

(
−x2

2
− 2c

(
T (u)

3

)1/2

x

)
dx;

I2 := 1√
2π

∫ ∞

A1(u)

exp

(
−x2

2

)
dx.

Integral I1: First, rewrite

I1 = 1√
2π

exp

(
− 2cu

T (u)
− 1

3
c2T (u)

)∫ A1(u)

−∞
exp

(
−
(

x√
2

+ A2(u)

)2)
dx,

where A2(u) = c
√

2T (u)/3. Using the substitution y := x + A2(u), we obtain

I1 = 1√
2π

exp

(
− 2cu

T (u)
− 1

3
c2T (u)

)∫ A1(u)+A2(u)

−∞
exp

(
−y2

2

)
dy

= exp

(
− 2cu

T (u)
− 1

3
c2T (u)

)(
1 + o(1)

)
as u → ∞.

Integral I2:

I2 = 1√
2πA1(u)

exp

(
− (A1(u))2

2

)(
1 + o(1)

)

= (T (u))3/2

√
6π(u + (1/2)c(T (u))2)

exp

(
−3

√
6π(u + (1/2)c(T (u))2)

2(T (u))3

)2(
1 + o(1)

)

= o

(
exp

(
− 2cu

T (u)
− 1

3
c2T (u)

))
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as u → ∞, where we used that P(N > x) ∼ 1√
2πx

exp(−x2/2) as x → ∞.
This completes the proof. �

Proof of Theorem 1. We establish upper and lower bound separately.
Upper bound: We distinguish between the case that the queue has idled before T (u), and the

case the buffer has been nonnegative all the time. We thus obtain πT (u)(u) = P1(u) + P2(u),

where

P1(u) := P

(∫ T (u)

0
Q(r)dr > u,L

(
T (u)

) = 0

)
,

P2(u) := P

(∫ T (u)

0
Q(r)dr > u,L

(
T (u)

)
> 0

)
.

Due to S1 and Lemma 1, as u → ∞,

P1(u) ≤ P

(∫ T (u)

0

[
Q(0) + B(r) − cr

]
dr > u

)
(3)

= exp

(
− 2cu

T (u)
− 1

3
c2T (u)

)(
1 + o(1)

)
.

Moreover, for any T (u) > 0,

P2(u) ≤ P

(
sup

s,t∈[0,T (u)]
[
B(t) − B(s) − c(t − s)

]
>

u

T (u)

)
,

realizing that for some epoch in [0, T (u)] the workload has exceed level u/T (u), whereas for
another epoch it has been 0. According to the Borell inequality [2], Theorem 2.1, in conjunction
with the self-similarity of Brownian motion, P2(u) is majorized by

2 exp

(
− ((u/T (u)) − E[sups,t∈[0,T (u)] B(t) − B(s) − c(t − s)])2

2T (u)

)

≤ 2 exp

(
− ((u/T (u)) − cT (u) − √

T (u)E[sups,t∈[0,1] B(t) − B(s)])2

2T (u)

)
,

which is negligible with respect to (3) as u → ∞. This completes the proof of the upper bound.
Lower bound: In view of

P

(∫ T (u)

0
Q(t)dt > u

)
≥ P

(∫ T (u)

0

[
Q(0) + B(r) − cr

]
dr > u

)
,

due to Lemma 1 the proof is complete. �
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4. Intermediate timescale

In this section, we consider the case of T (u) being proportional to
√

u: we set T (u) = T
√

u for
some T > 0. The main result of this section is given in the following theorem, that describes the
asymptotics of the probability that the area until time T

√
u exceeds Mu. It uses the following

notation:

ϕ(T ,M) :=
{

2
3

√
6c

√
cM, if

√
6M/c < T ;

2cM/T + c2T/3, else.

In this regime the intuition is that, in order to build up an area of at least u, for relatively small
values of T the queue does not idle with high probability, leading to an expression for the decay
rate that involves both M and T . If, on the contrary, T is somewhat larger, then the most likely
path is such that the queue starts off essentially empty at time 0, to return to 0 before T

√
u, thus

yielding a decay rate that just depends on M .

Theorem 2. For all T ,M > 0, it holds that

− lim
u→∞

1√
u

logP

(∫ T
√

u

0
Q(r)dr ≥ Mu

)
= ϕ(T ,M). (4)

We first observe that the probability under study can be translated into a related probability in
the so-called many-sources regime, as will be shown in Lemma 2. Let B(i)(·) be a sequence of
independent standard Brownian motions. Define

B(n)(t) := 1

n

n∑
i=1

B(i)(t), Q(n)(t) := sup
s≤t

(
B(n)(t) − B(n)(s) − c(t − s)

)
.

Lemma 2. For each T ,M > 0, n ∈ N

P

(∫ T

0
Q(n)(r)dr > M

)
= P

(∫ T n

0
Q(r)dr > Mn2

)
. (5)

Proof. Observe that the left-hand side of (5) equals

P

(
1

n

∫ T

0
sup
s≤r

(
n∑

i=1

B(i)(r) − B(i)(s) − cn(r − s)

)
dr > M

)

= P

(
1

n

∫ T

0
sup
s≤r

(
B(rn) − B(sn) − cn(r − s)

)
dr > M

)

= P

(
1

n

∫ T

0
sup
s≤rn

(
B(rn) − B(s) − crn + cs

)
dr > M

)
.
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Using the substitution v := rn, we obtain that

P

(∫ T

0
Q(n)(r)dr > M

)
= P

(∫ T n

0
sup
s≤v

(
B(v) − B(s) − cv + cs

)
dv > Mn2

)
.

This completes the proof. �

In our analysis, we use the following notation:

ψ(M,a, s) := (M + (1/2)cs2 − as)2

(2/3)s3
+ 2ac.

The proof of Theorem 2 is based on the following lemmas.

Lemma 3. For each M,T > 0 it holds that

inf
a≥0

inf
s∈(0,T ]ψ(M,a, s) = ϕ(T ,M).

The optimizing (a, s) equals

(a�, s�) =
{

(0,
√

6M/c), if
√

6M/c < T ;
(M/T − cT /6, T ), else.

Proof. Straightforward computation. �

Define

pn(T ,M,a) := P

(∫ T

0
Q(n)(r)dr ≥ M

∣∣∣Q(n)(0) = a

)
.

Lemma 4. For each T ,M,a > 0

lim sup
n→∞

1

n
logpn(T ,M,a) ≤ − inf

s∈[0,T ]
(M + (1/2)cs2 − as)2

(2/3)s3
.

Proof. The proof is based on the Schilder’s sample-path large-deviations principle [8,12]. Define
the path space

� :=
{
f : R → R, continuous, f (0) = 0, lim

t→∞
f (t)

1 + |t | = lim
t→−∞

f (t)

1 + |t | = 0

}
,

equipped with the norm

‖f ‖� := sup
t∈R

f (t)

1 + |t | .
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For a given function f , we have that the corresponding workload is given through q[f ](t) :=
sups≤t (f (t) − f (s) − c(t − s)). In addition,

S :=
{
f ∈ �: q[f ](0) = a,

∫ T

0
q[f ](r)dr ≥ M

}
.

The set S is closed; the proof of this property can be found in the Appendix. Hence, due to
Schilder’s theorem, we have that

lim sup
n→∞

1

n
logpn(T ,M,a) ≤ − inf

f ∈S
I(f ), (6)

with

I(f ) :=
⎧⎨
⎩

1

2

∫
R

(
f ′(r)

)2 dr, f ∈ A ,

∞, otherwise,

where A denotes the space of absolutely continuous functions with a square integrable deriva-
tive.

Now we show that

− inf
f ∈S

I(f ) = − inf
f ∈T

I(f ), (7)

where

T :=
{
f ∈ �: ∃s ∈ [0, T ]:

∫ s

0
f (r)dr ≥ M + 1

2
cs2 − as

}
.

To this end, first observe that T ⊆ S , so that − inff ∈T I(f ) ≤ − inff ∈S I(f ); we are there-
fore left with proving the opposite inequality. Now fix for the moment a path f . Bearing in
mind f is an absolutely continuous function, the following procedure yields a path f̄ ∈ T with
I(f ) = I(f̄ ). First, we let

m[f ] :=
∫ T

0
1{q[f ](u)>0}(u)du,

denote the amount of ‘nonidle time’ corresponding to the path f in [0, T ]. Then define

i[f ](r) := inf

{
s ∈ [0, T ]:

∫ s

0
1{q[f ](u)>0}(u)du > r

}

for r ∈ [0,m[f ]], and

j [f ](r) := inf

{
s ∈ [0, T ]:

∫ s

0
1{q[f ](u)=0}(u)du > r

}

for r ∈ [0, T − m[f ]].
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Now we construct the path f̄ by shifting all the idle periods of q[f ] to the end of the interval
[0, T ]. That is, for r ∈ [0,m[f ]], let

f̄ (r) := q[f ](i[f ](r))+ cr − a,

and for r ∈ [m[f ], T ], let

f̄ (r) := q[f ](i[f ](m[f ]))+ cr + f
(
j [f ](r − m[f ]))− cj [f ](r − m[f ]).

We also set

f̄ (r) := 0 for r < 0 and f̄ (r) := f̄ (T ) for r > T .

It is clear that I(f ) = I(f̄ ) (because we just permuted subintervals of [0, T ], which does not af-
fect the rate function), while the constructed path f̄ is now in T . Conclude that − inff ∈S I(f ) ≤
− inff ∈T I(f ), as desired.

We are therefore left with computing − inff ∈T I(f ). Let ε > 0. Clearly, T ⊆ ⋃
s∈[0,T ] T s ,

with

T s :=
{
f ∈ �:

∫ s

0
f (r)dr > M + 1

2
cs2 − as − ε

}
.

This implies that

− inf
f ∈T

I(f ) ≤ − inf
s∈[0,t] inf

f ∈T s
I(f ). (8)

Observe that set T s is open, and combine this with Schilder’s theorem and (2):

− inf
f ∈T s

I(f ) ≤ lim
n→∞

1

n
logP

(
1

n

∫ s

0

n∑
i=1

B(i)(r)dr > M + 1

2
cs2 − as − ε

)

= lim
n→∞

1

n
logP

(
N >

√
3n

s3

(
M + 1

2
cs2 − as − ε

))
.

Using that P(N > x) ≤ (
√

2πx)−1 exp(−x2/2), we obtain

− inf
f ∈T s

I(f ) ≤ − (M + (1/2)cs2 − as − ε)2

(2/3)s3
. (9)

Thus the claim follows from combining (6), (7), and (8) with (9). �

Proof of Theorem 2. Due to Lemma 2 it suffices to find the logarithmic asymptotics

lim
n→∞

1

n
logP

(∫ T

0
Q(n)(r)dr ≥ M

)
.

We establish the upper and lower bound separately.
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Upper bound: Recall P(Q(n)(0) ≥ a) = e−2nca by virtue of (1). For any ε > 0 and an arbitrary
integer N ,

P

(∫ T

0
Q(n)(r)dr ≥ M

)
=

∫ ∞

0
2nce−2ncvεpn(T ,M,vε)dv

≤
∞∑

k=0

2nce−2nckεpn

(
T ,M, (k + 1)ε

)

≤
N−1∑
k=0

2nce−2nckεpn

(
T ,M, (k + 1)ε

)+ 2nc · e−2ncNε

1 − e−2ncε
.

As a consequence, [8], Lemma 1.2.15, leads to

lim sup
n→∞

1

n
logP

(∫ T

0
Q(n)(r)dr ≥ M

)

≤ max

{
max

k=0,...,N−1

(
lim

n→∞
1

n
logpn

(
T ,M, (k + 1)ε

)− 2ckε

)
,−2cNε

}
.

Due to Lemma 4, we can further bound this by

max
{

max
k=0,...,N−1

(
− inf

s∈[0,T ]ψ
(
M,(k + 1)ε, s

))+ 2cε,−2cNε
}

≤ −min
{

inf
a≥0

inf
s∈[0,T ]ψ(M,a, s) − 2cε,2cNε

}
.

Now Lemma 3 yields

lim sup
n→∞

1

n
log P

(∫ T

0
Q(n)(r)dr ≥ M

)
≤ −min

{
ϕ(T ,M) − 2cε,2cεN

}
.

We establish the upper bound by subsequently letting N ↑ ∞ and ε ↓ 0.

Lower bound: Let ε > 0. Due to the Skorokhod representation, we have, with L(n)(·) defined
in the obvious way,

Q(n)(t) = Q(n)(0) + B(n)(t) − ct + L(n)(t).

Observe that for each a ≥ 0 and s ∈ [0, T ],

P

(∫ T

0
Q(n)(r)dr ≥ M

)
≥ P

(∫ s

0
Q(n)(r)dr > M

)

≥ P

(∫ s

0

(
Q(n)(0) + B(n)(r) − cr

)
dr > M

)

≥
∫ a+ε

a

2nc exp(−2ncv)P

(∫ s

0
B(n)(r)dr >

1

2
cs2 + M − vs

)
dv
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≥ 2nc exp
(−2nc(a + ε)

)
P

(∫ s

0
B(n)(r)dr >

1

2
cs2 + M − as

)

≥ 2nc exp
(−2cn(a + ε)

)
P

(
N >

√
3n

s3

(
1

2
cs2 + M − as

))
.

Now applying that for x > 0,

P(N > x) ≥ x2 − 1√
2πx3

exp
(−x2/2

)
,

see, for example, Section 2 in [2], we obtain that for all a ≥ 0 and s ∈ [0, T ],

lim inf
n→∞

1

n
logP

(∫ T

0
Q(n)(r)dr ≥ M

)
≥ − ((1/2)cs2 + M − as)2

(2/3)s3
− 2c(a + ε).

In order to complete the proof it suffices to let ε ↓ 0 and to maximize over a ≥ 0 and s ∈ [0, T ]. �

Remark 1. Interestingly, the most likely path f � of B(n)(·) can be explicitly computed, revealing
two separate scenarios.

– Suppose s� = √
6M/c < T . Then the queue (most likely) starts empty at time 0, is positive

for a while, drops to 0 at time s�, and remains empty. The corresponding path f � of B(n)(·)
is, for r ∈ [0, s�],

f �(r) = 2cr − cr2

6

√
6c

M
,

and f �(r) = f �(s�) for r ∈ (s�, T ].
– Suppose s� = T <

√
6M/c. Then the queue is symmetric in the interval [0, T ], and has the

value a� at times 0 and T . The corresponding path f � of B(n)(·) is, for r ∈ [0, T ],

f �(r) = 2cr − c

T
r2.

It can easily be verified that indeed

1

2

∫ T

0

(
(f �)′(r)

)2 dr + 2a�c = ϕ(T ,M)

as expected.

5. Long timescale

In this section, we consider the case that T (u) is between
√

u and u. It turns out that we find
the same logarithmic asymptotics as in the case that T (u) = T

√
u for large T (i.e., T larger than
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√
6M/c). In the proof, we first introduce some sort of ‘surrogate busy periods’ (recall that ‘tra-

ditional’ busy periods do not exist for reflected Brownian motion). Then we show that the event
of interest occurs essentially due to a single busy period being ‘big’ (in terms of the area swept
under the workload graph); this is due to the fact that the contribution of a single busy period has
a subexponential distribution (viz. roughly a Weibull distribution with shape parameter 1

2 ).
Defining

ϕ(M) := 2

3

√
6c

√
cM, ψ̃(M, δ, s) := (M + (1/2)cs2 − δs)2

(2/3)s3
,

we are in a position to state the main result of the section.

Theorem 3. Let
√

u = o(T (u)) and T (u) = o(u). Then,

lim
u→∞

1√
u

logP

(∫ T (u)

0
Q(r)dr > Mu

)
= −ϕ(M).

In order to prove Theorem 3, we need to introduce some notation. Let

τ0 := inf
{
t > 0: Q(0) + B(t) − ct = 0

}
, τ (x) := inf

{
t > 0: x + B(t) − ct = 0

}
.

Besides, for given δ > 0 and i = 1,2, . . . , let

σi := inf
{
t > τi−1: Q(t) ≥ 2δ

}
, τi := inf

{
t > σi : Q(t) ≤ δ

}
and

H0 :=
∫ τ0

0
Q(r)dr, Hi :=

∫ τi

σi

Q(r)dr.

Observe that {Hi}i∈N constitutes a sequence of i.i.d. random variables, that is in addition indepen-
dent of H0; likewise, the ξi := τi −σi are i.i.d. random variables. Moreover, for each i = 1,2, . . .

we have

Hi
d=
∫ τ(δ)

0

(
δ + B(r) − cr

)
dr.

The following lemmas play crucial role in the proof of Theorem 3.

Lemma 5. For each M > 0 it holds that

lim
δ↓0

inf
s≥0

ψ̃(M, δ, s) = ϕ(M).

Proof. This proof is a straightforward computation. Note that

s�(δ) = −δ + √
δ2 + 6Mc

c
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is the minimizer in infs≥0 ψ̃(M, δ, s). Consequently,

lim
δ↓0

inf
s≥0

ψ̃(M, δ, s) = lim
δ↓0

(M + (1/2)c(s�(δ))2 − δs�(δ))2

(2/3)(s�(δ))3
= ϕ(M).

This completes the proof. �

Lemma 6. For each M > 0 and i = 0,1, . . . , we have

lim sup
u→∞

1√
u

log P(Hi > Mu) ≤ −ϕ(M).

Proof. We start with the analysis of Hi , for i = 1,2, . . . . Observe that

P(Hi > Mu) = P

(
∃s ≥ 0:

1

u

∫ s

0

(
δ + B(r) − cr

)
dr > M,∀r ∈ (0, s): δ + B(r) − cr > 0

)
,

which is majorized by

P

(
∃s ≥ 0:

1

u

∫ s

0

(
δ + B(r) − cr

)
dr > M

)
. (10)

Substituting r = √
uv we obtain that, for u sufficiently large, (10) equals

P

(
∃s ≥ 0:

∫ s/
√

u

0

(
δ√
u

+ 1√
u

B(
√

uv) − cv

)
dv > M

)

= P

(
∃s ≥ 0:

∫ s

0

(
δ√
u

+ u−1/4B(v) − cv

)
dv > M

)
(11)

= P

(
sup
s≥0

∫ s

0 B(v)dv

M + (1/2)cs2 − δs/
√

u
> u1/4

)
.

Now, observe that Y(s) := ∫ s

0 B(v)dv/(M + 1
2cs2 −δs/

√
u) has bounded trajectories a.s. Hence,

the Borell inequality (see, e.g., [2], Theorem 2.1) leads to the following upper bound of (11):

2 exp

(
− inf

s≥0

(M + (1/2)cs2 − (δ/
√

u)s)2

(2/3)s3

(
u1/4 − E sup

s≥0
Y(s)

)2
)

,

where E sups≥0 Y(s) is bounded (by ‘Borell’). Combining the above with Lemma 5, we obtain
that

lim sup
u→∞

1√
u

log P(Hi > Mu) ≤ −ϕ(M). (12)

In order to prove the claim for H0 observe that

P(H0 > Mu) =
∫ ∞

0
2ca exp(−2ca)P

(∫ τ(a)

0

(
a + B(r) − cr

)
dr > Mu

)
da.
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Thus, by (12), it suffices to proceed along the lines of the proof of the upper bound of Theo-
rem 2. �

Proof of Theorem 3. We establish upper and lower bound separately.
Lower bound: The lower bound follows straightforwardly from Theorem 2 combined with the

fact that for sufficiently large u we have (recalling that
√

u = o(T (u)))

P

(∫ T (u)

0
Q(r)dr > Mu

)
≥ P

(∫ √
(6M/c)u

0
Q(r)dr > Mu

)
.

Upper bound: Let δ > 0 and denote N(u) := inf{i: τi ≥ T (u)}, K := 2/Eξi . Observe that

P

(∫ T (u)

0
Q(r)dr > u

)
≤ P

(
2δT (u) +

N(u)∑
i=0

Hi > u

)

≤ P

(
2δT (u) +

N(u)∑
i=0

Hi > u,N(u) ≤ KT (u)

)
+ P

(
N(u) > KT (u)

)
≤ P̄1(u) + P̄2(u),

with

P̄1(u) := P

(�KT (u)�∑
i=0

Hi > u − 2δT (u)

)
, P̄2(u) := P

(
N(u) >

⌊
KT (u)

⌋)
.

We first analyze P̄1(u). The idea is to reduce the problem of finding the upper bound of P̄1(u)

to the setting of [9], Theorem 8.3. To this end, pick ε > 0. Due to Lemma 6 there exists a sequence
{H̃i}i=0,1,... of i.i.d. random variables such that for each x > 0 and δ sufficiently small,

P(Hi > x) ≤ P(H̃i > x) (13)

and

P(H̃i > x) = p(x) exp
(−(

ϕ(M) − ε
)√

x
)
, (14)

where p(·) is some O-regularly varying function, that is, p(x) is a measurable function, such
that, for each λ ≥ 1

0 < lim inf
x→∞

p(λx)

p(x)
≤ lim sup

x→∞
p(λx)

p(x)
< ∞

(see, e.g., [4], Chapter 2, or the Appendix of [9]).
It is standard that, due to (13), for each x > 0,

P

(�KT (u)�∑
i=0

Hi > x

)
≤ P

(�KT (u)�∑
i=0

H̃i > x

)
. (15)
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Now, applying [9], Theorem 8.3 and recalling that KT (u) = o(u), we have, as u → ∞,

P

(�KT (u)�∑
i=0

H̃i > u − 2δT (u)

)
= ⌈

KT (u)
⌉ · P

(
H̃0 > u − 2δT (u)

)(
1 + o(1)

)
. (16)

Combining (15) and (16) with (14), we obtain that, for each ε > 0,

lim sup
u→∞

1√
u

log P̄1(u) ≤ −ϕ(M) + ε;

letting ε ↓ 0, we conclude that we can replace the right-hand side in the previous display by
−ϕ(M).

We now focus on P̄2(u). Observe that

P̄2(u) ≤ P
(
S�KT (u)� < T (u)

)
where S�KT (u)� := τ0 +

�KT (u)�∑
i=1

ξi .

Moreover, note that ξi, i = 1,2, . . . are i.i.d. with

d

dt
P(ξ1 ≤ t) = δ√

2πt3
exp

(−(δ − ct)2/2t
)

for t > 0; see, for example, [15], Section 2.9. Hence, a Chernoff bound argument yields, recalling
that K > 1/Eξi ,

lim sup
u→∞

1

T (u)
logP

(
S�KT (u)� < T (u)

) ≤ −K · sup
θ<0

[
θ

1

K
− log E exp(θξ1)

]
< 0.

We have found that P̄1(u) is smaller than a function of the order exp(−β1
√

u), while P̄2(u) is
smaller than a function of the order exp(−β2T (u)), for some β1, β2 > 0. Now recalling that√

u = o(T (u)), it follows that the upper bound on P̄1(u) is smaller than the upper bound on
P̄2(u). As a result,

lim sup
u→∞

1

T (u)
logP

(∫ T (u)

0
Q(r)dr > Mu

)
≤ lim sup

u→∞
1√
u

log
(
P̄1(u) + P̄2(u)

)= −ϕ(M).

This completes the proof. �

6. Residual busy period

In this section, we analyze the integral of the stationary workload for regulated Brownian motion
over the residual busy period. It turns out to be possible to explicitly compute its Laplace trans-
form, in terms of the so-called Airy function. As a by-product, the corresponding mean value is
calculated.
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Recall that

τ0 := inf
{
t ≥ 0: Q(t) = 0

}
, τ (x) := inf

{
t ≥ 0: x + B(t) − ct = 0

};
we also define the integral of the workload until the end of the busy period, conditional on the
workload being x at time 0:

J (x) :=
∫ τ(x)

0

(
x + B(t) − ct

)
dt.

By

Ai(x) := 1

π

∫ ∞

0
cos

(
1

3
t3 + xt

)
dt

we denote the Airy function (see, e.g., [1], Chapter 10.4).

Theorem 4. For each γ ≥ 0,

E exp

[
−γ

∫ τ0

0
Q(t)dt

]
= 2c

Ai((2γ )−2/3c2)

∫ ∞

0
e−cxAi

(
(2γ )−2/3c2 + (2γ )1/3x

)
dx.

Proof. Observe that up to time τ0 we have that Q(t) = Q(0) + B(t) − ct. Hence,

E exp

[
−γ

∫ τ0

0
Q(t)dt

]

=
∫ ∞

0
P

(
exp

[
−γ

∫ τ0

0
Q(t)dt

]
> u

)
du

=
∫ ∞

0
P

(
exp

[
−γ

∫ τ0

0

(
Q(0) + B(t) − ct

)
dt

]
> u

)
du

(17)

=
∫ ∞

0

∫ ∞

0
2c exp(−2cx)P

(
exp

[−γ J (x)
]
> u

)
dx du

=
∫ ∞

0
2c exp(−2cx)

∫ ∞

0
P
(
exp

[−γ J (x)
]
> u

)
dudx

=
∫ ∞

0
2c exp(−2cx)E

[
exp

[−γ J (x)
]]

dx.

Following Borodin and Salminen [6], Chapter 2, equation (2.8.1), we have that

E
[
exp

[−γ J (x)
]]= exp(cx)

Ai(21/3γ −2/3((1/2)c2 + γ x))

Ai((2γ )−2/3c2)
, (18)

which combined with (17) completes the proof. �
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In the following proposition, we compute the mean value of the integral over the residual busy
period, given the workload at time 0 equals x.

Proposition 1. The mean area until the end of the transient busy period, is

EJ (x) = E

[∫ τ(x)

0

(
x + B(t) − ct

)
dt

]
= x2

2c
+ x

2c2
.

Proof. Due to the fact that

Ai(u) = 1

2
√

πu1/4
exp

(
−2

3
u3/2

)(
1 − 5

48
u−3/2 + o

(
u−3/2)) (19)

as u → ∞, combined with (18), we have that

E
[−γ J (x)

] = exp(cx)

(
1

1 + (2x/c2)γ

)1/4

exp

[
c3

3γ

(
1 −

(
1 + 2γ x

c2

)3/2)](
1 + o(γ )

)

= 1 −
(

x2

2c
+ x

2c2

)
γ + o(γ )

as γ → 0. This completes the proof. �

Combining Proposition 1 with (17) (and using the dominated convergence theorem) immedi-
ately leads to the following corollary.

Corollary 1.

E

[∫ τ0

0
Q(t)dt

]
= 1

2c3
.

We note that, applying more precise expansions in (19), one can get the analogue of Propo-
sition 1 for higher moments of J (x), and (by applying (17)) also formulas for corresponding
moments of

∫ τ0
0 Q(t)dt . These computations are tedious (although standard), and are therefore

left out.

7. Discussion and outlook

In this paper, we analyzed the probability that the area swept under the Brownian storage graph
between 0 and T (u) exceeds u. We did so for various types of interval lengths T (u), leading to
asymptotic results for three timescales (u → ∞). A topic for future research could be to consider
a wider class of inputs {X(t): t ∈ R}, for instance, Gaussian processes or Lévy processes. In the
former case, there is the major complication that Q(0) is not independent of {X(t): t > 0}, which
is a property that we repeatedly used in this paper. In the latter case, we have to make sure that
all steps in which we use specific properties of Brownian motion, carry over to the more general
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Lévy case. We do anticipate, though, that in case the Lévy-input is light-tailed the asymptotics
are in the qualitative sense very similar to those related to the Brownian case (i.e., the same three
regimes apply). Another related problem concerns the derivation of a central limit theorem for

1√
T

(∫ T

0
Q(t)dt − qT

)
,

with q the mean stationary workload.

Appendix

In this appendix, we prove that

S =
{
f ∈ �: q[f ](0) = a,

∫ T

0
q[f ](s)ds ≥ M

}

is a closed set in the space �. To this end, let fn ∈ S be a sequence of functions such that
‖fn − f ‖� → 0, as n → ∞ for some function f ∈ �. We prove our claim by showing that
f ∈ S .

First, we show that for the limiting path f it holds that

q[f ](0) = − inf
s≤0

(
f (s) − cs

)= a. (20)

First, observe that g(s) − cs → ∞ as s → −∞, as an immediate consequence of the fact that
|g(s) − cs|/(1 + |s|) → c for all g ∈ �. Consequently, for any such g there is a point s in which g

takes its minimum in [−∞,0].
Let s0 be such that infs≤0(f (s) − cs) = f (s0) − cs0. Then

−a ≤ lim
n→∞fn(s0) − cs0 = f (s0) − cs0.

On the other hand, let {sn} be the sequence of points such that infs≤0(fn(s) − cs) = f (sn) −
csn. Observe that {sn} is bounded. If not, then, for each k and ε > 0, we would have

∥∥fk(s) − f (s)
∥∥

�
≥ sup

s∈{sn}
|fk(s) − f (s)|

1 + |s| = sup
s∈{sn}

| − a − f (s) − cs|
1 + |s| ≥ c − ε.

Conclude that there exists an M > 0 such that |sn| < M . For n large enough∣∣f (sn) − csn − (
fn(sn) − csn

)∣∣= ∣∣fn(sn) − f (sn)
∣∣≤ (

1 + |sn|
)
ε ≤ (1 + M)ε,

which implies

f (s0) − cs0 ≤ f (sn) − csn ≤ fn(sn) − csn + (1 + M)ε = −a + (1 + M)ε.

To complete the proof of (20), it is enough to let ε ↓ 0.
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Now we prove that ∫ T

0
q[f ](s)ds ≥ M.

Observe that ∫ T

0

∣∣q[fn](s) − q[f ](s)∣∣ds ≤ I1 + I2,

where

I1 :=
∫ T

0

∣∣fn(s) − f (s)
∣∣ds, I2 :=

∫ T

0

∣∣∣inf
r≤s

(
f (r) − cr

)− inf
v≤s

(
fn(v) − cv

)∣∣∣ds.

Let us examine I1 first. Due to the fact that limn→∞ ‖fn − f ‖� = 0, we have for n large enough
that

ε ≥ sup
s≤T

|fn(s) − f (s)|
1 + |s| ≥ sup

s∈[0,T ]
|fn(s) − f (s)|

1 + s
≥ sup

s∈[0,T ]
|fn(s) − f (s)|

1 + T
. (21)

This implies ∫ T

0

∣∣fn(s) − f (s)
∣∣ds < T (1 + T )ε.

Now consider I2. Let s0 be the minimizer in infr∈[0,s](f (r) − cr) and sn the minimizer in
infr∈[0,s](fn(rn) − crn). Then (21) implies that for n large enough

fn(sn) − csn − (
f (s0) − cs0

)≤ fn(s0) − cs0 − (
f (s0) − cs0

)≤ (1 + T )ε.

On the other hand

f (s0) − cs0 − (
fn(sn) − csn

)≤ f (sn) − csn − (
fn(sn) − csn

)≤ (1 + T )ε.

It follows that I2 ≤ T (1 + T )ε. Now it is enough to let ε ↓ 0; realizing that for each n we have∫ T

0 q[fn](s)ds ≥ M, the proof is completed.
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