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We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive mod-
els for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and
propose an estimation procedure based on a spline approximation of the nonparametric part of the model
and the generalized estimating equations (GEE). Although the model in consideration is natural and useful
in many practical applications, the literature on this model is very limited because of challenges in dealing
with dependent data for nonparametric additive models. We show that the proposed estimators are con-
sistent and asymptotically normal even if the covariance structure is misspecified. An explicit consistent
estimate of the asymptotic variance is also provided. Moreover, we derive the semiparametric efficiency
score and information bound under general moment conditions. By showing that our estimators achieve the
semiparametric information bound, we effectively establish their efficiency in a stronger sense than what
is typically considered for GEE. The derivation of our asymptotic results relies heavily on the empirical
processes tools that we develop for the longitudinal/clustered data. Numerical results are used to illustrate
the finite sample performance of the proposed estimators.
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1. Introduction

The partially linear model has become a widely used semiparametric regression model because
it provides a nice trade-off between model interpretability and flexibility. In a partially linear
model, the mean of the outcome is assumed to depend on some covariates X parametrically and
some other covariates T nonparametrically. Usually, the effects of X (e.g., treatment) are of major
interest, while the effects of T (e.g., confounders) are nuisance parameters. Efficient estimation
for partially linear models has been extensively studied and well understood for independent
data; see, for example, Chen [3], Speckman [21], and Severini and Staniswalis [20]. The book of
Härdle, Liang and Gao [8] provides a comprehensive review of the subject.

Efficient estimation of the Euclidean parameter (i.e., the parametric component) in the par-
tially linear model for dependent data is by no means simple due to complication in data struc-
ture. Lin and Carroll [16,17] showed that, whether a natural application of the local polynomial
kernel method can yield a semiparametric efficient estimator depends on whether the covariate
modeled nonparametrically is a cluster-level covariate or not. Because the naive approach fails,
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Wang, Carroll and Lin [25] constructed a semiparametric efficient estimator by employing the
iterative kernel method of Wang [24] that can effectively account for the within-cluster correla-
tion. Alternatively, Zhang [27], Chen and Jin [4], and Huang, Zhang and Zhou [12] constructed
semiparametric efficient estimators by extending the parametric generalized estimating equations
(GEE) of Liang and Zeger [15]. He, Zhu and Fung [10] and He, Fung and Zhu [9] considered
robust estimation, and Leng, Zhang and Pan [14] studied joint mean-covariance modeling for the
partially linear model also by extending the GEE. In all these development, only one covariate is
modeled nonparametrically.

In many practical situations, it is desirable to model multiple covariates nonparametrically.
However, it is well known that multivariate nonparametric estimation is subject to the curse of
dimensionality. A widely used approach for dimensionality reduction is to consider an additive
model for the nonparametric part of the regression function in the partly linear model, which in
turn results in the partially linear additive model. Although adapting this approach is a natural
idea, there are major challenges for estimating the additive model for dependent data. Until only
very recently, Carroll et al. [2] gave the first contribution on the partly linear additive model for
longitudinal/clustered data, focusing on a simple setup of the problem, where there is the same
number of observations per subject/cluster, and the identity link function is used.

The goal of the paper is to give a thorough treatment of the problem in the general setting that
allows a monotonic link function and unequal number of observations among subjects/clusters. In
this general setting, we derive the semiparametric efficient score and efficiency bound to obtain a
benchmark for efficient estimation. In our derivation, we only assume the conditional moment re-
strictions instead of any distributional assumptions, for example, the multivariate Gaussian error
assumption employed in Carroll et al. [2]. It turns out the definition of the efficient score involves
solving a system of complex integral equations and there is no closed-form expression. This fact
rules out the feasibility of constructing efficient estimators by plugging the estimated efficient
influence function into their asymptotic linear expansions. We propose an estimation procedure
that approximates the unknown functions by splines and uses the generalized estimating equa-
tions. To differentiate our procedure with the parametric GEE, we refer to it as the extended
GEE. We show that the extended GEE estimators are semiparametric efficient if the covariance
structure is correctly specified and they are still consistent and asymptotically normal even if
the covariance structure is misspecified. In addition, by taking advantage of the spline approx-
imation, we are able to give an explicit consistent estimate of the asymptotic variance without
solving the system of integral equations that lead to the efficient scores. Having a closed-form
expression for the asymptotic variance is an attractive feature of our method, in particular when
there is no closed-form expression of the semiparametric efficiency bound. Another attractive
feature of our method is the computational simplicity, there is no need to resort to the computa-
tionally more demanding backfitting type algorithm and numerical integration, as has been done
in the previous work on the same model.

As a side remark, one highlight of our mathematical rigor is the careful derivation of the
smoothness conditions on the least favorable directions from primitive conditions. This rather
technical but important issue has not been well treated in the literature. To develop the asymptotic
theory in this paper, we rely heavily on some new empirical process tools which we develop by
extending existing results from the i.i.d. case to the longitudinal/clustered data.

The rest of the paper is organized as follows. Section 2 introduces the setup of the partially
linear additive model and the formulation of the extended GEE estimator. Section 3 lists all
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regularity conditions, derives the semiparametric efficient score and the efficiency bound, and
presents the asymptotic properties of the extended GEE estimators. Section 4 illustrates the finite
sample performance of the GEE estimators using a simulation study and a real data. The proofs
of some nonasymptotic results and the sketched proofs of the main asymptotic results are given
in the Appendix. The supplementary file discusses the properties of the least favorable directions,
presents the relevant empirical processes tools and the complete proofs of all asymptotic results.

Notation. For positive number sequences an and bn, let an � bn mean that an/bn is bounded,
an � bn mean that an � bn and an � bn, and an � bn mean that limn an/bn = 0. For two positive
semidefinite matrices A and B, let A ≥ B mean that A − B is positive semidefinite. Define x ∨ y

(x ∧ y) to be the maximum (minimum) value of x and y. For any matrix V, denote λmax
V (λmin

V )

as the largest (smallest) eigenvalue of V. Let |V| denote the Euclidean norm of the vector V.
Let ‖a‖L2 denote the usual L2 norm of a squared integrable function a, where the domain of
integration and the dominating measure should be clear from the context.

2. The model setup

Suppose that the data consist of n clusters with the ith (i = 1, . . . , n) cluster having mi obser-
vations. In particular, for longitudinal data a cluster represents an individual subject. The data
from different clusters are independent, but correlation may exist within a cluster. Let Yij and
(Xij ,Tij ) be the response variable and covariates for the j th (j = 1, . . . ,mi ) observation in the
ith cluster. Here Xij = (Xij1, . . . ,XijK)′ is a K ×1 vector and Tij = (Tij1, . . . , TijD)′ is a D ×1
vector. We consider the marginal model

μij = E(Yij |Xij ,Tij ), (1)

and the marginal mean μij depends on covariates Xij and Tij through a known monotonic and
differentiable link function μ(·):

μij = μ
(
X′

ijβ + θ+(Tij )
)

(2)
= μ

(
X′

ijβ + θ1(Tij1) + · · · + θD(TijD)
)
,

where β is a K × 1 vector, and θ+(t) is an additive function with D smooth additive compo-
nent functions θd(td), 1 ≤ d ≤ D. For identifiability, it is assumed that

∫
Td

θd(td)dtd = 0, where
Td is the compact support of the covariate Tijd . Applications of marginal models for longitudi-
nal/clustered data are common in the literature (Diggle et al. [7]).

Denote

Yi =
⎛⎝ Yi1

...

Yimi

⎞⎠ , μi =
⎛⎝ μi1

...

μimi

⎞⎠ , Xi =
⎛⎜⎝ X′

i1
...

X′
imi

⎞⎟⎠ , Ti =
⎛⎜⎝ T′

i1
...

T′
imi

⎞⎟⎠ ,

θ+(Ti ) =
⎛⎝ θ+(Ti1)

...

θ+(Timi
)

⎞⎠ , μ
(
Xiβ + θ+(Ti )

) =
⎛⎜⎝ μ

(
X′

i1β + θ+(Ti1)
)

...

μ
(
X′

imi
β + θ+(Timi

)
)
⎞⎟⎠ .
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Here and hereafter, we make the notational convention that application of a multivariate function
to a matrix is understood as application to each row of the matrix, and similarly application of a
univariate function to a vector is understood as application to each element of the vector. Using
matrix notation, our model representation (1) and (2) can be written as

μi = E(Yi |Xi ,Ti ) = μ
(
Xiβ + θ+(Ti )

)
. (3)

Note that in our modeling framework no distributional assumptions are imposed on the data
other than the moment conditions specified in (1) and (2). In particular, Xi and Ti are allowed to
be dependent, as commonly seen for longitudinal/clustered data. Let �i = var(Yi |Xi ,Ti ) be the
true covariance matrix of Yi . Following the generalized estimating equations (GEE) approach of
Liang and Zeger [15], we introduce a working covariance matrix Vi = Vi (Xi ,Ti ) of Yi , which
can depend on a nuisance finite-dimensional parameter vector τ distinct from β . In the paramet-
ric setting, Liang and Zeger [15] showed that, consistency of the GEE estimator is guaranteed
even when the covariance matrices are misspecified, and estimation efficiency will be achieved
when the working covariance matrices coincide with the true covariance matrices, that is, when
Vi (τ

∗) = �i for some τ ∗. In this paper, we shall establish a similar result in a semiparametric
context.

To estimate the functional parameters, we use basis approximations (e.g., Huang, Wu and
Zhou [11]). We approximate each component function θd(td) of the additive function θ+(t) in (2)
by a basis expansion, that is,

θd(td) ≈
Qd∑
q=1

γdqBdq(td) = B′
d(td)γ d , (4)

where Bdq(·), q = 1, . . . ,Qd , is a system of basis functions, which is denoted as a vector
Bd(·) = (Bd1(·), . . . ,BdQd

(·))′, and γ d = (γd1, . . . , γdQd
)′ is a vector of coefficients. In prin-

ciple, any basis system can be used, but B-splines are used in this paper for their good approxi-
mation properties. In fact, if θd(·) is continuous, the spline approximation can be chosen to satisfy
supt |θd(t)− B′

d(t)γ d | → 0 as Qd → ∞, and the rate of convergence can be characterized based
on the smoothness of θd(·); see de Boor [6].

It follows from (4) that

θ+(Tij ) ≈
D∑

d=1

Qd∑
q=1

γdqBdq(Tijd) =
D∑

d=1

B′
d(Tijd)γ d = Z′

ijγ , (5)

where Zij = (B′
1(Tij1), . . . ,B′

D(TijD))′, and γ = (γ 1
′, . . . ,γ D

′)′. Denoting Zi = (Zi1, . . . ,

Zimi
)′, (3) and (5) together imply that

μi = E(Yi |Xi ,Ti ) ≈ μ(Xiβ + Ziγ ). (6)
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Thus, the Euclidean parameters and functional parameters are estimated jointly by minimizing
the following weighted least squares criterion

n∑
i=1

{
Yi − μ(Xiβ + Ziγ )

}′V−1
i

{
Yi − μ(Xiβ + Ziγ )

}
(7)

or, equivalently, by solving the estimating equations

n∑
i=1

X′
i�iV

−1
i

{
Yi − μ(Xiβ + Ziγ )

} = 0 (8)

and
n∑

i=1

Z′
i�iV

−1
i

{
Yi − μ(Xiβ + Ziγ )

} = 0, (9)

where �i is a diagonal matrix with the diagonal elements being the first derivative of μ(·) evalu-
ated at X′

ijβ + Z′
ijγ , j = 1, . . . ,mi . Denoting the minimizer of (7) as β̂ and γ̂ , then β̂ estimates

the parametric part of the model, and θ̂1(·) = B′
1(·)γ̂ 1, . . . , θ̂D(·) = B′

D(·)γ̂ D estimate the non-
parametric part of the model. We refer to these estimators the extended GEE estimators. In this
paper, we shall show that, under regularity conditions, β̂ is asymptotically normal and, if the
correct covariance structure is specified, it is semiparametric efficient, and also show that θ̂d (·)
is a consistent estimator of the true nonparametric function θd(·), d = 1, . . . ,D.

When the link function μ(·) is the identity function, the minimizer of the weighted least
squares (7) or the solution to the estimating equations (8) and (9) has a closed-from expression:(

β̂

γ̂

)
=

(
n∑

i=1

U′
iV

−1
i Ui

)−1 n∑
i=1

U′
iV

−1
i Yi ,

where Ui = (Xi ,Zi ).

3. Theoretical studies of extended GEE estimators

3.1. Regularity conditions

We state the regularity conditions needed for the theoretical results in this paper. For the asymp-
totic analysis, we assume that the number of individuals/clusters goes to infinity while the number
of observations per individual/cluster remains bounded.

C1. The random variables Tijd are bounded, uniformly in i = 1, . . . , n, j = 1, . . . ,mi

and d = 1, . . . ,D. The joint distribution of any pair of Tijd and Tij ′d ′ has a density
fijj ′dd ′(tijd , tij ′d ′) with respect to the Lebesgue measure. We assume that fijj ′dd ′(·, ·)
is bounded away from 0 and infinity, uniformly in i = 1, . . . , n, j, j ′ = 1, . . . ,mi , and
d, d ′ = 1, . . . ,D.
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C2. The first covariate is constant 1, that is, Xij1 ≡ 1. The random variables Xijk are
bounded, uniformly in i = 1, . . . , n, j = 1, . . . ,mi and k = 2, . . . ,K . The eigenvalues
of E{Xij X′

ij |Tij } are bounded away from 0, uniformly in i = 1, . . . , n, j = 1, . . . ,mi .
C3. The eigenvalues of true covariance matrices �i are bounded away from 0 and infinity,

uniformly in i = 1, . . . , n.
C4. The eigenvalues of the working covariance matrices Vi are bounded away from 0 and

infinity, uniformly in i = 1, . . . , n.

Conditions similar to C1–C4 were used and discussed in Huang, Zhang and Zhou [12] when
considering partially linear models with the identity link. Condition C1 is also used to ensure
identifiability of the additive components, see Lemma 3.1 of Stone [22]. Condition C1 implies
that the marginal density fijd(·) of Tijd is bounded away from 0 on its support, uniformly in
i = 1, . . . , n, j = 1, . . . ,mi , and d = 1, . . . ,D. The condition on eigenvalues in C2 prevents the
multicollinearity of the covariate vector Xij and ensures the identifiability of β . Since we assume
that the cluster size (or the number of observations per subject) is bounded, we expect C3 is in
general satisfied. Note that a zero eigenvalue of �i indicates that there is a perfect linear relation
among the residuals from subject i, which is unlikely to happen in reality.

Denote the true values of β and θ+(t) by β0 and θ0,+(t), respectively.

C5. (i) The link function μ is strictly monotone and has continuous second derivative;
(ii) infs μ′(s) = c1 > 0; (iii) μ′ and μ′′ are locally bounded around xT β0 + θ0,+(t);
(iv) μ(±v) increases slower than vL as v → ∞ for some L > 0.

Denote eij = Yij − μij and ei = (ei1, . . . , eimi
)′.

C6. The errors are uniformly sub-Gaussian, that is,

max
i=1,...,n

M2
0E

{
exp

(|ei |2/M2
0

) − 1|Xi ,Ti

} ≤ σ 2
0 ∀n, a.s. (10)

for some fixed positive constants M0 and σ0.

Condition C5 on the link function is satisfied in all practical situations. The sub-Gaussian
condition C6 relaxes the strict multivariate Gaussian error assumption, and is commonly used in
the literature when applying the empirical process theory.

For i = 1, . . . , n, let �i0 be a diagonal matrix with the j th diagonal element being the first
derivative of μ(·) evaluated at X′

ijβ0 + θ0,+(Tij ), j = 1, . . . ,mi . Let Xik denote the kth col-
umn of the matrix Xi . For any additive function ϕ+(t) = ϕ1(t1)+ · · ·+ϕD(tD), t = (t1, . . . , tD)′,
denote ϕ+(Ti ) = (ϕ+(Ti1), . . . , ϕ+(Timi

))′. Let ϕ∗
k,+(·) be the additive function ϕk,+(·) that min-

imizes
n∑

i=1

E
[{

Xik − ϕk,+(Ti )
}′

�i0V−1
i �i0

{
Xik − ϕk,+(Ti )

}]
. (11)

Denote ϕ∗+(Ti ) = (ϕ∗
1,+(Ti ), . . . , ϕ

∗
K,+(Ti )) and define

IV ≡ lim
n

1

n

n∑
i=1

E
[{

Xi − ϕ∗+(Ti )
}′

�i0V−1
i �i0

{
Xi − ϕ∗+(Ti )

}]
.
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C7. The matrix IV is positive definite.

Condition C7 is a positive information requirement that ensures the Euclidean parameter β
can be root-n consistently estimated. When Vi is specified to be the true covariance matrix �i

for all i, ϕ∗
k,+(·) reduces to the least favorable direction ψ∗

k,+(·) in the definition of efficient score
function and IV reduces to the efficient information matrix Ieff; see Section 3.2.

For d = 1, . . . ,D, let Gd = {B′
d(t)γ d} be a linear space of splines with degree r defined on

the support Td of Tijd . Let G+ = G1 + · · · + GD be the additive spline space. We allow the
dimension of Gd , 1 ≤ d ≤ D, and G+ to depend on n, but such dependence is suppressed in
our notation to avoid clutter. For each spline space, we require that the knot sequence satisfies
the quasi-uniform condition, that is, maxj,j ′(un,j+r+1 − un,j )/(un,j ′+r+1 − un,j ′) is bounded
uniformly in n for knots {un,j }. Let

ρn = max
{

inf
g∈G+

∥∥g(·) − θ0,+(·)∥∥∞, max
1≤k≤K

inf
g∈G+

∥∥g(·) − ϕ∗
k,+(·)∥∥∞

}
and Qn = max{Qd = dim(Gd),1 ≤ d ≤ D}.

C8. (i) limn Q2
n log4 n/n = 0, (ii) limn nρ4

n = 0.

Condition C8(i) characterizes the growth rate of the dimension of the spline spaces relative to
the sample size. Condition C8(ii) describes the requirement on the best rate of convergence that
the functions θ0,+(·) and ϕ∗

k,+(·)’s can be approximated by functions in the spline spaces. These
requirements can be quantified by smoothness conditions on θ0,+(·) and ϕ∗

k,+(·)’s, as follows.
For α > 0, write α = α0 + α1, where α0 is an integer and 0 < α1 ≤ 1. We say a function is α-
smooth, if its derivative of order α0 satisfies a Hölder condition with exponent α1. If all additive
components of θ0,+(·) and ϕ∗

k,+(·)’s are α-smooth, and the degree r of the splines satisfies r ≥
α − 1, then, by a standard result from approximation theory, ρn � Q−α

n for α > 1/2 (Schumaker
[19]). Condition C8 thus can be replaced by the following condition.

C8′. (i) limn Q2
n log4 n/n = 0; (ii) additive components of θ0,+(·) and ϕ∗

k,+(·), k = 1,2, . . . ,

K , are α-smooth for some α > 1/2; (iii) limn Q4α
n /n = ∞.

Since ϕ∗
k,+ is only implicitly defined, it is important to verify its smoothness requirement from

primitive conditions. In the supplementary file (Cheng, Zhou and Huang [5]), that is, Section S.1,
we shall show that ϕ∗

k,+(·) solves a system of integral equations and its smoothness is implied by
smoothness requirements on the joint density of Xi and Ti .

3.2. Semiparametric efficient score and efficiency bound

For estimating the Euclidean parameter in a semiparametric model, the efficiency bound pro-
vides a useful benchmark for the optimal asymptotic behaviors (e.g., Bickel et al. [1]). In this
subsection, we give the semiparametric efficient score and efficient information matrix when the
covariance structure is correctly specified. We do not make the normality assumption on the error
distribution in the derivations.

The models studied in this paper have more than one nuisance function so that the efficient
score function for β , denoted as �∗

β , is obtained by projecting onto a sum-space. In Lemma 1
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below, we construct �∗
β by the two-stage projection approach (Sasieni [18]). Recall that ei =

Yi −μ(Xiβ+θ+(Ti )), where θ+(t) = θ1(t1)+· · ·+θD(tD). Write fi(xi , ti ,yi −μ(xiβ+θ+(ti )))
as the joint density of (Xi ,Ti ,Yi ) for the ith cluster. We assume that fi(·, ·, ·) is smooth, bounded
and satisfies lim|eij |→∞ fi(·, ·, ei ) = 0 for all j = 1, . . . ,mi .

Lemma 1. The efficient score has the expression �∗
β = (�∗

β,1, . . . , �
∗
β,K)′ with

�∗
β,k =

n∑
i=1

(
Xik − ψ∗

k,+(Ti )
)′
�i0�

−1
i

[
Yi − μ

(
Xiβ0 + θ0,+(Ti )

)]
, (12)

where ψ∗
k,+(t) = ∑D

d=1 ψ∗
kd(td) satisfies

n∑
i=1

E
[(

Xik − ψ∗
k,+(T)

)′
�i0�

−1
i �i0ψd(Tid )

] = 0 (13)

for any ψd(td) ∈ L2(Td), d = 1, . . . ,D.

The form of �∗
β,k when D = 1 coincides with that derived in the partially linear models, for

example, Lin and Carroll [16], under the strict multivariate Gaussian error assumption. In the
supplementary material (Cheng, Zhou and Huang [5]), we shall see that ψ∗

kd(td)’s (or, more gen-
erally, ϕ∗

kd(td)’s) solve a Fredholm integral equation of the second kind (Kress [13]), and do not
have a closed-form expression. In the same file, we also show that ψ∗

kd(td)’s (or, more generally,
ϕ∗

kd(td)’s) are well defined and have nice properties such as boundedness and smoothness under
reasonable assumptions on the joint density of Xi and Ti . These properties are crucial for the
feasibility to construct semiparametric efficient estimators but are not carefully studied in the
literature.

The semiparametric efficient information matrix for β is

Ieff ≡ lim
n

1

n
E

(
�∗
β�∗′

β

)
(14)

= lim
n

1

n

n∑
i=1

E
[{

Xi − ψ∗+(Ti )
}′

�i0�
−1
i �i0

{
Xi − ψ∗+(Ti )

}]
,

where ψ∗+(Ti ) = (ψ∗
1,+(Ti ), . . . ,ψ

∗
K,+(Ti )). The efficient information matrix Ieff here is the same

as the quantity IV in condition C7 when Vi = �i . In the above result, different subjects/clusters
need not have the same number of observations and thus (Xi ,Ti ) may not be identically dis-
tributed. In the special case that (Xi ,Ti ) are i.i.d., the efficient information can be simplified
to

Ieff = E
[{

Xi − ψ∗+(Ti )
}′

�i0�
−1
i �i0

{
Xi − ψ∗+(Ti )

}]
,

where the kth component of ψ∗+ satisfies

E
[{

Xik − ψ∗
k,+(T)

}′
�i0�

−1
i �i0ψd(Tid )

] = 0



Partially linear additive models for longitudinal data 149

for any ψd(td) ∈ L2(Td), d = 1, . . . ,D.
The function ψ∗+(Ti ) involved in the efficient information matrix (14) actually corresponds

to the least favorable direction (LFD) along θ0,+(Ti ) in the least favorable submodel (LFS). To
provide an intuitive interpretation, we assume for simplicity that fi(ei |xi , ti ) ∼ N(0,�i ). Given
the above distributional assumption, the parametric submodel (indexed by ε) passing through
(β0, θ0,+) is constructed as

ε �→ −1

2

n∑
i=1

[
yi − μi (ε)

]′
�−1

i

[
yi − μi (ε)

]
, (15)

where μi (ε) = μ{xi (β0 + εv) + [θ0,+(ti ) + εh+(ti )]}, for some vector v ∈ R
K and perturba-

tion direction h+(·) around θ0,+(·). For any fixed v, the information matrix for the parametric
submodel (evaluated at ε = 0) is calculated as

Ipara(h+) = lim
n

1

n

n∑
i=1

E
[{

Xiv + h+(Ti )
}′

�i0�
−1
i �i0

{
Xiv + h+(Ti )

}]
.

The minimum Ipara(h+) over all possible perturbation directions is known as the semiparametric
efficient information for v′β (Bickel et al. [1]). The parametric submodel achieving the mini-
mum is called the LFS and the associated direction is called LFD. By calculating the Fréchet
derivative of the quadratic function h+ �→ Ipara(h+) and considering (13), we can easily show
that its minimum is achieved when h+ = −ψ∗+v. In view of the above discussion, the efficient
information for β becomes the Ieff defined in (14).

Remark 1. Our derivation of the efficient score and efficient information matrix also applies
when T is a cluster level covariate, that is, Tijd = Tid for j = 1, . . . ,mi , d = 1, . . . ,D. Let
T̃i = (Ti1, . . . , TiD)′. In this case, we only need to replace ψ∗

k,+(Ti ) and ψ∗+(Ti ) by ψ∗
k,+(T̃i )1

and 1(ψ∗
1,+(T̃i ), . . . ,ψ

∗
K,+(T̃i )), where 1 is an mi -vector of ones, and do similar changes for

ψk,+(Ti ) and ψ+(Ti ). It is interesting to note that, when (Yi ,Xi ,Ti ) are i.i.d., then ψ∗
k,+(·) has a

closed form expression:

ψ∗
k,+(t) = E(X′

ik�i0�
−1
i �i01|T̃i = t)

E(1′�i0�
−1
i �i01|T̃i = t)

.

3.3. Asymptotic properties

In this subsection, we assume that the dimension of the Euclidean parameter, that is, K , is fixed.
Define f0(x, t) = μ(x′β0 + θ0,+(t)). Define

Fn = {
f (x, t) :f (x, t) = μ

(
x′β + g(t)

)
, β ∈ R

K,g ∈ G+
}
.

The extended GEE estimator can be written as

arg min
f ∈Fn

1

n

n∑
i=1

{
Yi − f (Xi ,Ti )

}′V−1
i

{
Yi − f (Xi ,Ti )

}
.
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The minimizer is f̂n(x, t) = μ(xT β̂V + θ̂ (t)) where θ̂ (t) = B′(t)γ̂ . The subscript of β̂V denotes
the dependence on the working covariance matrices.

According to condition C8 (or C8′), there is an additive spline function θ∗
n (t) = B′(t)γ ∗ ∈ G+

such that ‖θ∗
n − θ0,+‖∞ � ρn → 0. Then f ∗

n (x, t) = μ(x′β0 + θ∗
n (t)) is a spline-based approxi-

mation to the regression function. Define

〈ξ1, ξ2〉n = 1

n

∑
i

ξ ′
1(Xi ,Ti )V

−1
i ξ2(Xi ,Ti )

and ‖ξ‖2
n = 〈ξ, ξ 〉n.

Theorem 1 (Consistency). The following results hold:

∥∥f̂n − f ∗
n

∥∥2
n

= OP

(
Qn log2 n/n ∨ ρ2

n

)
, (16)∥∥f̂n − f ∗

n

∥∥∞ = oP (1), (17)

‖f̂n − f0‖∞ = oP (1), (18)

β̂V

P→ β0, ‖θ̂ − θ0,+‖∞ = oP (1). (19)

Theorem 1 says that the extended GEE estimators are consistent in estimating the parametric
and nonparametric components of the model. Next we show that, our extended GEE estimator
β̂ is asymptotically normal even when the working covariance matrices Vi ’s are not necessarily
the same as the true ones.

Denote Ui = (Xi ,Zi ) as before. Let

H =
n∑

i=1

U′
i�i0V−1

i �i0Ui ≡
(

H11 H12
H21 H22

)
(20)

=

⎛⎜⎜⎜⎝
n∑

i=1

X′
i�i0V−1

i �i0Xi

n∑
i=1

X′
i�i0V−1

i �i0Zi

n∑
i=1

Z′
i�i0V−1

i �i0Xi

n∑
i=1

Z′
i�i0V−1

i �i0Zi

⎞⎟⎟⎟⎠ .

By the block matrix form of matrix inverse,

(
H11 H12
H21 H22

)−1

=
(

H11 H12

H21 H22

)
(21)

=
(

H−1
11·2 −H−1

11·2H12H−1
22

−H−1
22·1H21H−1

11 H−1
22·1

)
,
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where H11·2 = H11 − H12H−1
22 H21 and H22·1 = H22 − H21H−1

11 H12. Define

R�(β̂V ) ≡ H11
n∑

i=1

{(
Xi − ZiH

−1
22 H21

)′
�i0V−1

i �iV
−1
i �i0

(
Xi − ZiH

−1
22 H21

)}
H11,

where the superscript � denotes the dependence on �i0.

Theorem 2 (Asymptotic normality). The extended GEE estimator β̂V is asymptotically linear,
that is,

β̂V = β0 + H11
n∑

i=1

(
Xi − ZiH

−1
22 H21

)′
�i0V−1

i ei + oP

(
1√
n

)
. (22)

Consequently, {
R�(β̂V )

}−1/2
(β̂V − β0)

d−→ Normal(0, Id), (23)

where Id denotes the K × K identity matrix.

When applying the asymptotic normality result for asymptotic inference, the variance R�(β̂V )

can be estimated by replacing �i with (Yi − Xi β̂V − Zi γ̂ )(Yi − Xi β̂V − Zi γ̂ )′, and substituting
parameter estimates in �i0. The resulting estimator of variance is referred to as the Sandwich
estimator.

Theorem 3. R�(β̂V ) ≥ R�(β̂�).

Theorem 3 says that β̂� is the most efficient in the class of extended GEE estimators with
general working covariance matrices. Such a result is in parallel to that for standard paramet-
ric GEE estimators (Liang and Zeger [15]). This theorem is a consequence of the generalized
Cauchy–Schwarz inequality and can be proved using exactly the same argument as Theorem 1
of Huang, Zhang and Zhou [12].

When the covariance matrices are correctly specified, the extended GEE estimators are effi-
cient in a stronger sense than just described. Next, we show that the extended GEE estimator
of β is the most efficient one among all regular estimators (see Bickel et al. [1] for the precise
definition of regular estimators). In other words, the asymptotic variance of β̂� achieves the
semiparametric efficiency bound, that is, the inverse of the efficient information matrix.

Corollary 1. The estimator β̂� is asymptotically normal and semiparametric efficient, that is,

(nIeff)
1/2(β̂� − β0)

d−→ Normal(0, Id). (24)

In the below, we sketch the proof of Corollary 1 and postpone the details to the Appendix.
Fixing Vi = �i in the definition of H as given in (20), we see that R�(β̂�) can be written as

H11
n∑

i=1

{(
Xi − ZiH

−1
22 H21

)′
�i0�

−1
i �i0

(
Xi − ZiH

−1
22 H21

)}
H11.
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Using the block matrix inversion formula (21) and examining the (1,1)-block of the identity
H−1 = H−1HH−1, we obtain that R�(β̂�) = H11. Denote Î−1

n = nR�(β̂�). It is easily seen
using (21) that

În = 1

n

n∑
i=1

X′
i�i0�

−1
i �i0Xi

− 1

n

n∑
i=1

X′
i�i0�

−1
i �i0Zi

(
n∑

i=1

Z′
i�i0�

−1
i �i0Zi

)−1 n∑
i=1

Z′
i�i0�

−1
i �i0Xi .

The asymptotic normality result in Theorem 2 can be rewritten as

(n̂In)
1/2(β̂� − β0)

d−→ Normal(0, Id).

Thus, Corollary 1 follows from Theorem 2 and the result that În → Ieff. The matrix În can be
interpreted as a spline-based consistent estimate of the efficient information matrix.

Remark 2. When T is a cluster-level covariate, that is, Tij = T̃i = (Ti1, . . . , TiD)′, j =
1, . . . ,mi , Theorems 1, 2 and Corollary 1 still hold. In that case, We can simplify C1 to the
following condition.

C1′. The random variables Tid are bounded, uniformly in i = 1, . . . , n, and d = 1, . . . ,D. The
joint distribution of any pair of Tid and Tid ′ has a density fidd ′(tid , tid ′) with respect to
the Lebesgue measure. We assume that fidd ′(·, ·) is bounded away from 0 and infinity,
uniformly in i = 1, . . . , n, and d, d ′ = 1, . . . , d .

Remark 3. Our asymptotic result on estimation of the Euclidean parameter is quite insensitive to
the choice of the number of terms Qd in the basis expansion which plays the role of a smoothing
parameter. Specifically, suppose that additive components of θ0,+(·) and ϕ∗

k,+(·), k = 1, . . . ,K ,
all have bounded second derivatives, that is, condition C8′ is satisfied with α = 2. Then the re-
quirement on Qd reduces to n1/8 � Qd � n1/2/ log2 n, a wide range for choosing Qd . Thus,
the precise determination of Qd is not of particular concern when applying our asymptotic re-
sults. This insensitivity of smoothing parameter is also confirmed by our simulation study. In
practice, it is advisable to use the usual data driven methods such as delete-cluster(subject)-out
cross-validation to select Qd and then check the sensitivity of the results (Huang, Zhang and
Zhou [12]).

Remark 4. For simplicity, we assume in our asymptotic analysis that the working correlation
parameter vector τ in Vi is known. It can be estimated via the method of moments using a
quadratic function of Yi ’s, just as in the application of the standard parametric GEEs (Liang
and Zeger [15]). Similar to the parametric case, as long as such an estimate of τ converges in
probability to some τ † at

√
n rate, there is no asymptotic effect on β̂ due to the estimation of τ ;

see Huang, Zhang and Zhou [12], Remark 1.
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Remark 5. Our method does not require the assumption of normal error distribution. However,
because it is essentially a least squares method, it is not robust to outliers. To achieve robustness
to outlying observations, it is recommended to use the M-estimator type method as considered
in He, Fung and Zhu [9].

4. Numerical results

4.1. Simulation

We conducted simulation studies to evaluate the finite sample performance of the proposed
method. When the number of observations are the same per subject/cluster and the identity link
function is used, our method performs comparably to the method of Carroll et al. [2] (see sup-
plementary materials). In this section, we focus on simulation setups that cannot be handled by
the existing method of Carroll et al. [2]. We generated data from the model

E(Yij |Xij ,Zij1,Zij2) = g
{
β0 +Xijβ1 +f1(Zij1)+f2(Zij2)

}
, j = 1, . . . , ni, i = 1, . . . , n,

where g is a link function which will be specified below, β0 = 0, β1 = 0.5, f1(t) = sin{2π(t −
0.5)}, and f2(t) = t − 0.5 + sin{2π(t − 0.5)}. The covariates Zij1 and Zij2 were generated from
independent Normal(0.5,0.25) random variables but truncated to the unit interval [0,1]. The co-
variate Xij was generated as Xij = 3(1 − 2Zij1)(1 − 2Zij2)+uij where uij were independently
drawn from Normal(0,0.25). We obtained different simulation setups by varying the observa-
tional time distribution, the correlation structure, the parameters of the correlation function, the
data distribution, and the number of subjects. We present results for five different setups, the
details of which are given below.

For each simulation setup, 400 simulation runs were conducted and summary statistics of the
results were calculated. For each simulated data set, the proposed generalized GEE estimator
was calculated using a working independence (WI), an exchangeable (EX) correlation, or an
autoregressive correlation structure. The correlation parameter ρ was estimated using the method
of moments. Cubic splines were used with the number of knots chosen from the range 1–7 by
the five-fold delete-subject-out cross-validation. The bias, variance, and the mean squared errors
of Euclidean parameters were calculated for each scenario based on the 400 runs. The mean
integrated squared errors (MISE), calculated using 100 grip points over [0,1], for estimating
f1(·) and f2(·), were also computed.

Setup 1. The longitudinal responses are from multivariate normal distribution with the autore-
gressive correlation structure and the identity link function. For each subject, six observational
times are evenly placed between 0 and 1. The results are summarized in Table 1.

Setup 2. The same as setup 1, except that the log link is used. The results are summarized in
Table 2.

Setup 3. This setup is the same as setup 1, except that the exchangeable correlation structure
is used and the observational time distribution is different. For each subject, ten observational
times are first evenly placed between 0 and 1. Then 40% of the observations are removed from
each dataset and thus different subjects may have different number of observations and the ob-
servational times may be irregularly placed. The results are summarized in Table 3.
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Table 1. Summary of simulation results for setup 1, based on 400 replications. The generalized GEE es-
timators using a working independence (WI), an exchangeable (EX) correlation structure, and an autore-
gressive (AR) structure are compared. The true correlation structure is the autoregressive with the lag-one
correlation being ρ. Each entry of the table equals the original value multiplied by 105

β0 = 0 β1 = 0.5 f1(·) f2(·)
ρ Method Bias SD MSE Bias SD MSE MISE(f1) MISE(f2)

n = 100

0.2 WI −27 391 391 −176 60 60 1428 1330
EX 14 381 381 −173 58 58 1359 1307
AR −27 373 373 −180 57 57 1311 1279

0.5 WI −102 586 586 −169 59 60 1452 1322
EX 44 524 524 −168 48 49 1245 1116
AR −42 474 474 −152 40 40 990 920

0.8 WI −194 924 925 −100 60 60 1448 1358
EX −13 787 787 −133 29 29 747 662
AR −96 686 686 −93 16 16 463 461

n = 200

0.2 WI −239 181 182 −35 26 26 689 709
EX −273 180 181 −47 25 25 669 698
AR −238 175 176 −32 26 26 656 664

0.5 WI −261 270 271 4 27 27 676 712
EX −281 258 259 −38 23 23 569 604
AR −208 241 242 −18 19 19 482 493

0.8 WI −183 448 449 62 30 30 677 723
EX −243 400 401 −20 13 13 338 361
AR −162 369 369 −7 8 8 224 245

Setup 4. It is the same as setup 3, except that the log link is used. The results are summarized
in Table 4.

Setup 5. This setup is the same as setup 4, except that the Poisson distribution is used as the
marginal distribution. All regression parameters in the general setup, the Euclidean and the func-
tional, are halved for appropriate scaling of the response variable. The results are summarized in
Table 5.

We have the following observations from the simulation results: for both Euclidean parame-
ters, the estimator accounting for the correlation is more efficient (and sometimes significantly
so) than the estimator using working independence correlation structure, even when the correla-
tion structure is misspecified. Using the correct correlation structure usually produces the most
efficient estimation. Efficiency gain gets bigger when the correlation parameter ρ gets larger. The
variance is usually a dominating factor when comparing the MSEs between the two estimators.
We have also observed that the sandwich estimated SEs work reasonably well; the averages of
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Table 2. Summary of simulation results for setup 2, based on 400 replications. The generalized GEE es-
timators using a working independence (WI), an exchangeable (EX) correlation structure, and an autore-
gressive (AR) structure are compared. The true correlation structure is the autoregressive with the lag-one
correlation being ρ. Each entry of the table equals the original value multiplied by 105

β0 = 0 β1 = 0.5 f1(·) f2(·)
ρ Method Bias SD MSE Bias SD MSE MISE(f1) MISE(f2)

n = 100

0.2 WI −2294 970 1022 44 30 30 1407 2280
EX −2223 962 1011 77 29 29 1397 2195
AR −2265 951 1003 64 29 29 1374 2104

0.5 WI −2164 1137 1183 62 33 33 1356 2198
EX −1928 1007 1045 117 26 26 1146 1846
AR −1711 799 828 89 23 23 948 1394

0.8 WI −2361 1727 1783 85 37 37 1378 2234
EX −2091 1017 1061 140 17 17 742 1303
AR −1911 722 758 116 12 12 518 824

n = 200

0.2 WI −1387 388 407 88 16 16 601 1010
EX −1498 390 412 99 16 16 582 1024
AR −1497 384 407 98 15 15 565 985

0.5 WI −1433 499 519 84 17 17 618 1068
EX −1532 435 458 108 14 14 534 830
AR −1525 387 410 97 12 12 436 660

0.8 WI −1410 712 732 76 18 18 623 1095
EX −1192 332 346 81 9 9 302 482
AR −1433 277 298 88 5 5 219 323

the sandwich estimated SEs are close to the Monte Carlo sample standard deviations (numbers
not shown to save space). For the functional parameters f1(·) and f2(·), the spline estimator ac-
counting for the correlation is more efficient and the most efficient when the working correlation
is the same as the true correlation structure. We also examined the Normal Q–Q plots of the
Euclidean parameter estimates and observed that the distributions of the estimates are close to
normal. These empirical results agree nicely with our theoretical results.

4.2. The longitudinal CD4 cell count data

To illustrate our method on a real data set, we considered the longitudinal CD4 cell count data
among HIV seroconverters previously analyzed by Zeger and Diggle [26]. This data set contains
2376 observations of CD4+ cell counts on 369 men infected with the HIV virus. See Zeger and
Diggle [26] for more detailed description of the data. We fit a partially linear additive model
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Table 3. Summary of simulation results for setup 3, based on 400 replications. The generalized GEE esti-
mators using a working independence (WI) and an exchangeable (EX) correlation structure are compared.
The true correlation structure is the exchangeable with parameter ρ. Each entry of the table equals the
original value multiplied by 105

β0 = 0 β1 = 0.5 f1(·) f2(·)
ρ Method Bias SD MSE Bias SD MSE MISE(f1) MISE(f2)

n = 100

0 WI −129 337 337 −125 61 61 1426 1412
EX −109 336 336 −116 61 61 1416 1410

0.2 WI −96 527 527 −56 61 61 1445 1423
EX −161 511 511 −66 55 55 1297 1347

0.5 WI −125 797 798 14 62 62 1515 1399
EX −216 735 735 −39 37 37 924 962

0.8 WI −23 1054 1054 58 62 62 1552 1362
EX −164 914 914 −27 15 15 455 464

n = 200

0 WI 48 149 149 70 29 29 780 649
EX 54 149 149 74 29 29 782 659

0.2 WI −99 253 253 39 29 29 798 677
EX −21 237 237 37 25 25 693 609

0.5 WI −192 403 404 −3 31 31 768 690
EX −64 354 354 15 16 16 470 432

0.8 WI −240 564 565 −60 32 32 718 702
EX −96 466 466 6 7 7 236 227

using the log link with the CD4 counts as the response, covariates entering the model linearly
including smoking status measured by packs of cigarettes, drug use (yes, 1; no 0), number of
sex partners, and depression status measures by the CESD scale (large values indicating more
depression symptoms), and the effects of age and time since seroconversion being modeled non-
parametrically. We would like to remark that the partially linear additive model here provides a
good balance of model interpretability and flexibility. Age and time are of continuous type and
thus their effects are naturally modeled nonparametrically. Other variables are of discrete type
and are not suitable for a nonparametric model.

Table 6 gives the estimates of the Euclidean parameters using both the WI and EX correlation
structures. Cubic splines were used for fitting the additive functions and reported results corre-
spond to the number of knots selected by the five-fold delete-subject-out cross-validation from
the range of 0–10. The selected numbers of knots are 8 for time and 4 for age when using the
WI structure and 8 for time and 3 for age when using the EX structure. The estimates of the
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Table 4. Summary of simulation results for setup 4, based on 400 replications. The generalized GEE esti-
mators using a working independence (WI) and an exchangeable (EX) correlation structure are compared.
The true correlation structure is the exchangeable with parameter ρ. Each entry of the table equals the
original value multiplied by 105

β0 = 0 β1 = 0.5 f1(·) f2(·)
ρ Method Bias SD MSE Bias SD MSE MISE(f1) MISE(f2)

n = 100

0 WI −2451 756 816 −218 27 28 1313 2318
EX −2500 773 835 −229 27 28 1329 2314

0.2 WI −2581 1054 1120 −176 30 31 1461 2184
EX −2440 974 1034 −164 26 26 1240 2012

0.5 WI −2455 1514 1574 −88 36 36 1574 2287
EX −1970 918 956 −102 19 19 851 1482

0.8 WI −2520 2029 2093 3 41 41 1806 2342
EX −2547 1036 1101 24 10 10 629 1025

n = 200

0 WI −883 329 336 114 14 14 653 826
EX −866 329 337 116 14 14 655 823

0.2 WI −1090 475 487 84 14 14 728 844
EX −903 390 398 84 13 13 631 734

0.5 WI −1310 718 736 44 16 16 779 932
EX −951 344 353 67 9 9 421 538

0.8 WI −1533 966 989 13 18 18 744 1086
EX −1245 285 301 65 4 4 209 381

Euclidean parameters using the EX structure have smaller SE than those using the WI structure,
suggesting that the EX structure produces more efficient estimates for this data set.

Appendix

A.1. Proof of Lemma 1 (derivation of the efficient score)

Let �̇β denote the ordinary score for β when only β is unknown. Let Pf and Pθ be the models

with only {fi, i = 1, . . . , n} and θ+(·) unknown, respectively, and let Ṗf and Ṗθ be the corre-
sponding tangent spaces. Following the discussions in Section 3.4 of Bickel et al. [1] (see also
Appendix A6 of Huang, Zhang and Zhou [12]), we have

�∗
β = �

[
�̇β |Ṗ ⊥

f

] − �
[
�

(
�̇β |Ṗ ⊥

f

)|�[
Ṗθ |Ṗ ⊥

f

]]
, (25)
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Table 5. Summary of simulation results for setup 5, based on 400 replications. The generalized GEE esti-
mators using a working independence (WI) and an exchangeable (EX) correlation structure are compared.
The true correlation structure is the exchangeable with parameter ρ. Each entry of the table equals the
original value multiplied by 105

β0 = 0 β1 = 0.5 f1(·) f2(·)
ρ Method Bias SD MSE Bias SD MSE MISE(f1) MISE(f2)

n = 100

0 WI −2967 366 454 −379 113 114 1376 1446
EX −2983 368 457 −353 112 113 1368 1439

0.2 WI −2557 738 803 −456 120 122 1394 1385
EX −2998 777 867 −367 98 99 1031 1110

0.5 WI −1952 1101 1140 221 126 126 1446 1484
EX −2272 1339 1390 215 70 70 506 628

0.8 WI −1979 1344 1383 369 126 127 1464 1567
EX −2349 1651 1706 506 71 74 411 545

n = 200

0 WI −1563 190 214 −214 51 52 685 780
EX −1586 191 216 −208 51 52 691 781

0.2 WI −1015 405 415 −195 54 55 637 771
EX −1355 402 421 −154 45 45 516 589

0.5 WI −1301 599 616 143 55 55 742 777
EX −1751 634 665 218 30 30 256 300

0.8 WI −1381 636 655 341 52 53 768 802
EX −1942 662 699 434 30 32 224 281

Table 6. Estimates of the Euclidean parameters in the CD4 cell counts study using the spline-based esti-
mates. Working correlation structures used are working independence (WI) and exchangeable (EX). The
standard errors (SE) are calculated using the sandwich formula

WI EX

Parameter Estimate SE Estimate SE

Smoking 0.0786 0.0119 0.0619 0.0111
Drug 0.0485 0.0421 0.0134 0.0294
Sex partners −0.0056 0.0043 0.0017 0.0035
Depression −0.0025 0.0014 −0.0031 0.0013
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where �[·|·] denote the projection operator, and Ṗ ⊥ denote the orthogonal complement of Ṗ .
Lemma A.4 in Huang, Zhang and Zhou [12] directly implies that

�
[
�̇β |Ṗ ⊥

f

] =
n∑

i=1

X′
i�i0�

−1
i

[
Yi − μ

(
Xiβ0 + θ0,+(Ti )

)]
. (26)

Similarly, by constructing parametric submodels for each θk(·) and slightly adapting the same
Lemma, we have

�
[

Ṗθ |Ṗ ⊥
f

] =
n∑

i=1

(
D∑

d=1

ψd(Tid )

)′
�i0�

−1
i

[
Yi − μ

(
Xiβ0 + θ0,+(Ti )

)]
, (27)

where ψd(Tid ) = (ψd(Ti1d), . . . ,ψimid(Timid))′, for ψd(·) ∈ L2(Td). Combination of (25)–(27)
gives (12).

A.2. Proof sketch for Theorem 1 (consistency)

Let εn = (Qn/n)1/2 logn ∨ ρn. To show (16), it suffices to show that P(‖f̂n − f ∗
n ‖n > εn) → 0

as n → ∞. Applying the peeling device (see the proof of Theorem 9.1 of van de Geer [23]), we
can bound the above probability by the sum of 2C0 exp(−nε2

n/(256C2
0)) and P(‖y − f ∗

n ‖n > σ)

for some positive constant C0. Considering condition C8 and choosing some proper σ related
to ρn, we complete the proof of (16). As for (17), we have that∥∥f̂n − f ∗

n

∥∥∞ �
∥∥x′β̂V + θ̂ − (

x′β0 + θ∗
n

)∥∥∞ � Q
1/2
n

∥∥x′β̂V + θ̂ − (
x′β0 + θ∗

n

)∥∥
by Condition C5(iii) and Lemma S.2 in the supplementary note that∥∥x′β + g(t)

∥∥∞ � Qn
1/2

∥∥x′β + g(t)
∥∥ for g ∈ G+. (28)

It then follows by condition C5(ii) and (16) that

Q
1/2
n

∥∥x′β̂V + θ̂ − (
x′β0 + θ∗

n

)∥∥ � Q
1/2
n OP

{
(Qn/n)1/2 logn + ρn

} = oP (1)

since (Qn logn)2/n → 0 and Qnρ
2
n → 0 by condition C8 and the fact that ρn � Q−α

n for
α > 1/2. We thus obtain (17). Due to condition C5(iii), it follows that ‖f ∗

n − f0‖∞ = O(‖θ∗
n −

θ0,+‖∞) = O(ρn) by Taylor’s theorem. Combining this with (17), we obtain (18). From the proof
of (17), we have that∥∥x′β̂V + θ̂ − (

x′β0 + θ∗
n

)∥∥ = OP

{
(Qn/n)1/2 logn + ρn

}
.

Considering Lemma 3.1 of Stone [22], we obtain that ‖x′(β̂V − β0)‖2 = oP (1), which together

with the no-multicollinearity condition C2 implies β̂V

P→ β0. By (28), we also obtain∥∥θ̂ − θ∗
n

∥∥∞ = Q
1/2
n OP

{
(Qn/n)1/2 logn + ρn

} = oP (1).
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Since ‖θ∗
n −θ0,+‖∞ = O(ρn) = o(1), application of the triangle inequality yields ‖θ̂ −θ0,+‖∞ =

oP (1), the last conclusion.

A.3. Proof sketch for Theorem 2 (asymptotic normality)

Note that β̂V ∈ R
K and γ̂ ∈ R

Qn solve the estimating equations

n∑
i=1

U′
i�̂iV

−1
i

{
Yi − μ(Xi β̂V + Zi γ̂ )

} = 0 (29)

with Ui = (Xi ,Zi ), and �̂i is a diagonal matrix with the diagonal elements being the first deriva-
tive of μ(·) evaluated at X′

ij β̂V + Z′
ij γ̂ , j = 1, . . . ,mi . Using the Taylor expansion, we have

that

μ(Xi β̂V + Zi γ̂ ) ≈ μ
(
Xiβ0 + θ0(Ti )

) + �i0
{
Xi (β̂V − β0) + Zi γ̂ − θ0(Ti )

}
. (30)

Recall that γ ∗ is assumed to satisfy ρn = ‖θ0,+ −B′γ ∗‖∞ → 0. Substituting (30) into (29) yields

0 =
n∑

i=1

U′
i (̃J1 + J̃2) −

n∑
i=1

U′
i�i0V−1

i �i0Ui

(
β̂V − β0
γ̂ − γ ∗

)
, (31)

where

J̃1 = (�̂i − �i0)V
−1
i

{
Yi − μ(Xi β̂V + Zi γ̂ )

}
and

J̃2 = �i0V−1
i

{
Yi − μ

(
Xiβ0 + θ0(Ti )

) − �i0
(
Ziγ

∗ − θ0(Ti )
)}

.

Recalling (20) and using (21), we obtain from (31) that

β̂V = β0 + H11
n∑

i=1

(
Xi − ZiH

−1
22 H21

)′
(̃J1 + J̃2)

= β0 + H11
n∑

i=1

(
Xi − ZiH

−1
22 H21

)′
�i0V−1

i ei + πn,

where the error term πn has an explicit form and can be shown to be oP (n−1/2) (the proof of this
part relies heavily on the empirical process theory and is very lengthy). By the asymptotic linear
expansion (22), we have{

R�(β̂V )
}−1/2

(β̂V − β0)

= {
R�(β̂V )

}−1/2

(
H11

n∑
i=1

(
Xi − ZiH

−1
22 H21

)′
�i0V−1

i ei

)
+ oP (1).
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Then by applying the central limit theorem to the above equation and using the fact that

var

(
H11

n∑
i=1

(
Xi − ZiH

−1
22 H21

)′
�i0V−1

i ei

∣∣∣{Xi ,Ti}ni=1

)
= R�(β̂V ),

we complete the whole proof of (23).

A.4. Proof of Corollary 1

We only need to show that În → Ieff. Fix Vi = �i in the definitions of 〈ξ1, ξ2〉�n and 〈ξ1, ξ2〉�.
Let ψ̂k,n = arg minψ∈G+ ‖xk − ψ‖�

n . From (21), we see that În = (H11 − H12H−1
22 H21)/n.

Thus, the (k, k′)th element of În is 〈xk − ψ̂k,n, xk′ − ψ̂k′,n〉�n . On the other hand, by (13)
and (14), the (k, k′)th element of Ieff is the limit of 〈xk − ψ∗

k , xk′ − ψ∗
k′ 〉�n , where ψ∗

k = ψ∗
k,+ =

arg minL2,+ ‖xk − ψ‖�. Hence, it suffices to show that∥∥ψ̂k,n − ψ∗
k

∥∥�
n

= oP (1), k = 1,2, . . . ,K, (32)

because, if this is true, then by the triangle inequality,

În

(
k, k′) = 〈xk − ψ̂k,n, xk′ − ψ̂k′,n〉�n

= 〈
xk − ψ∗

k , xk′ − ψ∗
k′
〉�
n

+ oP (1) = Ieff
(
k, k′) + oP (1).

To show (32), we use ψ∗
k,n = ��

n xk as a bridge. Notice that∥∥ψ̂k,n − ψ∗
k

∥∥�
n

≤ ∥∥ψ∗
k,n − ψ∗

k

∥∥�
n

+ ∥∥ψ̂k,n − ψ∗
k,n

∥∥�
n
.

We inspect separately the sizes of the two terms on the right-hand side of the above inequality.
First note that ψ∗

k,n = ��
n ψ∗

k since G+ ⊂ L2,+. Thus, ‖ψ∗
k,n − ψ∗

k ‖� = infg∈G+ ‖g − ψ∗
k ‖� �

infg∈G+ ‖g − ψ∗
k ‖L2 = O(ρn) = o(1), using Lemma S.2 in the supplementary note. Since

E({‖ψ∗
k,n − ψ∗

k ‖�
n }2) = {‖ψ∗

k,n − ψ∗
k ‖�}2, we have that ‖ψ∗

k,n − ψ∗
k ‖�

n = oP (1). On the other

hand, since ψ∗
k,n = ��

n xk and ψ̂k,n = �̂�
n xk , we have {‖ψ̂k,n − ψ∗

k,n‖�}2 = {‖xk − ψ̂k,n‖�}2 −
{‖xk −ψ∗

k,n‖�}2 and {‖xk − ψ̂k,n‖�
n }2 ≤ {‖xk −ψ∗

k,n‖�
n }2. These two relations and Lemma S.3 in

the supplementary note imply that ‖ψ̂k,n−ψ∗
k,n‖� = oP (1), which in turn by the same lemma im-

plies ‖ψ̂k,n −ψ∗
k,n‖�

n = oP (1). As a consequence, ‖ψ̂k,n −ψ∗
k ‖�

n = oP (1), which is exactly (32).
The proof is complete.
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Supplementary Material

Supplement to “Efficient semiparametric estimation in generalized partially linear additive
models for longitudinal/clustered data” (DOI: 10.3150/12-BEJ479SUPP; .pdf). The supple-
mentary file (Cheng, Zhou and Huang [5]) includes the properties of the least favorable directions
and the complete proofs of Theorems 1 and 2 together with some empirical processes results for
the clustered/longitudinal data. The results of a simulation study that compares our method with
that by Carroll et al. [2] are also included.
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