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Generalization of the Blumenthal–Getoor
index to the class of homogeneous diffusions
with jumps and some applications
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We introduce the probabilistic symbol for the class of homogeneous diffusions with jumps (in the sense of
Jacod/Shiryaev). This concept generalizes the well-known characteristic exponent of a Lévy process. Using
the symbol, we introduce eight indices which generalize the Blumenthal–Getoor index β and the Pruitt
index δ. These indices are used afterwards to obtain growth and Hölder conditions of the process. In the
future, the technical main results will be used to derive further fine properties. Since virtually all examples
of homogeneous diffusions in the literature are Markovian, we construct a process which does not have this
property.
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1. Introduction

Two of the main tools in order to analyze and describe Lévy processes are the characteristic
exponent and the Blumenthal–Getoor index. In the present paper, we show that there exist anal-
ogous of these concepts for a much wider class of processes, namely homogeneous diffusions
with jumps (h.d.w.j.) in the sense of Jacod and Shiryaev ([15], Definition III.2.18). These indices
are used to derive growth and Hölder conditions for the paths of the process.

A Lévy process X is a stochastic process with stationary and independent increments which
has a.s. càdlàg paths (cf. [20]). It is a well-known fact that the characteristic function of Xt can
be written as

ϕXt (ξ) = E
0eiX′

t ξ = e−tψ(ξ), (1)

where the characteristic exponent ψ : Rd → C is a continuous negative definite function (c.n.d.f.)
in the sense of Schoenberg (cf. [2], Chapter 2). In fact, one obtains by the relation (1) a one-to-
one correspondence between the class of c.n.d.f.’s and Lévy processes. The Blumenthal–Getoor
index was first introduced in [3] in order to analyze Hölder conditions, the γ -variation and the
Hausdorff-dimension of the paths of Lévy processes.

The idea of the present paper is to use the state-space dependent right derivative at t = 0 of the
characteristic function to obtain the symbol p of the process which generalizes the characteristic
exponent of a Lévy process. The formula reads as follows (for details, see Definition 3.5 below):
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for x, ξ ∈ R
d

p(x, ξ) := − lim
t↓0

E
xei(Xσ

t −x)′ξ − 1

t
,

where σ is the first-exit time of a compact neighborhood of x. Since for every fixed t > 0,
the function ξ �→ E

xei(Xσ
t −x)′ξ is the characteristic function of the random variable Xσ

t − x

it is continuous and positive definite. By Corollary 3.6.10 of [12], we conclude that ξ �−→
−(Exei(Xσ

t −x)′ξ −1) is a continuous negative definite function. Dividing by t preserves this prop-
erty since the c.n.d.f.’s form a convex cone. By Lemma 3.6.7 of [12], the above limit is a negative
definite function which is continuous if the convergence is locally uniform. The idea to analyze
objects of this type was proposed first in [11] in the context of universal Markov processes.

We have thus shown that the symbol is a state-space dependent c.n.d.f. Therefore, we can
define and analyze eight indices along the same lines as in Schilling’s article [23] where the
case of rich Feller processes was analyzed. These are Feller processes with the property that
the test functions C∞

c (Rd) are contained in the domain of their generator. The multiplier in the
Fourier representation of the generator of such a process is also a state-space dependent c.n.d.f.
(cf. Example 4.1 below and for details the monograph by Jacob [12–14]). For these c.n.d.f.’s,
we write q(x, ξ) to distinguish them from the p(x, ξ) above. In order to introduce and use the
indices, Schilling needed the following two conditions (G) and (S) which we state here since
they play a role in our considerations, too. The growth condition is fulfilled, if there exists a
c > 0 such that ∥∥q(·, ξ)

∥∥∞ ≤ c
(
1 + ‖ξ‖2)

(G)

for every ξ ∈ R
d . The sector condition, which is needed only for some of the results, is fulfilled,

if there exists a c0 > 0 such that for every x, ξ ∈ R
d

∣∣
(
q(x, ξ)

)∣∣ ≤ c0�
(
p(x, ξ)

)
. (S)

In [27], we have shown that every rich Feller process is an Itô process in the sense of Cinlar,
Jacod, Protter and Sharpe (cf. [7], Section 7), that is, a Hunt semimartingale with characteristics
of the form

B
(j)
t (ω) =

∫ t

0

(j)

(
Xs(ω)

)
ds, j = 1, . . . , d,

C
jk
t (ω) =

∫ t

0
Qjk

(
Xs(ω)

)
ds, j, k = 1, . . . , d, (2)

ν(ω;ds,dy) = N
(
Xs(ω),dy

)
ds,

where for every x ∈ R
d 
(x) is a vector in R

d , Q(x) is a positive semi-definite matrix and N

is a Borel transition kernel such that N(x, {0}) = 0. The triplet (
(x),Q(x),N(x,dy)) appears
in the symbol again (cf. Theorem 3.6). Since the characteristics describe the local dynamics
of the process, it is not surprising that the symbol, as well as the associated indices, contain a
lot of information about the global and the path properties of the process, like conservativeness



2012 A. Schnurr

(cf. [21], Theorem 5.5), strong γ -variation (cf. [24], Corollary 5.10) or Hausdorff-dimension
(cf. [22], Theorem 4). By now, all results of this type were restricted to rich Feller processes.
The above considerations show that Itô processes would be a natural candidate to generalize the
results on symbols, indices and fine properties. In the present paper we go even one step further:
semimartingales having characteristics of the form (2) are called h.d.w.j. It is this class we are
dealing with. In Section 2, we have included an example of this kind, which is not a Markov
process. Philosophically speaking we show that the symbol, as well as the derived indices, are
a concept related to the underlying semimartingale structure rather than the property of being
memoryless. To this end, new techniques of proof had to be developed.

Here and in the following, we mean by a stochastic process a family of processes (X,P
x)x∈Rd

which is normal, that is, P
x(X0 = x) = 1. Such a process is called a martingale, continu-

ous, . . . iff it is w.r.t. every P
x (x ∈ R

d) a martingale, continuous, . . . . A stochastic basis
(�,F = (Ft )t≥0, F ,P

x)x∈Rd is always meant to be in the background. We assume that the usual
hypotheses are satisfied.

Before closing this section, we give an overview on what was known before the present paper.
We consider the following classes of processes:

symmetric
α-stable

⊆ Lévy ⊆ rich
Feller

⊆ Itô ⊆ h.d.w.j. (3)

The symbol was generalized to Itô processes in [27]. The indices were known for rich Feller
processes satisfying (G) and (S). Fine properties were obtained for the same class, sometimes
under additional assumptions (cf. [22]). Let us mention that even in the known case of rich Feller
processes we generalize Schilling’s results: instead of (G) we only need a local version of this
property which is automatically fulfilled by every rich Feller process.

Let us give a brief outline on how the paper is organized: in the subsequent section we show
that there exists a h.d.w.j. which is not Markovian. In particular the last inclusion in (3) is strict.
In Section 3 we present the definitions and main results. Complementary results and several
examples, including the COGARCH process which is used to model financial data, are contained
in Section 4. The proofs are postponed to Section 5, since they are rather technical. Our main
results are Theorems 3.6, 3.11 and 3.12.

The notation we are using is more or less standard. Vectors are column vectors. Transposed
vectors or matrices are denoted by ′. Vector entries are written as follows: v = (v(1), . . . , v(d))′.
In the context of semimartingales we follow mainly [15]. Multivariate stochastic integrals are
always meant componentwise. This is true for integrals w.r.t. processes as well as for those w.r.t.
random measures. A function χ : Rd → R is called cut-off function if it is Borel measurable,
with compact support and equal to one in a neighborhood of zero. In this case h(y) := χ(y) · y
is a truncation function in the sense of [15]. Finally, let N := {0,1, . . .}.

2. A non-Markovian homogeneous diffusion

Virtually all examples of homogeneous diffusions (with or without jumps) in the literature are
Markov processes. Here we construct an example which is not Markovian.
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Example 2.1. We use the construction principle for deterministic processes which we introduced
in [28] and generalized in [26]. Let T denote the unit sphere in R

2.
Within the set ((0,1)′ + T) ∪ ((0,−1)′ + T), we consider the following ODE on [0,∞[:

y′
1 = 1 − y2, y′

2 = y1 for y2 ≥ 0,

y′
1 = y2 + 1, y′

2 = −y1 for y2 < 0

with the initial value y(0) = (y1(0), y2(0))′ = (0,0)′ having the (non-unique) solution

y(t) =
∑
n∈2N

(
sin(t)

1 − cos(t)

)
· 1[2nπ,2(n+1)π[(t) +

(
sin(t)

cos(t) − 1

)
· 1[2(n+1)π,2(n+2)π[(t).

For the readers convenience, we include the following picture:

We denote by ỹ the restriction of y to [0,4π[. On this interval the function is bijective. The
process X is defined as follows: under the law P

x we have

Xt :=
{

y
(
ỹ−1(x) + t

)
, for x ∈ (

(0,1)′ + T
) ∪ (

(0,−1)′ + T
)
,

x, else.

This process is not Markovian, since

P
(0,2)′

(
X2π =

(
0

−2

) ∣∣∣Xπ =
(

0
0

))
= 1 �= 0 = P

(0,−2)′
(

X2π =
(

0
−2

) ∣∣∣Xπ =
(

0
0

))
.

On the other hand, X is a homogeneous diffusion with 
 given by


(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − x(2)

x(1)

)
, if x ∈ (

(0,1)′ + T
)
,(

x(2) + 1
x(1)

)
, if x ∈ (

(0,−1)′ + T
) \ {

(0,0)′
}
,

0, else.

Anticipating an important concept of the next section, let us mention that 
 is not continuous on
R

2, but it is X-finely continuous (cf. Definition 3.3).
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3. Definitions and main results

We have decided to postpone the proofs to Section 5.

Definition 3.1. A homogeneous diffusion with jumps (h.d.w.j., for short) (X,P
x)x∈Rd is a semi-

martingale with characteristics of the form

B
(j)
t (ω) =

∫ t

0

(j)

(
Xs(ω)

)
ds, j = 1, . . . , d,

C
jk
t (ω) =

∫ t

0
Qjk

(
Xs(ω)

)
ds, j, k = 1, . . . , d, (4)

ν(ω;ds,dy) = N
(
Xs(ω),dy

)
ds

for every x ∈ R
d with respect to a fixed cut-off function χ . Here 
(x) = (
(1)(x), . . . , 
(d)(x))′ is

a vector in R
d , Q(x) is a positive semi-definite matrix and N is a Borel transition kernel such

that N(x, {0}) = 0. We call 
, Q and n := ∫
y �=0(1 ∧‖y‖2)N(·,dy) the differential characteristics

of the process.

Remark 3.2. In the monograph [15], this class of processes is called homogeneous diffusion
with jumps, but even there this name was qualified as ‘misleading’, since the term ‘diffusion’
is often used for continuous Markov processes: a diffusion with jumps is not continuous and in
Section 2 we have seen that it does not have to be Markovian. However, we decided to stick to
the classical name, since it has become canonical.

In our considerations, it turned out that the most general assumption on the differential char-
acteristics, under which we are able to prove our main results, read as follows.

Definition 3.3. Let X be a h.d.w.j. and f : Rd → R be a Borel-measurable function. f is called
X-finely continuous (or finely continuous, for short) if the function

t �→ f (Xt ) = f ◦ Xt (5)

is right continuous at zero P
x -a.s. for every x ∈ R

d .

Remark 3.4.

(a) In the context of Markov processes, fine continuity is introduced differently (see [4], Sec-
tion II.4, and [9]). By Theorem 4.8 of [4], this is equivalent to (5).

(b) If the differential characteristics are continuous, the condition stated in Definition 3.3 is
obviously fulfilled, since the paths of X are càdlàg.

The other important assumption on the differential characteristics is that they are locally
bounded. By Lemma 3.3 of [25], this is equivalent to the local version of the growth condition:
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for every compact set K ⊆ R
d there exists a constant cK > 0 such that∣∣p(x, ξ)

∣∣ ≤ cK

(
1 + ‖ξ‖2)

(LG)

for every x ∈ K . This condition is fulfilled by every rich Feller process (Lemma 3.3 of [25]).

Definition 3.5. Let X be a h.d.w.j., which is conservative and normal, that is, P
x(X0 = x) = 1.

Fix a starting point x and define σ = σx
k to be the first exit time from a compact neighborhood

K := Kx of x:

σ := inf
{
t ≥ 0: Xx

t /∈ K
}
.

For ξ ∈ R
d , we call p : Rd × R

d → C given by

p(x, ξ) := − lim
t↓0

E
x ei(Xσ

t −x)′ξ − 1

t
(6)

the symbol of the process, if the limit exists and coincides for every choice of K .

In Example 4.1, we show that this symbol coincides with the classical functional analytic
symbol in the case of rich Feller process. This motivates the name.

Theorem 3.6. Let X be a h.d.w.j. such that the differential characteristics 
, Q and n are locally
bounded and finely continuous. In this case, the limit (6) exists and the symbol of X is

p(x, ξ) = −i
(x)′ξ + 1

2
ξ ′Q(x)ξ −

∫
y �=0

(
eiy′ξ − 1 − iy′ξ · χ(y)

)
N(x,dy). (7)

Remark 3.7.

(a) If the differential characteristics are continuous, the conditions of the theorem are ful-
filled.

(b) If the differential characteristics are globally bounded, that is, if (G) is satisfied, the
limit (6) without stopping time exists and coincides with the above limit (the proof is simi-
lar).

(c) Let us mention that the symbol of a Lévy process is just its characteristic exponent,
that is, p(x, ·) = ψ(·) for every x ∈ R

d . Further examples can be found in the next sec-
tion.

Now, we define the following helpful quantities for x ∈ Rd and R > 0:

H(x,R) := sup
‖y−x‖≤2R

sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

R

)∣∣∣∣, (8)

H(R) := sup
y∈Rd

sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

R

)∣∣∣∣, (9)
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h(x,R) := inf‖y−x‖≤2R
sup

‖ε‖≤1
�p

(
y,

ε

4κR

)
, (10)

h(R) := inf
y∈Rd

sup
‖ε‖≤1

�p

(
y,

ε

4κR

)
. (11)

In (10) and (11) κ = (4 arctan(1/2c0))
−1 where c0 comes from the sector condition (S) as defined

in the introduction. In particular, h(x,R) and h(R) are only defined if (S) is satisfied and only in
this case they will be used below.

Definition 3.8. The quantities (cf. [23], Definitions 4.2 and 4.5)

β0 := sup
{
λ ≥ 0: lim sup

R→∞
RλH(R) = 0

}
,

β0 := sup
{
λ ≥ 0: lim inf

R→∞ RλH(R) = 0
}
,

δ0 := sup
{
λ ≥ 0: lim sup

R→∞
Rλh(R) = 0

}
,

δ0 := sup
{
λ ≥ 0: lim inf

R→∞ Rλh(R) = 0
}

are called indices of X at the origin, while

βx∞ := inf
{
λ > 0: lim sup

R→0
RλH(x,R) = 0

}
,

βx∞ := inf
{
λ > 0: lim inf

R→0
RλH(x,R) = 0

}
,

δx∞ := inf
{
λ > 0: lim sup

R→0
Rλh(x,R) = 0

}
,

δx∞ := inf
{
λ > 0: lim inf

R→0
Rλh(x,R) = 0

}
are the indices of X at infinity.

Example 3.9. In the case of symmetric α-stable processes, all indices coincide and they are equal
to α. For so called stable-like Feller processes (cf. [1,18]) with uniformly bounded exponential
function, that is, 0 < α0 ≤ α(x) ≤ α∞ < 1 one obtains β0 = β0 = α0 and δ0 = δ0 = α∞ (see
[23], Example 5.5). For more examples, consult the next section.

The following proposition is the key ingredient for using the symbol to analyze fine properties
of a stochastic process. Similar results were proved for Lévy processes by Pruitt in [19] and for
rich Feller processes satisfying (G) and (S) by Schilling in [23]. We write

(X· − x)∗t := sup
s≤t

‖Xs − x‖
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for the maximum process.

Proposition 3.10. Let X be a h.d.w.j. such that the differential characteristics of X are locally
bounded and finely continuous. In this case, we have

P
x
(
(X· − x)∗t ≥ R

) ≤ cd · t · H(x,R) (12)

for t ≥ 0, R > 0 and a constant cd > 0 which can be written down explicitly and only depends
on the dimension d .

If (S) holds in addition, we have

P
x
(
(X· − x)∗t < R

) ≤ cκ · 1

t
· 1

h(x,R)
(13)

for a constant cκ only depending on the c0 of the sector condition.

Using this result and standard Borel–Cantelli techniques, we obtain the following two theo-
rems which describe the behavior of the process at infinity respective zero.

Theorem 3.11. Let X be a h.d.w.j. such that the differential characteristics of X are locally
bounded and finely continuous. Then we have

lim
t→∞ t−1/λ(X· − x)∗t = 0 for all λ < β0, (14)

lim inf
t→∞ t−1/λ(X· − x)∗t = 0 for all β0 ≤ λ < β0. (15)

If the symbol p of the process X satisfies (S), then we have in addition

lim sup
t→∞

t−1/λ(X· − x)∗t = ∞ for all δ0 < λ ≤ δ0, (16)

lim
t→∞ t−1/λ(X· − x)∗t = ∞ for all δ0 < λ. (17)

All these limits are meant P
x -a.s. with respect to every x ∈ R

d .

Theorem 3.12. Let X be a h.d.w.j. such that the differential characteristics of X are locally
bounded and finely continuous. Then we have

lim
t→0

t−1/λ(X· − x)∗t = 0 for all λ > βx∞, (18)

lim inf
t→0

t−1/λ(X· − x)∗t = 0 for all βx∞ ≥ λ > βx∞. (19)

If the symbol p of the process X satisfies (S), then we have in addition

lim sup
t→0

t−1/λ(X· − x)∗t = ∞ for all δx∞ > λ ≥ δx∞, (20)

lim
t→0

t−1/λ(X· − x)∗t = ∞ for all δx∞ > λ. (21)
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All these limits are meant P
x -a.s with respect to every x ∈ R

d .

The relation between indices of this type associated with Lévy processes and the classical
Blumenthal–Getoor respective Pruitt indices were analyzed in Section 5 of [23].

4. Examples, applications, complementary results

In the present section, we show how the above results can be used for some classes of processes.
The first example explains the connection with the classical Markovian theory. The second one
deals with Lévy driven SDEs having unbounded coefficients and the third one with the COGA-
RCH process.

Example 4.1. Let X be a Feller processes, that is, a strong Markov process such that

(F1) Tt :C∞(Rd) → C∞(Rd) for every t ≥ 0,
(F2) limt↓0 ‖Ttu − u‖∞ = 0 for every u ∈ C∞(Rd),

where

Ttu(x) := E
xu(Xt ), t ≥ 0, x ∈ R

d

and C∞(Rd) denotes the real-valued continuous functions vanishing at infinity. The generator
(A,D(A)) of the process is the closed operator given by

Au := lim
t↓0

Ttu − u

t
for u ∈ D(A), (22)

where the domain D(A) consists of all u ∈ C∞(Rd) for which the limit (22) exists uniformly. Us-
ing a classical result due to Courrège [8], Jacob (cf. [12], Section 4.5) showed that the generator
A of a process of this kind can be written in the following way:

Au(x) = −
∫

Rd

eix′ξ q(x, ξ )̂u(ξ)dξ for u ∈ C∞
c

(
R

d
)
,

where û(ξ) = (2π)−d
∫

e−iy′ξ u(y)dy denotes the Fourier transform. The functional analytic
symbol q : Rd × R

d → C has the following properties: it is locally bounded, q(·, ξ) is mea-
surable for every ξ ∈ R

d and q(x, ·) is a c.n.d.f. for every x ∈ R
d . The last point means that

the symbol admits a ‘state-space dependent’ Lévy–Khinchine formula like (7). In Lemma 3.3 of
[25], we have shown that the symbol q always satisfies (LG).

By Theorem 3.10 of [27], every rich Feller process is an Itô process and the differential char-
acteristics are equal to the Lévy triplet of the symbol. From Corollary 4.5 of the same thesis, we
deduce that for a rich Feller process with finely continuous differential characteristics the func-
tional analytic symbol and the probabilistic symbol do coincide, that is, p(x, ξ) = q(x, ξ) for
every x, ξ ∈ R

d . Furthermore, this shows that the case treated in Schilling [23] is encompassed
by our considerations. Having a look at his Theorem 3.5, this does not seem to be the case,
because the characteristics look differently, but this is due to a different choice of the cut-off
function.
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Example 4.2. Let (Zt )t≥0 be an R
n-valued Lévy process. The solution of the stochastic differ-

ential equation

dXx
t = �

(
Xx

t−
)

dZt ,
(23)

Xx
0 = x, x ∈ R

d ,

where � : Rd → R
d×n is locally Lipschitz continuous and satisfies the standard linear growth

condition, admits the symbol

p(x, ξ) = ψ
(
�(x)′ξ

)
,

where ψ : Rn → C denotes the characteristic exponent of the Lévy process. This was shown
in [24]. Fine properties could only be obtained for the case of bounded �, because in general the
solution of the above SDE is not rich Feller. Using the classical characterization of Itô processes
due to Cinlar and Jacod ([6], Theorem 3.33), it is straightforward to show that X belongs to this
class. Since � and ψ are continuous, the symbol is finely continuous. Along the same lines as in
[24], we obtain the following two results.

Theorem 4.3. Let p(x, ξ) be a state-space dependent c.n.d.f. which can be written as p(x, ξ) =
ψ(�(x)′ξ) where ψ : Rn → C is a c.n.d.f. and � : Rd → R

d×n is locally Lipschitz continuous
and satisfies the linear growth condition. In this case there exists a corresponding Itô process,
that is, a process X with symbol p(x, ξ).

Theorem 4.4. Let Z be a driving Lévy process with non-constant symbol. Let X be the solution
of (23) such that d = n and the rank of � is equal to d in every point. Then

lim
t→0

t−1/λ(X· − x)∗t = 0 if λ > β∞,

where β∞ is the index of the driving Lévy process Z.

Example 4.5. Let us recall how the COGARCH process is defined (cf. [16]):
Let Z = (Zt )t be a Lévy process with triplet (
,Q,N) and fix 0 < δ < 1, β > 0, λ ≥ 0. The

volatility process (St )t≥0 is the solution of the SDE

dS2
t = β dt + S2

t

(
log δ dt + λ

δ
d

( ∑
0<s≤t

(�Zs)
2
))

,

S0 = S (> 0).

The process

Gt := g +
∫ t

0
Ss− dZt , g ∈ R

is called COGARCH process. The pair (Gt , St ) is a (normal) Markov process which is is ho-
mogeneous in space in the first component. It is not a Feller process, at least not a C∞-
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Feller process. Furthermore (Gt , S
2
t ) is an Itô process, which follows by combining Theo-

rem 3.33 of [6] with Proposition IX.5.2 of [15]. To avoid problems which might arise for pro-
cesses defined on R × R+, we consider the logarithmic squared volatility, that is, the process
(Gt ,Vt ) = (Gt , log(S2

t )). This process admits the symbol p : R2 × R
2 −→ C given by

p

((
g

v

)
, ξ

)

= −iξ1

(

ev/2 + ev/2

∫
R\{0}

y · (1{|ev/2y|<1} · 1{| log(1+(λ/δ)y2)|<1} − 1{|y|<1})N(dy)

)

− iξ2

(
β

ev
+ log δ +

∫
R\{0}

log

(
1 + λ

δ
y2

)
· (1{|ev/2y|<1} · 1{| log(1+(λ/δ)y2)|<1})N(dy)

)

+ 1

2
ξ2

1 evQ

−
∫

R2\{0}
(
ei(z1,z2)ξ − 1 − iz′ξ · (1{|z1|<1} · 1{|z2|<1})

)
Ñ

((
g

v

)
,dz

)
,

where Ñ is the image measure

Ñ

((
g

v

)
,dz

)
= N(fv ∈ dz)

under f : R → R
2 given by

fv(w) =
(

ev/2w

log
(
1 + (λ/δ)w2

) )
.

This was shown in [29]. A typical driving term in mathematical finance is the variance gamma
process (cf. [5] and [17]). This is a pure jump Lévy process with

N(dy) = C

|y| exp
(−(2C)−1/2|y|) dy

for a constant C > 0. In order to have a concrete example, let λ = 2, δ = 1/2, β = 10 and C = 2.
Using standard calculus we obtain that β0 = 1. The calculations are elementary but tedious. By
Theorem 3.11, we obtain for g ∈ R

lim
t→∞ t−1/λ(G· − g)∗t = 0 for all λ < 1.

In the future, the indices will be used in order to obtain other fine properties of non-Feller pro-
cesses.

Now we consider the special case of a process which consists of independent components.
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Proposition 4.6. Let X be a d-dimensional vector of independent h.d.w.j.’s X(j) with symbols
p(j), j = 1, . . . , d . The process X admits the symbol

p(x, ξ) = p(1)
(
x(1), ξ (1)

) + · · · + p(d)
(
x(d), ξ (d)

)
.

Proof. We give the proof for two components. The general case follows inductively. Let X and
Y be independent h.d.w.j.’s with symbols p(x, ξ1), respectively, q(y, ξ2), where the sum of the
dimensions of x and y is d , and consider:

E
(x,y) ei(Xt−x)′ξ1+i(Yt−y)′ξ2 − 1

t

= E
(x,y)(ei(Xt−x)′ξ1+i(Yt−y)′ξ2) − 1

t

= Ex(ei(Xt−x)′ξ1) · Ey(ei(Yt−y)′ξ2) − 1

t

= E
x(ei(Xt−x)′ξ1) · E

y(ei(Yt−y)′ξ2) − E
y(ei(Yt−y)′ξ2) + E

y(ei(Yt−y)′ξ2) − 1

t

= E
x(ei(Xt−x)′ξ1) − 1

t
· E

y
(
ei(Yt−y)′ξ2

) + E
y(ei(Yt−y)′ξ2) − 1

t
.

The three terms on the right-hand side tend to −p(x, ξ1), 1 and −q(y, ξ2), respectively. Hence,
the result. �

5. Proofs of the main results

In this section, we present the proofs of the main results.

Proof of Theorem 3.6. Let x ∈ R
d and let the stopping time defined as in Definition 3.5 where

K is an arbitrary compact neighborhood of x. We give the one dimensional proof, since the
multidimensional version works alike; only the notion becomes more involved. First, we use
Itô’s formula under the expectation and obtain

1

t
E

x
(
ei(Xσ

t −x)ξ − 1
)

= 1

t
E

x

(∫ t

0+
iξei(Xσ

s−−x)ξ dXσ
s

)
(I)

+1

t
E

x

(
1

2

∫ t

0+
−ξ2ei(Xσ

s−−x)ξ d
[
Xσ ,Xσ

]c

s

)
(II)

+1

t
E

x

(
e−ixξ

∑
0<s≤t

(
eiξXσ

s − eiξXσ
s− − iξeiξXσ

s−�Xσ
s

))
. (III)
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The left-continuous process Xσ
t− is bounded on [[0, σ ]]. Furthermore, we have (�X)σ = (�Xσ )

and Xσ admits the stopped characteristics

Bσ
t (ω) =

∫ t∧σ(ω)

0


(
Xs(ω)

)
ds =

∫ t

0


(
Xs(ω)

)
1[[0,σ ]](ω, s)ds,

Cσ
t (ω) =

∫ t

0
Q

(
Xs(ω)

)
1[[0,σ ]](ω, s)ds, (24)

νσ (ω;ds,dy) := 1[[0,σ ]](ω, s)N
(
Xs(ω),dy

)
ds

with respect to the fixed cut-off function χ . One can now set the integrand at the right endpoint
of the stochastic support to zero, as we are integrating with respect to Lebesgue measure:

Bσ
t (ω) =

∫ t

0


(
Xs(ω)

)
1[[0,σ [[(ω, s)ds,

Cσ
t (ω) =

∫ t

0
Q

(
Xs(ω)

)
1[[0,σ [[(ω, s)ds,

νσ (ω;ds,dy) = 1[[0,σ [[(ω, s)N
(
Xs(ω),dy

)
ds.

In the first two lines, the integrand is now bounded, because 
 and Q are locally bounded and
‖Xσ

s (ω)‖ < k on [0, σ (ω)[ for every ω ∈ �. In what follows, we will deal with the terms one-by-
one. To calculate the first term, we use the canonical decomposition of the semimartingale (see
[15], Theorem II.2.34) which we write as follows

Xσ
t = X0 + X

σ,c
t +

∫ t∧σ

0
χ(y)y

(
μXσ

(·;ds,dy) − νσ (·;ds,dy)
)

(25)
+ X̌σ (χ) + Bσ

t (χ),

where X̌t = ∑
s≤t (�Xs(1 − χ(�Xs))). Therefore, term (I) can be written as

1

t
E

x

(∫ t

0+
iξei(Xσ

s−−x)ξ d

(
X

σ,c
t︸︷︷︸

(IV)

+
∫ t∧σ

0
χ(y)y

(
μXσ

(·;ds,dy) − νσ (·;ds,dy)
)

︸ ︷︷ ︸
(V)

+ X̌σ (χ)︸ ︷︷ ︸
(VI)

+Bσ
t (χ)︸ ︷︷ ︸
(VII)

))
.

We use the linearity of the stochastic integral. Our first step is to prove for term (IV)

E
x

∫ t

0+
iξei(Xσ

s−−x)ξ dXσ,c
s = 0.
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The integral ei(Xσ
t−−x)ξ • X

σ,c
t is a local martingale, since X

σ,c
t is a local martingale. To see that

it is indeed a martingale, we calculate the following:[
ei(Xσ −x)ξ • Xσ,c, ei(Xσ −x)ξ • Xσ,c

]
t
= [

ei(Xσ −x)ξ • Xc, ei(Xσ −x)ξ • Xc
]σ

t

=
∫ t

0

(
ei(Xσ

s −x)ξ
)21[[0,σ ]](s)d

[
Xc,Xc

]
s

=
∫ t

0

((
ei(Xσ

s −x)ξ
)21[[0,σ [[(s)Q(Xs)

)
ds,

where we have used several well known facts about the square bracket. The last term is uniformly
bounded in ω and therefore, finite for every t ≥ 0. This means that ei(Xσ

t −x)ξ • X
σ,c
t is an L2-

martingale which is zero at zero and therefore, its expected value is constantly zero.
The same is true for the integrand (V). We show that the function Hx,ξ (ω, s, y) := ei(Xσ

s−−x)ξ ·
yχ(y) is in the class F 2

p of Ikeda and Watanabe (see [10], Section II.3), that is,

E
x

∫ t

0

∫
y �=0

∣∣ei(Xσ
s−−x)ξ · yχ(y)

∣∣2
νσ (·;ds,dy) < ∞.

To prove this, we observe

E
x

∫ t

0

∫
y �=0

∣∣ei(Xσ
s−−x)ξ

∣∣2 · ∣∣yχ(y)
∣∣2

νσ (·;ds,dy)

= E
x

∫ t

0

∫
y �=0

∣∣yχ(y)
∣∣21[[0,σ [[(ω, s)N(Xs,dy)ds.

Since we have by hypothesis ‖ ∫
y �=0(1∧y2)1[[0,σ [[N(·,dy)‖∞ < ∞, this expected value is finite.

Therefore, the function Hx,ξ is in F 2
p and we conclude that

∫ t

0
ei(Xσ

s−−x)ξ d

(∫ s∧σ

0

∫
y �=0

χ(y)y
(
μXσ

(·;dr,dy) − νσ (·;dr,dy)
))

=
∫ t

0

∫
y �=0

(
ei(Xs−−x)ξχ(y)y

)(
μXσ

(·;ds,dy) − νσ (·;ds,dy)
)

is a martingale. The last equality follows from [15], Theorem I.1.30.
Now we deal with the second term (II). Here we have[

Xσ ,Xσ
]c

t
= [

Xc,Xc
]σ

t
= Cσ

t = (
Q(Xt) • t

)σ = (
Q(Xt) · 1[[0,σ [[(t)

) • t

and therefore,

1

2

∫ t

0+
−ξ2ei(Xσ

s−−x)ξ d
[
Xσ ,Xσ

]c

s
= −1

2
ξ2

∫ t

0
ei(Xσ

s−−x)ξQ(Xs) · 1[[0,σ [[(t)ds.
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Since Q is finely continuous and locally bounded, we obtain by dominated convergence

− lim
t↓0

1

2
ξ2 1

t
E

x

∫ t

0
ei(Xs−x)ξQ(Xs)1[[0,σ [[(s)ds = −1

2
ξ2Q(x).

For the finite variation part of the first term, that is, (VII), we obtain analogously

lim
t↓0

iξ
1

t
E

x

∫ t

0
ei(Xs−x)ξ 
(Xs)1[[0,σ [[(s)ds = iξ
(x).

Now we have to deal with the various jump parts. At first, we write the sum in (III) as an integral
with respect to the jump measure μXσ

of the process:

e−ixξ
∑

0<s≤t

(
eiXsξ − eiXs−ξ − iξeiξXs−�Xs

)

= e−ixξ
∑

0<s≤t

(
eiXs−ξ

(
eiξ�Xs − 1 − iξ�Xs

))

=
∫

]0,t]×Rd

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξy

)
1{y �=0}

)
μXσ

(·;ds,dy)

=
∫

]0,t]×{y �=0}
(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
μXσ

(·;ds,dy)

+
∫

]0,t]×{y �=0}
(
ei(Xs−−x)ξ

(−iξy · (
1 − χ(y)

)))
μXσ

(·;ds,dy).

The last term cancels with the one we left behind from (I), given by (VI). For the remainder-term,
we get:

1

t
E

x

∫
]0,t]×{y �=0}

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
1[[0,σ [[(·, s)μXσ

(·;ds,dy)

= 1

t
E

x

∫
]0,t]×{y �=0}

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
1[[0,σ [[(·, s)νσ (·;ds,dy)

= 1

t
E

x

∫
]0,t]×{y �=0}

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
1[[0,σ [[(·, s)N(Xs,dy)︸ ︷︷ ︸

:=g(s−,·)
ds

= 1

t
E

x

∫
]0,t]×{y �=0}

(
ei(Xs−−x)ξ

(
eiξy − 1 − iξyχ(y)

))
1[[0,σ [[(·, s)N(Xs,dy)ds.

Here we have used the fact that it is possible to integrate with respect to the compensator of a
random measure instead of the measure itself, if the integrand is in F 1

p (see [10], Section II.3).

The function g(s,ω) is measurable and bounded by our assumption, since |eiξy −1− iξyχ(y)| ≤
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const · (1 ∧ ‖y‖2). Hence, g ∈ F 1
p . Again by bounded convergence, we obtain

lim
t↓0

1

t
E

x

∫ t

0
ei(Xs−x)ξ

∫
y �=0

(
eiyξ − 1 − iyξχ(y)

)
N(Xs,dy)ds

=
∫

y �=0

(
eiyξ − 1 − iyξχ(y)

)
N(x,dy).

This is the last part of the symbol. Here, we have used the continuity assumption on N(x,dy). �

Now we prepare the proof of Proposition 3.10, our technical main result. It will turn out to be
useful to have a closer look at the symbol (7). The real part of p is �(p(x, ξ)) = (1/2)ξ ′Q(x)ξ −∫
y �=0(cos(y′ξ) − 1)N(x,dy) and therefore, we obtain∫

y �=0

(
1 − cos

(
y′η

))
N(x,dy) ≤ �(

p(x, ξ)
)
. (26)

We assume for the remainder of this section: R > 0 and S > 2R. χ is a fixed cut-off function
such that

χ ∈ C∞
c

(
R

d
); 1BR(0) ≤ χ ≤ 1B2R(0); χ(y) = χ(−y) for every y ∈ R

d .

The stopping time σ = σR is defined as follows

σ := inf
{
t ≥ 0: ‖Xt − x‖ > S

}
.

We need the following two lemmas.

Lemma 5.1. For every z ∈ R
d , we have(‖z‖2 ∧ 1

) ≤ c
(
1 − e−‖z‖2/2) ≤ c

(‖z‖2 ∧ 1
)
,

where c = 1/(1 − exp(−1/2)) and

(
1 − e−‖z‖2/2) =

∫
Rd

(
1 − cos

(
z′η

))
hd dη

with

hd(η) = 1

(
√

2π)d
e−‖η‖2/2.

The proof is elementary and hence omitted.

Lemma 5.2. Let p(x, ξ) be the symbol (7) and R > 0. Then we have∫
z �=0

(∥∥∥∥ z

2R

∥∥∥∥2

∧ 1

)
N(y,dz) ≤ c̃d sup

‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣,
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where c̃d = 2c(d + 1) with the c of Lemma 5.1.

Proof. By the above lemma, we obtain

LHS ≤ c

∫
z �=0

(
1 − exp

(
−

∥∥∥∥ z

2R

∥∥∥∥2/
2

))
N(y,dz)

= c

∫
z �=0

∫
Rd

(
1 − cos

(
1

2R

(
z′η

)))
1

(
√

2π)d
e−‖η‖2/2 dηN(y,dz)

≤ c

∫
Rd

�p

(
y,

η

2R

)
hd(η)dη

≤ 2c

∫
Rd

sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣(1 + ‖η‖2)
hd(η)dη

= sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣
∫

Rd

2c
(
1 + ‖η‖2)

hd(η)dη,

where we have used the Tonelli–Fubini theorem, the inequality (26) and a standard estimate of
the c.n.d.f. η �→ p(y,η/(2R)) as it can be found in the proof of Lemma 3.2 in [27]. �

Proof of Proposition 3.10. Let X be a h.d.w.j. such that the differential characteristics (
,Q,n)

of X are locally bounded and finely continuous. At first, we show that for S,R and σ as above
we have

P
x
((

Xσ· − x
)∗
t
≥ 2R

) ≤ cd · t · sup
‖y−x‖≤S

sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣, (27)

where cd = 4d + 16̃cd . Having proved this the result follows easily.
The semimartingale characteristics of the stopped process Xσ are given in (24) above. Now,

we use a double stopping technique introducing

τR := inf
{
t ≥ 0:

∥∥�Xσ
t

∥∥ > R
}
.

We start with

P
x
((

Xσ· − x
)∗
t
≥ 2R

) ≤ P
x
((

Xσ· − x
)∗
t
≥ 2R,τR > t

) + P
x(τR ≤ t) (28)

and deal with the terms on the right-hand side one after another, starting with the first one.
We show how to separate the first term of (28) again in order to get control over the big

jumps. Let X̌ be as defined in equation (25). The semimartingale X̌σ admits the following third
characteristic: χ(y)1[[0,σ ]](s)N(Xs,dy)ds. Now let u = (u1, . . . , ud)′ : Rd → R

d be such that
uj ∈ C2

b(Rd) is 1-Lipschitz continuous, uj depends only on x(j) and is zero in zero for j =
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1, . . . , d . We define the auxiliary process

M̌t := u
(
X̌σ

t − x
) −

∫ t∧σ

0
Fs ds,

where

F
(j)
s = ∂ju(X̌s− − x)
(j)(Xs−)

− 1

2
∂j ∂ju(X̌s− − x)Qjj (Xs−)

(29)

−
∫

z �=0

(
u(X̌s− − x + z) − u(X̌s− − x)

− χ(z)z(j) ∂ju(X̌s− − x)
)
χ(z)N(Xs−,dz).

M̌ is a local martingale by [15], Theorem II.2.42 and by Lemma 3.7 of [27] we have under (LG):∣∣F (j)
s

∣∣ ≤ const ·
∑

0≤|α|≤2

∥∥∂αu
∥∥∞

since uj ∈ C2
b(Rd). In particular, for every fixed t > 0 M̌ is an L2-martingale on [0, t]. Now we

define

D :=
{
ω ∈ �:

∫ t∧σ(ω)

0

∥∥Fs(ω)
∥∥ ds ≤ R

}
and obtain

P
x
((

Xσ· − x
)∗
t
≥ 2R,τR > t

) ≤ P
x
((

Xσ· − x
)∗
t
≥ 2R,τR > t,D

) + P
x
(
Dc

)
. (30)

Using Doob’s inequality and the Lipschitz property of u, we obtain at first

P
x
(
u

(
Xσ· − x

)∗
t
≥ 2R,τR > t,D

) ≤ P
x

(
u

(
Xσ· − x

)∗
t
−

∫ ·∧σ

0
Fs ds ≥ R,τR > t,D

)

≤ P
x
(
M̌∗

t∧σ ≥ R
)

≤ 1

R2
E

x
(∥∥M̌σ

t

∥∥2)

≤ 1

R2

d∑
j=1

E
x
([

X̌(j)· , X̌(j)·
]σ

t

)
.

Since

E
x
([

X̌(j)· , X̌(j)·
]σ

t

) = E
x
(〈
X̌(j),c· , X̌(j),c·

〉σ
t

) + E
x

(∫ t∧σ

0

∫
z �=0

(
z(j)

)2
χ(z)2N(Xs,dz)ds

)
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we obtain

P
x
(
u

(
Xσ· − x

)∗
t
≥ 2R,τR > t,D

)
≤ 1

R2

d∑
j=1

E
x

∫ t∧σ

0
Qjj (Xs)ds + E

x

∫ t∧σ

0

∫
z �=0

‖z‖2

R2
χ(z)2N(Xs, z)ds

≤ 4
d∑

j=1

E
x

∫ t∧σ

0

(
e′
j

2R
Q(Xs)

ej

2R

)
ds + 42

E
x

∫ t∧σ

0

∫
z �=0

(∥∥∥∥ z

2R

∥∥∥∥2

∧ 1

)
N(Xs,dz)ds

≤ 4t

d∑
j=1

sup
s<t∧σ

�p

(
Xs,

ej

2R

)
+ 42 sup

‖y−x‖≤S

∫ t∧σ

0

∫
z �=0

(∥∥∥∥ z

2R

∥∥∥∥2

∧ 1

)
N(y,dz)ds

≤ 4td sup
‖y−x‖≤S

sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣ + 42t sup
‖y−x‖≤S

c̃d sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣,
where we have used Lemma 5.2 on the second term. By choosing a sequence (un)n∈N of func-
tions of the type described above which tends to the identity in a monotonous way, we obtain

P
x
((

Xσ· − x
)∗
t
≥ 2R,τR > t,D

) ≤ (
4d + 42c̃d

)
t sup
‖y−x‖≤S

sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣. (31)

Now we deal with the second term of (30). By the Markov inequality, we get

P
x
(
Dc

) = P
x

(∫ t∧σ

0
‖Fs‖ds > R

)
≤ 1

R

d∑
j=1

E
x

(∫ t∧σ

0

∣∣F (j)
s

∣∣ ds

)
=: (∗).

Again, we chose a sequence (un)n∈N of functions as we described in (29), but this time it is
important that the first and second derivatives are uniformly bounded. Since the un converge to
the identity, the first partial derivatives tend to 1 and the second partial derivatives to 0. In the
limit (n → ∞), we obtain

(∗) ≤ 1

R

d∑
j=1

E
x

∫ t∧σ

0

∣∣∣∣
(j)(Xs) +
∫

z �=0

(−z(j)χ(z) + (
χ(z)

)2
z(j)

)
N(Xs,dz)

∣∣∣∣ ds

≤ 2
d∑

j=1

E
x

∫ t∧σ

0

∣∣∣∣
(j)(Xs)

2R
+

∫
z �=0

sin

(
z′ej

2R

)
− z(j)χ(z)

2R
N(Xs,dz)

∣∣∣∣ ds (32)

+ 2
d∑

j=1

E
x

∫ t∧σ

0

∣∣∣∣
∫

z �=0

(χ(z))2z(j)

2R
− sin

(
z′ej

2R

)
N(Xs,dz)

∣∣∣∣ ds. (33)
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For term (32), we get

2
d∑

j=1

E
x

∫ t∧σ

0

∣∣∣∣
(Xs)
′ej

2R
+

∫
z �=0

sin

(
z′ej

2R

)
− z′ejχ(z)

2R
N(Xs,dz)

∣∣∣∣ ds

≤ 2td sup
s≤t∧σ

E
x

∣∣∣∣
(Xs)
′ej

2R
+

∫
z �=0

sin

(
z′ej

2R

)
− z′ejχ(z)

2R
N(Xs,dz)

∣∣∣∣ (34)

≤ 2td sup
‖y−x‖≤S

sup
‖ε‖≤1

∣∣∣∣
p

(
y,

ε

2R

)∣∣∣∣
and for term (33)

2
d∑

j=1

E
x

∫ t∧σ

0

∣∣∣∣
∫

z �=0

(χ(z))2z′ej

2R
− sin

(
z′ej

2R

)
N(Xs,dz)

∣∣∣∣ ds

≤ 2
d∑

j=1

E
x

∫ t∧σ

0

∣∣∣∣
∫

B2R(0)\{0}
1 − cos

(
z′ej

2R

)
N(Xs,dz)

∣∣∣∣
(35)

+
∣∣∣∣
∫

B2R(0)c
1N(Xs,dz)

∣∣∣∣ ds

≤ 2td sup
‖y−x‖≤S

sup
‖ε‖≤1

�p

(
y,

ε

2R

)
+ 22td sup

‖y−x‖≤S

c̃d sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣,
where we have used again Lemma 5.2 on the second term.

It remains to deal with the second term of (28). Let δ > 0 be fixed (at first) and m : R →
]1,1 + δ[ a strictly monotone increasing auxiliary function. Since m ≥ 1 and since we have at
least one jump of size > R on {τR ≤ t}, we obtain

P
x(τR ≤ t) ≤ P

x

(∫ t

0

∫
‖z‖≥R

m
(‖z‖)

μXσ

(·;ds,dz) ≥ m(R)

)

≤ 1

m(R)
E

x

(∫ t

0

∫
‖z‖≥R

m
(‖z‖)

1[[0,σ ]](s)μX(·;ds,dz)

)

= 1

m(R)
E

x

(∫ t

0

∫
z �=0

m
(‖z‖)

1[[0,σ [[(s)1BR(0)c (z)N(Xs,dz)ds

)

≤ (1 + δ)t sup
s≤t∧σ

N
(
Xs,BR(0)c

)
≤ (1 + δ)t sup

‖y−x‖≤S

N
(
y,BR(0)c

)

≤ (1 + δ)4t sup
‖y−x‖≤S

∫
z �=0

(∥∥∥∥ z

2R

∥∥∥∥2

∧ 1

)
N(y,dz)
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because m(‖z‖)1[[0,σ [[(s)1BR(0)c (z) is in class F 1
p of Ikeda and Watanabe (see [10], Section II.3).

Since δ can be chosen arbitrarily small, we obtain by Lemma 5.2

P
x(τR ≤ t) ≤ 4t sup

‖y−x‖≤S

c̃d sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R

)∣∣∣∣. (36)

Plugging together (31), (35), (35) and (36), we obtain (27).
For the particular case σ = σx

3R̃
, we have

{(
Xσ· − x

)∗
t
≥ 2R̃

} = {
(X· − x)∗t ≥ 2R̃

}
and therefore, for every R̃ > 0

P
x
(
(X· − x)∗t ≥ 2R̃

) ≤ cd · t · sup
‖y−x‖≤3R̃

sup
‖ε‖≤1

∣∣∣∣p
(

y,
ε

2R̃

)∣∣∣∣. (37)

Setting R := (1/2)R̃, we obtain (12). The proof of (13) works literally as in the case of rich Feller
processes satisfying (G) and (S). Compare in this context [23], Lemma 6.3 and Lemma 4.1. The
condition (G) is not used in the proofs of these lemmas. �

Proof of Theorems 3.11 and 3.12. Since the proofs of the analogue statements for rich Feller
processes can be adapted and since all eight proofs are very similar, we decided to give only on
exemplary proof, namely of (18): Fix x ∈ R

d . Let λ > βx∞ and choose λ > α1 > α2 > βx∞. We
have

P
x
(
(X· − x)∗t ≥ t1/α1

) ≤ cd · t · H (
x, t1/α1

) ≤ c′
d · t(t1/α1

)−α2 = c′
d t1−(α2/α1)

for t small enough, say t < T0, since the lim sup is considered. Now let tk := (1/2)k for k ∈ N.
We obtain

∞∑
k=k0

P
x
(
(X· − x)∗tk ≥ t

1/α1
k

) ≤ c′
d

∞∑
k=k0

2−k(1−(α2/α1)) < ∞,

where k0 depends on T0. By the Borel–Cantelli lemma, we obtain

P
x
(

lim sup
k→∞

(X· − x)∗tk ≥ (tk)
1/α1

)
= 0

and hence (X· − x)∗tk < (tk)
1/α1 for all k ≥ k1(ω) on a set of probability one. For fixed ω in this

set and tk+1 ≤ t ≤ tk and k ≥ k1(ω) ≥ k0, we have(
X·(ω) − x

)∗
t
≤ (

X·(ω) − x
)∗
tk

≤ t
1/α1
k ≤ 21/α1 t1/α1

and since λ > α1

t−1/λ(X· − x)∗t ≤ 21/α1 t (1/α1)−(1/λ)

which converges P
x -a.s to zero for t ↓ 0. �
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