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This paper considers an estimation of semiparametric functional (varying)-coefficient quantile regression
with spatial data. A general robust framework is developed that treats quantile regression for spatial data
in a natural semiparametric way. The local M-estimators of the unknown functional-coefficient functions
are proposed by using local linear approximation, and their asymptotic distributions are then established
under weak spatial mixing conditions allowing the data processes to be either stationary or nonstationary
with spatial trends. Application to a soil data set is demonstrated with interesting findings that go beyond
traditional analysis.
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1. Introduction

Spatial data, which are collected at different sites on the surface of the earth, arise in various
areas of research, including econometrics, epidemiology, environmental science, image analysis,
oceanography and many others. Numerous applications of spatial models and important devel-
opments in the general area of spatial statistics under linear correlation structures can be found
in [1,2,4,12], and a more recent comprehensive review by Gelfand et al. [10], among others.
However, linear correlation structures may not be always reasonable in spatial applications. In
the last ten years, efforts have been made in the literature to explore nonlinear relationship in
spatial data. See, for example, [9,14,25–28], who explored the nonlinear spatial interdependence
from the perspective of conditional mean regressions. Differently from these references, Hallin
et al. [15] recently proposed to investigate the nonlinear spatial interaction by using conditional
quantile regression, showing that spatial quantile regression can provide much more information
on spatial data than the conditional mean regression analysis. In this paper, following the above
efforts, we aim to develop a structure of spatial quantile regression allowing functional coeffi-
cients, under a robust semiparametric framework, to reduce the “curse of dimensionality” that
spatial quantile regression analysis suffers from when the dimension of the covariates is higher
than 3. We will demonstrate in Section 5 that the proposed semiparametric functional-coefficient
spatial quantile structure will be useful in the analysis of a soil data set.
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To make our results widely applicable, we shall consider the quantile regression for spatial
data in a general context. Firstly, we treat data as observed over a space of general dimension N .
Denote the set of integer lattice points in N -dimensional Euclidean space by ZN , where N ≥ 1
and Z = {0,±1,±2, . . .}. A point i = (i1, . . . , iN ) in ZN is referred to as a site. Spatial data are
modeled as finite realizations of vector stochastic processes indexed by i ∈ ZN , that is, random
fields. We will consider strictly stationary (d + k + 1)-dimensional random fields of the form{

(Yi,Xi,Ui) : i ∈ ZN
}
,

where Yi, with values in R, Xi, with values in Rd , and Ui, with values in Rk , are defined over a
probability space (�, F ,P ).

Secondly, we treat spatial quantile regression in a general context of robust spatial regression.
In a number of applications, a crucial problem consists in describing and analyzing the influence
of the covariates (Ui,Xi) on the real-valued response Yi. In spatial context, this study is partic-
ularly difficult due to the possibly highly complex spatial dependence among the various sites.
The traditional approach to this problem consists in assuming that Yi has finite expectation, so
that spatial conditional mean regression function g : (x,u) �→ g(x,u) := E[Yi|Xi = x,Ui = u]
may be well defined and clearly carries relevant information on the dependence of Y on X and U

(cf., [14,25,26]). Differently, Hallin et al. [15] proposed spatial conditional quantile regression,
defined by

qτ : (x,u) �→ qτ (x,u) := Q[Yi|Xi = x,Ui = u], (1.1)

which provides more comprehensive information on the dependence of Y on X and U through
different 0 < τ < 1 (see [23] and [41]), where qτ (x,u) satisfies P [Yi < qτ (x,u)|Xi = x,Ui =
u] = τ ; see also the robust spatial conditional regression in [24]. As is well known in the nonpara-
metric literature, when d + k > 3, both spatial regression functions g(x,u) and qτ (x,u) can not
be well estimated nonparametrically with reasonable accuracy owing to the curse of dimensional-
ity. Because of complex spatial interaction, this issue on how to avoid the curse of dimensionality
becomes particularly important, which has been addressed by Gao et al. [9] and Lu et al. [27]
for spatial conditional mean regression g(x,u) under least squares partially linear and additive
approximation structures, respectively. In this paper, we are particularly concerned with avoiding
the curse of dimensionality for spatial quantile regression analysis, and, for generality, consider
a general spatial regression that takes conditional quantile regression Q(Yi|Ui,Xi) as a special
case, to be approximated by a popular linear structure allowing for functional coefficients in the
form

�(Ui,Xi) = Xi1β1(Ui) + · · · + Xidβd(Ui), (1.2)

with the functional coefficients βj (·)’s defined by minimizing

Eρ
(
Yi − �(Ui,Xi)

) = Eρ
(
Yi − Xi1β1(Ui) − · · · − Xidβd(Ui)

)
, (1.3)

associated with ρ(y) by which we denote hereafter for a general loss function [see Section 2],
over a class of functional coefficient linear functions of the form �(Ui,Xi) in (1.2). In the subse-
quent, when considering τ th quantile regression, we will denote by ρτ (z) = |z| + (2τ − 1)z with
0 < τ < 1, instead of ρ(·), for the loss function, under which the resulting �(Ui,Xi) in (1.2) is
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the spatial quantile regression with functional coefficients that we are mainly concerned with in
this paper. Let Xi = (Xi1, . . . ,Xid)T . As in traditional linear regression when a baseline effect
is desired, we set Xi1 ≡ 1. The regime Ui is a vector of explanatory variables, and β1(u), . . . ,
βd(u) are unknown smooth functions of u to be estimated, with the dimension k of Ui usually
small, say k = 1 or 2.

Functional (varying)-coefficient regressions are a useful extension of the classical linear re-
gressions. One of the advantages of such models is that the effects of the regressor vector Xi can
be well measured by the functional coefficients through Ui and the dimensionality curse is there-
fore reduced when k is small. Functional coefficient regression models are popular in traditional
regression and time series analysis. A comprehensive theory in the nonspatial case has been well
explored, see, for example, [3,7,8,19,20,34,36,38,40]. However, the varying coefficient models
with spatial data are still rather rarely investigated in the literature. Some exceptions include
an extension of the useful semiparametric model studied by Moyeed and Diggle [30], where
the intercept coefficient β1 is assumed to be time-varying, while β2, . . . , βd are constants; see
also [28] for a varying-coefficient spatiotemporal model under the least squares mean regression
perspective.

In this paper, we will develop in Section 2 a general robust M-type semiparametric frame-
work for approximating a spatial conditional regression, under ρ(·), by the linear structure with
functional coefficients, �(u,x) in (1.2), via minimizing (1.3). We apply local linear method to
approximate the unknown coefficient functions βr(u), r = 1, . . . , d and obtain their local M-
estimators in Section 2.1. The main results on asymptotic distribution for the local M-estimators
of βr(u)’s at both interior and boundary points with stationary spatial data are established in Sec-
tion 2.2. Applications of the main results to conditional quantile coefficient functions and robust
conditional regression coefficient functions will be presented in Section 3. Section 4 extends the
main results to the case of allowing a nonstationary random field with spatial trend, which is of
importance in practice. A real data example will be reported in Section 5. The proofs of the main
theorems are relegated in Appendix, with details of the proof of necessary lemmas provided in
the supplementary material [29].

2. Spatial quantile regression under general M-estimation
framework: Asymptotic results

Consider a rectangular sampling region by

GN = {
i = (i1, . . . , iN ) ∈ ZN : 1 ≤ il ≤ nl, l = 1, . . . ,N

}
,

with n = (n1, . . . , nN). In this paper, we write n → ∞ if nl → ∞ for some 1 ≤ l ≤ N . Assume
that we observe (Yi,Xi,Ui) on GN . The total sample size is thus ñ = ∏N

l=1 nl . We will assume
that {(Yi,Xi,Ui)} satisfies the following mixing condition as defined in the literature (cf., [14,15,
37]). Let S and S′ be two sets of sites. The Borel fields B(S) = B((Yi,Xi,Ui) : i ∈ S) and B(S ′) =
B((Yi,Xi,Ui) : i ∈ S′) are the σ -fields generated by (Yi,Xi,Ui) with i being the elements of S

and S′, respectively. Let d(S,S′) be the Euclidean distance between S and S′. Then the spatial
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mixing defines that there exists a function ϕ(t) ↓ 0 as t → ∞, such that whenever S,S′ ⊂ ZN ,

α
(

B(S), B
(
S′)) = sup

{∣∣P(AB) − P(A)P (B)
∣∣,A ∈ B(S),B ∈ B

(
S ′)}

(2.1)
≤ χ

(
Card(S),Card

(
S′))ϕ(

d
(
S,S′)),

where Card(S) denotes the cardinality of S, and χ is a symmetric positive function nondecreasing
in each variable. If χ ≡ 1, then {(Yi,Xi,Ui)} is called strongly mixing.

2.1. A general M-type semiparametric framework

Consider u ∈ E0 = {u = (u1, . . . , uk) | u∗j ≤ uj ≤ u∗
j ,1 ≤ j ≤ k}, where u∗j and u∗

j are con-
stants of lower and upper limits of uj , respectively. Let βr(u), r = 1, . . . , d , in (1.2) be defined
by minimizing (1.3) with ρ(·). Then, given u0 ∈ E0, for u in the neighborhood of u0, we can use
ar + bT

r (u − u0) to approximate the unknown coefficient function βr(u) (r = 1, . . . , d), where
br = (br1, . . . , brk)

T . Based on spatial observations {(Yi,Xi,Ui) : i ∈ GN }, by using the idea of
local linear fitting (see, e.g., [5] and [33]), we solve the following minimization problem

min
ar ,br ,r=1,...,d

∑
i∈GN

ρ

(
Yi −

d∑
r=1

[
ar + (Ui − u0)

T br

]
Xir

)
K

(
Ui − u0

hn

)
, (2.2)

where K(·) is a given kernel function, hn is a chosen bandwidth. Let âr , b̂r , r = 1,2, . . . , d , be
the minimizer of (2.2). Then the M-estimator β̂(u0) of β(u0) = (β1(u0), . . . , βd(u0))

T , which
minimizes (1.3) for ρ(·), is defined by

β̂(u0) = (
β̂1(u0), . . . , β̂d (u0)

)T = â = (â1, . . . , âd )T . (2.3)

Typical choices for ρ are convex and symmetric about 0. Here, we only require ρ a convex
function so that the optimisations (2.2) are well defined and the problem of local minima is
avoided. It can be asymmetric. For example, an estimator with ρτ (z) for 0 < τ < 1 gives the τ th
conditional quantile of Y , defined in (1.1). For robustness consideration, we may take ρ having
a bounded derivative ρ′(z) = max{−1,min{z/c,1}}, c > 0; see [21] and [16] for more details
about the robustness of M-estimators.

2.2. Asymptotic results

In this subsection, we state asymptotic properties of the estimates β̂(u0). Let ψ(z) be the deriva-
tive function of ρ(z) with respect to z almost everywhere. The following assumptions are re-
quired for our asymptotic results.

Assumption 1. The random field {(Yi,Xi,Ui) : i ∈ ZN } is strictly stationary. For all distinct i
and j in ZN , the random variables Ui and Uj admit a joint density fi,j(u, v) ≤ C0 uniformly with
respect to i, j ∈ ZN and u,v ∈ E0, where C0 is some positive constant. The marginal density
f (u) of Ui is continuous and bounded away from 0 uniformly over E0.
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Assumption 2. All functions, βr(u)’s, are twice continuously differentiable in a neighborhood of
u0, for r = 1, . . . , d .

Assumption 3. The convex loss function ρ(·) satisfies, for some δ > 0,

Eψ(εi|Xi,Ui) = 0, E
(∣∣ψ(εi)

∣∣2+δ|Xi,Ui
) ≤ C1,

where εi = Yi − XT
i β(Ui) and C1 > 0 is a constant. Furthermore, there exist some function φ(·)

and constant c̄1 > 0 such that |E(ψ(εi + z)|Xi,Ui) − φ(Xi,Ui)z| ≤ C1z
2 for any |z| ≤ c̄1.

Assumption 4. There exist constants 0 < c̄2,C2 < ∞ such that

∣∣ψ(v + z) − ψ(v)
∣∣ ≤ C2, E

([
ψ(εi + z) − ψ(εi)

]2|Xi,Ui
) ≤ C2|z|

for any |z| ≤ c̄2 and v ∈ R1.

Assumption 5. The bandwidth hn satisfies that hn ≤ C3ñ−1/(k+4) for some positive constant C3
and ñhk

n → +∞ as n → ∞.

Assumption 6. maxi∈GN
‖Xi‖ = op((ñhk

n)1/2), maxi∈GN
‖Xi‖ = op(h−2

n ) and E‖Xi‖4+2δ < ∞.

Assumption 7. The kernel function K(·) ≥ 0 is a bounded symmetric function with a compact
support M̃ = [−M1,M1] × · · · × [−Mk,Mk] and

∫
M̃

uuT K(u)du is positive definite.

Assumption 8. The function χ(·, ·) and ϕ satisfy that χ(n′, n′′) ≤ min(n′, n′′) and

lim
k→∞ ka

∞∑
z=k

zN−1{ϕ(z)
}δ/(2+δ) = 0 (2.4)

for some constant a > (4 + δ)N/(2 + δ).

Assumption 9. min1≤l≤N nl → ∞ and there exist two sequences of positive integer vectors,
p = pn = (p1, . . . , pN) ∈ ZN and q = qn = (q, . . . , q) ∈ ZN , with q → ∞ such that q/pl → 0
and nl/pl → ∞ for all l = 1, . . . ,N , and p̃ = ∏N

l=1 pl = o((ñhk
n)1/2), ñϕ(q) → 0. Furthermore,

qh
δk/[a(2+δ)]
n > 1.

The above assumptions are standard in the setting of local smoothers needed for asymptotics.
See [14], for example, for Assumptions 1, 2, 7, 8 and 9 in the spatial context. Assumptions 3 and 4
are easily checked if the score function ψ is differentiable, but they cover nondifferentiable case
including the least absolute deviation estimator with ψ(z) = sgn(z). Assumptions 5 and 6 can be
found in [7], where the moment condition on Xi is technical for the establishment of asymptotic
properties in varying coefficient setting. The bounded support restriction on K(·) is technical and
can be relaxed by using such kernels with light tails as Gaussian kernel.
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To state our main results, we let

�(u) = E
(
φ(Xi,Ui)XiX

T
i |Ui = u

)
, �(u) = E

(
E

(
ψ2(εi)|Xi,Ui

)
XiX

T
i |Ui = u

)
,

ζ(u0) = (
ζ1(u0), . . . , ζd(u0)

)T
, ζr (u0) = tr

(
β̈r (u0)

∫
M̃

uuT K(u)du

)
, r = 1, . . . , d,

where β̈r (u0) is the second derivative of βr(u) at u = u0.

Theorem 2.1. Assume that Assumptions 1–9 hold and �(u),�(u) are continuous in some neigh-
borhood of u0 and �(u0) is positive definite. If u0 is an interior point of the support of the design
density f (u), then, as n → ∞,

√
ñhk

n

(
β̂(u0) − β(u0) − h2

n

2μ0
ζ(u0)

)
→d N

(
0,

ν0

f (u0)μ
2
0

�−1(u0)�(u0)�
−1(u0)

)
,

where μ0 = ∫
M̃

K(u)du, ν0 = ∫
M̃

K2(u)du, and →d means convergence in distribution.

Theorem 2.1 gives the asymptotic distribution of the estimator of β(u0) at an interior point.
Next, we study the asymptotic behavior of the estimator at the boundary of the support E0

of f (u). Suppose u∗ = (u∗1, . . . , u∗k)
T is a boundary point. Take uh = u∗ + chn, where

c = (c1, . . . , ck)
T satisfies that 0 ≤ cl < Ml, l = 1, . . . , k. Let M̄ = [−c1,M1]× · · ·× [−ck,Mk],

ζ̄ (u∗) = (ζ̄1(u∗), . . . , ζ̄d (u∗))T , ζ̄r (u∗) = tr(β̈r (u∗)
∫
M̄

vvT K(v)dv), r = 1, . . . , d, ζ̄
(l)

(u∗) =
(ζ̄

(l)
1 (u∗), . . . , ζ̄ (l)

d (u∗))T , ζ̄
(l)
r (u∗) = tr(β̈r (u∗)

∫
M̄

vlvvT K(v)dv), l = 1, . . . , k, and

�c =

⎛
⎜⎜⎝

∫
M̄

K(u)du

∫
M̄

uT K(u)du∫
M̄

uK(u)du

∫
M̄

uuT K(u)du

⎞
⎟⎟⎠ , �̄c =

⎛
⎜⎜⎝

∫
M̄

K2(u)du

∫
M̄

uT K2(u)du∫
M̄

uK2(u)du

∫
M̄

uuT K2(u)du

⎞
⎟⎟⎠ .

Theorem 2.2. Assume that Assumptions 1–9 hold in some right neighborhood of u∗ and
�(u),�(u) are continuous in some right neighborhood of u∗ and �(u∗) is positive definite.
Suppose �c is invertible. Then, as n → ∞,

√
ñhk

n

(
β̂(uh) − β(uh) − h2

n

2

[
δ11ζ̄ (u∗) +

k∑
l=1

δ1(l+1)ζ̄
(l)

(u∗)
])

→d N

(
0,

λ11

f (u∗)
�−1(u∗)

∑
(u∗)�−1(u∗)

)
,

where δij denotes the (i, j)th entry of �−1
c and λ11 denotes the (1,1)th entry of �−1

c �̄c�
−1
c .

The proofs of Theorems 2.1 and 2.2 are postponed to Appendix.
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Theorem 2.2 shows that for local linear estimator the convergence rate at the points near the
boundary is the same as that for interior points. Hence for local linear estimator near the boundary
no adjustments are required.

For the mixing coefficient ϕ(t), if it decays at an algebraic rate, that is, ϕ(t) = O(t−μ) for some
μ > 2(3 + δ)N/δ, we can choose constant a such that (4 + δ)N/(2 + δ) < a < μδ/(2 + δ) − N ,
then, as l → ∞, it holds that

la
∞∑
z=l

zN−1{ϕ(z)
}δ/(2+δ) ≤ Cla

∞∑
z=l

zN−1z−μδ/(2+δ)

≤ ClalN−μδ/(2+δ) = Cl−[μδ/(2+δ)−a−N ] → 0,

and so (2.4) holds. Using the similar arguments to those used in the proof of Theorem 3.3 of [14],
Assumption 9 can be much simplified, and we have the following corollary.

Corollary 2.1. Assume that Assumptions 1–7 hold and �(u),�(u) are continuous in some
neighborhood of u0 and �(u0) is positive definite. Suppose �c is invertible and χ(n′, n′′) ≤
min(n′, n′′) and ϕ(t) = O(t−μ) for some μ > 2(3 + δ)N/δ. Let the sequence of positive integers
q = qn → ∞ and the bandwidth hn such that ñq−μ → 0, q = o(min1≤i≤N(nih

k/N
n )1/2) and

qh
δk/[a(2+δ)]
n > 1. Then, as n → ∞, the conclusions of Theorems 2.1 and 2.2 still hold.

Further, if the mixing coefficient decays at a geometric rate, that is, ϕ(t) = O(e−νt ) for some
ν > 0, then similarly to Theorem 3.4 of [14], Assumptions 8 and 9 can also be simplified and we
have the following corollary.

Corollary 2.2. Assume that Assumptions 1–7 hold and �(u),�(u) are continuous in some
neighborhood of u0 and �(u0) is positive definite. Suppose �c is invertible and χ(n′, n′′) ≤
min(n′, n′′) and ϕ(t) = O(e−νt ) for some ν > 0. If

min
1≤i≤N

{(
nih

k/N
n

)1/2}
h

δk/[a(2+δ)]
n (ln ñ)−1 → ∞

for some constant a > (4 + δ)N/(2 + δ), then, as n → ∞, the conclusions of Theorems 2.1
and 2.2 still hold.

Remark 1. Another way for n to tend to infinity is the so called isotropic one, where all compo-
nents of n tend to infinity at the same rate. We write n ⇒ ∞ if n → ∞ and |nj/nl | < C4 for some
0 < C4 < ∞, 1 ≤ j, l ≤ N . Obviously, under Assumptions 1–9, as n ⇒ ∞, the conclusions of
Theorems 2.1 and 2.2 hold. Furthermore, in Corollary 2.1, the conditions on q = qn → ∞ and the
bandwidth hn can be modified as ñq−μ → 0, q = o((ñhk

n)1/2N) and qh
δk/[a(2+δ)]
n > 1 for some

(4+ δ)N/(2+ δ) < a < μδ/(2+ δ)−N , then, under Assumptions 1–7, the conclusions of Theo-
rems 2.1 and 2.2 still hold. Similarly, in Corollary 2.2, if (ñhk

n)1/2Nh
δk/[a(2+δ)]
n (ln ñ)−1 → ∞ for

a > (4 + δ)N/(2 + δ), then, under Assumptions 1–7, the conclusions of Theorems 2.1 and 2.2
still hold.
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Remark 2. If χ(n′, n′′) ≤ C5(n
′ + n′′ + 1)κ for some C5 > 0 and κ > 1, let the condition

ñϕ(q) → 0 in Assumption 9 be replaced by (ñκ+1/p̃)ϕ(q) → 0 as ñ → ∞, then the conclu-
sions of Theorems 2.1 and 2.2 still hold. In this case, analogues of Corollaries 2.1 and 2.2 and
Remark 1 can also be obtained.

3. Quantile regression and robust smoothers with functional
coefficients

The general Theorems 2.1 and 2.2 have different applications depending on the choice of ρ(·)
function. In this section, we are particularly discussing the spatial regression problems with func-
tional coefficients for the conditional quantiles and robust functionals.

3.1. Quantile regression

Let F(·|X,U) denote the conditional distribution of Y given X and U . Then the τ th conditional
quantile of Y given X and U is F−1(τ |X,U), for 0 < τ < 1. Conditional quantiles have several
advantages over conditional means. For example, they can be defined without any moment re-
strictions on Y . Plotting the 0.25th, 0.5th, and 0.75th conditional quantiles would give us more
understanding on the data than plotting just the conditional mean. Quantile regression can also be
useful for the estimation of predictive intervals. For example, estimates of F−1(τ/2|X,U) and
F−1(1 − τ/2|X,U) can be used to obtain a 100(1 − τ)% nonparametric interval of prediction
of the response given X and U . Hallin et al. [15] have studied the spatial conditional quantile
regression estimation, which may however suffer from curse of dimensionality in general.

We estimate the τ th conditional quantile of Yi given Xi and Ui, approximated by the
functional-coefficient linear structure in (1.2) with βr(u)’s defined by minimizing (1.3) with ρτ (·)
instead of ρ(·). If τ = 1/2, we estimate the conditional median. Let âτ , b̂τ be the minimizer of
(2.2) with ρτ (·) instead of ρ(·). Set β̂τ (u0) = âτ . Then the estimator of the τ th conditional quan-
tile of Y given X = x and U = u0, approximated by the functional-coefficient linear structure, is
Ŷτ = xT β̂τ (u0). To state the asymptotic results, we need the following.

Assumption Q. There exist positive constants c̄6,C6 such that the conditional density function
fε(y|Xi,Ui) of εi given Xi,Ui satisfies that |fε(y|Xi,Ui) − fε(0|Xi,Ui)| ≤ C6|y| for all y ∈
[−c̄6, c̄6], where εi is defined in Assumption 3.

In this case, since ψτ (z) = 2τI (z > 0) + 2(τ − 1)I (z < 0), it is easy to show that As-
sumption 4 holds and E(ψ2

τ (εi)|Xi,Ui) = 4τ(1 − τ). If Assumption Q holds, then Assump-
tion 3 holds with φ(Xi,Ui) = 2fε(0|Xi,Ui). Let �τ (u) = 2E(fε(0|Xi,Ui)XiX

T
i |Ui = u) and

�(u) = E(XiX
T
i |Ui = u). Applying Theorems 2.1 and 2.2 to quantile regression, we have the

following theorem.

Theorem 3.1. (1) Assume that Assumptions 1, 2, 5–9 and Q hold. Suppose �τ (u) and �(u) are
continuous in some neighborhood of u0 and �τ (u0) is positive definite, with u0 an interior point
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of E0. Then, as n → ∞,

√
ñhk

n

(
β̂τ (u0) − β(u0) − h2

n

2μ0
ζ(u0)

)
→d N

(
0,

4τ(1 − τ)ν0

f (u0)μ
2
0

�−1
τ (u0)�(u0)�

−1
τ (u0)

)
.

(2) Assume that Assumptions 1, 2, 5–9 and Q hold in some right neighborhood of u∗ and
�τ (u),�(u) are continuous in some right neighborhood of u∗. Suppose �c is invertible and
�τ (u∗) is positive definite. Then, as n → ∞,

√
ñhk

n

(
β̂τ (uh) − β(uh) − h2

n

2

[
δ11ζ̄ (u∗) +

k∑
l=1

δ1(l+1)ζ̄
(l)

(u∗)
])

→d N

(
0,

4τ(1 − τ)λ11

f (u∗)
�−1

τ (u∗)�(u∗)�−1
τ (u∗)

)
.

3.2. Robust smoothers

It is known that the mean is sensitive to outliers, see [16] and [21]. Since the local average
estimator is basically a mean type estimator, it is also sensitive to outliers. To robustify this
procedure, it is suggested that the function ρ(·) be chosen so that its first derivative is given by

ψc(z) = max
{−1,min{z/c,1}}, c > 0,

see [18] for interesting discussions. We estimate the conditional robust smoother of Yi given Xi
and Ui, approximated by (1.2) with βr(u)’s defined by minimizing (1.3), with the ρ(z) that has
the derivative ψc(z).

Assumption R. The conditional density function fε(y|Xi,Ui) of εi given Xi,Ui is symmetric
about 0. There is a positive constant C7 such that fε(y|Xi,Ui) ≤ C7.

Let âc, b̂c be the minimizer of (2.2) with the ρ(·) satisfying that ρ′(z) = ψc(z), c > 0.
Set β̂c(u0) = âc. In this case, Assumption 4 holds automatically. If Assumption R holds,
then Assumption 3 holds with φ(Xi,Ui) = P {|εi| ≤ c|Xi,Ui}/c. Let �c(u) = E(P {|εi| ≤
c|Xi,Ui}XiX

T
i |Ui = u)/c. An application of Theorems 2.1 and 2.2 yields

Theorem 3.2. Assume that Assumptions 1, 2, 5–9 and R hold. Suppose �c(u) and �(u) are
continuous in some neighborhood of u0 and �c(u0) is positive definite. Then, as n → ∞, the
conclusions of Theorems 2.1 and 2.2 hold with �(u) replaced by �c(u).

Remark 3. Analogues of Theorems 3.1 and 3.2 can also be obtained under the conditions that
χ(n′, n′′) ≤ C5(n

′ +n′′ +1)κ and (or) n ⇒ ∞ and (or) ϕ(t) = O(t−μ) for some μ > 2(3+δ)N/δ

or ϕ(t) = O(e−νt ) for some ν > 0, details are omitted for the sake of brevity.
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4. Random fields with a spatial trend

In Section 2, the stationary process {Yi,Xi,Ui} was assumed to be observed. This assumption
may often be violated in practice. As a reasonable alternative, we can assume that nonstationarity
is due to the presence of a spatial trend, as done in [15], and that, instead, we actually observe
{Ỹi, X̃i, Ũi}, with

Ỹi = αY (si) + Yi, X̃i = αX(si) + Xi, Ũi = αU(si) + Ui, (4.1)

where si = (si1 , . . . , siN ) := (i1/n1, . . . , iN/nN) and s ∈ [0,1]N → (αY (s),αX(s),αU (s)) is
some deterministic but unknown trend function.

For the sake of simplicity, we assume throughout this section that N = 2, which is the most
frequent case in practice. Since (Yi,Xi,Ui) = (Ỹi − αY (si), X̃i − αX(si), Ũi − αU(si)) is un-
observable, the analysis proceeds in two steps. First, obtain an estimation of the spatial trend
(αY (si), αX(si), αU (si)) via kernel smoothing method. In the second step, the detrended data
is supposed to satisfy the stationarity assumption, yielding the estimated coefficient function
β̌r (u), r = 1, . . . , d with the detrended Yi’s, Xi’s and Ui’s.

Let

w(si, s) = W((si − s)/gn)∑
j∈GN

W((sj − s)/gn)
,

where gn is a bandwidth tending to 0 and W(·) is a chosen kernel function. Then the kernel
estimators of αY (s),αX(s) and αU(s) are

α̂Y (s) =
∑

i∈GN

Ỹiw(si, s), α̂X(s) =
∑

i∈GN

X̃iw(si, s), α̂U (s) =
∑

i∈GN

Ũiw(si, s). (4.2)

Let Ŷi = Ỹi − α̂Y (si), X̂i = X̃i − α̂X(si) and Ûi = Ũi − α̂U (si). Based on the estimated spatial
data {(Ŷi, X̂i, Ûi) : i ∈ GN }, we solve the following minimization problem

min
ar ,br ,r=1,...,d

∑
i∈GN

ρ

(
Ŷi −

d∑
r=1

[
ar + (Ûi − u0)

T br

]
X̂ir

)
K

(
Ûi − u0

hn

)
. (4.3)

Let ǎr , b̌r be the minimizer of (4.3). Set ǎ = (ǎ1, . . . , ǎd )T . Then the M-estimator of β(u0) =
(β1(u0), . . . , βd(u0))

T is

β̌(u0) = (
β̌1(u0), . . . , β̌d (u0)

)T = ǎ.

To study the asymptotic behavior of the new estimators, we need the following additional
conditions similar to those in [15].

(B1) E|Yi|2+δ < ∞, E‖Xi‖2+δ < ∞ and E‖Ui‖2+δ < ∞ for some δ > 0 and ϕ(z) in (2.1)
satisfies that ϕ(z) < C̃0z

−β , where 0 < C̃0 < ∞ and β > (1 + (1 + δ)(1 + N))/δ.
(B2) For � = (β − 1 − N − (1 + β)/(1 + δ))/(β + 3 − N − (1 + β)/(1 + δ)), ln ñ/(ñ�gN

n ) =
o(1).
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(B3) s → αY (s), s → αX(s) and s → αU(s) are m times differentiable with bounded deriva-
tives on S := [0,1]2, where m is some positive integer.

(B4) There exists a continuous sampling intensity (density) function f̃ defined on S and con-
stants c̃0 and c̃1 such that 0 < c̃0 ≤ f̃ (s) ≤ c̃1 < ∞ for any s ∈ S and ñ−1 ∑

i∈GN
I (si ∈

A) → ∫
A

f̃ (s)ds for any measurable set A ⊂ S, as ñ → ∞.
(B5) The kernel W(s), defined on R2, has bounded support with Lipschitz property, that is

|W(s) − W(s′)| ≤ C̃1‖s − s′‖ for all s, s′ ∈ R2, where C̃0 is a generic positive constant,
and satisfies (s⊗i stands for the ith Kronecker power of s)∫

W(s)ds = 1,

∫
s⊗iW(s)ds = 0, i = 1, . . . ,m − 1,

∫
s⊗mW(s)ds �= 0.

Assumptions (B1) and (B2) are technical conditions for deriving the convergence of this ker-
nel smoothing; see [17] for similar assumptions. Assumption (B4) is mentioned for the sake
of generality, and is trivially satisfied in the case of a regular grid. Assumptions (B3) and (B5)
are standard assumptions on the smoothness of spatial trend functions and a higher order kernel
function, respectively, which ensure that the bias term of the spatial trend estimators is of order
O(gm

n ) (which can also be achieved by a local polynomial fitting of order (m − 1)).
We further need to strengthen Assumptions 4–7 as the follows.

Assumption 4′. Let Lp(F ) denote the class of F -measurable random variable ξ satisfying
‖ξ‖p = (E|ξ |p)1/p < ∞. The function ψ(·) satisfies that E(|ψ(ηi + ξ) − ψ(ηi)||Xi,Ui) ≤ C̃1ε

for ηi ∈ L1(B({i})) and ξ ∈ L1(B(GN)) such that |ξ | < ε, and that |ψ(v + s) − ψ(v)| ≤ C̃1 for
any |s| ≤ c2 and v ∈ R1, where C̃1, ε and c2 are some positive constants.

Assumption 5′. The bandwidths hn and gn satisfy that hn ≤ C̃2ñ−1/(k+4) for some positive con-
stant C̃2, gm

n /hn → 0, ñhk
ng2m

n → 0, hk
n ln ñ/g2

n → 0 and ln ñ/(ñg2
nh2

n) → 0.

Assumption 6′. maxi∈GN
‖Xi‖ = Op(1) and E‖Xi‖4+2δ < ∞.

Assumption 7′. The kernel function K(·) ≥ 0 is a bounded symmetric function with a com-
pact support M̃ and is continuously differentiable in M̃ = (−M1,M1) × · · · × (−Mk,Mk) and∫
M̃

uuT K(u)du is positive definite.

Assumption 4′ is easily checked. For example, it holds when ρ(z) = ρτ (z) or ψ(z) = ψc(z)

and the conditional density of ηi given Xi and Ui is bounded on [−ε, ε]. Assumption 5′ on
the bandwidths hn and gn is easily satisfied, and can be weaken as: ñ2/(k+4)gm

n → 0 and
ln ñ/(ñk/(k+4)g2

n) → 0 if we take the optimal hn = h0ñ−1/(k+4) for some h0 > 0. The condi-
tion, maxi∈GN

‖Xi‖ = Op(1), in Assumption 6′ is only a technical condition, and can also be
weakened with hn and gn properly chosen.

We state the asymptotic distribution of the estimators β̌r (u0), r = 1, . . . , d , as follows.
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Theorem 4.1. Assume that Assumptions 1–3, 4′–7′, 8–9 and (B1)–(B5) hold and �(u),�(u)

are continuous in some neighborhood of u0 and �(u0) is positive definite. If u0 is an interior
point of the support of the design density f (u), then, as n → ∞,

√
ñhk

n

(
β̌(u0) − β(u0) − h2

n

2μ0
ζ(u0)

)
→d N

(
0,

ν0

f (u0)μ
2
0

�−1(u0)�(u0)�
−1(u0)

)
.

With ρτ (z) instead of ρ(z) and Assumption 4′ replaced by Assumption Q, we have the fol-
lowing theorem.

Theorem 4.2. Assume that Assumptions 1–2, 5′–7′, 8–9, (B1)–(B5) and Q hold. Suppose �τ (u)

and �(u) are continuous in some neighborhood of u0 and �τ (u0) is positive definite and
fε(0|Xi,Ui) ≤ C for some C > 0. If u0 is an interior point of the support of the design den-
sity f (u), then, as n → ∞,

√
ñhk

n

(
β̌τ (u0) − β(u0) − h2

n

2μ0
ζ(u0)

)
→d N

(
0,

4τ(1 − τ)ν0

f (u0)μ
2
0

�−1
τ (u0)�(u0)�

−1
τ (u0)

)
.

Similarly, with ψc(z) = max{−1,min{z/c,1}}, c > 0, it is easy to check that Assumption 4′
holds. In this case, we have the following.

Theorem 4.3. Assume that Assumptions 1–2, 5′–7′, 8–9, (B1)–(B5) and R hold. Suppose �c(u)

and �(u) are continuous in some neighborhood of u0 and �c(u0) is positive definite. Then the
conclusions of Theorem 4.1 hold with �(u) replaced by �c(u).

The proofs of Theorems 4.1–4.3 are postponed to Appendix.

5. An application to soil data analysis

We are analysing a spatial soil data set, soil250, in R package GeoR, which consists in uniformity
trial with 250 undisturbed soil samples collected at 25 cm soil depth of spacing of 5 meters,
resulting on a regular grid of 25 × 10 points. The data frame is with 250 observations on the
22 variables about several soil chemistry properties measured on the grid. In this analysis, for
simplicity, we only consider 10 variables, which are Linha (x-coordinate), Coluna (y-coordinate),
pHKCl (soil pH by KCl), Ca (calcium content), Mg (magnesium content), K (potassio content),
Al (aluminium content), C (carbon content), N (nitrogen content), and CTC (catium exchange
capability). Zheng et al. [42] recently analysed the spatial spectral density for the CTC variable.
Our objective here is to analyse the impacts of the soil chemistry properties of Ca, Mg, K, Al,
C and N as well as the soil chemistry property index pHKCl on the CTC, an important soil
property for soil reservation concerned with in agriculture science. In the original data, there
seem to be some spatial trends for all variables, so we apply sm.regression in R package sm to
remove the spatial trends. The resulting spatial data of these variables, denoted by prefix “res.”
standing for residual, are plotted in panel (a) of Figure 1, which appear more stationary. We
hence analyse the relationship of these variables based on the residual data, the kernel density
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Figure 1. Soil data: (a) The images of 8 soil properties variables after spatial trend removal by
sm.regression, plotted over space (Linha, Coluna); (b) The kernel density estimates (solid line) of the 8
soil properties variables after spatial trend removal by sm.regression, where the dashed line is for the Gaus-
sian density with the same mean and variance, respectively, for each variable.
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estimates (in solid line) of which are also plotted in Figure 1(b), with the dashed line for the
Gaussian density of the same mean and variance. It is clear that the distribution of the response,
res.CTC, is quite close to normal, indicating that mean and median regression analyses are similar
(only median regression is provided below). Further, considering the spatial neighbouring effects,
we also include the nearest neighbour variables of the CTC, denoted by res.CTCw, res.CTCe,
res.CTCn and res.CTCs for the west, east, north and south nearest neighbours. Thus we have 11
covariates, including res.pHKCl and the soil chemistry property variables (res.Ca, res.Mg, res.K,
res.Al, res.C and res.N) as well as the four neighbouring variables of the CTC. It is impossible to
apply general nonparametric quantile analysis of the impacts of these covariates on the response
as done in [15] as it suffers from severe “curse of dimensionality”.

To have a preliminary understanding of the possible relationship, we made a simple nonpara-
metric regression analysis of the CTC on each covariate by applying sm.regression in R package
sm (the results not reported here to save space). It appears that the response res.CTC is basically
linearly related with each of the individual covariates, suggesting we may consider regressing
Yij = res.CTCij at a grid (i, j) on the covariates in a linear form

a0(res.pHKClij ) + a1(res.pHKClij )res.Caij + a2(res.pHKClij )res.Mgij

+ a3(res.pHKClij )res.Kij + a4(res.pHKClij )res.Alij + a5(res.pHKClij )res.Cij

+ a6(res.pHKClij )res.Nij + a7(res.pHKClij )res.CTCwij (5.1)

+ a8(res.pHKClij )res.CTCeij + a9(res.pHKClij )res.CTCnij

+ a10(res.pHKClij )res.CTCsij

for 1 ≤ i ≤ 25,1 ≤ j ≤ 10, where we take the chemical property index variable, res.pHKCl,
as a regime variable U and are interested in the effects of this index variable in the coefficient
functions a1(·), . . . , a10(·) of the components of X denoted for the vector of other variables, for
example, whether these coefficient functions are constant or not. Here a0(·) is the baseline effect
from the index variable.

We here suggest selecting the required bandwidth h in (2.2) by applying an empirical rule of
Fan et al. [6] with cross-validation (CV) of Stone [35] using the check function ρ(z) in (2.2).
In the time series context, the argument for cross-validation as an appropriate method for the
bandwidth can be found in [22,32] and [39], among others. This empirical rule of bandwidth
selection procedure is computationally efficient [6]; see also [28], Section 2.3, in the least squares
setting. We first examine the median regression under τ = 0.5, with the range of h taken between
0.15 and 0.3 (partitioned into q small intervals of length 0.01). The spatial quantile estimates of
these coefficient functions under τ = 0.5 are provided in Figure 2 in solid lines, for the selected
bandwidth of h = 0.263 by a leave-one-out CV with ρ(z) = |z| in (2.2). In order to take into
account the dependence in the observations, we also applied a leave-five-out CV for the selection
of bandwidth with h = 0.235 selected, by which the estimated median regression coefficient
functions are very similar to those with leave-one-out CV, and are therefore omitted in Figure 2.
It seems that many of the functional coefficients, such as the baseline function a0(·), are nearly
linear. We hence also made median regression analysis with the coefficient functions of a linear
form, reported in dashed lines in Figure 2. In order to examine the impacts of the covariates on
the high or low CTC variable, we also made similar analysis of spatial quantile regression of
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Figure 2. Soil data: The median regression estimate (τ = 0.5) of the functional coefficients in (5.1). The
solid (—) line is for the quantile regression with nonparametric functional coefficients in this paper by
using the selected bandwidth of 0.263 by the leave-one-out CV, the dashed (−−) line is for the functional
coefficient of parametric linear function, and the dotted (· · ·) lines are for the 95% confidence intervals
constructed by asymptotic normality.

(5.1) under τ = 0.85 and τ = 0.15, plotted in Figure 3 and Figure 4, respectively. In view of the
sparsity of extreme data, the range of h was taken a bit larger between 0.25 and 0.6 (with refined
partition of q small intervals of length 0.001), with the leave-one-out CV-selected bandwidths
equal to 0.5 and 0.487 for τ = 0.85 and τ = 0.15, respectively. Again the estimated coefficient
functions based on leave-five-out CV, which are omitted here, are similar to those with leave-
one-out CV.
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Figure 3. Soil data: The quantile regression estimate (τ = 0.85) of the functional coefficients in (5.1). The
solid (—) line is for the quantile regression with nonparametric functional coefficients in this paper by
using the selected bandwidth of 0.263 by the leave-one-out CV, the dashed (−−) line is for the functional
coefficient of parametric linear function, and the dotted (· · ·) lines are for the 95% confidence intervals
constructed by asymptotic normality.

As the information on how variable the estimates are would be interesting for statistical in-
ference, we have also provided pointwise bands, that is, a collection of confidence intervals, for
the quantile coefficient estimates on the basis of the asymptotic theorem (Theorem 3.1), which
are plotted in dotted lines in Figures 2–4. Here the key difficulty in doing so is the estimation
of fε(0|Xi,Ui) associated with �τ (u) in the asymptotic variance of Theorem 3.1. Note that we
cannot simply assume εi and (Xi,Ui) are independent as in the traditional varying-coefficient
analysis in the literature. Therefore, the estimation suffers from severe curse of dimensional-
ity (note that the dimension of (Xi,Ui) is equal to 11) at a first glance. Fortunately, however,
by applying indepTest in the R package “copula” with the independence test method of Genest
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Figure 4. Soil data: The quantile regression estimate (τ = 0.15) of the functional coefficients in (5.1). The
solid (—) line is for the quantile regression with nonparametric functional coefficients in this paper by
using the selected bandwidth of 0.263 by the leave-one-out CV, the dashed (−−) line is for the functional
coefficient of parametric linear function, and the dotted (· · ·) lines are for the 95% confidence intervals
constructed by asymptotic normality.

and Rémillard [11], we find at 5% significance level that the estimated εi is only dependent on
(Xi,8,Xi,9) = (res.CTCw, res.CTCe) at τ = 0.85, and on (Xi,10,Xi,11) = (res.CTCn, res.CTCs)
at τ = 0.15, while the estimated εi and (Xi,Ui) are independent at τ = 0.5. Hence, we can eas-
ily estimate the conditional density function fε(0|Xi,Ui) by applying npcdens in the R package
“np” with the method of Hall et al. [13]. The asymptotic variance of Theorem 3.1 can thus be
calculated, by which the confidence intervals are constructed.

Let us first examine Figure 4 with τ = 0.15. We can see in this figure that the coefficient
functions are close to linear lines, which, except a6(·), are significant from zero at 5% signif-
icance level. For Figure 3 with τ = 0.85, though the coefficient functions are also close to be
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linear, the magnitudes of the effects of different covariates through the regime index, res.pHKCl,
appear quite significantly different from those in Figure 4. These findings are also different
from that in Figure 2 with τ = 0.5, meaning that the effects of the different covariates through
the regime index, res.pHKCl, on CTC perform differently at low, median and high values of
CTC:

(1) Different covariate effects: The covariate effects under different τ ’s appear quite different
in magnitude, but mostly are of the same signs. Here res.Ca, res.Mg, res.K and res.Al have
nonnegative effects for which we cannot reject their constancy, while res.C has a negative
effect decreasing with res.pHKCl, at 5% level of significance. However, for the covariate
res.N, it seems clear at 5% significance level that a6(·) is not significant from zero under
τ = 0.15, but it is an increasing function that is negative (turning to positive values) when
the regime, res.pHKCl, is less than the thresholds, 0.05 and 0.10, under τ = 0.5 and τ =
0.85, respectively. It looks that the chemistry properties of N (nitrogen content) may play
a significantly different role with the regime in the adjustment of the high/low CTC in the
soil. These findings are beyond the traditional median or mean regression analysis.

(2) Different neighbouring effects: The neighbouring effects in quantile analysis under dif-
ferent τ ’s also appear different in magnitude, and mostly are of the same sign in the co-
efficients (positively correlated with west and east neighbours but negatively with south).
However, it looks at 5% significance level that the CTC in the soil has a negative cor-
relation with its north neighbour res.CTCn (note the coefficient a9(·) is negative) under
τ = 0.15, but becomes positively correlated with its north neighbour when the regime,
res.pHKCl, is over the thresholds 0.10 and 0.05 under τ = 0.5 and τ = 0.85, respectively.

(3) Different regime effects: The regime effects of res.pHKCl seem more involved under τ =
0.5, in particular in the coefficients of res.C, res.N and res.CTCn, which appear marginally
nonlinear at 5% significance level. For high (τ = 0.85) and low (τ = 0.15) quantiles, the
regime effects of res.pHKCl appear linear or constant.

To sum up, although the above analysis is illustrative only, it seems apparent that the
functional-coefficient spatial quantile regression proposed in this paper is helpful to uncover
and understand the underlying relationship of the soil chemistry properties with CTC (catium
exchange capability) through the regime index pHKCl. These properties are interesting and im-
portant topics in soil reservation and management.

Appendix: Proofs

In this section, we only sketch the proof of the main theorems with the necessary lemmas listed.
The detail of the proof of the lemmas is much more complicated and we describe it in detail in
the supplementary material [29].

Let C denote a generic positive constants not depending on n, which may take on different
values at each appearance. Under Assumption 2, by Taylor expansion, for Ui = (Ui1, . . . ,Uik)

T

such that |Uil − u0l | ≤ Mhn,1 ≤ l ≤ k, we have βr(Ui) = βr(u0) + β̇r (u0)
T (Ui − u0) + 1

2 (Ui −
u0)

T β̈r (ξir )(Ui − u0), where β̇r (u0) = (β̇r1(u0), . . . , β̇rk(u0))
T stands for the gradient of βr(u)

with respect to u at u = u0, and ξir = (ξir1, . . . , ξirk)
T satisfies that |ξirl − u0l | < |Uil − u0l | for

1 ≤ l ≤ k. Denote β∗(ξi) = ((Ui −u0)
T β̈1(ξi1)(Ui −u0), . . . , (Ui −u0)

T β̈d(ξid)(Ui −u0))
T , and
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ei = 1
2β∗(ξi)

T Xi. Let b̃l = (b1l , . . . , bdl)
T , β̃l(u0) = (β̇1l (u0), . . . , β̇dl(u0))

T , ã = (a1, . . . , ad)T ,
b̃ = (b̃T

1 , . . . , b̃T
k )T , β̇(u0) = (β̃1(u0)

T , . . . , β̃k(u0)
T )T . Set Zi = (ñhk

n)−1/2(1, h−1
n (Ui −

u0)
T )T ⊗ Xi and t = (ñhk

n)1/2((ã − β(u0))
T , hn(b̃ − β̇(u0))

T )T , where ⊗ is the Kronecker
product. Then we have the following new optimization problem

t̂ = Argmin
t

∑
i∈GN

[
ρ
(
εi + ei − tT Zi

) − ρ(εi + ei)
]
K

(
Ui − u0

hn

)
. (A.1)

Clearly

t̂ = (
ñhk

n
)1/2((

â − β(u0)
)T

,hn
(
b̂ − β̇(u0)

)T )T
. (A.2)

Denote the objective function in (A.1) by Sn(t) and set

�n(t) =
∑

i∈GN

E
([

ρ
(
εi + ei − tT Zi

) − ρ(εi + ei)
]|Xi,Ui

)
K

(
Ui − u0

hn

)
.

Let ϒn(t) = ∑
i∈GN

tT Ziψ(εi)K(
Ui−u0

hn
) and Rn(t) = Sn(t) − �n(t) + ϒn(t). Then

Sn(t) = �n(t) − ϒn(t) + Rn(t). (A.3)

We first present several lemmas that are necessary to prove the theorems.

Lemma A.1. Under the Assumptions 1 and 3–8, if nkh
δk/[a(2+δ)]
n > 1, then for any fixed t , as

n → ∞, it holds that

Rn(t) = op(1).

Lemma A.2. Assume that Assumptions 1, 3 and 5–8 hold and �(u) is continuous in some neigh-
borhood of u0. If nkh

δk/[a(2+δ)]
n > 1, then, as n → ∞, it holds that

�n(t) = 1
2f (u0)t

T
(
� ⊗ �(u0)

)
t − 1

2 ñ1/2h
(k+4)/2
n f (u0)t

T � ⊗ (
�(u0)ζ(u0)

) + op(1),

where � = diag(
∫
M̃

K(u)du,
∫
M̃

uuT K(u)du) and � = (1,OT )T , where O is a k × 1 vector
with entries zero.

Lemma A.3. Assume that Assumptions 1, 3 and 5–8 hold and �(u) is continuous in some neigh-
borhood of u0. If nkh

δk/[a(2+δ)]
n > 1, then, as n → ∞, it holds that

D
(
ϒn(t)

) = f (u0)t
T
(
�̃ ⊗ �(u0)

)
t + o(1),

where �̃ = diag(
∫
M̃

K2(u)du,
∫
M̃

uuT K2(u)du).
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Lemma A.4. Let Kh(Ui) = K(
Ui−u0

hn
) and

An(t) =
∑

i∈GN

ψ
(
εi + ei − tT Zi

)
tT

[(
1, h−1

n (Ui − u0)
T
)T ⊗ (X̂i − Xi)

]
Kh(Ui),

Bn(t) =
∑

i∈GN

ψ
(
εi + ei − tT Zi

)
tT

[(
0, h−1

n (Ûi − Ui)
T
)T ⊗ Xi

]
Kh(Ui).

Under the assumptions of Theorem 4.1, for any fixed t , as n → ∞, it holds that(
ñhk

n
)−1/2

An(t) = op(1),
(
ñhk

n
)−1/2

Bn(t) = op(1).

Lemma A.5. Under the assumptions of Theorem 4.1, for any fixed t , as n → ∞, it holds that∑
i∈GN

[
ρ
(
εi + ei − tT Zi

) − ρ(εi + ei)
][

Kh(Ûi) − Kh(Ui)
] = op(1).

Proof of Theorem 2.1. Let �(t) = 1
2f (u0)t

T (�⊗�(u0))t . By Lemmas A.1 and A.2 and (A.3),
for fixed t we have

Sn(t) = �(t) − 1
2 ñ1/2h

(k+4)/2
n f (u0)t

T � ⊗ (
�(u0)ζ(u0)

) − ϒn(t) + R̃n(t), (A.4)

where R̃n(t) = Rn(t) + op(1) = op(1), and hence

Sn(t) + 1
2 ñ1/2h

(k+4)/2
n f (u0)t

T � ⊗ (
�(u0)ζ(u0)

) + ϒn(t) = �(t) + R̃n(t).

By Lemma A.3, ϒn(t) is bounded in probability. Thus, the random convex function Sn(t) +
�̃n(t) + ϒn(t), for fixed t converges in probability to the function �(t). According to the con-
vexity lemma [31], we conclude that for any compact set K

sup
t∈K

∣∣R̃n(t)
∣∣ = op(1). (A.5)

Let t∗ = 1
2 ñ1/2h

(k+4)/2
n (�−1�) ⊗ ζ(u0) and

t̃ = t∗ + 1

f (u0)

(
�−1 ⊗ �−1(u0)

) ∑
i∈GN

Ziψ(εi)K

(
Ui − u0

hn

)
. (A.6)

In the following, we will prove that for any sufficient small ε > 0,

P
{‖t̂ − t̃‖ < ε

} → 1. (A.7)

According to (A.1) and Lemma A.3 and using the convexity of ρ, to prove (A.7), we need only
to show that for any sufficient large L∗ > 0,

P
({

inf
‖t−t̃‖=ε

(
Sn(t) − Sn(t̃)

)
> 0

}
∩ {‖t̃‖ ≤ L∗}) → 1. (A.8)
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By (A.4) and (A.6), we get

Sn(t) = 1
2f (u0)t

T
(
� ⊗ �(u0)

)
t − f (u0)t

T
(
� ⊗ �(u0)

)
t̃ + R̃n(t).

Since

tT
(
� ⊗ �(u0)

)
t̃ = 1

2

[
tT

(
� ⊗ �(u0)

)
t + t̃ T

(
� ⊗ �(u0)

)
t̃ − (t − t̃ )T

(
� ⊗ �(u0)

)
(t − t̃ )

]
.

Hence,

Sn(t) = 1
2f (u0)(t − t̃ )T

(
� ⊗ �(u0)

)
(t − t̃ ) − 1

2f (u0)t̃
T
(
� ⊗ �(u0)

)
t̃ + R̃n(t).

Using the above, for t̃ satisfying that ‖t̃‖ ≤ L∗, it holds that

Sn(t̃) = − 1
2f (u0)t̃

T
(
� ⊗ �(u0)

)
t̃ + R̃n(t̃).

Note that ‖t − t̃‖ = ε, we conclude that

Sn(t) − Sn(t̃) ≥ 1
2f (u0)λmin,�λmin(u0)ε

2 − 2 sup
‖t‖≤L∗+ε

∣∣R̃n(t)
∣∣,

where λmin,� and λmin(u0) are the minimum eigenvalue of � and �(u0) respectively. There-
fore, (A.8) follows from (A.5) and the above. Consequently, (A.7) holds. Under assumptions
of Theorem 2.1, using arguments similar to those used in the proof of Lemma 3.1 of [14] and
Lemma A.3, we can show that

∑
i∈GN

Ziψ(εi)K

(
Ui − u0

hn

)
→d N

(
0, f (u0)�̃ ⊗ �(u0)

)
.

Now the conclusion of Theorem 2.1 follows from (A.2), (A.7), (A.6) and the above, and the proof
of Theorem 2.1 is finished. �

Proof of Theorem 2.2. Let �0(u0) = �(u0)ζ̄ (u0), �l(u0) = �(u0)ζ̄
(l)(u0), l = 1, . . . , k,

�(u0) = (�0(u0)
T ,�1(u0)

T , . . . ,�k(u0)
T )T and

t∗ = 1

2
ñ1/2h

(k+4)/2
n

(
�−1

c ⊗ �−1(u0)
)
�(u0),

t̃ = t∗ + 1

f (u∗)
(
�−1

c ⊗ �−1(u0)
) ∑

i∈GN

Ziψ(εi)K

(
Ui − uh

hn

)
.

Using the arguments similar to those in the proof of Theorem 2.1, we can finish the proof of
Theorem 2.2. �

Proof of Theorem 4.1. Recall that N = 2 has been assumed throughout this section. Following
[17], Y(s), X(s) and U(s) satisfy that sups∈[0,1]2 |α̂Y(s)−αY(s)| = Op(εn), sups∈[0,1]2 ‖α̂X(s)−
αX(s)‖ = Op(εn) and sups∈[0,1]2 ‖α̂U(s) − αU(s)‖ = Op(εn) with εn = (ln ñ/(ñg2

n))1/2 + gm
n =:
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ε
(1)
n + ε

(2)
n , where ε

(1)
n is obtained as in the proof of Theorem 2 of [17] under Assumptions (B1)–

(B3), (B5) and 8, while ε
(2)
n readily follows from Assumptions (B3) and (B5). Therefore, we

have

max
i

|Ŷi − Yi| = Op(εn), max
i

‖X̂i − Xi‖ = Op(εn), max
i

‖Ûi − Ui‖ = Op(εn). (A.9)

Let ε̂i = Ŷi − X̂T
i β(Ûi), êi = 1

2β∗(ξ̄i)
T X̂i, Ẑi = (ñhk

n)−1/2(1, h−1(Ûi − u0)
T )T ⊗ X̂i and ť =

(ñhk
n)1/2((ǎ − β(u0))

T , hn(b̌ − β̇(u0))
T )T . Then

ť = Argmin
t

∑
i∈GN

[
ρ
(
ε̂i + êi − tT Ẑi

) − ρ(ε̂i + êi)
]
Kh(Ûi),

where Kh(Ûi) = K((Ûi − u0)/hn). Let Ŝn(t) = ∑
i∈GN

[ρ(ε̂i + êi − tT Ẑi) − ρ(ε̂i + êi)]Kh(Ûi).
According to (A.4) and the proof of Theorem 2.1, to finish the proof of Theorem 4.1, we need
only show that for fixed t , it holds that

Ŝn(t) − Sn(t) = op(1). (A.10)

Let θi = εi + ei, θ̂i = ε̂i + êi, Vn1 = ∑
i∈GN

[(ρ(θ̂i − tT Ẑi) − ρ(θ̂i)) − (ρ(θi − tT Zi) −
ρ(θi))]Kh(Ûi), and Vn2 = ∑

i∈GN
[ρ(θi − tT Zi) − ρ(θi)][Kh(Ûi) − Kh(Ui)]. Then

Ŝn(t) − Sn(t) = Vn1 + Vn2. (A.11)

Let Vi1 = |ψ(θ̂i − tT Ẑi)−ψ(θi − tT Zi)|·|(θ̂i −θi)− tT (Ẑi −Zi)|, Vi2 = |ψ(θ̂i)−ψ(θi)|·|(θ̂i −θi)|
and Vi3 = |ψ(θi − tT Zi) − ψ(θi)| · |(θ̂i − θi)|. By the convexity of ρ(·), it holds that∣∣ρ(

θ̂i − tT Ẑi
) − ρ

(
θi − tT Zi

) − ψ
(
θi − tT Zi

)[
(θ̂i − θi) − tT (Ẑi − Zi)

]∣∣ ≤ Vi1

and |ρ(θ̂i) − ρ(θi) − ψ(θi)(θ̂i − θi)| ≤ Vi2. Hence

Vn1 ≤
∑

i∈GN

(Vi1 + Vi2 + Vi3)Kh(Ûi) + |Vn3|, (A.12)

where

Vn3 =
∑

i∈GN

ψ
(
θi − tT Zi

)
tT (Ẑi − Zi)Kh(Ûi). (A.13)

Since θi = εi + ei = Yi − XT
i β(u0) − ∑d

r=1(Ui − u0)
T β̇r (u0)Xir and θ̂i = Ŷi − X̂T

i β(u0) −∑d
r=1(Ûi − u0)

T β̇r (u0)X̂ir , by (A.9) and Assumption 6′, it is easy to prove that maxi |θ̂i − θi| =
Op(εn). On the other hand,

tT (Ẑi − Zi) = (
ñhk

n
)−1/2

[(
t0 +

k∑
l=1

Ûil − u0l

hn
tl

)T

(X̂i − Xi) +
(

k∑
l=1

Ûil − Uil

hn
tl

)T

Xi

]
.
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By (A.9) and Assumption 6′, we have maxi |tT (Ẑi − Zi)| = Op((ñhk
n)−1/2h−1

n εn). Hence

max
i

(|θ̂i − θi| +
∣∣tT (Ẑi − Zi)

∣∣) = Op

(
εn + (

ñhk
n
)−1/2

h−1
n εn

) = Op(ε̃n), (A.14)

where ε̃n = εn + (ñhk
n)−1/2h−1

n εn. By Assumption 7′, we get

Kh(Ûi) = Kh(Ui) + h−1
n (Ûi − Ui)

T K̇h(Ui)
[
1 + op(1)

] = Kh(Ui) + op(1). (A.15)

Therefore, ∑
i∈GN

Vi1Kh(Ûi) = [
1 + op(1)

] ∑
i∈GN

Vi1Kh(Ui)

(A.16)
= Op(ε̃n)

∑
i∈GN

∣∣ψ(
θ̂i − tT Ẑi

) − ψ
(
θi − tT Zi

)∣∣Kh(Ui).

According to (A.14), we can assume that, with probability arbitrarily close to one, maxi(|θ̂i −
θi| + |tT (Ẑi − Zi)|) ≤ Cε̃n for some C and n sufficiently large. Then by Assumption 4′, it holds
that

∑
i∈GN

E(E(|ψ(θ̂i − tT Ẑi) − ψ(θi − tT Zi)||Ui)Kh(Ui)) = O(ñhk
nε̃n). Therefore, by As-

sumption 5′, it holds that∑
i∈GN

Vi1Kh(Ûi) = Op

(
ñhk

nε̃2
n
) = Op

(
ñhk

nε2
n + h−2

n ε2
n
) = op(1). (A.17)

Similarly ∑
i∈GN

Vi2Kh(Ûi) = Op

(
ñhk

nε2
n
) = op(1) (A.18)

and ∑
i∈GN

Vi3Kh(Ûi) = Op

(
ñhk

n max
i

∣∣tT Zi
∣∣εn

)
= Op

((
ñhk

n
)1/2

εn
) = op(1). (A.19)

By (A.13), (A.15) and Lemma A.4, we obtain

Vn3 = [
1 + op(1)

] ∑
i∈GN

ψ
(
θi − tT Zi

)
tT (Ẑi − Zi)Kh(Ui)

(A.20)
= [

1 + op(1)
][(

ñhk
n
)−1/2

An(t) + (
ñhk

n
)−1/2

Bn(t)
] = op(1).

Combining (A.12) and (A.17)–(A.20), we conclude that Vn1 = op(1). By Lemma A.5, it holds
that Vn2 = op(1). Therefore, by (A.11), (A.10) holds and the proof of Theorem 4.1 is finished. �

Proof of Theorem 4.2. The proof of Theorem 4.2 is similar to that of Theorem 4.1 except proof
of (A.17). Let ϑi = θ̂i − θi − tT (Ẑi − Zi). Since ψ(z) = 2τI (z > 0) + 2(τ − 1)I (z < 0), it holds
that ∣∣ψ(

θ̂i − tT Ẑi
) − ψ

(
θi − tT Zi

)∣∣ ≤ 2I{|θi−tT Zi|≤|ϑi|} ≤ 2I{|εi|≤|ei|+|tT Zi|+|ϑi|}.
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By Assumptions 5′ and 6′ and (A.14), we have maxi(|ei|+ |tT Zi|+ |ϑi|) = Op((ñhk
n)−1/2 + ε̃n).

Thus we can assume that, with probability arbitrarily close to one, maxi(|ei| + |tT Zi| + |ϑi|) ≤
C((ñhk

n)−1/2 + ε̃n) for some C and n sufficiently large. By Assumption Q and the fact that
fε(0|Xi,Ui) ≤ C for some C > 0, we get that EI{|εi|≤C((ñhk

n)−1/2+ε̃n)}Kh(Ui) = O(((ñhk
n)−1/2 +

ε̃n)hk
n). Therefore∑

i∈GN

∣∣ψ(
θ̂i − tT Ẑi

) − ψ
(
θi − tT Zi

)∣∣Kh(Ui)

(A.21)
≤ [

1 + op(1)
] ∑

i∈GN

EI{|εi|≤C((ñhk
n)−1/2+ε̃n)}Kh(Ui) = O

((
ñhk

n
)1/2 + ñhk

nε̃n
)
.

Hence by (A.16), (A.21) and Assumption 5′, we obtain∑
i∈GN

Vi1Kh(Ûi) = O
((

ñhk
n
)1/2

ε̃n + ñhk
nε̃2

n
) = op(1).

Therefore, (A.17) holds and the proof of Theorem 4.2 is finished. �

Proof of Theorem 4.3. The proof of Theorem 4.3 can be done similarly as in that for Theo-
rem 4.2, and the detail is omitted. �
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