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Small noise asymptotics and first passage
times of integrated Ornstein–Uhlenbeck
processes driven by α-stable Lévy processes
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In this paper, we study the asymptotic behaviour of one-dimensional integrated Ornstein–Uhlenbeck
processes driven by α-stable Lévy processes of small amplitude. We prove that the integrated Ornstein–
Uhlenbeck process converges weakly to the underlying α-stable Lévy process in the Skorokhod M1-
topology which secures the weak convergence of first passage times. This result follows from a more gen-
eral result about approximations of an arbitrary Lévy process by continuous integrated Ornstein–Uhlenbeck
processes in the M1-topology.

Keywords: absolutely continuous approximations; α-stable Lévy process; first passage times; integrated
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1. Introduction

Consider a dimensionless Langevin equation for the motion of a particle with a position xε

subject to a linear friction force F = −Aẋε , A > 0 (Stokes’ law for friction force) and a random
noise l̇ of a small amplitude ε > 0

ẍε = −Aẋε + εl̇. (1.1)

Denoting by vε := ẋε the velocity process, we understand this equation as a two-dimensional
equation in a phase space (v, x) which can be written in the integral form as

vε
t = v0 − A

∫ t

0
vε
s ds + εlt , (1.2)

xε
t = x0 +

∫ t

0
vε
s ds, t ≥ 0, x0, v0 ∈ R. (1.3)

The study of the dynamics of xε and vε in the Gaussian case, that is, when l = b is a standard
Brownian motion, has a long history. In this case, the velocity process vε is a Ornstein–Uhlenbeck
(OU) process, and the displacement process xε , being the integrated Ornstein–Uhlenbeck pro-
cess, is often referred to as Langevin’s Brownian motion. For example, it is well known that
for zero initial conditions x0 = v0 = 0, strong friction and large amplitude, A = ε → +∞, the
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displacement process xε can be considered as a good physical approximation of the Brownian
motion (see, e.g., Chapter 2 in Horsthemke and Lefever [9]).

The dynamics of the integrated OU processes driven by non-Gaussian Lévy processes attracted
attention recently in financial mathematics in the context of stochastic volatility models, see
Barndorff-Nielsen [4], and Barndorff-Nielsen and Shephard [5]. Garbaczewski and Olkiewicz
[7] studied integrated OU processes driven by a 1-stable (Cauchy) process. Al-Talibi, Hilbert and
Kolokoltsov [2] established convergence in probability of marginals of an integrated OU process
driven by an α-stable Lévy process in the limit of large friction parameter. Chechkin, Gonchar
and Szydłowski [6] studied the equation (1.1) (with ε = 1, in two- and three-dimensional setting)
in a model of plasma in an external constant magnetic field and subject to an α-stable Lévy
electric forcing.

Our present research is mainly motivated by the this paper and focuses on the first passage
times of the displacement process xε in the limit of small amplitude ε → 0 under the assumption
that the driving process l is a non-Gaussian α-stable Lévy process. We refer the reader to the
works by Lefebvre [11] and Hesse [8] where first passage problems for integrated Ornstein–
Uhlenbeck processes driven by Brownian motion were studied.

Let us briefly describe the outline of the paper. First, we shall show that on a certain ε-
dependent time scale the integrated OU process Axε weakly converges to the driving process
l in the sense of finite-dimensional distributions. Further, we shall establish a stronger conver-
gence of the processes in an appropriate topology. We notice that since the driving α-stable Lévy
process has càdlàg paths and the integrated Ornstein–Uhlenbeck process is absolutely continu-
ous, no convergence in the uniform topology or in the Skorokhod J1-topology is possible. Thus,
we prove the convergence in the weaker Skorokhod M1-topology which is still strong enough
to ensure the continuity of the running supremum or the inverse function of a process, and to
guarantee the convergence of the first passage times. As a by-product, we obtain an approxima-
tion result for an arbitrary Lévy process by absolutely continuous integrated OU processes in the
M1-topology.

2. Object of study and main result

Let (�, F ,F,P) be a filtered probability space satisfying the usual conditions. On this proba-
bility space, consider a Lévy process l with càdlàg paths and a Lévy–Khintchine representation
Eeiult = et�(u), where

�(u) = −σ 2

2
u2 + iμu +

∫
R\{0}

(
eiuy − 1 − iuyI{|y|≤1}

)
ν(dy)), u ∈ R, (2.1)

with σ ≥ 0, μ ∈ R, and a jump measure ν satisfying the conditions ν({0}) = 0 and
∫

R\{0}(y
2 ∧

1)ν(dy) < ∞. In particular, we shall be interested in non-Gaussian strictly α-stable Lévy pro-
cesses l(α) = (l

(α)
t )t≥0, α ∈ (0,2), for which the closed-form representation of the characteristic
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exponent � is known to be equal to

�(u) =

⎧⎪⎪⎨
⎪⎪⎩

−c|u|α
(

1 − iβ sign(u) tan
πα

2

)
, α ∈ (0,1) ∪ (1,2),

−c|u|
(

1 + iβ
2

π
sign(u) lnu

)
, α = 1, u ∈ R,

c > 0 and β ∈ [−1,1] being a scale and skewness parameters (see, e.g., Theorem 14.15 in
Sato [13]). The well-known self-similarity property of l(α) will be used in the following:
Law(εl

(α)
t/εα , t ≥ 0) = Law(l

(α)
t , t ≥ 0) for any ε > 0.

For any A > 0, ε > 0, any v0, x0 ∈ R, and any Lévy process l (and in particular an α-stable
Lévy process) there exists a path-wise unique strong solution of the linear stochastic differential
equation (1.2) given by

vε
t = v0e−At + ε

∫ t

0
e−A(t−s) dls , (2.2)

where the last integral is a Lévy–Wiener integral (see Chapter 4.3.5 in Applebaum [3]). It is
helpful to recall another representation of vε which is obtained with the help of integration by
parts, namely

vε
t = v0e−At + εlt − εA

∫ t

0
e−A(t−s)ls ds. (2.3)

It is clear, that the process vε is also càdlàg and its jumps coincide with the jumps of the driving
process εl.

The equation (1.3) for the displacement process xε can be also solved explicitly. Applying the
Fubini theorem we obtain

xε
t = x0 +

∫ t

0
vε
s ds = x0 +

∫ t

0

[
v0e−As + ε

∫ s

0
e−A(s−u) dlu

]
ds

= x0 + v0

A

(
1 − e−At

) + ε

∫ t

0

[∫ t

u

e−A(s−u) ds

]
dlu (2.4)

= x0 + v0

A

(
1 − e−At

) + ε

A

∫ t

0

(
1 − e−A(t−u)

)
dlu.

From now on, we set the initial conditions x0 = v0 = 0. At the end of the Section 3, we discuss
the generalization of the results to the case of arbitrary initial conditions.

For a real valued stochastic process y = (yt )t≥0 and a > 0, let τa(y) denote the first passage
time

τa(y) = inf{t ≥ 0: yt > a}.
The main goal of this paper is to study the law of the first passage times τa(x

ε) of the displace-
ment process xε in the limit ε → 0.
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The asymptotics of τa(x
ε) can be determined in an especially simple way in the case of an

integrated OU process driven by a standard Brownian motion l = b, that is a strictly 2-stable
continuous Lévy process with the characteristic exponent �(u) = −u2/2, u ∈ R.

Consider the Polish space C([0,∞),R) of real-valued continuous functions endowed with the
topology U of local uniform convergence associated with the metric

dU

(
x, x′) :=

∫ ∞

0
e−T

(
1 ∧ sup

t∈[0,T ]

∣∣xt − x′
t

∣∣)dT , x, x′ ∈ C
([0,∞)

)
.

The following result about the weak convergence (denoted in the sequel by ‘⇒’) of integrated
OU processes to the Brownian motion is well known and is presented here for the sake of com-
pleteness.

Proposition 2.1. Let l = b = (bt )t≥0 be a standard Brownian motion, and let xε be the integrated
OU process satisfying the equations (1.2) and (1.3) with zero initial conditions. Then, for any
A > 0, (

Axε
t/ε2

)
t≥0 ⇒ (bt )t≥0

in C([0,∞),R;U) as ε → 0.

Proof. According to (2.4), the process Axε is determined explicitly as

Axε
t = ε

∫ t

0

(
1 − e−A(t−s)

)
dbs.

Applying the time change t �→ t

ε2 and using the self-similarity of the Brownian motion b,
Law(εbt/ε2, t ≥ 0) = Law(bt , t ≥ 0), we obtain that for any ε > 0 the process (Axε

t/ε2)t≥0 coin-
cides in law with the process AXε given by the convolution integral

AXε
t =

∫ t

0

(
1 − e−A(t−s)/ε2)

dBs, (2.5)

where B is another standard Brownian motion. We show that the process

Y ε
t = AXε

t − Bt =
∫ t

0
e−A(t−s)/ε2

dBs

converges to zero in probability as ε → 0 uniformly over t ∈ [0, T ] for any T > 0. Indeed, Y ε is
a centred Gaussian process with the variance

E
∣∣Y ε

t

∣∣2 =
∫ t

0
e−2A(t−s)/ε2

ds = ε2

2A

(
1 − e−2At/ε2) ≤ ε2

2A
, t ∈ [0, T ].
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Applying Theorem 5.3 from Adler [1], we conclude that for any T > 0 there is an absolute
constant C > 0 such that for any 
 > 0

P
(

sup
t∈[0,T ]

∣∣Y ε
t

∣∣ > 

)

≤ C


(
1 − �

(
2A


ε2

))
→ 0, ε → 0,

where � is the probability distribution function of a standard Gaussian random variable. The
weak convergence of (Axε

t/ε2)t≥0 ⇒ b in C([0,∞),R;U) follows immediately from the con-
vergence in probability. �

It is clear that the law of the first passage time τa(x
ε) is determined with the help of the running

supremum of the process xε ,

Sε
t := sup

s∈[0,t]
xε
s , t ≥ 0,

namely P(τa(x
ε) ≤ t) = P(Sε

t ≥ a). Since the running supremum of a continuous process is a
continuous mapping in C([0,∞),R;U), we obtain the convergence in law of the first passage
times.

Corollary 2.1. For any a > 0

ε2τa

(
xε

) d→ τa/A(b) as ε → 0.

The probability density of the first passage time τa/A(b) is well known,

P
(
τa/A(b) ≤ t

) = a

A
√

2π

∫ t

0

1

s3/2
e−a2/(2A2s) ds.

If the driving Lévy process l = l(α) is α-stable and non-Gaussian, the situation becomes more
complicated. Consider the space D([0,∞),R) of real valued càdlàg functions. We shall see
in Proposition 3.1 that Axε·/εα converges to l(α) in the sense of finite-dimensional distributions
whereas the integrated OU process Axε is absolutely continuous. Thus no weak convergence in
the space D([0,∞),R) equipped with the topology of the local uniform convergence is possible.

In his seminal paper, Skorohod [15] introduced four weaker topologies on the space
D([0,∞),R) different from the uniform topology. The most frequently used topology J1 is
designed to match the jump times and sizes of the approximating processes and their limit, and
does not fit in with our setting. Thus, we shall prove convergence in the weaker M1-topology
which is still strong enough to guarantee the continuity of the supremum, and thus the con-
vergence of the first passage times. Essentially this topology linearises the jumps through the
introduction of a fictitious time-scale and is appropriate for establishing the convergence of a se-
quence of continuous processes to a discontinuous limit. It is also worth mentioning that the idea
of a fictitious time-scale has been used in some other contexts, see Williams [17] and the refer-
ences therein. A very detailed treatment of the M1-convergence can be found in the monograph
by Whitt [16].
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Let us recall the necessary facts about the space D([0,∞),R) endowed with the non-uniform
topology M1. For any function x ∈ D([0,∞),R) and for any T > 0 define a completed graph
�T

x of the restriction of x on [0, T ] as a set

�T
x := {

(x0,0)
} ∪ {

(z, t) ∈ R × (0, T ]: z = cxt− + (1 − c)xt for some c, c ∈ [0,1]}.
The completed graph is a subset in R

2 containing the graph of x on [0, T ] as well as the line
segments connecting the points of discontinuity (xt−, t) and (xt , t). On a completed graph we
introduce an order saying that (z, t) ≤ (z′, t ′) if either t < t ′ or t = t ′ and |xt− − z| ≤ |xt− − z′|.
A parametric representation of the graph is a continuous mapping (zu, tu): [0,1] → �T

x , which
in non-decreasing w.r.t. order on the completed graph. Denote T

x the set of all parametric rep-
resentations of the graph �T

x . The Skorokhod M1-topology in D([0,∞),R) is then induced by
the metric

dM1

(
x, x′) :=

∫ ∞

0
e−T

(
1 ∧ dM1,T

(
x, x′))dT ,

dM1,T

(
x, x′) := inf

(z,t)∈T
x ,

(z′,t ′)∈T
x′

max
u∈[0,1]

{∣∣zu − z′
u

∣∣, ∣∣tu − t ′u
∣∣}, x, x′ ∈ D

([0,∞),R
)
, T > 0,

see Whitt [16], Sections 3.3, 12.3 and 12.9. One can construct a metric equivalent to dM1 , for
which the space D([0,∞),R;M1) is Polish, see Whitt [16], Section 12.8.

The main result of this paper is the following convergence result.

Theorem 2.1. Let l(α) = (l
(α)
t )t≥0 be an α-stable Lévy process, α ∈ (0,2) and let xε be the

integrated OU process satisfying the equations (1.2) and (1.3) with zero initial conditions. Then(
Axε

t/εα

)
t≥0 ⇒ (

l
(α)
t

)
t≥0

in D([0,∞),R;M1) as ε → 0.

The convergence of the first passage times follows immediately.

Corollary 2.2. Let l(α) be an α-stable process with lim supt→∞ l
(α)
t = +∞ a.s. Then, for any

a > 0

εατa

(
xε

) d→ τa/A

(
l(α)

)
as ε → 0.

Proof. As in Corollary 2.1, we define the first exit time with the help of the running supremum
Sε

t := sups∈[0,t] xε
t , t ≥ 0, and the inverse function I ε

t := inf{s ≥ 0: Sε
s > t}, t ≥ 0. Under the

condition x0 = v0 = 0, the inverse function is continuous in the M1-topology, see Puhalskii and
Whitt [12], Lemma 2.1. The continuous mapping theorem yields the result. �

In contrast to the Brownian case, the laws of the first passage times τa(l
(α)) of an α-stable Lévy

process are often not known explicitly. We refer the reader to the recent works by Kuznetsov [10]
and Simon [14], and references therein for various results on this topic.
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The rest of the paper is organized as follows. Since the α-stable case can be studied with the
help of an appropriate time change, which transforms the small noise amplitude into the big
friction parameter, we shall study the M1-convergence of continuous integrated OU processes
with big friction parameter driven by arbitrary Lévy processes. This result can be of its own
interest. Finally, we prove Theorem 2.1 and discuss the case of arbitrary initial conditions.

3. Absolutely continuous aproximations of Lévy processes in
M1-topology and the proof of the main result

For A > 0, γ ≥ 0, and a real valued Lévy process L with a characteristic exponent � given by
(2.1) we study the system of stochastic differential equations

V
γ
t = −γA

∫ t

0
V

γ
s ds + Lt , (3.1)

X
γ
t = γ

∫ t

0
V

γ
s ds. (3.2)

First, we prove the convergence of finite-dimensional marginals of AXγ to those of L in proba-
bility.

Proposition 3.1. For any m ≥ 1 and 0 ≤ t1 < · · · < tm < ∞,

(
AX

γ
t1
, . . . ,AX

γ
tm

) P→ (Lt1 , . . . ,Ltm) as γ → ∞.

Proof. With the help of the formulae (2.2) and (2.4) one can solve the equations (3.1) and (3.2)
explicitly:

V
γ
t =

∫ t

0
e−γA(t−s) dLs, AX

γ
t =

∫ t

0

(
1 − e−γA(t−s)

)
dLs. (3.3)

It is clear that the processes AXγ and V γ start at the origin a.s., AX
γ

0 = V
γ

0 = L0 = 0. For m ≥ 1
fix the time instants 0 = t0 < t1 < · · · < tm < ∞ and real numbers u0, u1, . . . , um and consider
the characteristic function

E exp

(
i

m∑
k=0

uk

(
AX

γ
tk

− Ltk

)) = E exp

(
−i

m∑
k=1

uk

∫ tk

0
e−γA(tk−s) dLs

)
. (3.4)

We represent the sum in the last exponent as a sum of independent random variables

m∑
k=1

uk

(
AX

γ
tk

− Ltk

) = −
m∑

k=1

uk

∫ t1

0
e−γA(tk−s) dLs

−
m∑

k=2

uk

∫ t2

t1

e−γA(tk−s) dLs − · · · − um

∫ tm

tm−1

e−γA(tm−s) dLs
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and show that the characteristic function of every summand converges to 1 as γ → ∞. Fix an
index j , 1 ≤ j ≤ m. Then by a well-known formula for characteristic functions of convolution
integrals w.r.t. a Lévy process (see, e.g., Lemma 17.1 in Sato [13]) we obtain the equality

ln E exp

(
−i

m∑
k=j

uk

∫ tj

tj−1

e−γA(tk−s) dLs

)

(3.5)

=
∫ tj

tj−1

�

(
−

m∑
k=j

uke−γA(tk−s)

)
ds.

For brevity, we denote the argument

u
γ

j (s) := −
m∑

k=j

uke−γA(tk−s), tj−1 ≤ s ≤ tj ,

and u∗ = ∑m
k=1 |uk| < ∞. Clearly, |uγ

j (s)| ≤ ∑m
k=j |uk| ≤ u∗ for s ∈ [tj−1, tj ], 1 ≤ j ≤ m. The

exponent �(u) is continuous and bounded on [−u∗, u∗]. On each of the intervals [tj−1, tj ),
1 ≤ j ≤ m, we determine the pointwise limit of �(u

γ

j (s)) as γ → ∞, namely

lim
γ→∞�

(
u

γ

j (s)
) = �(0) = 0.

After applying the Lebesgue dominated convergence theorem to the right-hand side of (3.5), we
conclude that the term on the left-hand side of (3.4) tends to 1 as γ → ∞, and as a well-known
consequence the convergence in probability

(
AX

γ

0 ,AX
γ
t1
, . . . ,AX

γ
tm

) P→ (L0,Lt1, . . . ,Ltm)

holds as γ → ∞. �

In the proof of the next Theorem 3.1 about the convergence of AXγ to L in the M1-
topology, we shall make use of the following oscillation function. For x, y ∈ R denote the
segment [[x, y]] := {z ∈ R: z = x + c(y − x), c ∈ [0,1]} and introduce the oscillation function
M : R3 → [0,∞),

M(x1, x, x2) :=
{

min
{|x − x1|, |x2 − x|}, if x /∈ [[x1, x2]],

0, x ∈ [[x1, x2]].
In other words, M(x1, x, x2) is the Euclidean distance between the point x and the segment
[[x1, x2]].

Now we prove the main result of this section.
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Theorem 3.1. Let L be an arbitrary real valued Lévy process, and Xγ be a solution of (3.2).
Then for any A > 0,

AXγ P→ L in D
([0,∞),R;M1

)
as γ → ∞.

Proof. 1. First, with the help of the Lévy–Itô decomposition we represent L as a sum of a con-
tinuous Brownian motion σB and a Lévy process Z without Gaussian part. Due to the linearity
of the Langevin equation, we represent the solution V γ as a sum

V
γ
t = σ

∫ t

0
e−γA(t−s) dBs +

∫ t

0
e−γA(t−s) dZs,

and consequently the process AXγ as a sum of two continuous processes

AX
γ
t = AX

γ,B
t + AX

γ,Z
t

(3.6)

:= σ

∫ t

0

(
1 − e−γA(t−s)

)
dBs +

∫ t

0

(
1 − e−γA(t−s)

)
dZs.

In Proposition 2.1, we proved that AXγ,B converges to σB in probability in the local uniform
topology (see (2.5) with γ = 1

ε2 ), and consequently in the M1-topology. Since σB is continuous,

due to Corollary 12.7.1 in Whitt [16] it is sufficient to prove the M1-convergence of AXγ,Z

to Z. The convergence in probability of finite-dimensional marginals of AXγ,Z follows from
Proposition 3.1. The Lévy process Z is stochastically continuous at any T ≥ 0, so that due to
Section 3 in the original paper by Skorohod [15] or Chapter 12 in Whitt [16] for the convergence
in D([0,∞),R;M1) it is sufficient to establish the boundedness of the family {AXγ,Z}, that is
to show that for every T > 0

lim
K→∞ sup

γ>0
P
(

sup
t∈[0,T ]

∣∣AX
γ,Z
t

∣∣ > K
)

= 0; (3.7)

and to control the oscillation function, that is to show that for every T > 0 and 
 > 0

lim
δ↓0

lim sup
γ→∞

P
(

sup
0≤t1<t<t2≤T ,

t2−t1≤δ

M
(
AX

γ,Z
t1

,AX
γ,Z
t ,AX

γ,Z
t2

)
> 


)
= 0. (3.8)

Without loss of generality, we assume from now on that A = 1. Let T > 0 be fixed.
2. For the proof of (3.7), we use the representation (3.3) of Xγ,Z . Integrating by parts (compare

with (2.3)) yields

X
γ,Z
t = Zt −

∫ t

0
e−γ (t−s) dZs = γ

∫ t

0
e−γ (t−s)Zs ds.
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Thus for any γ ≥ 0, we obtain the estimate

sup
t∈[0,T ]

∣∣Xγ,Z
t

∣∣ ≤ sup
t∈[0,T ]

|Zt | sup
t∈[0,T ]

γ

∫ t

0
e−γ (t−s) ds ≤ sup

t∈[0,T ]
|Zt |, (3.9)

so that the condition (3.7) holds true.
3. We now prove the estimate (3.8). Let 
 > 0 be fixed. We show that for any θ > 0 there is

δ0 = δ0(
, θ,T ) such that for any δ ∈ (0, δ0] there is γ0 = γ0(δ,
, θ,T ) such that for all γ > γ0

the inequality

P
(

sup
0≤t1<t<t2≤T ,

t2−t1≤δ

M
(
X

γ,Z
t1

,X
γ,Z
t ,X

γ,Z
t2

)
> 


)
≤ θ

holds true. The proof of this inequality will consist of three steps.
Step 1. Reduction to a compound Poisson process with drift. First, we decompose Z into a sum

of a martingale with bounded jumps and small variance and a compound Poisson process with
drift.

Let a = a(
, θ,T ) ∈ (0,1] be such that ν({a}) = ν({−a}) = 0 and

16T


2

∫
{|y|<a}

y2ν(dy) ≤ θ

4
.

For this a, denote

μa := μ −
∫

a≤|y|≤1
yν(dy)

and consider the processes

ηt :=
∑
s≤t


ZsI
(|
Zs | ≥ a

) + μat and ξt := Zt − ηt .

The processes ξ and η are independent Lévy processes with the respective Lévy–Khintchine
representations

Eeiuξ1 = exp

(∫
{|y|<a}

(
eiuy − 1 − iuy

)
ν(dy)

)
,

Eeiuη1 = exp

(∫
{|y|≥a}

(
eiuy − 1

)
ν(dy) + iμau

)
, u ∈ R.

Moreover, Z = ξ + η, η is a compound Poisson process with the drift μa , and ξ is a zero mean
martingale with the variance Eξ2

t = t
∫
{|y|<a} y

2ν(dy). Due to the linearity of equations (3.1) and
(3.2), we obtain the representation

Xγ,Z = Xγ,ξ + Xγ,η
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with

X
γ,ξ
t =

∫ t

0

(
1 − e−γ (t−s)

)
dξs, X

γ,η
t =

∫ t

0

(
1 − e−γ (t−s)

)
dηs.

Denote the event

Eξ :=
{
ω: sup

t∈[0,T ]
∣∣Xγ,ξ

t

∣∣ <



4

}
.

Using the estimate similar to (3.9) and applying the Doob inequality to the martingale ξ we
obtain for all γ ≥ 0 that

P
(
Ec

ξ

) ≤ P
(

sup
t∈[0,T ]

|ξt | > 


4

)
≤ 16T E|ξT |2


2

≤ 16T


2

∫
{|y|<a}

y2ν(dy) ≤ θ

4
.

Thus for all ω ∈ Eξ and for all γ ≥ 0 the inequality

sup
t∈[0,T ]

∣∣Xγ,Z
t − X

γ,η
t

∣∣ ≤ sup
t∈[0,T ]

∣∣Xγ,ξ
t

∣∣ <



4

holds true. This implies that for all γ ≥ 0 and 0 ≤ t1 < t < t2 ≤ T

∣∣M(
X

γ,Z
t1

,X
γ,Z
t ,X

γ,Z
t2

) − M
(
X

γ,η
t1

,X
γ,η
t ,X

γ,η
t2

)∣∣ ≤ 


2
.

Step 2. Local extrema of Xγ,η . There exists a level z = z(a, θ, T ) > 0 such that for the event

Eη :=
{

sup
t∈[0,T ]

|ηt | ≤ z

2

}

the inequality

P
(
Ec

η

) ≤ θ

4

holds. In particular, this implies that for ω ∈ Eη the jump sizes of η do not exceed z in absolute
value, that is supt∈[0,T ] |
ηt(ω)| ≤ z. The process η has the finite jump intensity

βa =
∫

|y|≥a

ν(dy) < ∞.

For the Lévy process η, consider its counting jump process N = (Nt )t≥0 which is a Poisson
process with intensity βa . Denote by {τk}k≥0 the sequence of arrival times of η, τ0 = 0, and by
{Jk}k≥0, J0 = 0, the sequence of its jump sizes, Jk := ητk

−ητk−. It is easy to see that the process
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Xγ,η has the following path-wise representation:

X
γ,η
t =

Nt∑
k=0

Jk

(
1 − e−γ (t−τk)

) + μa

(
t − 1 − e−γ t

γ

)
, t ≥ 0. (3.10)

We choose m∗ ≥ 0 such that

P
(
NT ≤ m∗) > 1 − θ

4
.

Further, for κ > 0 and m = 0, . . . ,m∗ consider the events

C0
κ := C0 = {ω: NT = 0},

Cm
κ := {ω: NT = m}

∩ {ω: τk − τk−1 ≥ 2κ for k = 1, . . . ,m, and T − τm ≥ 2κ}, 1 ≤ m ≤ m∗,

Cκ :=
m∗⊔

m=0

Cm ⊂ {
NT ≤ m∗}.

It is well known (see, e.g., Proposition 3.4 in Sato [13]) that conditioned on {NT = m}, the
jump times τ1, . . . , τm are distributed on the interval [0, T ] with the probability law of the order
statistics obtained from m samples of the uniform distribution on [0, T ]. Thus, we are able to
choose κ = κ(θ,
,T ,m∗) > 0 small enough, such that

P(Cκ) > 1 − θ

3
.

For a fixed m = 0, . . . ,m∗ consider ω ∈ Eη ∩ Cm
κ . It is easy to see from the representation (3.10)

that

X
γ,η
t (ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μa

(
t − 1 − e−γ t

γ

)
, t ∈ [

0, τ1(ω)
)
,

k∑
j=1

Jj (ω)
(
1 − e−γ (t−τj (ω))

) + μa

(
t − 1 − e−γ t

γ

)
,

t ∈ [
τk−1(ω), τk(ω)

)
, k = 2, . . . ,m,

m∑
j=1

Jj (ω)
(
1 − e−γ (t−τj (ω))

) + μa

(
t − 1 − e−γ t

γ

)
,

t ∈ [
τm(ω),T

]
.

The process Xγ,η has smooth paths on the intervals [τk−1, τk), k = 1, . . . ,m, and [τm,T ]. We
show that for γ large enough the paths of Xγ,η are either monotone on these intervals, or have
at most one local extremum on each of the intervals. Indeed, Xγ,η is obviously monotone on
t ∈ [0, τ1].
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Let now 1 ≤ m ≤ m∗. For t ∈ (τk, τk+1), k = 1, . . . ,m − 1, and for t ∈ (τm,T ) consider the
derivative of Xγ,η w.r.t. t :

d

dt
X

γ,η
t = γ

k∑
j=1

Jj e−γ (t−τj ) + μa

(
1 − e−γ t

)

= γ

k−1∑
j=1

Jj e−γ (t−τj ) + γ Jke−γ (t−τk) + μa

(
1 − e−γ t

)

= γ Jke−γ (t−τk)

(
1 +

k−1∑
j=1

Jj

Jk

e−γ (τk−τj )

)
+ μa

(
1 − e−γ t

)
.

Taking into account that the jump sizes Jk are bounded, |Jk(ω)| ∈ [a, z] and the arrival times
are separated by 2κ , τk − τj ≥ 2(k − j)κ , 1 ≤ j ≤ k − 1, and T − τm ≥ 2κ , we can choose a
non-random γm = γm(a, z, κ,m) such that for γ ≥ γm the equation

d

dt
X

γ,η
t = γ Jke−γ (t−τk)

(
1 +

k−1∑
j=1

Jj

Jk

e−γ (τk−τj )

)
+ μa

(
1 − e−γ t

) = 0

has at most one solution on each of the intervals (τk, τk+1), k = 1, . . . ,m − 1, and on (τm,T ).
This unique solution (the local extremum of Xγ,η) exists if and only if μa �= 0 and Jk

μa
< 0, and

is located at

t∗k = t∗k (γ ) = 1

γ
ln

(
1 + γ eγ τk

∣∣∣∣ Jk

μa

∣∣∣∣
(

1 +
k−1∑
j=1

Jj e−γ (τk−τj )

))

(3.11)

≈ τk + 1

γ
ln

(
γ

∣∣∣∣ Jk

μa

∣∣∣∣
)

, 1 ≤ k ≤ m.

Moreover, we can choose γm big enough such that for γ ≥ γm we have τk < t∗k ≤ τk + κ for all
k = 1, . . . ,m. Furthermore, we choose γm big enough such that for γ ≥ γm

max
t∈[τk+κ,τk+1]

∣∣∣∣ d

dt
X

γ,η
t − μa

∣∣∣∣ ≤ 


4
, k = 1, . . . ,m − 1, and

(3.12)

max
t∈[τm+κ,T ]

∣∣∣∣ d

dt
X

γ,η
t − μa

∣∣∣∣ ≤ 


4
.

Additionally for μa �= 0, we can assume that for γ ≥ γm

max
t∈[t∗k ,τk+1]

∣∣∣∣ d

dt
X

γ,η
t

∣∣∣∣ ≤ 2|μa| if
Jk

μa

< 0, k = 1, . . . ,m − 1, and

(3.13)

max
t∈[t∗m,T ]

∣∣∣∣ d

dt
X

γ,η
t

∣∣∣∣ ≤ 2|μ|a if
Jm

μa

< 0.
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Overall, for γ ≥ γm and for ω ∈ Eη ∩ Cm
κ the paths of Xγ,η have the following structure: they

are continuous on [0, T ], smooth on (τk, τk+1), k = 0, . . . ,m, and (τm,T ) and may have extrema
either at arrival times τk , k = 1, . . . ,m, or at time instants t∗k given by (3.11) provided Jk

μa
< 0.

The slope of Xγ,η is close to μa on the left-hand neighbourhoods of the arrival times τk , k =
1, . . . ,m, and T . The derivative of Xγ,η is bounded by a constant, say 2|μa|, in the right-hand
neighbourhoods of the local extrema t∗k . Let γ ∗ := ∨m∗

m=1 γm.
Step 3. Estimate of the oscillation function M . Let δ0 ∈ (0, κ ∧ 


8(|μa |+1)
), γ ≥ γ ∗, and let

ω ∈ Eη ∩ Cm
κ for some m = 0, . . . ,m∗.

We estimate the value of the oscillation function M = M(X
γ,η
t1

,X
γ,η
t ,X

γ,η
t2

) for 0 ≤ t1 < t <

t2 ≤ T and t2 − t1 ≤ δ ≤ δ0. Let us consider three cases:

(i) If the path of t �→ X
γ,η
t (ω) is monotone on [t1, t2], then M = 0.

(ii) Let τk ∈ [t1, t2] for some k = 1, . . . ,m, and let τk be a local extremum. In this case, the
maximal value of M over t ∈ [t1, t2] is attained at τk and

M ≤ min
{∣∣Xγ,η

τk
− X

γ,η
t1

∣∣, ∣∣Xγ,η
τk

− X
γ,η
t2

∣∣} ≤ ∣∣Xγ,η
τk

− X
γ,η
t1

∣∣
≤ ∣∣Xγ,η

τk
− X

γ,η
τk−δ0

∣∣.
Then due to (3.12)

M ≤
(

|μa| + 


4

)
δ0 ≤ 


4
.

(iii) Let t �→ Xγ,η be non-monotone in [t1, t2] and a local extremum t∗k exist and belong to
[t1, t2] for some k = 1, . . . ,m. Then we estimate with the help of (3.13) that

M ≤ min
{∣∣Xγ,η

t∗k
− X

γ,η
t1

∣∣, ∣∣Xγ,η

t∗k
− X

γ,η
t2

∣∣} ≤ ∣∣Xγ,η

t∗k
− X

γ,η

t∗k +δ0

∣∣
≤ 2|μa|δ0 ≤ 


4
.

Overall, these estimates imply, that for all 0 < δ ≤ δ0 and γ ≥ γ ∗

P
(

sup
0≤t1<t<t2≤T ,

t2−t1≤δ

M
(
X

γ,η
t1

,X
γ,η
t ,X

γ,η
t2

)
>




2

∣∣∣Eη ∩ Cκ

)
= 0

and the inequality (3.8) follows:

P
(

sup
0≤t1<t<t2≤T ,

t2−t1≤δ

M
(
X

γ,Z
t1

,X
γ,Z
t ,X

γ,Z
t2

)
> 


)

≤ P
(

sup
0≤t1<t<t2≤T ,

t2−t1≤δ

M
(
X

γ,η
t1

,X
γ,η
t ,X

γ,η
t2

)
>




2
,Eη ∩ Cκ

)
+ P

(
Ec

η

) + P
(
Cc

κ

) + P
(
Ec

ξ

)

≤ θ

4
+ θ

4
+ θ

3
< θ. �
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Proof of Theorem 2.1. Consider the equations (1.2) and (1.3) with zero initial conditions driven
by an α-stable Lévy process l(α), α ∈ (0,2). Applying the time change t �→ t

εα and using the self-

similarity of l(α), namely that Law(ε1/αl
(α)
t/εα , t ≥ 0) = Law(l

(α)
t , t ≥ 0), we obtain that for any

ε > 0 the law of the processes (vε
t/εα )t≥0 and (xε

t/εα )t≥0 coincides with the law of the processes

V 1/εα
and X1/εα

which solve the stochastic differential equations (3.1) and (3.2) driven by a
process L being a copy of l(α), Law(L) = Law(l(α)). Then the statement of Theorem 2.1 follows
from Theorem 3.1. �

Let us discuss the weak convergence of integrated OU processes driven by an α-stable Lévy
process of small intensity for arbitrary initial conditions.

We start with the generalization of the Theorem 3.1. Consider the system of stochastic differ-
ential equations driven by an arbitrary Lévy process L

V γ = v0 − γ

∫ t

0
AVs ds + Lt , Xγ = x0 + γ

∫ t

0
Vs ds,

γ being a big parameter, and the initial conditions v0, x0 being arbitrary. The explicit solutions
are given by the formulae

V
γ
t = v0e−γAt +

∫ t

0
e−γA(t−s) dLs (3.14)

and

AX
γ
t = Ax0 + v0

(
1 − e−γAt

) +
∫ t

0

(
1 − e−γA(t−s)

)
dLs. (3.15)

It follows immediately from Theorem 3.1 that for x0 ∈ R and v0 = 0 the processes (A(X
γ
t −

x0))t≥0 converge in probability to L in D([0,∞),R;M1).
The situation becomes a little more complicated for v0 �= 0. The continuous second summand

on the right-hand side of (3.15) does not converge uniformly on the intervals [0, T ], T > 0, yet
has a discontinuous point-wise limit

v0
(
1 − e−γAt

) → v0I(0,∞)(t), t ≥ 0.

Thus for v0 �= 0, the limiting process (Lt − v0I{0}(t))t≥0 is discontinuous in probability at the
origin and the convergence in probability of finite-dimensional marginals of the process A(Xγ −
x0) − v0 to those of L holds only on the set (0,∞). The M1-convergence to L still holds on all
intervals [δ, T ], 0 < δ < T , and we obtain the following result: for arbitrary x0, v0 ∈ R

(
A

(
X

γ
t − x0

) − v0
)
t≥0

P→ L in D
(
(0,∞),R;M1

)
as γ → ∞.

Consequently, Theorem 2.1 takes the following form. Let l(α) be an α-stable Lévy process and
let xε be the integrated OU process satisfying equations (1.2) and (1.3) with arbitrary initial
conditions x0, v0 ∈ R. Then(

A
(
xε
t/εα − x0

) − v0
)
t≥0 ⇒ l(α) in D

(
(0,∞),R;M1

)
as ε → 0.
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Finally, we direct the reader’s attention to Section 13.6.2 in Whitt [16], and Puhalskii and
Whitt [12] for more information on the treatment of discontinuities of stochastic processes at the
origin, especially on the so-called M ′

1-convergence.
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