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Consider a first-order autoregressive process Xi = βXi−1 + εi , where εi = G(ηi, ηi−1, . . .) and ηi, i ∈ Z

are i.i.d. random variables. Motivated by two important issues for the inference of this model, namely,
the quantile inference for H0: β = 1, and the goodness-of-fit for the unit root model, the notion of the
marked empirical process αn(x) = 1

n

∑n
i=1 g(Xi/an)I (εi ≤ x), x ∈ R is investigated in this paper. Herein,

g(·) is a continuous function on R and {an} is a sequence of self-normalizing constants. As the innovation
{εi} is usually not observable, the residual marked empirical process α̂n(x) = 1

n

∑n
i=1 g(Xi/an)I (ε̂i ≤ x),

x ∈ R, is considered instead, where ε̂i = Xi − β̂Xi−1 and β̂ is a consistent estimate of β. In particular, via
the martingale decomposition of stationary process and the stochastic integral result of Jakubowski (Ann.
Probab. 24 (1996) 2141–2153), the limit distributions of αn(x) and α̂n(x) are established when {εi} is a
short-memory process. Furthermore, by virtue of the results of Wu (Bernoulli 95 (2003) 809–831) and Ho
and Hsing (Ann. Statist. 24 (1996) 992–1024) of empirical process and the integral result of Mikosch and
Norvaiša (Bernoulli 6 (2000) 401–434) and Young (Acta Math. 67 (1936) 251–282), the limit distributions
of αn(x) and α̂n(x) are also derived when {εi} is a long-memory process.
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1. Introduction

Consider the autoregressive (AR) model

Xi = βXi−1 + εi, (1.1)

where X0 is given and εi = G(ηi, ηi−1, . . . , ) is such that Eεi = 0 (when it exists) and {ηi} is
a sequence of i.i.d. random variables. It is known that when the tail of εi is heavy, the quantile
estimate of β performs better than the least squares estimate (LSE). Even under the Gaussian
setting, Zou and Yuan [39] proved that a composite quantile estimate can be as efficient as the
maximum likelihood estimate (MLE). As a result, the quantile estimate provides a good alternate
to the LSE. The first issue pursued in this paper is to study the asymptotic properties of the
quantile estimate for model (1.1) with both long and short-memory innovations when β = 1.

A second motivation of this paper is to consider the goodness-of-fit issue for model (1.1).
Empirical processes and goodness-of-fit tests in the i.i.d. case have long been a vibrant research
topic in statistics, see, for example, the succinct monograph of del Barrio, Deheuvels and van
de Geer [13], the proceeding of Gaenssler and Révész [17] and the references therein. Recently,
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there have also been developments on model checking using goodness-of-fit ideas for dependent
data. For example, Bai [3] applied a Rosenblatt-transform to test the conditional distribution of ε1

under condition on {εi, i ≤ 0}, Escanciano [14] and Hong and Lee [21] used a generalized spec-
tral method to check the model fitness, Koul and Ling [26] considered the Kolmogorov–Smirnov
(K–S) statistics of empirical process for GARCH model and Chan and Ling [7] generalized the
K–S test to long-memory time series. It should be noted that Chan and Ling [7] only made use
of the marginal distribution information of ε1. For long-memory dependence, using only the
marginal distribution information may reduce the test power and lead to incorrect conclusions.
An alternative statistic which increases the power and takes into account of the dependent in-
formation is therefore required. Recently, some progresses have been made on this issue. For
example, Woodridge [35] and Escanciano [15] proposed the statistic

∑n
i=1 g(Xi−1)εi for a mea-

surable weighted function g(·). Stute, Xu and Zhu [32] used
∑n

i=1 g(Xi−1)(I (εi ≤ x) − F(x))

to test the validity of a model for independent data. The idea of Stute, Xu and Zhu was used by
Escanciano [16] to check the joint specification of conditional mean and variance of a GARCH-
type model.

It turns out that the key idea of studying these two issues lies in analyzing the asymptotic
property of

n∑
i=1

g(Xi−1)
[
I (εi < x) − F(x)

]
, x ∈ R, (1.2)

where g(·) is a measurable weighted continuous function on R. Note that if Xn is a unit root
model, then under some regularity conditions, there exists a constant sequence {an} such that

X[nt]/an
f.d.d.−→ ξ(t) for some random process ξ(t), where

f.d.d.−→ denotes the weak convergence of
finite-dimensional distributions. This leads us to replace the statistic of Stute, Xu and Zhu [32]
by

αn(x) =
n∑

i=1

g(Xi−1/an)
(
I (εi ≤ x) − F(x)

)
. (1.3)

Observe that αn(x) is a general form of (1.2) and its limit behavior offers important insight in
studying the two aforementioned issues.

Specifically, let {η′
i} be an i.i.d. copy of {ηi}, Fi be the σ -field generated by {ηt , t ≤ i}, that

is, Fi = σ(ηi, ηi−1, . . .) and F ∗
i = σ(η′

i , ηi−1, . . . , η1, η0, η−1, η−2 . . . , ). Let Lp be the space of
random variables Z with ‖Z‖p = (E|Z|p)1/p < ∞. For simplicity, we also write ‖ · ‖2 as ‖ · ‖.
For j ∈ Z, define the projection operator

Pj · = E(·|Fj ) − E(·|Fj−1)

and define the predictive dependence measure θp(i) = ‖P0εi‖p as in Wu [37]. We say that a pro-
cess {εi} is a short-memory process if

∑∞
i=0 θp(i) < ∞, otherwise, we say it is a long-memory

process.
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The main purpose of this paper is to consider a unified approach for the limit of (1.3) and the
statistic

α̂n(x) =
n∑

i=1

g(Xi−1/an)
(
I (ε̂i ≤ x) − F(x)

)
(1.4)

for model (1.1) under non-stationarity with long and/or short-memory innovations {εi}, where
ε̂i = Xi − β̂Xi−1 and β̂ is an estimate of β. Although Escanciano [16] has also considered
the model checking problem for dependent data (GARCH), his underlying model still pos-
sesses a martingale structure. When {Xi} is a stationary process adapted to the fields Fi =
σ(εi, εi−1, . . .) = σ(ηi, ηi−1, . . .) and {εi} is a martingale difference sequence, the central limit
theorem (CLT) for martingale differences can be applied to derive the limit distribution of (1.3).
When Xi is a random walk process, it is not clear how to derive the limit distribution of (1.3),
especially, if {εi} is a long-memory process. This is because the CLT of martingale differ-
ences cannot be directly used and when {εi} is a long-memory process, neither g(X[nt]/an)

nor
∑[nt]

i=1(I (ε̂i < x) − F(x)) can be approximated by a martingale. In this paper, we first use
the result of Jakubowski [22] (see also Protter and Kurtz [27]) on the weak convergence of the
stochastic integral to deduce the limit distributions of (1.3) and (1.4), when {εi} is a short-memory
process. We then combine the results of Wu [36] and Ho and Hsing [20] on the expression of
empirical process and the integral result of Mikosch and Norvaiša [30] and Young [38] to deduce
the limit distributions of αn(x) and α̂n(x) when {εi} is a long-memory process.

The paper is organized as follows. In Section 2, we consider the marked empirical process
when {εi} is short-memory. Section 3 considers the case with long-memory innovations. Proofs
are given in Section 4.

2. Short-memory error processes

In this section, we consider the limit distribution for (1.3) and (1.4) when {εi = G(ηi, ηi−1, . . .} is
a short-memory process with mean zero. Let S[nt] =: Sn(t) =∑[nt]

i=1 εi . According to Theorem 2*
of Chapter 7 (see pages 162 and 175) of Gnedenko and Kolmogorov [18], if {εi} are i.i.d. and

there exists a sequence {an} such that Sn(1)/an
L−→ S(1), then S(1) is a stable variable, where

L−→ denotes the convergence in distribution. Further, when εi has an infinite variance, it must
satisfy for any y > 0,

lim
x→∞P

(|ε1| ≥ xy
)
/P

(|ε1| ≥ x
)= y−α (2.1)

and the normalization constants {an} are given by

an = inf
{
x: P

(|ε1| ≥ x
)≤ 1/n

}
. (2.2)

Similar behaviors exist for short-memory processes under certain regularity conditions, see,
for example, Davis and Resnick [11]. Throughout the paper, we assume (2.1) and (2.2)
hold when {εi} has an infinite variance and there exists a constant sequence {an} such that

Sn(1)/an
L−→ S(1).
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Let Fi(x|Fj ) = P(εi ≤ x|Fj ), fi(x|Fj ) = F
(1)
i (x|Fj ) be the conditional distribution (resp.,

density) function of εi at x given Fj and fi be the marginal density of εi . Let Wn(t, x) =∑[nt]
i=1[I (εi < x) − F(x)] and W(t, x) be a rescaled Brownian bridge for fix t and a Brown-

ian motion with variance μ(x) = E{∑∞
i=0 Fi(x|F0)− Fi(x|F ∗

0 )}2 for fix x. Further, let
S
⇒ and

w
⇒ denote the weak convergence in S and J1-topology, respectively, and impose the following
assumptions:

(A1) Sn(t)/an
S
⇒ S(t) on D[0,1]. For more information about the weak convergence in the

S-topology, see Jakobowski ([22] and [23]),
(A2) g(·) is a Hölder continuous function on R, that is, |g(x) − g(y)| ≤ C|x − y|ν for all

x, y ∈ (−∞,∞), where ν = 1, when ε1 has infinite variance with tail index α < 2 and ν > 1
when α = 2 or ε1 has finite variance.

(A3)

(i)
∑∞

j=1 ‖∑∞
i=j Fi(x|F0) − Fi(x|F ∗

0 )‖2 < ∞, or
(ii)

∑∞
i=1 ‖Fi(x|F0) − Fi(x|F ∗

0 )‖ < ∞ and
∑∞

i=m ‖Fi(x|F0) − Fi(x|F ∗
0 )‖ = O[(logm)−a],

a > 3/2, when
∑n

i=1 |εi |/an = Op(1),

(A4)
∑∞

j=1 supx ‖∑∞
i=j F

(l)
i (x|F0) − F

(l)
i (x|F ∗

0 )‖2 < ∞, l = 0,1,F
(0)
i (x|F0) = Fi(x|F0).

Theorem 2.1. Suppose that conditions (A1)–(A3) hold, then for any x ∈ R,

1√
n

n∑
i=1

g(Si−1/an)
[
I (εi < x) − F(x)

] L−→
∫ 1

0
g
(
S(t−)

)
dW(t, x). (2.3)

In addition, if (A3) is replaced by (A4), then for any constant A > 0,

1√
n

n∑
i=1

g(Si−1/an)
[
I (εi < x) − F(x)

] w
⇒
∫ 1

0
g
(
S(t−)

)
dW(t, x), on D[−A,A], (2.4)

Theorem 2.2. Suppose that β = 1 in model (1.1) and conditions (A1)–(A3) in Theorem 2.1 hold,
then

1√
n
αn(x)

L−→
∫ 1

0
g
(
S(t−)

)
dW(t, x). (2.5)

In addition, if an(β̂ − 1) = op(1), then

1√
n
α̂n(x) = 1√

n
αn(x)

(2.6)

+ 1√
n

n∑
i=1

g(Xi−1/an)
[
F
(
x + (β̂ − β)Xi−1

)− F(x)
]+ op(1).
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Let β̂ be the τ -quantile estimate of β when ε1 has infinite variance with tail index α < 2,
that is, β̂ = arg minβ

∑n
i=1 ρτ (Xi −βXi−1 − F−1(τ )), where ρτ (y) = y(τ − I (y ≤ 0)). When

β = 1, using the argument of Theorem 4 in Knight (see also Chan and Zhang [9]), we have

an

√
n(β̂ − β) = (1/

√
n)
∑n

t=1(Xt−1/an)(τ − I (εt ≤ F−1(τ )))

(1/n)
∑n

t=1 ft (F−1(τ )|Ft−1)(X
2
t−1/a

2
n)

+ op(1).

By virtue of Theorem 2.2 and this expression, the following corollary concerning the quantile
estimate is immediate.

Corollary 2.1. Under conditions Theorem 2.2, if E|f1(F
−1(τ ))|F0|p < ∞ for some p > 1 and

f (F−1(τ )) > 0, then

an

√
n(β̂ − β)

L−→ − 1

f (F−1(τ ))

∫ 1
0 S(t−)dW(t,F−1(τ ))∫ 1

0 S2(t)dt
.

Theorem 2.3. In addition to the conditions of Theorem 2.2, if (A4) holds, then for any constant
A > 0,

sup
x∈[−A,A]

1√
n
αn(x)

L−→ sup
x∈[−A,A]

∫ 1

0
g
(
S(t)

)
dW(t, x). (2.7)

For α̂n(x), we have:

(a) if β̂ is the τ -quantile estimate of β and f (F−1(τ )) > 0, then

sup
x∈[−A,A]

1√
n
α̂n(x)

L−→ sup
x∈[−A,A]

[(
− f (x)

f (F−1(τ ))

)(∫ 1
0 S(t−)dW(t,F−1(τ ))∫ 1

0 S2(t)dt

)
(2.8)

×
∫ 1

0
g
(
S(t)

)
S(t)dt +

∫ 1

0
g
(
S(t−)

)
dW(t, x)

]
.

(b) if β̂ is the LSE of β and (Sn(t),
∑n

i=1 ε2
i /a

2
n)

f .d.d.−→ (S(t), S2), then
(i) if an = nϑ l(n) for some 1/2 < ϑ < 1,

sup
x∈[−A,A]

1

an

α̂n(x)

L−→ sup
x∈[−A,A]

f (x)

∫ 1

0
S(t−)dS(t) (2.9)

×
∫ 1

0
g
(
S(t)

)
S(t)dt

/∫ 1

0
S2(t)dt.
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(ii) If an = √
n,

sup
x∈[−A,A]

1√
n
α̂n(x)

L−→ sup
x∈[−A,A]

[
f (x)

∫ 1

0
S(t−)dS(t)

∫ 1

0
g
(
S(t)

)
S(t)dt

/∫ 1

0
S2(t)dt

(2.10)

+
∫ 1

0
g
(
S(t−)

)
dW(t, x)

]
.

Remark 2.1. By Volný [34], condition (i) in (A3) is a necessary and sufficient condition for
I (εi ≤ x) enjoying a martingale decomposition, that is, there exist a martingale difference ζi(x)

with respect to Fi and a sequence ξi(x) ∈ L2, i ∈ Z such that

I (εi ≤ x) − F(x) = ζi(x) + ξi(x) − ξi+1(x). (2.11)

Remark 2.2. From Theorems 2.2 and 2.3, we see that the limit distribution of the test statistics
based on αn(x) and α̂n(x) are very different in the unit root case. As a result, using a residual
marked empirical process (α̂n(x)) to test the goodness-of-fit of nonstationary processes will be
very different from using the marked empirical process (αn(x)).

To illustrate the usefulness of these theorems, consider the following examples, which charac-
terize the limit distributions of the marked empirical process α under various situations.

Example 2.1. Let {εi} in model (1.1) be the generalized autoregressive conditional heteroscedas-
ticity (GARCH(1,1)) process

εi = σiηi, σ 2
i = ω + aσ 2

i−1 + bε2
i−1,

where ω,a, b > 0, {ηi} is an i.i.d. symmetric random sequence with E[log(a + bη2
1)] < 0 and

E(a + bη2
1)

r < ∞ for some r > 0. If there exists a positive constant C0 such that the density
fη(·) of η1 satisfies supx fη(x) < C0, according to Kesten [24] (see also Lemma A.1 in Chan
and Zhang [10]), there exists an α > 0 such that E(a + bη2

1)
α/2 = 1 and there exists a constant

c0 such that limx→∞ x−αP (|ε1| > x) = c0. Let η′
0 be a independent copy of η0, then there exist

a constant C such that

∞∑
j=1

∥∥∥∥∥
∞∑

i=j

Fi(x|F0) − Fi

(
x|F ∗

0

)∥∥∥∥∥
2

≤
∞∑

j=1

[ ∞∑
i=j

∥∥Fi(x|F0) − Fi

(
x|F ∗

0

)∥∥]2

≤
∞∑

j=1

[ ∞∑
i=j

2

∥∥∥∥∥min

{
1,

bC0√
ω

i∏
k=1

(
a + bη2

k

)∣∣η2
0 − η′2

0

∣∣σ 2
0

}∥∥∥∥∥
]2

≤ C

∞∑
j=1

[ ∞∑
i=j

∥∥∥∥∥
(

i∏
k=1

(
a + bη2

k

)
η2

0σ
2
0

)min{1,α/4}∥∥∥∥∥
]2

< ∞,
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where the last inequality follows since E(a + bη2
1)

α/4 < 1. Thus, (2.3) of Theorem 2.1 and The-
orem 2.2 hold (see also Theorem 2.1 of Chan and Zhang [10]) with

an =
⎧⎨⎩n1/α, if 0 < α < 2,√

n logn, if α = 2,√
n, if α > 2.

Further, if fη(·) has derivative f ′
η(·) and supx f ′

η(x) < C0, then

∞∑
j=1

sup
x

∥∥∥∥∥
∞∑
i=j

fi(x|F0) − fi

(
x|F ∗

0

)∥∥∥∥∥
2

≤ C

∞∑
j=1

[ ∞∑
i=j

ρi

]2

< ∞.

From Theorem 2.1 it follows that for any constant A > 0,

1√
n

n∑
i=1

g(Si−1/an)
[
I (εi < x) − F(x)

] w
⇒
∫ 1

0
g
(
S(t−)

)
dW(t, x), on D[−A,A],

where S(t) is an α-stable process when α < 2 and a Gaussian process when α ≥ 2 and W(t, x)

is given as in Theorem 2.1. As a result, when β = 1 in model (1.1),

sup
x∈[−A,A]

1√
n

αn(x)
L−→ sup

x∈[−A,A]

∫ 1

0
g
(
S(t)

)
dW(t, x).

Example 2.2. Let {εi} in model (1.1) be an infinite-variance linear moving average process εi =∑∞
j=1 cjηi−j , where {ηi} is an i.i.d. sequence with bounded density and heavy tail index 0 < α ≤

2, that is, when α < 2, nP (|η1| > anx) → x−α for any x > 0 and when α = 2, na−2
n E(η2

1I (|η1| ≤
an)) → 1. Since

∞∑
j=1

∥∥∥∥∥∑
i=j

[
Fi(x|F0) − Fi

(
x|F ∗

0

)]∥∥∥∥∥
2

≤
∞∑

j=1

[ ∞∑
i=j

∥∥Fi(x|F0) − Fi

(
x|F ∗

0

)∥∥]2

(2.12)

≤
∞∑

j=1

[ ∞∑
i=j

C
∥∥min

(∣∣ci

(
η0 − η′

0

)∣∣,1
)∥∥]2

≤ C′
∞∑

j=1

[ ∞∑
i=j

|ci |α/2

]2

,

if
∑∞

j=1
∑∞

i=j |ci |α/2 < ∞ (i.e.,
∑∞

i=1 i|ci |α/2 < ∞), condition (i) of (A3) holds. Further, by
Chan and Zhang [8] (see also Avram and Taqqu [2]), we also have condition (A1) for {εi}. Thus,
if
∑∞

j=1
∑∞

i=j |ci |α/2 < ∞ and condition (A2) holds, then for the unit-root model (1.1), we have
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for any x ∈ R,

1√
n
αn(x)

L−→
∫ 1

0
g
(
Zα(t−)

)
dW(t, x), (2.13)

where Zα(t) is a stable process with index α. In particular, when cj = j−θ and θ > 3/α, then
under condition (A2), conclusion (2.13) holds.

On the other hand, if 0 < α < 1, since
∑n

i=1 |εi |/an = Op(1), using (ii) of condition (A3), we
can relax the condition from θ > 3/α to θ > 2/α. This observation sheds light on the important
subtlety of the roles of θ and α for an infinite variance moving average process.

Example 2.3. When {ηi} in Example 2.2 has finite variance and bounded density fη(x) and
cj = j−θ l(j), as j → ∞, for some slowly varying function, similar to (2.12), we have that
under θ > 1, Theorem 2.2 holds. Further, if f ′

η(x) exists and supx |f ′
η(x)| ≤ C0 for some C0 > 0

and θ > 3/2, then

∞∑
j=1

∥∥∥∥∥
∞∑

i=j

fi(x|F0) − fi

(
x|F ∗

0

)∥∥∥∥∥
2

≤
∞∑

j=1

[ ∞∑
i=j

C
∥∥min

(∣∣ci

(
η0 − η′

0

)∣∣,1
)∥∥]2

≤ C′
∞∑

j=1

[ ∞∑
i=j

i−θ l(i)

]2

≤ C′′
∞∑

j=1

i−2θ+2l′(i) < ∞,

where l′(x) is a slowly varying function, it follows that condition (A4) holds. Thus, if condition
(A2) holds,

1√
n

n∑
i=1

g(Si−1/
√

n)
[
I (εi < x) − F(x)

] L−→
∫ 1

0
g
(
S(t)

)
dW(t, x), on D[−A,A]

and when β = 1 in model (1.1),

sup
x∈[−A,A]

1√
n

n∑
i=1

g(Xi−1/
√

n)
[
I (εi < x) − F(x)

] L−→ sup
x∈[−A,A]

∫ 1

0
g
(
S(t)

)
dW(t, x),

where S(t) is a Gaussian process.
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3. Long-memory error processes

In this section, we study the marked empirical process

αn(x) =
n∑

i=1

g(Xi−1/an)
(
I (εi < x) − F(x)

)
,

when {Xt } is a unit root process given by (1.1) with β = 1 and εt being a long-memory process.
Long-memory processes have been widely applied in finance and econometrics, see, for example,
Baillie [4] and Teyssiére and Kirman [33]. Specifically, let cj = j−θ l(j), l(·) be a slowly varying
function with |l(m + n)/l(n) − 1| ≤ m/n for 1 ≤ m ≤ n and consider the linear moving average
process εi =∑∞

j=1 cjηi−j defined in Example 2.3 with
∑∞

j=1 c2
j < ∞ and

∑∞
j=1 |cj | = ∞.

The essential idea in studying the weak convergence of αn(x) when {εi} is short-memory is
the martingale approximation. This transforms the weak convergence of αn(x) into those of a
martingale stochastic integral

∑n
i=1 g(Xi−1/an)ξi(x). When {εi} is long-memory, this method

does not work and the issue of the weak convergence of αn(x) becomes much more challenging.
Fortunately, to circumvent this difficulty, the ideas of Ho and Hsing [20] and Wu [36] become
relevant.

Let f (x) be the density of η1 and f (l)(x) be its lth derivatives and let f (x) = f (0)(x). We
have the following results.

Theorem 3.1. Suppose that β = 1 in model (1.1) and (i) E|η1|ν < ∞ for some ν >

max{4,1/(1 − θ)}; (ii) g(·) is Lipschitz on R; (iii)
∑p

l=0

∫
R

|f (l)(x)|2 dx < ∞, then if any one
of the following three conditions holds:

(a) p = 4 and θ ∈ (1/2,3/4) ∪ (5/6,1);
(b) p = 5 and θ ∈ (1/2,3/4) ∪ (3/4,1) or θ = 3/4 and

∑∞
i=1 l4(i)/i < ∞;

(c) p = 6 and θ ∈ (1/2,1),

we have

sup
x

1

an

αn(x)
L−→ sup

x

∫ 1

0
g
(
Zθ(t)

)
dZθ(t, x). (3.1)

If in addition n(β̂ − 1) = Op(1), then

sup
x

1

an

[
α̂n(x) − f (x)(β̂ − β)

n∑
i=1

g(Xi−1/an)Xi−1

]
(3.2)

L−→ sup
x

f (x)

∫ 1

0
g
(
Zθ(t)

)
dZθ(t),

where an = n3/2−θ l(n) and Zθ(t) = ∫ t

−∞
∫ t

0 [max(v − u,0)]−θ dv dB(u), B(u) is a standard
Brownian motion.

Remark 3.1. When g(·) ≡ 1, then Theorem 3.1 reduces to the case of Chan and Ling [7].
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4. Proofs

To prove the main results, we need the following lemmas. The first one is due to Lemma 4 of
Wu [36].

Lemma 4.1. Let H ∈ C 1, the space of functions with continuous first-order derivatives and
a > 0. Then

sup
t≤s≤t+a

H 2(s) ≤ 2

a

∫ t+a

t

H 2(u)du + 2a

∫ t+a

t

H ′2(u)du (4.1)

and

sup
t∈R

H 2(s) ≤ 2
∫

R

H 2(u)du + 2
∫

R

H ′2(u)du, (4.2)

where H ′ is the derivative of H .

Lemma 4.2. If {εi} is short-memory, then under the conditions (A1), (A2) and (A3), there exists
a martingale difference sequence ζi(x) with respect to Fi such that for any δ > 0,

lim
n→∞P

{∣∣∣∣∣ 1√
n

n∑
i=1

g(Si−1/an)
(
I (εi < x) − F(x)

)− 1√
n

n∑
i=1

g(Si−1/an)ζi(x)

∣∣∣∣∣> δ

}
= 0.

Proof. When (i) of (A3) holds, then by Volný [34], there exist a random sequence
ξi(x) = ∑−1

j=−∞
∑∞

l=0 Pi+j I (εi+l ≤ x) ∈ L2 and a martingale difference sequence
ζi(x) = ∑∞

j=i PiI (εj ≤ x) such that I (εi < x) − F(x) = ζi(x) + ξi(x) − ξi+1(x). This gives
that

1√
n

n∑
i=1

g(Si−1/an)
(
I (εi < x) − F(x)

)− 1√
n

n∑
i=1

g(Si−1/an)ζi(x)

(4.3)

= 1√
n

n−1∑
i=1

ξi+1(x)
[
g(Si/an) − g(Si−1/an)

]− 1√
n
g(Sn−1/an)ξn+1(x) =: I1 + I2.

Since for any δ > 0,

P
{

sup
2≤i≤n+1

∣∣ξi(x)
∣∣> δ

√
n
}

≤
n+1∑
i=2

(
√

nδ)−2E
[
ξ2

1 (x)I
(∣∣ξ1(x)

∣∣> δ
√

n
)]→ 0, (4.4)

it follows that |ξn+1(x)|/√n = op(1). On the other hand, by (A1) and (A2), we have
g(Sn−1/an) = Op(1). Thus, I2 = op(1). It suffices to show that I1 = op(1). When {εi} has
infinite variance with tail index α < 2, the result I1 = op(1) follows along exactly the lines of
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argument of Lemma 2 of Knight [25]. We therefore only give the proof for the finite variance
case in detail.

When {εi} has finite variance or has infinite variance with tail index α = 2, since
∑∞

i=0 θ2(i) <

∞, it follows from Theorem 1 of Wu [37] that E(
∑n

i=1 εi)
2 = C1n. Thus, an = C2

√
n. By (A2)

and (i) of (A3) for any ε > 0, we have

P(|I1| > ε) ≤ C√
n

n−1∑
i=1

E
∣∣ξi+1(x)(εi/an)

νI
(|εi | ≤ δan

)∣∣+ P
(

sup
1≤i≤n

|ε1| > δan

)

≤ C′δν−1

n

n−1∑
i=1

{[
Eξ2

i+1(x)
]1/2[Eε2

i

]1/2}≤ C′′δν−1

n

n∑
i=2

{[
Eξ2

i (x)
]1/2} (4.5)

≤ C′′′δν−1

n

n∑
i=2

{
i−1∑

j=−∞
E

[ ∞∑
l=0

[
Fi+l (x|Fj ) − Fi+l

(
x|F ∗

j

)]]2}1/2

= o(1)

by taking δ → 0. This gives that I1 = op(1) and therefore Lemma 4.2 holds when (i) of (A3) is
true.

When (ii) of (A3) holds, by Corollary 1 of Wu [37], we have

sup
0≤t≤1

∣∣∣∣∣Wn(t, x) −
[nt]∑
i=1

ζi(x)

∣∣∣∣∣= o
(
n1/2), a.s. (4.6)

where Wn(t, x) =∑[nt]
i=1(I (εi ≤ x) − F(x)). Combining this with (A2) gives∣∣∣∣∣ 1√

n

n∑
i=1

g(Si−1/an)
(
I (εi < x) − F(x)

)− 1√
n

n∑
i=1

g(Si−1/an)ζi(x)

∣∣∣∣∣
= 1√

n

∣∣∣∣∣
n∑

i=1

(
Wn(i/n, x) −

i∑
i=1

ζi(x)

)[
g(Si/an) − g(Si−1/an)

]∣∣∣∣∣ (4.7)

≤ C

(
sup

0≤t≤1

1√
n

∣∣∣∣∣Wn(t, x) −
[nt]∑
i=1

ζi(x)

∣∣∣∣∣
)(

n∑
i=1

|εi |
an

)
= op(1).

This completes the proof of Lemma 4.2. �

Lemma 4.3. If {εi} is short-memory, then under the conditions (A1), (A2) and (A4), for any
constant A > 0,

sup
x∈[−A,A]

∣∣∣∣∣ 1√
n

n∑
i=1

g(Si−1/an)
(
I (εi < x) − F(x)

)− 1√
n

n∑
i=1

g(Si−1/an)ζi(x)

∣∣∣∣∣
converges to zero in probability, where ζi(x) is defined as in Lemma 4.2.
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Proof. From the proof of Lemma 4.2 for case of (i) of (A3), it suffices to show

1

n

n∑
i=1

E sup
x∈[−A,A]

ξ2
i (x) = O(1). (4.8)

Since ξi(x) =∑i−1
j=−∞

∑∞
l=0 Pj I (εi+l ≤ x) ∈ C1, it follows from Lemma 4.1 and Fubini’s the-

orem that

E sup
x∈[−A,A]

ξ2
i (x) ≤ 2

A

∫ A

−A

Eξ2
i (u)du + 2A

∫ A

−A

Eξ ′2
i (u)du

≤ 2

A

∫ A

−A

i−1∑
j=−∞

E

[ ∞∑
l=0

[
Fi+l(u|Fj ) − Fi+l

(
u|F ∗

j

)]]2

du

+ 2A

∫ A

−A

i−1∑
j=−∞

E

[ ∞∑
l=0

[
fi+l(u|Fj ) − fi+l

(
u|F ∗

j

)]]2

du

≤ 2
i−1∑

j=−∞
sup
u

E

[ ∞∑
l=0

[
Fi+l (u|Fj ) − Fi+l

(
u|F ∗

j

)]]2

+ 4A2
i−1∑

j=−∞
max

u
E

[ ∞∑
l=0

[
fi+l(u|Fj ) − fi+l

(
u|F ∗

j

)]]2

.

Thus, by (A4), we have (4.8) as desired. �

Lemma 4.4. Let W̃n(t, x) = ∑[nt]
i=1 ζi(x), ζi(x) is the martingale difference defined in Lem-

ma 4.2. Then under condition (A4),

1√
n
W̃n(t, x)

w
⇒ W(t, x) on D
([0,1] × [−A,A]).

Proof. Condition (A4) implies
∑∞

j=1 ‖∑∞
i=j Fi(x|F0) − Fi(x|F ∗

0 )‖2 < ∞, it follows that

Eζi(x) = E{∑∞
i=0 Fi(x|F0) − Fi(x|F ∗

0 )}2 = μ(x) < ∞. Since {ζi(x)} is a martingale differ-
ence sequence, by Theorem 23.1 of Billingsley [6], we have

1√
n
W̃n(t, x)

L−→ W(t, x). (4.9)

By (4.9) and the Cramér–Wold’s device, the finite-dimensional convergence of W̃n(t, x) follows.
By Theorem 6 of Bickel and Wichura [5], to show the tightness of {W̃n(t, x)} on D[0,1] ×
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D[−A,A], it suffices to show that for any 0 ≤ t1 < t < t2 ≤ 1 and −A ≤ x1 < x < x2 ≤ A,

n−2E

{[ [nt]∑
i=[nt1]+1

ζi(x1, x2)

]2[ [nt2]∑
i=[nt]+1

ζi(x1, x2)

]2}
≤ (t − t1)(t2 − t)(x2 − x1)

2 (4.10)

and

n−2E

{∣∣∣∣∣
[nt2]∑

i=[nt1]+1

ζi(x1, x)

∣∣∣∣∣
2∣∣∣∣∣

[nt2]∑
i=[nt1]+1

ζi(x, x2)

∣∣∣∣∣
2}

≤ C(x − x1)(x2 − x)(t2 − t1)
2, (4.11)

where ζi(x, y) = ζi(y) − ζi(x). Equations (4.10) and (4.11) follow easily by condition (A4) and
noting that W̃n(t, x) is a martingale. Details are omitted. �

Lemma 4.5. Under the conditions of Theorem 2.1, there exists a dense set Q ⊂ [0,1],0,1 ∈ Q

such that for any finite subset {0 ≤ t1 < t2 < · · · < tm ≤ 1} ⊂ Q and for any x,

(
Sn(ti)/an, W̃n(ti , x)/

√
n,1 ≤ i ≤ m

) L−→ (
S(ti),W(ti , x),1 ≤ i ≤ m

)
. (4.12)

Proof. Since Sn(t)
S
⇒ S(t), it follows that there exists a dense set Q′ ⊂ [0,1],1 ∈ Q′ such that

for any finite subset {t1 < t2 < · · · < tm ≤ 1} ⊂ Q′,

a−1
n

(
Sn(t1), Sn(t2), . . . , Sn(tm)

) f.d.d.−→ (
S(t1), S(t2), . . . , S(tm)

)
. (4.13)

Note that Sn(0) = S(0) = 0. Thus, (4.13) holds for all finite subset of Q = Q′ ∪ {0}.
When εi has infinite variance, since W(t, x) is a continuous process on [0,1] × [−A,A], it

follows (see, e.g., page 112 of Billingsley [6]) that the weak convergence of Lemma 4.4 can also
be replaced by C([0,1] × C[−A,A]). Thus, (Sn(t), W̃n(t, x)) is uniformly S-tight on D[0,1] ×
D[0,1]. This implies that for any sequence (Sn(t), W̃n(t, x)), t ∈ Q, there exists a subsequence
(Snk(t), W̃nk(t, x)) such that

Znk(t) := (
Snk(t)/an, W̃n(t, x)/

√
n
) L−→ Z(t),

where Z(t) is a bivariate random process with marginal distributions S(t) and W(t, x). Following
the argument of Theorem 3 in Resnick and Greenwood [31], we have that S(t) and W(t, x) are
independent and any convergent subsequence has the same limit. Thus, (4.12) holds.

When εi has finite variance, since
∑∞

i=0 θ2(i) < ∞, it follows from Corollary 3 of Dedecker

and Merlevède [12] that Sn(t)/an
w
⇒ S(t) for some Gaussian process S(t). Thus, by Lemma 4.4,

if we can show that for any finite subset {ti ,1 ≤ i ≤ m} ⊂ [0,1],
(
Sn(ti)/an, W̃n(ti , x)/

√
n,1 ≤ i ≤ m

) L−→ (
S(ti),W(ti , x),1 ≤ i ≤ m

)
, (4.14)
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then (Sn(t)/an, W̃n(t, x)/
√

n)
w
⇒ (S(t),W(t, x)) on D[0,1] and (4.12) follows. By Theorem 1

of Wu [37], we have that there exists martingale Ei with respect to Fi such that∣∣∣∣∣(Sn(t)/an, W̃n(t, x)/
√

n
)−

( [nt]∑
i=1

Ei/an,

[nt]∑
i=1

ζi(x)/
√

n

)∣∣∣∣∣= op(1). (4.15)

On the other hand, from the martingale central limit theorem (see Theorem 4.1 of Hall and Heyde
[19]), it follows that

[nt]∑
i=1

(
Ei/an, ζi(x)/

√
n
) w
⇒ (

S(t),W(t, x)
)
. (4.16)

Combining (4.15) with (4.16) yields (4.14). This completes the proof of Lemma 4.5. �

Lemma 4.6. Under the conditions of Theorem 3.1, we have

(a) 1
an

Sn(t) = 1
an

∑[nt]
i=1 εi

w
⇒ Zθ(t) on D[0,1];
(b) 1

an

∑n
i=1 g(Si−1/an)εi

L−→ ∫ 1
0 g(Zθ (t))dZθ(t).

Proof. (a) can be found in Avram and Taqqu [1]. Next, we give the proof of (b).
With the help of strong approximation, it can be shown that

1

an

n∑
i=1

g(Si−1/an)εi = 1

an

n∑
i=1

g(S∗
i−1/an)ε

∗
i + op(1),

where S∗
i = ∑i

j=1 ε∗
j and ε∗

j is defined similarly to εj by replacing {ηi} with i.i.d normal vari-
ables {η∗

i }.
Since Zθ(t) is a fractional Brownian motion with Hurst index H = 3/2 − θ , by Theorem 4 of

Marcus [29], we have

P
(

lim sup
|s−t |=h→0;0≤s,t≤1

∣∣Zθ(s) − Zθ(t)
∣∣< 2hH log(1/h)

)
= 1.

Thus, by (a) and Zθ(t) is continuous, we have

lim
n→∞P

{
lim sup

|s−t |≤h→0;0≤s,t≤1

1

an

∣∣S∗
n(t) − S∗

n(s)
∣∣≤ 2hH log(1/h)

}
= P

(
lim sup

|s−t |≤h→0;0≤s,t≤1

∣∣Zθ(t) − Zθ(s)
∣∣≤ 2hH log(1/h)

)
= 1.

This implies in probability S∗
n(t) is Hölder continuous with an exponent a > H. This gives that,

in probability, for any p > (1/H,∞),

νp

(
S∗

n(t)/an, [0,1])= sup
κ

m∑
i=1

∣∣S∗
n(ti) − S∗

n(ti−1)
∣∣p/a

p
n < ∞,
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where the supremum is taken over all subdivisions κ of [0,1] : 0 = x0 < · · · < xm = 1,m ≥ 1.

Since g(·) is a Lipschitz function, we have in probability

νp

(
g
(
S∗

n(t)/an

)
, [0,1])= sup

κ

m∑
i=1

∣∣g(S∗
n(ti)/an

)− g
(
S∗

n(ti−1)/an

)∣∣p < ∞.

By the theorem on Stieltjes integrability of Young [38] (see also Theorem 2.4 of Mikosch and
Norvais̆a [30]), we have in probability the integral

1

an

n∑
i=1

g(Si−1/an)εi =
∫ 1

0
g
(
Sn(t−)/an

)
dSn(t)/an

exists. This implies that ∫ 1

0
g
(
Sn(t−)/an

)
dSn(t)/an

(4.17)

= lim
δ→0

m∑
i=1

g
(
Sn(ti)

)(
Sn(ti+1) − Sn(ti)

)
/an

for some sub-division κ of [0,1]: 0 = t0 < t1 < · · · < tm ≤ 1,m = [1/δ] with ti+1 − ti = δ. By
(a) and the continuous mapping theorem, we get that for any given m,

m∑
i=1

g
(
Sn(ti)/an

)(
Sn(ti+1) − Sn(ti)

)
/an

L−→
m∑

i=1

g
(
Zθ(ti)

)(
Zθ(ti+1) − Zθ(ti)

)
(4.18)

p−→
∫ 1

0
g
(
Zθ(t)

)
dZθ(t),

where the last equality is followed by taking δ → 0 and the existence of
∫ 1

0 g(Zθ (t))dZθ(t).

Combining (4.17) and (4.18) gives (b). The proof of Lemma 4.6 is completed. �

Proof of Theorem 2.1. Lemma 4.5 implies that (5) of Jakubowski [22] holds, that is, there

exist a dense set Q such that (g(Sn(t)), W̃n(t, x))
f.d.d.−→ (g(S(t)),W(t, x)). Further, since g(·) is

a Lipschitz continuous function and Sn(t) is uniformly S-tight, it follows that g(Sn(t)) is also
uniformly S-tight. Moreover, for any x ∈ R, W̃n(t, x) is a martingale satisfying UT condition
and is J1-tight with limiting law concentrated on C([0,1]), by Remark 4 of Jakubowski [22],
we see that his condition (6) is satisfied. Therefore, for {g(Sn(t)), W̃n(t, x)}, all the conditions of
Theorem 3 of Jakubowski [22] are satisfied, as a result of this theorem, we have

1√
n

n∑
i=1

g(Si−1/an)ζi(x)
L−→

∫ 1

0
g
(
S(t)

)
dW(t, x). (4.19)
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Thus, (2.3) follows from Lemma 4.2. By Lemma 4.3, for (2.4) it suffices to show that

Un(x) := 1√
n

n∑
i=1

g(Si−1/an)ζi(x)

(4.20)
w
⇒

∫ 1

0
g
(
S(t)

)
dW(t, x) =: U(x), on D[−A,A].

The finite-dimension convergence to (4.20) follows from the Cramér–Wold device and (4.19).
Next, we show for any ε > 0, there exists a δ > 0 such that

P
{

sup
|x−y|≤δ

∣∣Un(x) − Un(y)
∣∣> ε

}
→ 0. (4.21)

This implies that Un(x) is tight, as a result, we have (4.20).

Since Sn(t)/an
S
⇒ S(t) and Sn(0) = S(0) = 0, it follows that

max
0≤t≤1

∣∣g(Sn(t)/an

)∣∣ L−→ max
0≤t≤1

∣∣g(S(t)
)∣∣. (4.22)

Let gδ(Si/an) = g(Si/an)I (|g(Si/an)| ≤ δ−1/4) and Vn(x) = 1√
n

∑n
i=1 gδ(Si−1/an)(ζi(x) −

ζi(y)). Then Vn(x) is a martingale and by Lemma 4.1 and condition (A4),

E
[

sup
y≤x≤y+δ

∣∣Vn(x)
∣∣]2

≤ 2

δn

∫ y+δ

y

E

(
n∑

i=1

[
gδ

(
Si−1

an

)(
ζi(u) − ζi(y)

)])2

du

+ 2δ

n

∫ y+δ

y

E

(
n∑

i=1

[
gδ

(
Si−1

an

)
ζ ′
i (u)

])2

du (4.23)

≤ 2δ−1/2

n

n∑
i=1

∫ y+δ

y

E
{
ζi(u) − ζi(y)

}2 du + 2δ−1/2δ2

n

n∑
i=1

sup
y≤x≤y+δ

E
{
ζ ′
i (x)

}2

≤ 2δ−1/2

n

n∑
i=1

∫ y+δ

y

∫ u

y

E
{
ζ ′
i (a)

}2
da du + 2δ−1/2δ2

n
sup

x∈[−A,A]
E
{
ζ ′
i (x)

}2 ≤ Cδ3/2.

Note that

P
{

sup
|x−y|≤δ

∣∣Un(x) − Un(y)
∣∣> 4ε

}
≤ C

(
1 + [A/δ])P{

sup
y≤x≤y+δ

∣∣Vn(x)
∣∣> ε

}
+ P

{
max

1≤i≤n

∣∣g(Si/an)
∣∣> δ−1/4

}
.
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By (4.22), (4.23) and taking δ small enough, we have (4.21) as desired. This completes the proof
of Theorem 2.1. �

Proof of Theorem 2.2. Note that when β = 1, Xi = X0 + ∑i
j=1 εj and X0/an

p−→ 0, (2.5)
follows directly from (2.3). Next, we show (2.6).

Let {uni} be a constant sequence with maxi |uni | = o(1). Along the lines of proof in
Lemma 4.2, we have

1√
n

n∑
i=1

g

(
Si−1

an

)[
I (εi ≤ x + uni) − I (εi ≤ x)

]
= 1√

n

n∑
i=1

g

(
Si−1

an

)[
ζi(x + uni) − ζi(x)

]
(4.24)

+ 1√
n

n∑
i=1

g

(
Si−1

an

)(
F(x + uni) − F(x)

)+ op(1)

= 1√
n

n∑
i=1

g

(
Si−1

an

)(
F(x + uni) − F(x)

)+ op(1).

Since max1≤i≤n |Xi/an| = Op(1), it follows that when an(β̂ − β) = op(1), max1≤i≤n(β̂ −
β)Xi = op(1). Thus, by (4.24), we have

1√
n

(
α̂n(x) − αn(x)

) = 1√
n

n∑
i=1

g(Si−1/an)
(
F
(
x + (β̂ − β)Xi−1

)− F(x)
)+ op(1).

This gives (2.6) and completes the proof of Theorem 2.2. �

Proof of Theorem 2.3. Since Xi = X0 + ∑i
j=1 εj and X0/an

p−→ 0, (2.7) follows from (2.4)
and the continuous mapping theorem. Let uni be given as that in the proof of (4.24), then by
Lemma 4.3 and a similar argument of (4.21), we have that under the condition (A4),

sup
x∈[−A,A]

1√
n

n∑
i=1

g(Xi−1/an)
[
I (εi ≤ x + uni)

]
= sup

x∈[−A,A]

[
1√
n

n∑
i=1

g(Xi−1/an)I (εi ≤ x) + 1√
n

n∑
i=1

g(Xi−1/an)
[
ζi(x + uni) − ζi(x)

]
+ 1√

n

n∑
i=1

g(Xi−1/an)
(
F(x + uni) − F(x)

)]+ op(1)

= sup
x∈[−A,A]

[
1√
n

n∑
i=1

g(Xi−1/an)I (εi ≤ x) + 1√
n

n∑
i=1

g(Xi−1/an)
(
F(x + uni) − F(x)

)]
+ op(1).
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As a result, by max1≤i≤n(β̂ − 1)Xi = op(1) and Taylor’s expansion, we have in probability,

sup
x∈[−A,A]

α̂n(x)√
n

= sup
x∈[−A,A]

[
αn(x)√

n
+ 1√

n
f (x)(β̂ − 1)

n∑
i=1

g(Xi−1/an)Xi−1

]
. (4.25)

Further, by Theorem 3 of Jakubowski [22], it follows that

1

n

n∑
i=1

[
g(Xi−1/an)Xi−1/an

] w−→
∫ 1

0
g
(
S(t)

)
S(t)dt. (4.26)

Combining equations (2.7), (4.25), (4.25) with Corollary 2.1 yields (2.8). Equations (2.9) and
(2.10) follow similarly by noting that when β̂ is the LSE of β , then

n(β̂ − β) = 1

2

[
X2

n/a
2
n − X2

0/a
2
n −

n∑
i=1

ε2
i /a

2
n

]/[
1

n

n∑
i=1

X2
i−1/a

2
n

]

w−→ 1

2

(
S2(1) − S2)/∫ 1

0
S2(t)dt

=:
∫ 1

0
S(t−)dS(t)

/∫ 1

0
S2(t)dt.

The proof of Theorem 2.3 is completed. �

Proof of Theorem 3.1. Since the proof of the three cases are similar, we only give the proof
under condition (b) in details. Let Ul,i =∑

0≤j1<···<ji

∏i
s=1 cjs ηl−js ,Ul,0 = 1 and L(̃εl, x, k) =

I (εl ≤ x) −∑k
i=0(−i)iF (i)(x)Ul,i . By Lemma 10 of Wu [36], we have that for all x,

∥∥P1
(
L(̃εi, x,3)

)∥∥ = O

{
|ci−1|

[
|ci−1| +

( ∞∑
j=i

|cj |4
)1/2

+
( ∞∑

j=i

|cj |2
)1/2]}

(4.27)
= O

(
i−2θ l2(i) + i−4θ+3/2l3(i)

)
.

Thus, when θ > 3/4 or θ = 3/4 and
∑∞

i=1 l4(i)/i < ∞, for all x,

∞∑
j=1

∥∥∥∥∥
∞∑
i=j

P1
(
L(̃εi, x,3)

)∥∥∥∥∥
2

≤
∞∑

j=1

( ∞∑
i=j

∥∥P1
(
L(̃εi, x,3)

)∥∥)2

= O

[ ∞∑
j=1

( ∞∑
i=j

i−2θ l2(i)

)2]
< ∞.
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By Theorem 2 of Volný [34], there exists a martingale difference sequence Di(x) ∈ L2 and a
finite variance sequence {ei(x)} such that for all x,

L(̃εi, x,3) = Di(x) + ei(x) − ei+1(x).

Applying (ii) instead of (i) of Lemma 4.1 in proving Lemma 4.3, we have that

sup
x∈R

∣∣∣∣∣ 1√
n

n∑
i=1

g(Si−1/an)L(̃εi , x,3) − 1√
n

n∑
i=1

g(Si−1/an)Di(x)

∣∣∣∣∣= op(1).

Let gM(x) = g(x)I (|g(x)| ≤ M). By (ii) of Lemma 4.1, we have

E

(
sup
x∈R

1√
n

n∑
i=1

gM(Si−1/an)Di(x)

)2

≤ 2

n
E
∫

R

(
n∑

i=1

gM(Si−1/an)Di(x)

)2

dx + 2

n
E
∫

R

(
n∑

i=1

gM(Si−1/an)D
′
i (x)

)2

dx = O
(
M2).

As a results, for any positive constants ε and η, there exist a large M0 and a large N0 such that
for all M > M0 and n > N0,

P

{
sup
x∈R

1

an

∣∣∣∣∣
n∑

i=1

g

(
Si−1

an

)
L(̃εi, x,3)

∣∣∣∣∣> 2ε

}
(4.28)

≤ P

{
sup
x∈R

1

an

∣∣∣∣∣
n∑

i=1

gM

(
Si−1

an

)
Di(x)

∣∣∣∣∣> ε

}
+ P

{
max

1≤i≤n

∣∣∣∣∣g
(

Si

an

)∣∣∣∣∣> M

}
+ η ≤ 3η.

Note that

1

an

n∑
i=1

g

(
Si−1

an

)
Ui,2 =

(
n2−2θ l2(n)

an

)
g

(
Sn−1

an

) n∑
i=1

Ui,2

n1−2(θ−1/2)

(4.29)

− n2−2θ l2(n)

an

n−1∑
i=1

i∑
j=1

Ui,2

n2−2θ l2(n)

[
g

(
Si

an

)
− g

(
Si−1

an

)]
.

From Avram and Taqqu [1], it follows that there exists a constant C(θ) such that

[nt]∑
i=1

Ui,2

n2−2θ l2(n)

L−→ C(θ)

∫
R

∫
R

∫ t

0

2∏
i=1

[
max(0, v − ui)

]−θ dv dB(u1)dB(u2)

(4.30)
=: Z2,θ (t).
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By (4.30), the Lipschitz condition of g(·) and an argument similar to Theorem 3.1 of Ling and
Li [28], we have that the right-hand side of (4.29) converges to zero in probability. Further, by
Lemma 4.1, we have

sup
x∈R

(
f (k)(x)

)2 ≤ 2
∫

R

(
f (k)(x)

)2 dx + 2
∫

R

(
f (k+1)(x)

)2 dx < ∞ for all k ≤ p − 1.

Thus, by (4.28), we have supx∈R

1
an

∑n
i=1 g(Si−1/an)[I (εi ≤ x) − F(x) + f (x)εi] = op(1).

Combining this with Lemma 4.6 gives that

sup
x∈R

1

an

n∑
i=1

g(Si−1/an)
[
I (εi ≤ x) − F(x)

] L−→ sup
x∈R

f (x)

∫ 1

0
g
(
Zθ(t)

)
dZθ(t). (4.31)

When 1/2 < θ < 3/4, by (ii) of Theorem 3 in Wu [36], we have

1

n2−2θ l2(n)

n∑
i=1

[
I (εi ≤ x) − F(x) + f (x)εi

] w
⇒ f ′(x)Z2,θ (1), on D(R). (4.32)

Using (4.32), we also have (4.31). By noting that as {Xt } is a unit root process, Xt = St + X0.

This completes the proof of (3.1).
Applying (4.31) and arguing as in Theorem 2.3, we have that when n(β̂ − 1) = Op(1),

sup
x∈R

[
1

an

(
α̂n(x) − αn(x)

)− 1

an

n∑
i=1

g(Xi−1/an)
[
F
(
x + (β̂ − 1)Xi−1

)− F(x)
]]= op(1).

Since supx∈R f (x) < ∞ and sup1≤i≤n(β̂ − 1)Xi = Op(an/n), it follows from Taylor’s expan-
sion and (3.1) that

sup
x∈R

1

an

[
α̂n(x) − f (x)(β̂ − 1)

n∑
i=1

g(Xi−1/an)Xi−1

]
L−→ sup

x∈R

f (x)

∫ 1

0
g
(
Zθ(t)

)
dZθ(t).

This gives (3.2) and completes the proof of Theorem 3.1. �

Acknowledgements

We would like to thank the Editor, the Associate Editor and two anonymous referees for helpful
comments, which led to an improved version of this paper. This research was supported in part
by grants from the General Research Fund of HKSAR-RGC-GRF Nos. 400408 and 400410, Col-
laborative Research Fund of HKSAR-RGC-CRF: CityU8/CRF/09, Fundamental Research Funds
for the Central Universities, ZJNSF (No. R6090034) and NSFC (Nos. 11171074 and 10801118).
Part of this research was completed when the second author (the corresponding author) visited
CUHK in 2011–2012. Research support from the Statistics Department of CUHK is gratefully
acknowledged.



2118 N.H. Chan and R. Zhang

References

[1] Avram, F. and Taqqu, M.S. (1987). Noncentral limit theorems and Appell polynomials. Ann. Probab.
15 767–775. MR0885142

[2] Avram, F. and Taqqu, M.S. (1992). Weak convergence of sums of moving averages in the α-stable
domain of attraction. Ann. Probab. 20 483–503. MR1143432

[3] Bai, J.S. (2003). Testing parametric conditional distributions of dynamic models. The Review of Eco-
nomics and Statistics 85 531–549.

[4] Baillie, R.T. (1996). Long memory processes and fractional integration in econometrics. J. Economet-
rics 73 5–59. MR1410000

[5] Bickel, P.J. and Wichura, M.J. (1971). Convergence criteria for multiparameter stochastic processes
and some applications. Ann. Math. Statist. 42 1656–1670. MR0383482

[6] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley. MR0233396
[7] Chan, N.H. and Ling, S. (2008). Residual empirical processes for long and short memory time series.

Ann. Statist. 36 2453–2470. MR2458194
[8] Chan, N.H. and Zhang, R.M. (2009). Inference for nearly nonstationary processes under strong de-

pendence with infinite variance. Statist. Sinica 19 925–947. MR2536137
[9] Chan, N.H. and Zhang, R.M. (2009). Quantile inference for near-integrated autoregressive time series

under infinite variance and strong dependence. Stochastic Process. Appl. 119 4124–4148. MR2565561
[10] Chan, N.H. and Zhang, R.M. (2010). Inference for unit-root models with infinite variance GARCH

errors. Statist. Sinica 20 1363–1393. MR2777329
[11] Davis, R. and Resnick, S. (1986). Limit theory for the sample covariance and correlation functions of

moving averages. Ann. Statist. 14 533–558. MR0840513
[12] Dedecker, J. and Merlevède, F. (2003). The conditional central limit theorem in Hilbert spaces.

Stochastic Process. Appl. 108 229–262. MR2019054
[13] del Barrio, E., Deheuvels, P. and van de Geer, S. (2007). Lectures on Empirical Processes: Theory

and Statistical Applications. EMS Series of Lectures in Mathematics. Zürich: Eur. Math. Soc. With a
preface by Juan A. Cuesta Albertos and Carlos Matrán. MR2284824

[14] Escanciano, J.C. (2006). Goodness-of-fit tests for linear and nonlinear time series models. J. Amer.
Statist. Assoc. 101 531–541. MR2256173

[15] Escanciano, J.C. (2007). Weak convergence of non-stationary multivariate marked processes with
applications to martingale testing. J. Multivariate Anal. 98 1321–1336. MR2364121

[16] Escanciano, J.C. (2010). Asymptotic distribution-free diagnostic tests for heteroskedastic time series
models. Econometric Theory 26 744–773. MR2646478

[17] Gaenssler, P. and Révész, P. (1976). Empirical Distributions and Processes. Lecture Notes in Mathe-
matics 566. Berlin: Springer. MR0428364

[18] Gnedenko, B.V. and Kolmogorov, A.N. (1954). Limit Distributions for Sums of Independent Ran-
dom Variables. Cambridge, MA: Addison-Wesley. Translated and annotated by K.L. Chung. With an
Appendix by J.L. Doob. MR0062975

[19] Hall, P. and Heyde, C.C. (1980). Martingale Limit Theory and Its Application (Probability and Mathe-
matical Statistics). New York: Academic Press [Harcourt Brace Jovanovich Publishers]. MR0624435

[20] Ho, H.C. and Hsing, T. (1996). On the asymptotic expansion of the empirical process of long-memory
moving averages. Ann. Statist. 24 992–1024. MR1401834

[21] Hong, Y. and Lee, T.H. (2003). Diagnostic checking for the adequacy of nonlinear time series models.
Econometric Theory 19 1065–1121. MR2015977

[22] Jakubowski, A. (1996). Convergence in various topologies for stochastic integrals driven by semi-
martingales. Ann. Probab. 24 2141–2153. MR1415245

http://www.ams.org/mathscinet-getitem?mr=0885142
http://www.ams.org/mathscinet-getitem?mr=1143432
http://www.ams.org/mathscinet-getitem?mr=1410000
http://www.ams.org/mathscinet-getitem?mr=0383482
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=2458194
http://www.ams.org/mathscinet-getitem?mr=2536137
http://www.ams.org/mathscinet-getitem?mr=2565561
http://www.ams.org/mathscinet-getitem?mr=2777329
http://www.ams.org/mathscinet-getitem?mr=0840513
http://www.ams.org/mathscinet-getitem?mr=2019054
http://www.ams.org/mathscinet-getitem?mr=2284824
http://www.ams.org/mathscinet-getitem?mr=2256173
http://www.ams.org/mathscinet-getitem?mr=2364121
http://www.ams.org/mathscinet-getitem?mr=2646478
http://www.ams.org/mathscinet-getitem?mr=0428364
http://www.ams.org/mathscinet-getitem?mr=0062975
http://www.ams.org/mathscinet-getitem?mr=0624435
http://www.ams.org/mathscinet-getitem?mr=1401834
http://www.ams.org/mathscinet-getitem?mr=2015977
http://www.ams.org/mathscinet-getitem?mr=1415245


Empirical processes 2119

[23] Jakubowski, A. (1997). A non-Skorohod topology on the Skorohod space. Electron. J. Probab. 2 21
(electronic). MR1475862

[24] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices.
Acta Math. 131 207–248. MR0440724

[25] Knight, K. (1991). Limit theory for M-estimates in an integrated infinite variance process. Economet-
ric Theory 7 200–212. MR1128412

[26] Koul, H.L. and Ling, S. (2006). Fitting an error distribution in some heteroscedastic time series mod-
els. Ann. Statist. 34 994–1012. MR2283401

[27] Kurtz, T.G. and Protter, P. (1991). Weak limit theorems for stochastic integrals and stochastic differ-
ential equations. Ann. Probab. 19 1035–1070. MR1112406

[28] Ling, S. and Li, W.K. (1998). Limiting distributions of maximum likelihood estimators for unstable
autoregressive moving-average time series with general autoregressive heteroscedastic errors. Ann.
Statist. 26 84–125. MR1611800

[29] Marcus, M.B. (1968). Hölder conditions for Gaussian processes with stationary increments. Trans.
Amer. Math. Soc. 134 29–52. MR0230368

[30] Mikosch, T. and Norvaiša, R. (2000). Stochastic integral equations without probability. Bernoulli 6
401–434. MR1762553

[31] Resnick, S. and Greenwood, P. (1979). A bivariate stable characterization and domains of attraction.
J. Multivariate Anal. 9 206–221. MR0538402

[32] Stute, W., Xu, W.L. and Zhu, L.X. (2008). Model diagnosis for parametric regression in high-
dimensional spaces. Biometrika 95 451–467. MR2521592

[33] Teyssière, G. and Kirman, A. P. (2007). Long Memory in Economics. Berlin: Springer. MR2263582
[34] Volný, D. (1993). Approximating martingales and the central limit theorem for strictly stationary

processes. Stochastic Process. Appl. 44 41–74. MR1198662
[35] Wooldridge, J.M. (1990). A unified approach to robust, regression-based specification tests. Econo-

metric Theory 6 17–43. MR1059144
[36] Wu, W.B. (2003). Empirical processes of long-memory sequences. Bernoulli 9 809–831. MR2047687
[37] Wu, W.B. (2007). Strong invariance principles for dependent random variables. Ann. Probab. 35

2294–2320. MR2353389
[38] Young, L.C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math.

67 251–282. MR1555421
[39] Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle model selection theory.

Ann. Statist. 36 1108–1126. MR2418651

Received September 2011 and revised March 2012

http://www.ams.org/mathscinet-getitem?mr=1475862
http://www.ams.org/mathscinet-getitem?mr=0440724
http://www.ams.org/mathscinet-getitem?mr=1128412
http://www.ams.org/mathscinet-getitem?mr=2283401
http://www.ams.org/mathscinet-getitem?mr=1112406
http://www.ams.org/mathscinet-getitem?mr=1611800
http://www.ams.org/mathscinet-getitem?mr=0230368
http://www.ams.org/mathscinet-getitem?mr=1762553
http://www.ams.org/mathscinet-getitem?mr=0538402
http://www.ams.org/mathscinet-getitem?mr=2521592
http://www.ams.org/mathscinet-getitem?mr=2263582
http://www.ams.org/mathscinet-getitem?mr=1198662
http://www.ams.org/mathscinet-getitem?mr=1059144
http://www.ams.org/mathscinet-getitem?mr=2047687
http://www.ams.org/mathscinet-getitem?mr=2353389
http://www.ams.org/mathscinet-getitem?mr=1555421
http://www.ams.org/mathscinet-getitem?mr=2418651

	Introduction
	Short-memory error processes
	Long-memory error processes
	Proofs
	Acknowledgements
	References

