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We study the weak convergence (in the high-frequency limit) of the parameter estimators of power spectrum
coefficients associated with Gaussian, spherical and isotropic random fields. In particular, we introduce a
Whittle-type approximate maximum likelihood estimator and we investigate its asympotic weak consis-
tency and Gaussianity, in both parametric and semiparametric cases.
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1. Introduction

The purpose of this paper is to investigate the asymptotic behavior of a Whittle-like approximate
maximum likelihood procedure for the estimation of the spectral parameters (e.g., the spectral
index) of isotropic Gaussian random fields defined on the unit sphere S2. In our approach, we
consider the expansion of the field into spherical harmonics, that is, we implement a form of
Fourier analysis on the sphere, and we implement approximate maximum likelihood estimates
under both parametric and semiparametric assumptions on the behavior of the angular power
spectrum. We stress that the asymptotic framework we are considering here is rather different
from usual – in particular, we assume we are observing a single realization of an isotropic field,
the asymptotics being with respect to higher and higher resolution data becoming available (i.e.,
higher and higher frequency components being observed). In some sense, then the issues we are
considering are related to the growing area of fixed-domain asymptotics (see, e.g., [1,25]). From
the point of view of the proofs, on the other hand, our arguments are in some cases reminiscent
of those entertained, for instance, by [37], where semiparametric estimates of the long memory
parameter for covariance stationary processes are analyzed; see also [14] for related results in the
setting of anisotropic random fields.

In our assumptions, we do not impose a priori a parametric model on the dependence struc-
ture of the random field we are analyzing; we rather impose various forms of regularly varying
conditions, which only constrain the high-frequency behaviour of the angular power spectrum.
We are able to show consistency under the least restrictive assumptions; a central limit theo-
rem holds under more restrictive conditions, while asymptotic Gaussianity can be established
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under general conditions for a slightly-modified (narrow-band) procedure, entailing a loss of
a logarithmic factor in the rate of convergence. Our analysis is strongly motivated by applica-
tions, especially in a Cosmological framework (see, e.g., [8,9]); in this area, huge datasets on
isotropic, spherical random fields (usually assumed to be Gaussian) are currently being collected
and made publicly available by celebrated satellite missions such as WMAP or Planck (see, e.g.,
http://map.gsfc.nasa.gov/); parameter estimation of the spectral index and other spectral parame-
ters has been considered by many authors (see, e.g., [15] for a review), but no rigorous asymptotic
result has so far been produced, to the best of our knowledge. We thus hope that the consistency
and asymptotic Gaussianity properties we provide for our Whittle-like procedure may provide
a contribution toward further developments. We refer also to [3,4,12,13,27,34,35] for further
theoretical and applied results on angular power spectrum estimation, in a purely nonparamet-
ric setting, and to [11,16–21,23,28] for further results on statistical inference for spherical ran-
dom fields. Fixed-domain asymptotics for the tail behaviour of the spectral density on Euclidean
spaces has been recently considered also by [2,14] and [41]; the issue is of great interest, for
instance, in connection with kriging techniques for geophysical data analysis, see [39] for a text-
book reference.

The plan of the paper is as follows: in Section 2, we will recall briefly some well-known
background material on harmonic analysis for spherical isotropic random fields; in Section 3
we introduce Whittle-like maximum pseudo-likelihood estimators for angular power spectrum
coefficients based on spherical harmonics; Section 4 is devoted to the asymptotic results, while
in Section 5 we investigate narrow-band estimates. The presence of observational noise is con-
sidered in Section 6, while Section 7 provides some numerical evidence to validate the findings
of the paper. Directions for future research are discussed in Section 8, while some auxiliary
technical results are collected in the Appendix.

2. Spherical random fields and angular power spectrum

In this section, we will present some well-known background results concerning harmonic analy-
sis on the sphere. We shall focus on zero-mean, isotropic Gaussian random fields T : S2 ×� → R.
It is well known that such fields can be given a spectral representation such that

T (x) =
∑
l≥0

l∑
m=−l

almYlm(x) =
∑
l≥0

Tl(x), (2.1)

alm =
∫

S2
T (x)Y lm(x)dx, (2.2)

where the set of homogenous polynomials {Ylm : l ≥ 0,m = −l, . . . , l} represents an orthonormal
basis for the space L2(S2,dx), the class of functions defined on the unitary sphere which are
square-integrable with respect to the measure dx (see, e.g., [16,28,38], for more details, and [24,
26] for extensions). Note that this equality holds in both L2(S2 ×�,dx⊗P) and L2(P) senses for
every fixed x ∈ S

2. We recall also that a field T (·) is isotropic if and only if for every g ∈ SO(3)

http://map.gsfc.nasa.gov/
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(the special group of rotations in R
3) and x ∈ S

2 (the unit sphere), we have

T (x)
d= T (gx),

where the equality holds in the sense of processes.
An explicit form for spherical harmonics is given in spherical coordinates ϑ ∈ [0,π], ϕ ∈

[0,2π) by:

Ylm(ϑ,ϕ) =
√

2l + 1

4π

(l − m)!
(l + m)!Plm(cosϑ)eimϕ for m ≥ 0,

Ylm(ϑ,ϕ) = (−1)mY l,−m(ϑ,ϕ) for m < 0,

Plm(cosϑ) denoting the associated Legendre function; for m = 0, we have Pl0(cosϑ) =
Pl(cosϑ), the standard set of Legendre polynomials (see again [28,38]). The following orthonor-
mality property holds: ∫

S2
Ylm(x)Y l′m′(x)dx = δl′

l δm′
m .

For an isotropic Gaussian field, the spherical harmonics coefficients alm are Gaussian complex
random variables such that

E(alm) = 0, E(al1m2al2m2) = δ
l1
l2
δm1
m2

Cl,

where of course the angular power spectrum Cl fully characterizes the dependence structure
under Gaussianity; here, δb

a is the Kronecker delta, taking value one for a = b, zero otherwise.
Further characterizations of the spherical harmonics coefficients are provided, for instance, by
[5,28]; here we simply recall that

a2
l0

Cl

∼ χ2
1 for m = 0,

2|alm|2
Cl

∼ χ2
2 for m = ±1,±2, . . . ,±l,

where all these random variables are independent. Given a realization of the random field, an
estimator of the angular power spectrum can be defined as:

Ĉl = 1

2l + 1

l∑
m=−l

|alm|2, (2.3)

the so-called empirical angular power spectrum. It is immediately seen that

EĈl = 1

2l + 1

l∑
m=−l

Cl = Cl, Var

(
Ĉl

Cl

)
= 2

2l + 1
→ 0 for l → +∞.

We shall now focus on some semiparametric models on the angular power spectrum; here,
by semiparametric we mean that we shall assume a parametric form on the asymptotic behavior
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of Cl , but we shall refrain from a full characterization over all multipoles l. More precisely, we
formulate the following:

Condition 1. The random field T (x) is Gaussian and isotropic with angular power spectrum
such that:

Cl = G(l)l−α0 > 0, (2.4)

where α0 > 2 and for all l = 1,2, . . .

0 < c1 ≤ G(l) ≤ c2 < +∞.

Condition 1 seems very mild, as it is basically requiring only some form of regular variation
on the tail behavior of the angular power spectrum Cl . For instance, in the CMB framework the
so-called Sachs–Wolfe power spectrum (i.e., the leading model for fluctuations of the primordial
gravitational potential) takes the form (2.4), the spectral index α0 capturing the scale invariance
properties of the field itself (α0 is expected to be close to 2 from theoretical considerations, a pre-
diction so far in good agreement with observations, see, e.g., [9] and [22]). For our asymptotic
results below, we shall need to strengthen it somewhat; as we shall see, Condition 2 will turn out
to be sufficient to establish a rate of convergence for our estimator, under Condition 3 we will be
able to provide a Law of Large Numbers, while under Condition 4 our estimates will be shown to
be asymptotically Gaussian and centered, thus making statistical inference feasible. On the other
hand, in Section 5 we shall be able to provide narrow-band estimates with asymptotically centred
limiting Gaussian law under Condition 2, to the price of a logarithmic term in the rate of con-
vergence. Of course, the conditions below are nested, that is, Condition 4 implies Condition 3,
which trivially implies Condition 2.

Condition 2. Condition 1 holds and moreover, G(l) satisfies the smoothness condition

G(l) = G0

{
1 + O

(
1

l

)}
.

Condition 3. Condition 2 holds and moreover, G(l) satisfies

G(l) = G0

{
1 + κ

l
+ o

(
1

l

)}
.

Condition 4. Condition 3 holds with κ = 0, that is, G(l) satisfies the smoothness condition

G(l) = G0

{
1 + o

(
1

l

)}
.

A straightforward example that satisfies the previous assumptions is provided by the rational
function

G(l) = 	1(l)

	2(l)
= pkl

k + · · · + p1l + p0

qklk + · · · + q1l + pq
, (2.5)
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where 	1(l) and 	2(l) are positive valued polynomials of order k ∈ N, such that:

0 < c1 ≤ 	1(l)

	2(l)
≤ c2 < +∞.

Clearly (2.5) satisfies Condition 3 (and hence Condition 2) for

G0 = pk

qk

and κ = pk−1

pk

− qk−1

qk

;

Condition 4 is satisfied when pk−1 = qk−1 = 0, or, more generally, for pk−1
pk

= qk−1
qk

.

3. A Whittle-like approximation to the likelihood function

Our aim in this section is to discuss heuristically a Whittle-like approximation for the log-
likelihood of isotropic spherical Gaussian fields, and to derive the corresponding estimator. As-
sume that the triangular array {alm}, m = −l, . . . , l, l = 1,2, . . . ,L, is evaluated from the ob-
served field {T (x)}, by means of (2.2). Our motivating rationale is the idea that a set of harmonic
components up to multipole L can be reconstructed without observational noise or numerical
error, whereas the following are simply discarded; this is clearly a simplified picture, but we
believe it provides an accurate approximation to many current experimental set-ups. Of course,
L grows larger when more sophisticated experiments are run (L can be considered in the order
of 500/600 for data collected from WMAP and 1500/2000 for those from Planck). It is readily
seen from (2.3) that

Ĉl = 1

2l + 1

{
a2
l0 + 2

l∑
m=1

[
{alm}]2 + 2
l∑

m=1

[�{alm}]2

}
,

where the variables {al0,
√

2
{al1},
√

2�{al1}, . . . ,
√

2
{all},
√

2�{all}} are i.i.d. Gaussian vari-
ables with law N (0,Cl), see [5]. The likelihood function can then be written down as

−2 log Ll

(
θ; {alm}lm=−l

)= const + (2l + 1)
Ĉl

Cl(θ)
− (2l + 1) log

Ĉl

Cl(θ)
.

Clearly this landscape is overly simplified, for instance, due to numerical errors and aliasing
effects the expected value E|alm|2 may not be exactly equal to the population model Cl(θ);
however in Conditions 1 and following we are allowing the two to differ to various degrees, and
we expect this to cover to some of effect these experimental features that we are neglecting. Also,
rather than a sharp cutoff at L, a smooth transition toward noisier frequencies would represent
more efficiently actual experimental circumstances; we shall address this issue later on in this
paper. Finally, it may be unreasonable to assume that the spherical surface is fully observed;
for most experimental set-ups, either in Cosmology or in Geophysics, only subsets are actually
sampled. This problem can be addressed by focussing on wavelet transforms rather than standard
Fourier analysis; we shall consider this extension in a different work.
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An alternative heuristics for our framework can be introduced considering that for l =
1,2, . . . ,L, the following Fourier components can be observed on a discrete grid of points
{x1, . . . , xK}

−→
Tl = {

Tl(x1), . . . , Tl(xk), . . . , Tl(xK)
}
.

To simplify our discussion, we shall also pretend that Xk := {x1, . . . , xK} form a set of approxi-
mate cubature points with constant cubature weights λk = 4π/K (see, e.g., [30,31]), so that we
have ∑

k

4π

K
Ylm1(xk)Y lm2(xk)  δm2

m1
for l = 1,2, . . . ,L.

As discussed also by [4], the number of cubature points must grow at least as quickly as the
square of the highest multipole considered, that is, L2 = O(card(Xk)). For instance, for a satellite
experiment such as Planck the pixelization has cardinality of order 5 × 106, and the highest
multipole that can be analyzed correspond broadly to the order l = 2 × 103. As before, this
landscape is overly simplified; for instance, cubature weights on the sphere are known not to be
constant, but their variation is usually considered numerically negligible.

The frequency components Tl are well known to be independent and we can hence write down
the likelihood function as

L(θ;T ) :=
L∏

l=1

Ll(θ;−→
Tl),

where

Ll(θ;−→
Tl) = (2π)−(2l+1)/2�

−1/2
l exp

{
−1

2

−→
T ′

l �
−1
l

−→
Tl

}
,

{�l}jk =
{
�l(xj , xk) = 2l + 1

4π
ClPl

(〈xj , xk〉
)}

.

The matrix �l can be (approximately) decomposed as follows:

�l 
√

4π

K

⎡⎢⎢⎣
Yl,−l (x1) Yl,−l+1(x1) · · · Yl,l(x1)

Yl,−l (x2) · · · · · · Yl,l(x2)
...

...
...

...

Yl,−l (xK) Yl,−l+1(xK) · · · Yl,l(xK)

⎤⎥⎥⎦

× K

4π
ClI2l+1 ×

√
4π

K

⎡⎢⎢⎣
Y l,−l (x1) Y l,−l (x2) · · · Y l,−l (xK)

Y l,−l+1(x1) · · · · · · Y l,−l+1(xK)
...

...
...

...

Y l,l(x1) Y l,l(x2) · · · Y l,l(xK)

⎤⎥⎥⎦
=: Yl × Cl(θ)I2l+1 × Y ∗

l .
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In fact

Y ∗
l Yl  I2l+1 and det{�l}  C2l+1

l (θ).

Hence,

−2 log Ll(θ;−→
Tl)  K + (2l + 1) logCl(θ) + {−→

T ′
l Yl × C−1

l (θ)I2l+1 × Y ∗
l

−→
Tl

}
.

Now

Y ∗
l

−→
Tl =

√
4π

K

⎡⎢⎢⎣
Y l,−l (x1) Y l,−l (x2) · · · Y l,−l (xK)

Y l,−l+1(x1) · · · · · · Y l,−l+1(xK)
...

...
...

...

Y l,l(x1) Y l,l(x2) · · · Y l,l(xK)

⎤⎥⎥⎦

×

⎡⎢⎢⎣
∑

m almYlm(x1)∑
m almYlm(x2)

...∑
m almYlm(xK)

⎤⎥⎥⎦

=
√

4π

K

⎡⎢⎢⎢⎣
∑

m1
alm1

∑
k Ylm1(xk)Y l,−l(xk)∑

m1
alm1

∑
k Ylm1(xk)Y l,−l+1(xk)

...∑
m1

alm1

∑
k Ylm1(xk)Y l,l(xk)

⎤⎥⎥⎥⎦


√

K

4π

⎡⎢⎢⎣
al,−l

al,−l+1
...

al,l

⎤⎥⎥⎦ ,

whence {
−→
T ′

l Yl × 4π

K

1

Cl(θ)
I2l+1 × Y ∗

l

−→
Tl

}

∑
m

|alm|2
Cl(θ)

= (2l + 1)
Ĉl

Cl(θ)
.

As before, we can then conclude heuristically that

−2 log Ll(θ;−→
Tl)  const + (2l + 1)

Ĉl

Cl(θ)
− (2l + 1) log

Ĉl

Cl(θ)
. (3.1)

Again we stress that for a general spherical random field with an infinite-terms expansion such as
(2.1) the relationship (3.1) cannot hold exactly; indeed, precise cubature formulae can be estab-
lished only for finite order spherical harmonics. In general, this may introduce some numerical
error: as mentioned before, however, we pretend in this paper that such correction factors are
covered by Conditions 1–4. In other words, we envisage a situation where data analysis is car-
ried over on multipoles l where numerical errors are of smaller order and the approximation (2.4)
holds for the expected variance of the sample coefficients {alm}.
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4. Asymptotic results: Consistency and asymptotic Gaussianity

As motivated in the Introduction, in this paper we shall not assume we have actually available
a fully parametric model for the angular power spectrum. Instead, the idea will be to use an
approximate maximum likelihood estimator, which shall exploit the asymptotic approximation
provided by Condition 1, that is, Cl  Gl−α . In view of the discussion in the previous section,
the following Definition seems rather natural:

Definition 1. The Spherical Whittle estimator for the parameters (α0,G0) is provided by

(̂αL, ĜL) := arg min
α∈A,G∈(0,∞)

L∑
l=1

{
(2l + 1)

Ĉl

Gl−α
− (2l + 1) log

Ĉl

Gl−α

}
.

Remark 1. For general parametric models Cl = Cl(ϑ), the Spherical Whittle estimator for a
parameter ϑ ∈ � ⊂ R

p can be obviously defined as

ϑ̂L := arg min
ϑ∈�

L∑
l=1

{
(2l + 1)

Ĉl

Cl(ϑ)
− (2l + 1) log

Ĉl

Cl(ϑ)

}
.

Remark 2. To ensure that the estimator exists, as usual we shall assume throughout this paper
that the parameter space for α is a compact subset of R; more precisely we take α ∈ A = [a1, a2],
2 < a1 < a2 < ∞, and G ∈ (0,∞). This is little more than a formal requirement that is standard
in the literature on (pseudo-)maximum likelihood estimation. It should be noted that Spherical
Whittle estimates are computationally extremely convenient, while their counterpart in the real
domain is for all practical purposes unfeasible, given the dimension of current datasets.

Remark 3. Under Condition 4, it is readily seen that (2l + 1)Ĉl/Gl−α0 is asymptotically dis-
tributed as a Gamma random variables of parameters {2l + 1,1}, and the Spherical Whittle esti-
mator is asymptotically equivalent to exact maximum likelihood.

We can rewrite in a more transparent form the previous estimator following an argument anal-
ogous to [37], that is, “concentrating out” the parameter G. Indeed, the previous minimization
problem is equivalent to let us consider

(̂αL, ĜL) := arg min
α,G

RL(G,α),

RL(G,α) :=
L∑

l=1

(2l + 1)
Ĉl

Gl−α
+

L∑
l=1

(2l + 1) logG

+
L∑

l=1

(2l + 1) log l−α.
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Simple computations show that the minimization problem can be equivalently reformulated as

α̂L = arg min
α

RL(α),

(4.1)

RL(α) =
(

log Ĝ(α) − α∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l

)
.

The proof of the following result is quite standard and goes largely along the lines of an analogous
results provided in [37]. As most of the ones to follow, is delayed to the Appendix.

Theorem 1. Under Condition 1, as L → ∞ we have

α̂L →p α0;
moreover, under Condition 2,

ĜL →p G0.

Next step is the investigation of the asymptotic distribution. To this aim, we shall exploit some
classical argument on asymptotic Gaussianity for extremum estimates, as recalled, for instance,
by [32], Theorem 3.1.

Theorem 2. Let α̂L = arg minα∈A RL(α) defined as in (4.1).

(a) Under Condition 2 we have that{
E(̂αL − α0)

2}1/2 = O

(
logL

L

)
whence (̂αL − α0) = Op

(
logL

L

)
as L → ∞. (4.2)

(b) Under Condition 3 we have that

L

4 logL
(̂αL − α0) −→p −κ. (4.3)

(c) Under Condition 4 we have that
√

2L

4
(̂αL − α0)

d−→ N (0,1). (4.4)

Proof. We note first that under Condition 4, (4.4) is an immediate consequence of (4.3); on the
other hand, the proof of (4.2) follows on exactly the same lines as (4.3), the only difference here
being that the asymptotic bias term cannot be given an analytic expression but only bounded. It
is then sufficient to establish (4.3), as we shall do below.

Following the notation introduced above, for each L there exists αL ∈ (α0 − α̂, α0 + α̂) such
that, with probability one:

(̂αL − α0) = − SL(α0)

QL(αL)
,
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where SL(α) is the score function corresponding to RL(α), given by:

SL(α) = d

dα
R(α) = Ĝ1(α)

Ĝ(α)
− 1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l

and

QL(α) = d

dα
SL(α) = d2

dα2
R(α) = Ĝ2(α)Ĝ(α) − Ĝ2

1(α)

Ĝ2(α)

=
(

L∑
l=1

(2l + 1)
(
log2 l

) Ĉl

l−α

{
L∑

l=1

(2l + 1)
Ĉl

l−α

}
−
{

L∑
l=1

(2l + 1)(log l)
Ĉl

l−α

}2)
/{ L∑

l=1

(2l + 1)
Ĉl

l−α

}2

,

where Ĝ(α), Ĝ1(α), Ĝ2(α) are, respectively, the estimate of G and its first and second deriva-
tives, as in Lemma 5. By direct substitution, we have immediately:

SL(α) = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l

{
Ĉl

Ĝ(α)l−α
− 1

}
.

Now,

SL(α0) = G0

Ĝ(α0)

1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l

{
Ĉl

G0l−α0
− Ĝ(α0)

G0

}
= G0

Ĝ(α0)
SL(α0),

where

SL(α0) = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l

{
Ĉl

G0l−α0
− 1

}
and

G0

Ĝ(α0)
= 1 + op(1) as L → ∞

in view of Lemma 5. Also

ESL(α0) = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l

{
Cl

G0l−α0
− 1

}

= κ∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
log l

l
+ o

(
logL

L

)
= O

(
logL

L

)
→ 0
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and

lim
L→∞ 2L2 Var

{
SL(α0)

}= 1. (4.5)

In fact, we have:

Var
{
SL(α0)

}= V1 + V2 + V3,

where

V1 =
{

1∑L
l=1(2l + 1)

}2 L∑
l=1

(2l + 1)2(log l)2 Var

{
Ĉl

G0l−α0

}

=
(

1∑L
l=1(2l + 1)

)2

2
L∑

l=1

(2l + 1)(log l)2;

V2 =
{

1∑L
l=1(2l + 1)

}2
(

L∑
l=1

(2l + 1) log l

)2

Var

(
Ĝ(α0)

G0

)
;

V3 = −2∑
l (2l + 1)

L∑
l=1

(2l + 1) log l Cov

(
Ĉl

Cl

,
Ĝ(α0)

G0

)
· −2∑

l (2l + 1)

L∑
l=1

(2l + 1) log l.

Now because

Var

(
Ĝ(α0)

G0

)
=
{

1∑L
l=1(2l + 1)

}2 L∑
l=1

(2l + 1)2 Var

{
Ĉl

G0l−α0

}
(4.6)

= 2∑L
l=1(2l + 1)

;

Cov

(
Ĉl

Cl

,
Ĝ(α0)

G0

)
= 1∑L

l′=1(2l′ + 1)

L∑
l′=1

(
2l′ + 1

)
Cov

(
Ĉl

Cl

,
Ĉl′

Cl′

)
(4.7)

= 2∑L
l′=1(2l + 1)

;

we have

Var
{
SL(α0)

} = 2

(
∑L

l=1(2l + 1))3

(
L∑

l=1

(2l + 1)

L∑
l=1

(2l + 1)(log l)2 −
(

L∑
l=1

(2l + 1) log l

)2)

= 2

L6

L4

4
= 1

2L2

by using (A.4) and (A.3) with s = 0 to obtain (4.5). In order to establish the central limit theorem,
it is sufficient to perform a careful analysis of fourth-order cumulants (note our statistics belong to
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the second-order Wiener chaos with respect to a Gaussian white noise random measure). Write:

LSL(α0) = 1

L + OL(1)

∑
l

(Al + Bl),

where

Al = (2l + 1) log l

{
Ĉl

Cl

− 1

}
, (4.8)

Bl = (2l + 1) log l

{
ĜL(α0)

G0
− 1

}
. (4.9)

In the Appendix, we show that

1

L4
cum

{∑
l1

(Al1 + Bl1),
∑
l2

(Al2 + Bl2),
∑
l3

(Al3 + Bl3),
∑
l4

(Al4 + Bl4)

}
= OL

(
log4 L

L2

)
,

whence the central limit theorem follows easily from results in [33]. Indeed, using recent results
from the latter authors a stronger result follows, that is,

dTV

(
L∑

l=1

Xl;L,Z

)
= O

(
1

L

)
, Z

d= N (0,1),

where dTV(W,V ) denotes the total variation distance between the random variables W,V , that
is,

dTV(W,V ) = sup
x

∣∣Pr{W ∈ B} − Pr{V ∈ B}∣∣ any Borel set B.

Also

L

logL
ESL(α0) = κ

L∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)

l

log l

logL
+ o(1) → −κ as L → ∞.

Let us now focus on the second order derivative. From consistency, it is sufficient to focus on
|α −α0| < 2; here we can apply again Lemma 5, replacing the random quantities Ĝk(α) with the
corresponding deterministic Gk(α) values, to obtain

QL(α) = G2(α)G(α) − G2
1(α)

G2(α)
+ op(1),

uniformly over α. It is convenient to write

G2(α)G(α) − G2
1(α)

G2(α)
= Qnum

L (α)

Qden
L (α)

.
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Let us start by studying Qden
L (α). We have, by using (A.3) with s = 0 and s = α − α0:

Qden
L (α)

L2(α−α0)
= 1

L2(α−α0)

(
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)
G0l

−α0

l−α

)2

= G2
0

(
1

(1 + (α − α0)/2)2
+ oL(1)

)
.

Consider now Qnum
L (α), where we have:

Qnum
L (α)

L2(α−α0)

=
(

G0L
−(α−α0)∑L

l=1(2l + 1)

)2

×
[(

L∑
l=1

(2l + 1)
l−α0

l−α
log2 l

)(
L∑

l=1

(2l + 1)
l−α0

l−α

)
−
(

L∑
l=1

(2l + 1)
l−α0

l−α
log l

)2]

= G2
0

L4+2(α−α0)

[(
L∑

l=1

(2l + 1)
l−α0

l−α
log2 l

)(
L∑

l=1

(2l + 1)
l−α0

l−α

)
−
(

L∑
l=1

(2l + 1)
l−α0

l−α
log l

)2]

= G2
0

[
1

4(1 + (α − α0)/2)4

]
+ oL(1)

by using (A.4), s = α − α0. Combining all terms, we find that, uniformly over α

QL(α) = G2
0(1/(4(1 + (α − α0)/2)4)) + oL(1)

G2
0(1/(1 + (α − α0)/2)2 + oL(1))

= 1

4(1 + (α − α0)/2)2
+ oL(1).

Finally, from the consistency result(
1 + αL − α0

2

)2
P−→ 1, QL(αL)

P−→ 1

4

and thus, as claimed:
√

2L

4

SL(α0)

QL(αL)

d−→ N (−√
2κ,1). �

In the Appendix we describe in details the results concerning the analysis of fourth-order
cumulants.

Remark 4. In the statement of the previous theorem, we decided to report normalization factors
in the neatest possible form. A careful inspection of the proofs reveals however that the asymp-
totic result in (4.3) and (4.4) can be improved in finite samples introducing a correction factor
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cL = 1
L

∑L
l=1

log l
logL

→ 1, as L → ∞, as follows

L

4 logL × cL

(̂αL − α0) −→p κ

under Condition 3, and
√

2L

4 × cL

(̂αL − α0)
d−→ N (0,1),

under Condition 4. Note that cL < 1 for all finite L, whence the asymptotic bias and vari-
ance are slightly underestimated in Theorem 2. For instance, the correction factors for L =
1000,2000,4000 are, respectively, c1000  0.86, c2000  0.87, and c4000  0.88.

Remark 5. Under Condition 3, it is possible to implement consistent estimates for the parame-
ter κ , with a slower rate of convergence. We leave this issue as a topic for further research.

The previous result provides a sharp rate of convergence for the spherical Whittle estimator.
However in the general case the asymptotic bias term −√

2κ is unknown, which makes inference
unfeasible. To address these issues, we shall consider in the next section an alternative narrow-
band estimator (compare [37]) which achieves an unbiased limiting distribution, to the price of
a log factor in the rate of convergence.

5. Narrow-band estimates

In the previous section, we have shown that under Conditions 2, 3, it is possible to establish
a rate of convergence for the spherical Whittle estimates; however, due to the presence of an
asymptotic bias term, statistical inference turned out to be unfeasible. The purpose of this section
is to propose a narrow band estimator allowing for feasible inference under broad circumstances.
We start from the following definition.

Definition 2. The Narrow–Band Spherical Whittle estimator for the parameters ϑ = (α,G) is
provided by

(̂αL;L1 , ĜL;L1) := arg min
α,G

L∑
l=L1

{
(2l + 1)

Ĉl

Gl−α
− (2l + 1) log

Ĉl

Gl−α

}

or equivalently

α̂L;L1 = arg min
α

RL;L1

(
α, Ĝ(α)

)
,

(5.1)

RL;L1

(
α, Ĝ(α)

) =
(

log ĜL;L1(α) − α∑L
l=L1

(2l + 1)

L∑
l=L1

(2l + 1) log l

)
,
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where L1 < L is chosen such that

L − L1 → ∞,
L

L1
= 1 + O

(
1

logL

)
as L → ∞.

We can write

L1 = L
(
1 − g(L)

)
,

where

g(L) = g(L;L1) = 1 − L1

L
= O

(
1

logL

)
, lim

L→∞
(
L × g(L)

)= ∞.

Theorem 3. Let α̂L;L1 defined as in (5.1). Then under Condition 3 we have

L ·√g3(L)√
12

(̂αL;L1 − α0)
d−→ N (0,1).

Proof. The proof of the consistency for α̂L;L1 can be carried out analogously to the argument
provided in Section 4, and hence is omitted for brevity’s sake. The proof for the central limit
theorem can also be carried along the same lines as done earlier, noting in particular that for the
form (2.4) of Cl under Condition 3

ESL;L1(α0) = 1∑L
l=L1

(2l + 1)

L∑
l=L1

(2l + 1){log l}
{

Cl

G0l−α0
− ĜL;L1

G0

}

= κ∑L
l=L1

(2l + 1)

L∑
l=L1

[
(2l + 1)

log l

l
−
∑L

l=L1
(2 + 1/l)∑L

l=L1
(2l + 1)

]

= κ
logL1

L1
+ o

(
logL1

L1

)
= O

(
logL1

L1

)
and

L ·
√

g3(L)E
[
SL;L1(α0)

] = O

(
logL1

L1

)
L

log3/2 L

= O

(
L

L1

)
O

(
logL

log3/2 L

)
= O

(
1

log1/2 L

)
= oL(1).
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On the other hand

Var
{
SL;L1(α0)

}
= 1

[∑L
l=L1

(2l + 1)]2
Var

{
L∑

l=L1

(2l + 1){log l}
(

Ĉl

G0l−α0
− ĜL;L1(α)

G0

)}
(5.2)

= 2

[∑L
l=L1

(2l + 1)]3

(
L∑

l=L1

(2l + 1)

L∑
l=L1

(2l + 1)
{
log2 l

}−
(

L∑
l=L1

(2l + 1){log l}
)2)

= 2

[∑L
l=L1

(2l + 1)]3
ZL;g(L)(0)

by using (4.6) and (4.7) and following the notation of Proposition 9 with s = 0.
Proposition 9 leads to:

1
4ZL;g(L) = 1

3g4(L)L4 + o
(
g4(L)L4),

while [
L∑

l=L1

(2l + 1)

]3

= (
L2 − L2

1

)3 = 8L6g3(L) + oL

(
L6g3(L)

)
.

By substituting these results in (5.2), we obtain

Var
{
SL;L1(α0)

}= g(L)

12L2
= 1

12L2 log(L)
.

Rewrite now the term QL1L(α) as

QL1;L(α) =
Qnum

L̇1;L(α)

Qden
L̇1;L(α)

,

where we have:

Qnum
L1;L(α) = G2

0

(
∑L

l=1(2l + 1))2
ZL,g(L)(s),

Qden
L1;L(α) = G2

0

(
1∑L

l=L1
(2l + 1)

)2
(

L∑
l=L1

(2l + 1)ls

)2

,

where s = α − α0.
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From (A.3) and (A.8), we have

Qden
L1;L(α) = G2

0

(1 + s/2)2

L4(1+s/2)(1 − (1 − g(L))2(1+s/2))2

L4(1 − (1 − g(L))2)2
+ oL(1)

= 4G2
0L

2sg2(L)

(1 − (1 − g(L))2)2
+ oL(1).

Consider now Qnum
L1;L(α), where we have:

Qnum
L1;L(α) = G2

0
L2sg4(L)K(s)

(1 − (1 − g(L))2)2
+ oL(1).

Combining the two results, we obtain:

lim
L→∞QL1;L(α) = g2(L)K(s)

4
.

Finally, from the consistency results, we have:

12

g2(L)
QL1;L(α) →p 1.

The analysis of fourth-order moments is exactly the same as in the previous section, and the
result follows accordingly. �

Remark 6. It should be noted that an asymptotic unbiased estimator is obtained with the loss of
only a logarithmic term to the power 3/2 in the rate of convergence. This result highlights the
fact that for spherical random fields the highest order multipoles have a dominating role in the
estimation procedure. This is a consequence of the peculiar features of Fourier analysis under
isotropy – the number of random spherical harmonic coefficients grows linearly with the order
of the multipoles.

Remark 7. A careful inspection of the proof reveals that, in case it is assumed that the scale
parameter G = G0 is known, a faster rate of convergence results. This is consistent with results
from [41], where stationary Gaussian processes on R

d are considered and asymptotic Gaussianity
for the spectral index and the scale parameters are separately established.

6. Estimation with noise

The previous sections have been developed under an overly simplified assumption, that is, the
condition that the random spherical harmonic coefficients {alm} can be observed without noise.
Of course, this assumption is untenable under realistic experimental circumstances. The purpose
of the present section is to show how our approach can be extended to cope with noise. More
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precisely, and following earlier work by [13,36] (see also [28]), we shall assume that observations
the observed spherical field takes the form

O(x) := T (x) + N(x), x ∈ S
2,

where N(x) is taken to be a zero-mean, square-integrable, isotropic random field representing
noise, which is Gaussian and independent from the signal T (x). The spherical harmonic coeffi-
cients then become

alm =
∫

S2
O(x)Y lm(x)dx = aT

lm + aN
lm,

where the set {aT
lm, aN

lm} are associated, respectively, to the random field T (x),N(x). More pre-
cisely

Condition 5. The random field N(x) is Gaussian and isotropic, independent form T (x) and with
angular power spectrum

CN,l = GNl−γ , γ > 2,GN > 0.

Clearly

Ĉl = 1

2l + 1

[
l∑

m=−l

∣∣aT
lm

∣∣2 +
l∑

m=−l

∣∣aN
lm

∣∣2 + 2

(

l∑
m=−l

aT
lmaN

lm

)]
,

so that

E(Ĉl) = CT,l + CN,l, Var(Ĉl) = 2

2l + 1

(
C2

T ,l + C2
N,l

)
.

The naive estimator {Ĉl} is then biased for the power spectrum of interest {CT,l}. In the cosmo-
logical literature, this issue is addressed by two alternative methods:

• (A) For most experimental set-ups, it may be reasonable to assume that the angular power
spectrum is known a priori, and hence can be subtracted from the data. This leads to the
so-called auto-power spectrum estimator.

• (B) Most experiments in a CMB framework are actually multi-channel, that is, they provide
a vector of observations, such that the signal aT

lm is constant across all components, while
noise is independent from one component to the other. This leads easily to an unbiased
estimator even without the assumption that the noise angular power spectrum is known in
advance – this estimator is known as the cross-power spectrum.

A detailed comparison among the two estimators and consistent tests on the functional form
of the noise power spectrum are again discussed in [13,36] (see also [28], Chapter 8.3). Here, for
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brevity and notational simplicity we shall focus on case (A), that is, on the unbiased estimator:

C̃l = 1

2l + 1

l∑
m=−l

[∣∣aT
lm + aN

lm

∣∣2]− CN
l

= 1

2l + 1

l∑
m=−l

[∣∣aT
lm

∣∣2 + ∣∣aN
lm

∣∣2 + 2

(

l∑
m=−l

aT
lmaN

lm

)]
− CN,l,

where E(C̃l) = CT,l and

Var

(
C̃l

CT,l

)
= 2

2l + 1

(
1 + C2

N,l

C2
T ,l

+ 2
CN,l

CT,l

)

= 2

2l + 1

((
1 +

(
GN

G0

)
l−(γ−α0)

)2

+ O
(
l−min(2(γ−α0),(γ−α0))

))
.

Remark 8. There are three asymptotic regimes for the behaviour of Var(C̃l/CT,l):

1. α0 < γ , where

Var

(
C̃l

CT,l

)
= 2

2l + 1

(
1 + O

(
l−(γ−α0)

))
.

2. α0 = γ , where

Var

(
C̃l

CT,l

)
= 2

2l + 1

((
1 + GN

G0

)2

+ O
(
l−1)).

3. α0 > γ , so that

Var

(
C̃l

CT,l

)
= 2

2l + 1

(
G2

Nl−2(γ−α0) + O
(
l−min(2α0,(γ+α0))

))
.

In the first case the presence of instrumental noise is asymptotically negligible and the results
of the previous sections will remain unaltered. As before, we define:

G̃L = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
C̃l

l−α
;

(6.1)
α̃L = arg min

α>2
Rnoise

L (α),

where

Rnoise
L (α) = log

1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
C̃l

l−α
− α∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l.
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The proof of the consistency of the estimator α̃L follows strictly the argument that was pro-
vided above in the noiseless case. Indeed, for α0 < γ noise is asymptotically negligible, and all
proofs are basically unaltered; for α0 ≥ γ + 1 consistency can no longer be established. Finally,
for γ < α0 < γ +1 the arguments go through with some changes in the convergence rates; details
are provided in the Appendix.

Theorem 4. Let α̃L defined as in (6.1). Then under Conditions 3 and 5, we have for γ > α0 − 1

L

4 logL
(̃αL − α0) −→p −κ.

If moreover Condition 4 holds, we have that,
√

2L

4
(̃αL − α0)

d−→ N (0,1) for α0 < γ ;
√

2L

4

(
1 + GN

G0

)2

(̃αL − α0)
d−→ N (0,1) for α0 = γ ;

L1−(α0−γ )

√
2

4
√

H(α0 − γ )

(
G0

GN

)
(̃αL − α0)

d−→ N (0,1) for γ < α0 < γ + 1,

where

H(u) :=
(

7 + 4u + u2

4(1 + u)3

)
.

The rate of convergence and the asymptotic variance of α̃L, for example, L1−(α0−γ ) depend
on the unknown parameters α0,G0. However, these unknown values can be replaced by their
consistent estimates, with no effect on the asymptotic results; indeed it is easily seen that, for
instance,

L1−(̃αL−γ )

√
2

4
√

H(̃αL − γ )

(
G̃0

GN

)
(̃αL − α0)

d−→ N (0,1) for γ < α0 < γ + 1,

because (̃αL − α0) = op(logL), whence the result follows by noting that

GN

G̃L(α0)
→p

GN

G0
,

L1−(̃αL−γ )
√

H(α0 − γ )

L1−(α0−γ )
√

H(̃αL − γ )
→p 1 as L → ∞.

Analogous extensions to address observational noise can be considered for the narrow-band es-
timators; this case is omitted, however, for brevity’s sake.

7. Numerical results

In this section, we present some numerical evidence to support the asymptotic results provided
earlier. More precisely, using the statistical software R, for given fixed values of L, α0 and
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Figure 1. Distribution of normalized (̂αL − α0) by varying L and α0, under Condition 4.

G0 and the alternative conditions discussed in the previous section, we sample random val-
ues for the angular power spectra Ĉl and we implement standard and narrow-band estimates.
We start by analyzing the simplest model, that is, the one corresponding to Condition 4. Here
we fixed G0 = 2. In Figure 1, we report the distribution of α̂L − α0 normalized by a factor√

2L/4. In Table 1, we report instead the sample frequencies corresponding to the quantiles
q = 0.05,0.25,0.50.0.75,0.95 for a N (0,1) distribution.

Table 2 provides the results for the classical Shapiro–Wilk Gaussianity test performed on sim-
ulations obtained by varying α0 and the number of multipoles L. Asymptotic Gaussianity is
clearly supported.

Let us now focus on the more general Condition 3. Figure 2 represents the empirical distri-
bution of (L/4

√
2 logL)(̂αL − α0) in case α0 = 3, κ = 1 and the corresponding narrow-band

estimates, whose results are summarized in Table 3. The improvement in the bias factor with the
latter procedure is immediately evident.
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Table 1. Quantiles of L/4
√

2 logL(̂αL − α0)

Sample frequencies

α0 L −1.96 −1 −0.68 0 0.68 1 1.96

2 2000 4 19.2 29.2 48.6 22.8 14.2 4
3000 4.5 18.4 26.8 51 23.33 14.36 3.6
4000 4.4 17.7 25.2 49.1 23.43 13.87 4.8

3 2000 4.4 19.2 29.2 51.5 24.03 15.17 3.6
3000 4.3 18.4 26.8 48.9 23.2 13.43 3.8
4000 4.2 17.9 26.4 50.8 23.07 14.13 3.7

4 2000 4.4 21.6 30.2 50.9 22.73 14.94 5.5
3000 4.2 21.2 29.8 50.4 25.07 15.87 4.3
4000 4.2 17.9 27.1 50.4 22.7 13.73 4.2

Once more, asymptotic Gaussianity is strongly supported by the Shapiro–Wilk test, see again
Table 3.

Considering the correction term cL from Remark 4, the sample bias is consistent with the
asymptotic value to three decimal digits.

In Figure 3, we report the results obtained on a set of simulations under Condition 2, where
we have:

G(l) = G0

{
1 + 1

l
− 1

l2

}
with G0 = 2, α0 = 4, L = 4000, L1 = 3750.

We obtain a mean value E(̂αL − α0) = 0.040 and a normalized variance of 0.9918. Shapiro–
Wilk Gaussianity test gives as result W = 0.9981 with a p-value = 0.8669. Table 4 compares

Table 2. Shapiro–Wilk test under Condition 4

Shapiro–Wilk test

α0 L W p-value

2 2000 0.9976 0.685
3000 0.9978 0.667
4000 0.9983 0.373

3 2000 0.9976 0.691
3000 0.9980 0.842
4000 0.9985 0.945

4 2000 0.9987 0.670
3000 0.998 0.286
4000 0.9985 0.578
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Figure 2. Comparison among biased and narrow estimates (κ = 1, L = 2000, α0 = 3), under Condition 3.

sample variance, bias and mean squared errors obtained for simulations with different values of
L, κ and α0 with N = 5000 iterations.

The simulations show that full-band estimators is characterized by a smaller MSE with respect
to the corresponding narrow band estimators obtained on the same data sets, due to the smallest
value of the variance. Hence, full band estimates seem to be more efficient than the narrow band

Table 3. Normalized Narrow bands data, under Condition 3, κ = 1, α0 = 4,
G0 = 2

Shapiro–Wilk test

L L1 Mean Var W p-value

2000 1550 0.072 0.959 0.9985 0.950
1700 0.018 0.951 0.997 0.495
1850 −0.016 1.004 0.9977 0.739

3000 2400 0.092 1.130 0.9949 0.920
2600 0.072 0.928 0.9951 0.745
2800 −0.02 1.06 0.9965 0.340

4000 3250 0.006 0.985 0.9968 0.443
3500 0.004 1.097 0.998 0.834
3750 0.0007 1.073 0.9982 0.874
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Figure 3. Distribution of normalized (̂αL − α0) under Condition 2.

ones, although they appear to be more robust. Note that for the sake of the brevity we report only
the data concerning α0 = 3, because data obtained for α0 = 2,4 lead to very similar results.

In Figure 4, we report results on simulations (iterated N = 5000 times) which take in account
also the presence of the noise, using α0 = 3, L = 1000 and by varying the value of γ . In these
simulations, we consider four cases. In the cases γ = 5 and γ = 3, the results obtained put

Table 4. Sample Variance, Bias and MSE of estimators α̂L and α̂L1,L for different values of L =
1000,2000,5000,10 000 and κ = 1,2 (α0 = 3)

κ Band Var Bias MSE Var Bias MSE

L = 1000 L = 5000

1 Full 7.9 · 10−6 0.004 2.4 · 10−5 3.2 · 10−7 0.0008 9.7 · 10−7

Nar. 1.4 · 10−4 0.001 1.5 · 10−4 5.4 · 10−5 0.0003 5.4 · 10−5

2 Full 8.0 · 10−6 0.008 7.1 · 10−5 3.3 · 10−7 0.002 6.1 · 10−6

Nar. 1.4 · 10−4 0.002 1.5 · 10−4 5.3 · 10−5 0.0006 5.4 · 10−5

L = 2000 L = 10 000

1 Full 1.9 · 10−6 0.002 5.8 · 10−6 8.1 · 10−8 0.0004 2.4 · 10−7

Nar. 9.6 · 10−5 0.0005 9.6 · 10−5 1.3 · 10−5 9 · 10−5 1.3 · 10−5

2 Full 1.9 · 10−6 0.004 1.8 · 10−5 8.1 · 10−8 0.0008 2.4 · 10−7

Nar. 9.6 · 10−5 0.001 9.6 · 10−5 1.3 · 10−5 0.0002 1.3 · 10−5
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Figure 4. Distribution of normalized α̃ − α0 (α0 = 3, L = 1000) in presence of noise (γ = 1 and 2.5).

in evidence that in the case γ > α0 the noise does not affect the signal detected (we omit these
results in the figure). If instead γ = 2.5, we obtain the convergence of the estimator to α0 with the
rate of convergence as described in Theorem 4: in this case E(̃αL) = 0.005, while the variance of
the normalized α̃L corresponds to 1.22. Shapiro–Wilk normality test provides W = 0.9919 with
p-value = 2.68 · 10−16. Finally, if γ = 1 (and then γ < α0 − 1) the estimate computed assumes
mainly values close to αmax, the highest value which is allowed by the computational point of
view (in the figure αmax = 50), hence it seems to diverge.

8. Conclusions

We view this paper as a first contribution in an area which deserves much further research, that is,
the investigation of asymptotic properties for parametric estimators on a single realization of an
isotropic random field on the sphere. As mentioned earlier, an enormous amount of applied pa-
pers have focussed on this issue, especially in a Cosmological framework, but no rigorous results
seem currently available. Our results suggest that consistency and asymptotic Gaussianity are
feasible for spectral index estimators, the rate of convergence being L/ logL; these estimates are
centred on zero in “parametric” circumstances, that is, where the correct model being provided
for Cl up to a factor o( 1

l
). When the latter assumption fails, alternatively, narrow-band estimates

can be entertained; these estimates ensure convergence to a zero-mean Gaussian distribution,
with a slightly slower convergence rate.

Many questions are left open by these results. The first we mention is the characterization of
a whole class of parameters for which asymptotic Gaussianity and consistency may continue to
hold. More challenging is the possibility to relax the Gaussian assumption and consider more
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general, finite-variance isotropic Gaussian fields. In this respect, results in [27] suggest that the
Gaussianity assumption may indeed play a crucial role, as high-frequency consistency and Gaus-
sianity seem very tightly related, for instance, when considering the asymptotic behavior of the
angular power spectrum. It seems also important to explore the connection between the spherical
estimates we have been considering and fixed-domain asymptotic results for Matern-type covari-
ances, as discussed on R

d by [1,25,40,41] and others. Likewise, the high-frequency behaviour of
Bayesian estimates definitely deserves some investigation in this framework, especially consid-
ering the growing interest for Bayesian techniques in the astrophysical community.

For future work, we aim at relaxing some of the assumptions introduced in this paper to make
these techniques more directly applicable on existing datasets. The harmonic estimates we have
been focussing on require the observation of the random field on the full sphere. This condition
often fails in practice: for instance, in a Cosmological framework large regions of the sky are
not observable, because they are masked by Foreground sources such as the Milky Way. In on-
going research (see [10]), we are hence considering a Whittle-type estimator based on spherical
wavelets (needlets, see [3,29,31]), rather than standard Fourier analysis. These estimates have,
however, a larger asymptotic variance than the Fourier methods considered here; in a sense, this
is an instance of the standard trade-off between robustness and efficiency. Thus, the material
in the present paper presents a benchmark for optimal procedures under favourable experimen-
tal circumstances, and the right starting point for further developments under more challenging
experimental set-ups.

Appendix

Consistency results

Proof of Theorem 1. To establish consistency, we shall resort to a technique developed by [7]
and [37]. In particular, let us now write

�RL(α,α0) = RL(α) − RL(α0)

= log
Ĝ(α)

G(α)
− log

Ĝ(α0)

G(α0)
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l

+ log
G(α)

G(α0)
,

where

G(α) = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
G0l

−α0

l−α
, G(α0) = G0,

log
G(α)

G(α0)
= log

{
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}
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so that

�RL(α,α0) = UL(α,α0) − TL(α,α0),

UL(α,α0) = − (α − α0)∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l + log
G(α)

G(α0)
, (A.1)

TL(α,α0) = log
Ĝ(α0)

G(α0)
− log

Ĝ(α)

G(α)
. (A.2)

The proof is then completed with the aid of the auxiliary Lemmas 6, 7 that we shall discuss
below. Indeed

Pr
{|̂αL − α0| > ε

} ≤ Pr
{

inf|α−α0|>ε
�RL(α,α0) ≤ 0

}
≤ Pr

{
inf|α−α0|>ε

[
UL(α,α0) − TL(α,α0)

]≤ 0
}
.

For α0 − α < 2 the previous probability is bounded by, for any δ > 0

≤ Pr
{

inf|α−α0|>ε
UL(α,α0) ≤ δ

}
+ Pr

{
sup

|α−α0|>ε

TL(a,α0) > 0
}

and

lim
L→∞ Pr

{
sup

|α−α0|>ε

TL(a,α0) > 0
}

= 0

from Lemma 7, while from Lemma 6 there exist δε = (1 + ε/2)− log(1 + ε/2)− 1 > 0 such that

lim
L→∞ Pr

{
inf|α−α0|>ε

UL(α,α0) ≤ δε

}
= 0.

For α0 −α = 2 or α0 −α > 2 the same result is obtained by dividing �RL(α,α0) by, respectively,
log logL or logL and then resorting again to Lemmas 6, 7.

Now note that

Ĝ(̂αL) − G0 = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
Ĉl

l−α̂L

− 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
G0l

−α0

l−α0

= 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
−(α0−α̂L)

{(
Ĉl

G0l−α0
− 1

)
+ (

1 − l(α0−α̂L)
)}

.
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Clearly:

∣∣Ĝ(̂αL) − G0
∣∣ ≤

∣∣∣∣∣ 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
−(α0−α̂L)

{(
Ĉl

G0l−α0
− 1

)}∣∣∣∣∣
+
∣∣∣∣∣ G0∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)
(
l−(α0−α̂L) − 1

)∣∣∣∣∣
= |GA| + |GB |,

so that

Pr
(∣∣Ĝ(̂αL) − G0

∣∣≥ ε
)≤ Pr

(
|GA| ≥ ε

2

)
+ Pr

(
|GB | ≥ ε

2

)
.

Observe that:

Pr

{
|GA| ≥ ε

2

}
≤ Pr

{[
|GA| ≥ ε

2

]
∩
[
|α0 − α̂L| < 1

3

]}
+ Pr

{
|α0 − α̂L| ≥ 1

3

}

≤ Pr

{[
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
1/3
∣∣∣∣ Ĉl

G0l−α0
− 1

∣∣∣∣≥ ε

]}
+ oL(1)

≤ 1

ε

1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
1/3

E

∣∣∣∣ Ĉl

G0l−α0
− 1

∣∣∣∣+ oL(1)

≤ C

ε

1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
1/3l−1/2 + oL(1)

= C

ε

L11/6∑L
l=1(2l + 1)

+ oL(1) = oL(1).

As far as the second term is concerned, we have, for a suitably small δ > 0:

Pr

(
|GB | ≥ ε

2

)
= Pr

([
|GB | ≥ ε

2

]
∩ [

log l(α0 − α̂L)
]
< δ

)
+ Pr

(
log l(α0 − α̂L) ≥ δ

)
= Pr

([
|GB | ≥ ε

2

]
∩ [

log l(α0 − α̂L)
]
< δ

)
+ oL(1)



56 C. Durastanti, X. Lan and D. Marinucci

and using |e−x − 1| ≤ x for 0 ≤ x ≤ 1, we obtain∣∣l−(α0−α̂L) − 1
∣∣ = ∣∣exp

(− log l(α0 − α̂L)
)− 1

∣∣≤ log l|α0 − α̂L|,

Pr

([
|GB | ≥ ε

2

]
∩ [

log l(α0 − α̂L)
]
< δ

)

≤ Pr

(
G0∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)
∣∣(l−(α0−α̂L) − 1

)∣∣≥ ε

2
∩ [

log l(α0 − α̂L)
]
< δ

)

≤ 1

ε
E

{
G0∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l|α0 − α̂L|
}

≤ C

ε

G0∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l
logL

L
= oL(1),

where we have used

E|α0 − α̂L| ≤ {
E|α0 − α̂L|2}1/2 = O

(
logL

L

)
,

which under Condition 2 will be established in the proof of Theorem 2. �

The first auxiliary result we shall need concerns G,Ĝ and their kth order derivatives Gk, Ĝk ,
that is,

Ĝk(α) = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
(
logk l

) Ĉl

l−α
, k = 0,1,2, . . . ,

Gk(α) = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
(
logk l

)G0l
−α0

l−α
, k = 0,1,2, . . . ,

where Ĝ0(α) = Ĝ(α) and G0(α) = G(α) defined as above.

Lemma 5. Under Condition 2, for all 2 > α0 − α > ε > 0, as L → ∞, we have

sup
α

∣∣∣∣log
Ĝk(α)

Gk(α)

∣∣∣∣= op(1).

On the other hand, if α0 − α ≥ 2,

sup
α

∣∣∣∣log
Ĝk(α)

Gk(α)

∣∣∣∣= Op(1).
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Proof. Let us first focus on the case where α −α0 > −2. For clarity of exposition, we start from
a simplified parametric version of Condition 1, that is, we assume that we have exactly

Cl(ϑ) = Cl(G0, α0) = G0l
−α0 .

Let us write first

Ĝk(α)

Gk(α)
− 1 = (

∑L
l=1(2l + 1)(log l)kĈl/l

−α)/(
∑L

l=1(2l + 1))

(
∑L

l=1(2l + 1)(log l)kG0l−α0/l−α)/(
∑L

l=1(2l + 1))
− 1

=
∑L

l=1(2l + 1)(log l)kG0l
α−α0{Ĉl/(G0l

−α0) − 1}∑L
l=1(2l + 1)(log l)kG0lα−α0

.

Fixed 0 < β < 1
2 , we have, for all l:

Pr

(∣∣∣∣∑L
l=1(2l + 1)G0l

α−α0(log l)k{Ĉl/(G0l
−α0) − 1}∑L

l=1(2l + 1)(log l)kG0lα−α0

∣∣∣∣> δε

)

≤ Pr

(
Lβ

∣∣∣∣∑L
l=1

√
(2l + 1)(log l)klα−α0∑L

l=1(2l + 1)(log l)klα−α0

∣∣∣∣ supl

√
(2l + 1)|Ĉl/(G0l

−α0) − 1|
Lβ

> δε

)

≤ Pr

(
sup

l

√
(2l + 1)

∣∣∣∣ Ĉl

G0l−α0
− 1

∣∣∣∣> δεL
β

)
,

because

Lβ

∑L
l=1

√
(2l + 1)(log l)klα−α0∑L

l=1(2l + 1)(log l)klα−α0
= C

Lβ+3/2+α−α0 logk L

L2+α−α0 logk L
= CLβ−1/2 = o(1).

Now

Pr

{
sup

l

√
(2l + 1)

∣∣∣∣ Ĉl

G0l−α0
− 1

∣∣∣∣> δεL
β

}

≤ Lmax
l

Pr

{√
(2l + 1)

∣∣∣∣ Ĉl

G0l−α0
− 1

∣∣∣∣> δεL
β

}
and

Pr

{√
(2l + 1)

∣∣∣∣ Ĉl

G0l−α0
− 1

∣∣∣∣> δεL
β

}
≤ C

E[√(2l + 1)|Ĉl/(G0l
−α0) − 1|]M

δM
ε LMβ

= O
(
L−Mβ

)
,

uniformly in l, see, for instance, [28], such that M > 1/β . Hence,

Pr

{
sup

l

√
(2l + 1)

∣∣∣∣ Ĉl

G0l−α0
− 1

∣∣∣∣> δεL
β

}
= O

(
L1−Mβ

)= oL(1).
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For the general semiparametric case, the only difference is to be found in the expressions for
EĈl , which under Condition 2 becomes

EĈl = G0l
−α0

(
1 + O

(
l−1)),

where the bound O(l−1) is uniform over α by assumption. As before, we hence obtain

Ĝk(α)

Gk(α)
− 1

=
∑L

l=1(2l + 1)(log l)kĈl/l
−α −∑L

l=1(2l + 1)(log l)kG0l
−α0/l−α∑L

l=1(2l + 1)(log l)kG0l−α0/l−α

=
∑L

l=1(2l + 1)(log l)kG0l
α−α0{Ĉl/(G0l

−α0) − EĈl/(G0l
−α0)}∑L

l=1(2l + 1)(log l)kG0lα−α0

+
∑L

l=1(2l + 1)(log l)kG0l
α−α0{O(1/l)}∑L

l=1(2l + 1)(log l)kG0lα−α0
.

The second summand is immediately observed to be O( 1
L
). By the same argument as before, for

0 < β < 1
2 , we have, for all l:

Pr

{∣∣∣∣∑L
l=1(2l + 1)(log l)kG0l

α−α0{Ĉl/(G0l
−α0) − EĈl/(G0l

−α0)}∑L
l=1(2l + 1)(log l)kG0lα−α0

∣∣∣∣> δε

}

≤ Pr

{
sup

l

√
(2l + 1)

EĈl

G0l−α0

∣∣∣∣ Ĉl

EĈl

− 1

∣∣∣∣> δεL
β

}

≤ Pr

{
sup

l

√
(2l + 1)

{
1 + O

(
1

l

)}∣∣∣∣ Ĉl

EĈl

− 1

∣∣∣∣> δεL
β

}
.

The rest of the proof is analogous to the argument we provided before, and hence omitted.
For the case where α0 − α ≥ 2, it suffices to note that

Ĝk(α)

Gk(α)
= (

∑L
l=1(2l + 1)(log l)kĈl/l

−α)/(
∑L

l=1(2l + 1))

(
∑L

l=1(2l + 1)(log l)kG0l−α0/l−α)/(
∑L

l=1(2l + 1))
> 0 with probability 1

and

E
Ĝk(α)

Gk(α)
= (

∑L
l=1(2l + 1)(log l)k(G0l

−α0/l−α){1 + O(1/l)})/(∑L
l=1(2l + 1))

(
∑L

l=1(2l + 1)(log l)kG0l−α0/l−α)/(
∑L

l=1(2l + 1))
= O(1).

�

We are now in the position to establish the asymptotic behavior of UL(α,α0) in (A.1), for
which we have the following:
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Lemma 6. For all 2 > α0 − α > ε > 0, we have that

lim
L→∞

{
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l + log
G(α)

G(α0)

}

= lim
L→∞

[
log

{
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l

]
= (

1 + (α − α0)/2
)− log

(
1 + (α − α0)/2

)− 1 > δε > 0.

Moreover, if α0 − α = 2,

lim
L→∞

1

log logL

{
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l + log
G(α)

G(α0)

}
= 1 > 0

and for α0 − α > 2,

lim
L→∞

1

logL

{
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l + log
G(α)

G(α0)

}
= α0 − α − 2 > 0.

Proof. Consider first the case α − α0 > −2

log

{
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}

= log

{
(1 + (α − α0)/2)

Lα−α0
∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}
− log

(
1 + (α − α0)/2

)+ (α − α0) logL,

where

(1 + (α − α0)/2)

Lα−α0
∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0 − 1 = oL(1),

whence

log

{
(1 + (α − α0)/2)

Lα−α0
∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}
= oL(1).
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Thus,

log

{
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l

= − log
(
1 + (α − α0)/2

)+ (α − α0) logL

− (α − α0)∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l + oL(1)

= (α − α0)∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)(logL − log l)

− (α − α0)

2
+ (α − α0)

2
− log

(
1 + (α − α0)/2

)+ oL(1).

Now

(α − α0)∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)(logL − log l) − (α − α0)

2

= −2(α − α0)

∫ 1

0
x logx dx − (α − α0)

2
+ oL(1) = oL(1),

because ∫ 1

0
x logx dx =

[
x2

2
logx

]1

0
−
∫ 1

0

x2

2

1

x
dx = −1

4
.

We have hence proved that

log

{
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l

= (
1 + (α − α0)/2

)− log
(
1 + (α − α0)/2

)− 1 + oL(1) > 0

for all |α − α0| > ε, α − α0 > −2.
Consider now the case α0 − α ≥ 2. We can rewrite:

− (α − α0)∑L
l=1(2l + 1)

L∑
l=1

(2l + 1) log l + log
G(α)

G(α0)

= log

{
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)lα−α0

}
− (α − α0)∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l
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= (α0 − α) logL

[
log

∑L
l=1(2l + 1)l−(α0−α)

(α0 − α) logL
− log

∑L
l=1(2l + 1)

(α0 − α) logL

+ 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
log l

logL

]
= (α0 − α) logL[AL + BL + CL].

For the term AL:

L∑
l=1

(2l + 1)l−(α0−α) = c

L∑
l=1

l1−(α0−α) + oL2−(α0−α) (1) →L c > 1,

because
∑L

l=1 l1−(α0−α) is a convergent series when the exponent 1 − (α0 − α) < −1; for 1 −
(α0 −α) = −1, we have {∑L

l=1 l1−(α0−α)/ logL} → 1 and the argument is analogous. Therefore,

(α0 − α) logL × [AL] =
{

O(log logL), for α0 − α = 2,
O(1), for α0 − α > 2.

As far as BL is concerned, we have log
∑L

l=1(2l + 1) = 2 logL + o(logL), so that:

lim
L→∞BL = − 2

(α0 − α)
;

finally, simple manipulations and standard properties of the logarithm (which is a slowly varying
function, compare [6]) yield

lim
L→∞CL = lim

L→∞

[
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)
log l

logL

]
= 1.

Summing up, we obtain:

lim
L→∞

{
(α0 − α) logL[BL + CL]}=

{
0, for α0 − α = 2,
(α0 − α) − 2 > 0, for α0 − α > 2,

and the claimed result follows. �

In [37] a related computation was given for approximate Whittle estimates on stationary long
memory processes in dimension d = 1, that is, the limiting lower bound turned out to be (1 +
(α − α0)) − log(1 + (α − α0)) − 1 + oL(1) > δε . In view of this, we conjecture that for general
d-dimensional spheres the lower bound will take the form(

1 + (α − α0)

d

)
− log

(
1 + (α − α0)

d

)
− 1 + oL(1) > δε.
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Now we look at TL(α,α0), for which we provide the following lemma.

Lemma 7. Let TL(α,α0) defined as in (A.2). Under Condition 2, as L → ∞, we have

sup
α

∣∣TL(α,α0)
∣∣ = op(1) for α0 − α < 2,

sup
α

∣∣TL(α,α0)
∣∣ = Op(1) for α0 − α ≥ 2.

Proof. For α0 − α < 2, consider first

Ĝ(α0)

G(α0)
− 1 = 1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)

(
Ĉl

G0l−α0
− 1

)
,

where we have easily, as L → ∞,

E

{
Ĝ(α0)

G(α0)
− 1

}
= 1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)

(
G0l

−α0{1 + O(l−1)}
G0l−α0

− 1

)
→ 0,

Var

{
Ĝ(α0)

G(α0)

}
=
{

1∑L
l=1(2l + 1)

}2 L∑
l=1

(2l + 1)2 = O

(
1

L

)
,

whence by Slutzky’s lemma{
ĜL(α0)

GL(α0)

P−→ 1

}
⇒

{
log

Ĝ(α0)

G(α0)

P−→ 0

}
.

On the other hand, in view of Lemma 5, we have that:

sup
α

∣∣∣∣log
Ĝ(α)

G(α)

∣∣∣∣= op(1),

whence the result follows easily. The proof for α0 − α ≥ 2 is immediate. �

Some integral approximation results

The following lemma is straightforward.

Lemma 8. Let L1 < L, then we have∫ L

L1

2x1+s dx = 1

(1 + s/2)

(
L2(1+s/2) − L

2(1+s/2)

1

); (A.3)
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L1

2x1+s logx dx = −L2(1+s/2) − L
2(1+s/2)

1

2(1 + s/2)2
+ L2(1+s/2) logL − L

2(1+s/2)

1 logL1

(1 + s/2)
;

∫ L

L1

2x1+s log2 x dx = L2(1+s/2) − L
2(1+s/2)

1

2(1 + s/2)3
− L2(1+s/2) logL − L

2(1+s/2)

1 logL1

(1 + s/2)2

+ L2(1+s/2) log2 L − L
2(1+s/2)

1 log2 L1

(1 + s/2)
.

The next result is more delicate; for the sake of brevity, we prove only (A.6); (A.4) can be
viewed as a simpler special case with L1 = 1.

Proposition 9. Let

ZL(s) :=
[

L∑
l=1

(2l + 1)l1+s
L∑

l=1

(2l + 1)l1+s(log l)2 −
(

L∑
l=1

(2l + 1)l1+s log l

)2]
.

Then, for s ∈ R:

lim
L→∞

1

L4+2s
ZL(s) = 1

4(1 + s/2)4
. (A.4)

Moreover, let L1 = 1 + L · (1 − g(L)), where 0 < g(L) < 1 is such that limL→∞ g(L) = 0. If

ZL;g(L)(s) =
L∑

l=L1

(2l + 1)l1+s
L∑

l=L1

(2l + 1)l1+s
(
log2 l

)
(A.5)

−
(

L∑
l=L1

(2l + 1)l1+s log l

)2

,

we have

lim
L→∞

1

L4(1+s/2)g4(L)
ZL;g(L)(s) = K(s), (A.6)

where

K(s) = 1

(1 + s/2)2

(
1

12
s2 − 1

8
s + 1

3

)
.

Note that for s = 0,

K0 = K(s)|s=0 = 1
3 . (A.7)
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Proof of Proposition 9. We start by observing that(
L∑

l=L1

(2l + 1)ls log2 l

)(
L∑

l=L1

(2l + 1)ls

)

= (L2(1+s/2) − L
2(1+s/2)

1 )2

(1 + s/2)2

(
1

2(1 + s/2)2
+ logL

(1 + s/2)
+ log2 L

)

+ (L2(1+s/2) − L
2(1+s/2)

1 )L
2(1+s/2)

1

(1 + s/2)3
log

(
1 − g(L)

)
×
(

1

(1 + s/2)
− 2 logL − log2(1 − g(L)

))+ oL(1);
(

L∑
l=L1

(2l + 1)ls log l

)2

= (L2(1+s/2) − L
2(1+s/2)

1 )2

(1 + s/2)2

(
1

4(1 + s/2)2
− logL

(1 + s/2)
+ log2 L

)

+ (L2(1+s/2) − L
2(1+s/2)

1 )

(1 + s/2)2
L

2(1+s/2)

1 log
(
1 − g(L)

)( 1

(1 + s/2)
− 2 logL

)

+ L
4(1+s/2)

1 log2(1 − g(L))

(1 + s/2)2
+ oL(1),

so we obtain

ZL,g(L)(s) = (L2(1+s/2) − L
2(1+s/2)

1 )2

4(1 + s/2)4

− L2(1+s/2)L
2(1+s/2)

1 log2(1 − g(L))

(1 + s/2)2
+ oL(1)

= L4(1+s/2)((1 − (1 − g(L))2(1+s/2)))2

4(1 + s/2)4

− L4(1+s/2)(1 − g(L))2(1+s/2) log2(1 − g(L))

(1 + s/2)2
+ oL(1).

Observe that

log2(1 − g(L)
) = (−g(L) − 1

2g2(L) − 1
3g3(L) + O

(
g4(L)

))2

= g2(L) + g3(L) + ( 11
12

)
g4(L) + o

(
g4(L)

)
,
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while

(1 − g(L))2(1+s/2)

(1 + s/2)
= 1

(1 + s/2)
− 2g(L) +

(
2

(
1 + s

2

)
− 1

)
g2(L)

(A.8)

− (2(1 + s/2) − 1)(2(1 + s/2) − 2)

3
g3(L) + o

(
g3(L)

)
.

Thus

L4(1+s/2)((1 − (1 − g(L))2(1+s/2)))2

4(1 + s/2)4

= L4(1+s/2)g2(L)

(1 + s/2)2

[
1 + (s + 1)g(L) + 1

4 (s + 1)
( 7

3 s + 1
)
g2(L)

]+ o
(
L4g4(L)

)
,

while simple calculations lead to

L4(1+s/2)(1 − g(L))2(1+s/2) log2(1 − g(L))

(1 + s/2)2

= L4(1+s/2)g2(L)

(1 + s/2)2

(
1 + (s + 1)g(L) +

(
s2

2
+ 23

24
s − 1

12

)
g2(L)

)
+ o

(
L4g4(L)

)
.

By using (A.6), we have

ZL,g(L)(s) = L4(1+s/2)g4(L)

(1 + s/2)2
K(s) + o

(
L4g4(L)

)
as claimed. �

Asymptotic Gaussianity

In this subsection, we present the analysis of the fourth-order cumulants.

Lemma 10. Let Al and Bl be defined as in (4.8) and (4.9). As L → ∞,

1

L4
cum

{∑
l1

(Al1 + Bl1),
∑
l2

(Al2 + Bl2),
∑
l3

(Al3 + Bl3),
∑
l4

(Al4 + Bl4)

}
= OL

(
log4 L

L2

)
.

Proof. It is readily checked that

cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

}
= O

(
l−3),
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cum

{
ĜL(α0)

G0
,
ĜL(α0)

G0
,
ĜL(α0)

G0
,
ĜL(α0)

G0

}
= 1

L8

∑
l

(2l + 1)4 cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

}
= O

(
L−6).

The proof can be divided into 5 cases:

1.

1

L4
cum

{∑
l1

Al1 ,
∑
l2

Al2,
∑
l3

Al3 ,
∑
l4

Al4

}

= 1

L4

∑
l

(2l + 1)4{log4 l
}

cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

}

= O

(
1

L4

∑
l

(2l + 1)2 log4 l

)
= O

(
log4 L

L2

)
;

2.

1

L4
cum

{∑
l1

Bl1,
∑
l2

Bl2 ,
∑
l3

Bl3 ,
∑
l4

Bl4

}

= 1

L4

{∑
l

(2l + 1) log l

}4

cum

{
ĜL(α0)

G0
,
ĜL(α0)

G0
,
ĜL(α0)

G0
,
ĜL(α0)

G0

}

= 1

L4

{∑
l

(2l + 1) log l

}4 1

L6
= O

(
log4 L

L2

)
;

3.

1

L4
cum

{∑
l1

Al1,
∑
l2

Bl2 ,
∑
l3

Bl3 ,
∑
l4

Bl4

}

= 1

L4

{∑
l1

(2l1 + 1) log l1

}3

×
∑
l2

(2l2 + 1){log l2} cum

{
Ĉl2

Cl2

,
ĜL(α0)

G0
,
ĜL(α0)

G0
,
ĜL(α0)

G0

}

= 1

L10

{∑
l1

(2l1 + 1) log l1

}3∑
l2

(2l2 + 1) log l2
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× cum

{
Ĉl2

Cl2

,
∑
l3

(2l3 + 1)
Ĉl3

Cl3

,
∑
l3

(2l4 + 1)
Ĉl4

Cl4

,
∑
l5

(2l5 + 1)
Ĉl5

Cl5

}

= log3 L

L4

∑
l

(2l + 1)4{log l} cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

}

= O

(
log3 L

L4

∑
l

(2l + 1) log l

)
= O

(
log4 L

L2

)
;

4.

1

L4
cum

{∑
l1

Al1,
∑
l2

Al2,
∑
l3

Bl3,
∑
l4

Bl4

}

= 1

L4

∑
l

(2l + 1)2 log2 l cum

{
Ĉl

Cl

,
Ĉl

Cl

,
∑
l3

(2l3 + 1) log l3
ĜL(α0)

G0
,

∑
l3

(2l4 + 1) log l4
ĜL(α0)

G0

}

= 1

L8

{∑
l

(2l + 1) log l

}2

×
∑

l

(2l + 1)2{log2 l
}

cum

{
Ĉl

Cl

,
Ĉl

Cl

,
∑
l3

(2l3 + 1)
Ĉl3

Cl3

,
∑
l4

(2l4 + 1)
Ĉl4

Cl4

}

= 1

L8

{∑
l

(2l + 1) log l

}2∑
l

(2l + 1)4{log2 l
}

cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

}

= K

L8

{∑
l

(2l + 1) log l

}2∑
l

(2l + 1) log2 l = O

(
log4 L

L2

)
;

5.

1

L4
cum

{∑
l1

Al1 ,
∑
l2

Al2,
∑
l3

Al3 ,
∑
l4

Bl4

}

= 1

L4

∑
l

(2l + 1)3{log3 l
}

cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
∑
l1

(2l1 + 1) log l1
ĜL(α0)

G0

}

= 1

L6

{∑
l1

(2l1 + 1) log l1

}∑
l

(2l + 1)3{log3 l
}

cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
∑
l2

(2l2 + 1)
Ĉl2

Cl2

}
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= 1

L6

{∑
l1

(2l1 + 1) log l1

}∑
l

(2l + 1)4{log3 l
}

cum

{
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

,
Ĉl

Cl

}

= 1

L6

{∑
l1

(2l1 + 1) log l1

}∑
l

(2l + 1) log3 l = O

(
log4 L

L2

)
.

�

Estimation with noise

Lemma 11. Under Conditions 2 and 5, with 0 < α0 − γ < 1, for all 2 > α0 − α > ε > 0, as
L → ∞, we have

sup
α

∣∣∣∣log
G̃k(α)

Gk(α)

∣∣∣∣= op(1).

On the other hand, if α0 − α ≥ 2,

sup
α

∣∣∣∣log
G̃k(α)

Gk(α)

∣∣∣∣= Op(1).

Proof. For the sake of brevity, we report only the proof of the case where α − α0 > −2, using
simplified parametric version of Condition 1, that is, we assume that we have exactly

Cl(ϑ) = Cl(G0, α0) = G0l
−α0 .

As for Ĝk(α),

G̃k(α)

Gk(α)
− 1 =

∑L
l=1(2l + 1)(logk l)G0l

α−α0{C̃l/(G0l
−α0) − 1}∑L

l=1(2l + 1)(logk l)G0lα−α0
.

Fixed max((α0 − γ ) − 1/2,0) < β < 1
2 , we have, for all l:

Pr

(∣∣∣∣∑L
l=1(2l + 1)G0l

α−α0(logk l){C̃l/(G0l
−α0) − 1}∑L

l=1(2l + 1)(logk l)G0lα−α0

∣∣∣∣> δε

)

≤ Pr

(
sup

l

√
(2l + 1)l−(α0−γ )

∣∣∣∣ C̃l

G0l−α0
− 1

∣∣∣∣> δεL
β

)
,

because

Lβ

∑L
l=1

√
(2l + 1)(log l)kl(α−γ )∑L

l=1(2l + 1)(log l)klα−α0
= CLβ−1/2+(α0−γ ) = o(1).
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Now

Pr

{
sup

l

√
(2l + 1)l−(α0−γ )

∣∣∣∣ C̃l

G0l−α0
− 1

∣∣∣∣> δεL
β

}

≤ Lmax
l

Pr

{√
(2l + 1)l−(α0−γ )

∣∣∣∣ C̃l

G0l−α0
− 1

∣∣∣∣> δεL
β

}
and

Pr

{√
(2l + 1)l−(α0−γ )

∣∣∣∣ C̃l

G0l−α0
− 1

∣∣∣∣> δεL
β

}
≤ C

Var[√(2l + 1)l−(α0−γ )(C̃l/(G0l
−α0) − 1)]

δ2
εL

2β

= O
(
L−2β

)
,

uniformly in l. Hence,

Pr

{
sup

l

√
(2l + 1)

∣∣∣∣ C̃l

G0l−α0
− 1

∣∣∣∣> δεL
β

}
= O

(
L−2β+1)= oL(1). �

Lemma 12. Under Conditions 2 and 5, with 0 < α0 − γ < 1, as L → ∞, we have

sup
α

∣∣TL(α,α0)
∣∣ = op(1) for α0 − α < 2,

sup
α

∣∣TL(α,α0)
∣∣ = Op(1) for α0 − α ≥ 2.

Proof. For α0 − α < 2, consider first

G̃(α0)

G(α0)
− 1 = 1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)

(
C̃l

G0l−α0
− 1

)
,

where we have easily, as L → ∞,

E

{
G̃(α0)

G(α0)
− 1

}
= 1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)

(
G0l

−α0{1 + O(l−1)}
G0l−α0

− 1

)
→ 0,

Var

{
G̃(α0)

G(α0)

}
=
{

1∑L
l=1(2l + 1)

}2

2G2
N

L∑
l=1

(2l + 1)
(
l2(α0−γ ) + O

(
l−min(2α0,(γ+α0))

))
= O

(
1

L4
L2(1+(α0−γ ))

)
O

(
1

L2(1−(α0−γ ))

)
,
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whence by Slutzky’s lemma{
G̃(α0)

G(α0)

P−→ 1

}
⇒

{
log

Ĝ(α0)

G(α0)

P−→ 0

}
.

On the other hand, in view of Lemma 5, we have that:

sup
α

∣∣∣∣log
G̃(α0)

G(α0)

∣∣∣∣= op(1),

whence the result follows easily. The proof for α0 − α ≥ 2 is immediate.
It remains to prove the consistency of G̃(̃αL). Observe that

G̃(̃αL) − G0 = 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)
C̃l

l−α̃L
− 1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)
G0l

−α0

l−α0

= 1∑L
l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
−(α0−α̃L)

{(
C̃l

G0l−α0
− 1

)
+ (

1 − l(α0−α̃L)
)}

.

Clearly

∣∣G̃(̃αL) − G0
∣∣ ≤ ∣∣∣∣∣ 1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
−(α0−α̃L)

{(
C̃l

G0l−α0
− 1

)}∣∣∣∣∣
+
∣∣∣∣∣ G0∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)
(
1 − l(α0−α̃L)

)∣∣∣∣∣= |GA| + |GB |,

so that

Pr
(∣∣G̃(̃αL) − G0

∣∣≥ ε
)≤ Pr

(
|GA| ≥ ε

2

)
+ Pr

(
|GB | ≥ ε

2

)
.

Observe that:

Pr

{
|GA| ≥ ε

2

}
≤ Pr

{[
|GA| ≥ ε

2

]
∩
[
|α0 − α̃L| < 1

3

]}
+ Pr

{
|α0 − α̃L| ≥ 1

3

}

≤ Pr

{[
1∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)G0l
1/3
∣∣∣∣ C̃l

G0l−α0
− 1

∣∣∣∣≥ ε

]}
+ oL(1)

≤ 1

ε2

1

(
∑L

l=1(2l + 1))2

L∑
l=1

(2l + 1)2G2
0l

2/3 Var

(
Ĉl

G0l−α0
− 1

)
+ oL(1)

= O

(
L8/3+2(α0−γ )

L4

)
= oL(1).
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As far as the second term is concerned, we have, for a suitably small δ > 0:

Pr

(
|GB | ≥ ε

2

)
= Pr

([
|GB | ≥ ε

2

]
∩ [

log l(α0 − α̃L)
]
< δ

)
+ Pr

(
log l(α0 − α̃L) ≥ δ

)
= Pr

([
|GB | ≥ ε

2

]
∩ [

log l(α0 − α̃L)
]
< δ

)
+ oL(1)

and using |e−x − 1| ≤ x for 0 ≤ x ≤ 1, we obtain∣∣l−(α0−α̃L) − 1
∣∣ = ∣∣exp

(− log l(α0 − α̃L)
)− 1

∣∣≤ log l|α0 − α̃L|,

Pr

([
|GB | ≥ ε

2

]
∩ [

log l(α0 − α̃L)
]
< δ

)

≤ Pr

(
G0∑L

l=1(2l + 1)

L∑
l=1

(2l + 1)
∣∣(l−(α0−α̃L) − 1

)∣∣≥ ε

2
∩ [

log l(α0 − α̃L)
]
< δ

)

≤ 1

ε2
Var

{
G0∑L

l=1(2l + 1)

L∑
l=1

(2l + 1) log l|α0 − α̃L|
}

= O

(
1

L4
L2 logL

1

L2−2(α0−γ )

)
= oL(1),

where we have used

Var(α0 − α̃L) = O

(
1

L2−2(α0−γ )

)
,

which under Condition 2 will be established in the proof of Theorem 4. �

Finally, we provide the proof of the central limit theorem in the presence of observational
noise.

Proof of Theorem 4. The main difference with the argument in the noiseless case concerns the
variance of the score SL(α0); we just sketch the main steps and leave the details to the reader.
Indeed, we can split Var{SL(α0)} as

Var
{
SL(α0)

}= V1 + V2 + V3,

where

V1 =
{

1∑L
l=1(2l + 1)

}2 L∑
l=1

(2l + 1)2(log l)2 Var

{
C̃l

G0l−α0

}
,

V2 =
{

1∑L
l=1(2l + 1)

}2
(

L∑
l=1

(2l + 1) log l

)2

Var

(
G̃(α0)

G0

)
,
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V3 = −2(
∑L

l=1(2l + 1) log l)

(
∑L

l=1(2l + 1))2
·

L∑
l=1

{
(2l + 1) log l

}
Cov

(
C̃l

Cl

,
G̃(α0)

G0

)
.

Here

Var

(
Ĝ(α0)

G0

)
= 2∑L

l=1(2l + 1)

×
(

1 +
(

GN

G0

)2∑L
l=1(2l + 1)l−2(γ−α0)∑L

l=1(2l + 1)
(A.9)

+
(

GN

G0

)∑L
l=1(2l + 1)l−(γ−α0)∑L

l=1(2l + 1)

)
+ O

(
L−min(2(γ−α0),(γ−α0))−2),

Cov

(
C̃l

CT
l

,
Ĝ(α0)

G0

)
= 2∑L

l=1(2l + 1)

×
(

1 +
(

GN

G0

)2

l−2(γ−α0) (A.10)

+ 2
GN

G0
l−(γ−α0) + O

(
l−min(2(γ−α0),(γ−α0))

));

hence

V1 =
(

1∑L
l=1(2l + 1)

)2

× 2
L∑

l=1

(2l + 1)(log l)2
(

1 +
(

GN

G0

)2

l−2(γ−α0)

+ 2
GN

G0
l−(γ+α0) + o

(
l−min(2(γ−α0),(γ−α0))

));

V2 =
(

1∑L
l=1(2l + 1)

)3

2

(
L∑

l=1

(2l + 1) log l

)2

×
(

1 +
(

GN

G0

)2∑L
l=1(2l + 1)l−2(γ−α0)∑L

l=1(2l + 1)
+
(

GN

G0

)∑L
l=1(2l + 1)l−(γ−α0)∑L

l=1(2l + 1)

)
+ o

(
L−min(2(γ−α0),(γ−α0))

);



Gaussian semiparametric estimates on the unit sphere 73

V3 = −4(
∑L

l=1(2l + 1) log l)

(
∑L

l=1(2l + 1))3

L∑
l=1

(2l + 1) log l

×
(

1 +
(

GN

G0

)2

l−2(γ−α0) + 2
GN

G0
l−(γ+α0)

+ O
(
l−min(2(γ−α0),(γ−α0))

))
.

For γ ≥ α0, we have hence

lim
L→∞ 2

(
1 + GN

G0
δγ
α0

)2

L2 Var
{
SL(α0)

}= 1. (A.11)

In fact, for α0 < γ , we obtain

V1 =
(

1∑L
l=1(2l + 1)

)2

2
L∑

l=1

(2l + 1)(log l)2(1 + O
(
l−(γ−α0)

));
V2 =

{
1∑L

l=1(2l + 1)

}3

2

(
L∑

l=1

(2l + 1) log l

)2

+ O
(
L−(γ−α0)−2);

V3 = −4

{
1∑L

l=1(2l + 1)

}3
(

L∑
l=1

(2l + 1) log l

)2

+ O
(
L−(γ−α0)−2),

so that

Var
{
SL(α0)

}
= 2

(
∑L

l=1(2l + 1))3

(
L∑

l=1

(2l + 1)

L∑
l=1

(2l + 1)(log l)2 −
(

L∑
l=1

(2l + 1) log l

)2)

+ O
(
L−(γ−α0)−2)

= 2

L6

L4

4
+ O

(
L−(γ−α0)−2)= 1

2L2
+ O

(
L−(γ−α0)−2)

by using (A.4) and (A.3) with s = 0 to obtain (A.11). Similarly, if α0 = γ , we have

Var

(
Ĝ(α0)

G0

)
= 2∑L

l=1(2l + 1)

(
1 + GN

G0

)2

+ O
(
L−(γ−α0)−2);

Cov

(
C̃l

CT
l

,
Ĝ(α0)

G0

)
= 2∑L

l′=1(2l + 1)

(
1 + GN

G0

)2

+ O
(
L−(γ−α0)−2).
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Simple calculations lead then to (A.11). For γ < α0 < γ + 1, we have

V1 = 2(GN/G0)
2

(
∑L

l=1(2l + 1))4

(
L∑

l=1

(2l + 1)

)2 L∑
l=1

(2l + 1)(log l)2(l2(α0−γ ) + o
(
l2(α0−γ )

))
= 2(GN/G0)

2

(
∑L

l=1(2l + 1))4

L6+2(α0−γ )

1 + (α0 − γ )

×
(

log2 L − logL

(1 + (α0 − γ ))
+ L2(1+(α0−γ ))

(1 + (α0 − γ ))2
+ o(1)

)
;

V2 = 2(GN/G0)
2

(
∑L

l=1(2l + 1))4

(
L∑

l=1

(2l + 1) log l

)2 L∑
l=1

(2l + 1)
(
l2(α0−γ ) + o

(
l2(α0−γ )

))
= 2(GN/G0)

2

(
∑L

l=1(2l + 1))4

L6+2(α0−γ )

1 + (α0 − γ )

(
log2 L − logL + 1

4
+ o(1)

)
;

V3 = −4(GN/G0)
2

(
∑L

l=1(2l + 1))4

(
L∑

l=1

(2l + 1)

)(
L∑

l=1

(2l + 1) log l

)

×
(

L∑
l=1

(2l + 1) log l

(
GN

G0

)2(
l2(α0−γ ) + o

(
l2(α0−γ )

)))

= −4(GN/G0)
2

(
∑L

l=1(2l + 1))4

L6+2(α0−γ )

1 + (α0 − γ )

×
(

log2 L + 1

4(1 + (α0 − γ ))
− logL

2

(
1 + 1

(1 + (α0 − γ ))

)
+ o(1)

)
by using (A.4) and (A.3) with s = 2(α0 − γ ). Hence, we obtain

lim
L→∞L2−2(α0−γ ) Var

{
SL(α0)

}= 2

(
GN

G0

)2

H(α0 − γ ),

so that the asymptotic behaviour of the variance is fully understood.
To conclude the proof of the central limit theorem, let us focus on γ < α0 < γ + 1 and write

L1−(α0−γ )SL(α0) = 1

L1+(α0−γ ) + O(L1+(α0−γ ))

∑
l

(Al + Bl),

where

Al = (2l + 1) log l

{
C̃l

CT,l

− 1

}
, Bl = (2l + 1) log l

{
G̃L(α0)

G0
− 1

}
.
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The analysis of fourth-order cumulants

1

L4(1+(α0−γ ))
cum

{∑
l1

(Al1 + Bl1),
∑
l2

(Al2 + Bl2),
∑
l3

(Al3 + Bl3),
∑
l4

(Al4 + Bl4)

}

= OL

(
log4 L

L2+(α0−γ )

)
is entirely analogous to the noiseless case. �
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