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Two test statistics are introduced to test the null hypotheses that the sampling distribution has an increas-
ing hazard rate on a specified interval [0, a]. These statistics are empirical L1-type distances between the
isotonic estimates, which use the monotonicity constraint, and either the empirical distribution function or
the empirical cumulative hazard. They measure the excursions of the empirical estimates with respect to
the isotonic estimates, owing to local non-monotonicity. Asymptotic normality of the test statistics, if the
hazard is strictly increasing on [0, a], is established under mild conditions. This is done by first approxi-
mating the global empirical distance by a distance with respect to the underlying distribution function. The
resulting integral is treated as sum of increasingly many local integrals to which a central limit theorem can
be applied. The behavior of the local integrals is determined by a canonical process, the difference between
the stochastic process x �→ W(x) + x2, where W is standard two-sided Brownian motion, and its greatest
convex minorant.
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1. Introduction

One way of characterizing a distribution of an absolutely continuous random variable X that is
particularly useful in reliability theory and survival analysis is by its hazard rate h0. Suppose that
X models the failure time of a certain device. The interpretation of the hazard rate is that for
small ε > 0, εh0(x) reflects the probability of failure of the device in the time interval (x, x + ε]
given that the device was still unimpaired at time x (assuming that h0 is continuous at x). Put
differently, h0(x) represents the level of instantaneous risk of failure of the device at time x,
given that it still works at time x. A high value reflects high risk, and a low value reflects low
risk. Lifetimes of devices that are subject to aging can be described by distributions with increas-
ing hazard rate. Locally decreasing hazard rates can be used to model lifetimes of devices that
become more reliable with age during a certain time period.

It is especially this clear interpretation of these qualitative properties of a hazard rate that
makes this function a natural characteristic of a survival distribution. The problem of estimating
a hazard rate nonparametrically under qualitative (or shape) restrictions gained attention in the
1960s (see the overview in [7,19] and [21]). Also the problem of testing the null hypothesis
of constant hazard (exponentiality) against monotonicity of the hazard was studied intensively
(see, e.g., [17]). Only quite recently was another “shape-constrained” rather than parametric
null hypothesis studied, namely the null hypothesis that the underlying hazard rate is increasing
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against the alternative that it is not. [3] studied local versions of the test statistic of [17] to test
this hypothesis, and [11] introduced and studied a test based on the “biased bootstrap” concept.
[2] used the supremum distance between two estimators of the cumulative hazard rate as the test
statistic.

In this paper, we consider two integral-type test statistics for the hypothesis that a hazard rate,
h0, is monotone on an interval, [0, a], for some known a > 0. We restrict ourselves to the in-
creasing case; the case of locally decreasing hazard can be considered analogously. Experiments
conducted by [8] indicated that testing the hypothesis based on our test statistic, using a bootstrap
procedure to determine critical values outperforms the test proposed by [11] and [2] for different
reasons. The test proposed by [2] is quite conservative, and the test proposed by [11] is anticon-
servative (also explaining in part its high power). (For more details, see [8].) In this paper, we
focus on the asymptotic distribution theory for the test statistics, especially under the assumption
that h0 is strictly increasing on [0, a].

We now introduce our test statistics. Based on an i.i.d. sample X1, . . . ,Xn from the distribution
associated with H0, the most natural nonparametric estimator for H0, without assuming anything
on H0, is the empirical cumulative hazard function given by

Hn(x) =
{− log

{
1 − Fn(x)

}
, x ∈ [0,X(n)),

∞, x ≥ X(n),

where Fn denotes the empirical distribution function based on X1,X2, . . . ,Xn. Under the as-
sumption that H0 is convex on [0, a], the cumulative hazard can be estimated by the greatest
convex minorant, Ĥn, of the empirical cumulative hazard function Hn on the interval [0, a].
Using these two estimators, the following test statistic emerges:

Tn =
∫

[0,a]
{
Hn(x−) − Ĥn(x)

}
dFn(x). (1.1)

Note that this is the empirical L1 distance between the two aforementioned estimators for the
cumulative hazard function with resp[ect to the empirical measure dFn, and that Tn ≥ 0, because
Ĥn is a minorant of Hn. If H0 is concave on [0, a], then both estimators for H0 will be close
to H0 and Tn will tend to be small (converge to zero a.s. for n → ∞). In contrast, if h0 has a
region in [0, a] in which it is not increasing, then Hn will capture this “non-convexity” of H0
and converge to H0 on this region, whereas Ĥn will converge to the convex minorant of H0 on
[0, a]. Note that Tn = 0 if and only if Ĥn coincides with the linear interpolation of the points
(x(i),Hn(x(i)−)) on the range of the data falling in [0, a]. One could say that Tn = 0 if Hn is
“as convex as it can be on [0, a],” being an increasing right- continuous step function. This is
the reason for taking Hn(x−) instead of Hn(x) in (1.1). Similar reasoning can be followed for
another test statistic,

Un =
∫

[0,a)

{
Fn(x−) − F̂n(x)

}
dFn(x) where F̂n(x) = 1 − exp

(−Ĥn(x)
)
. (1.2)

An advantage of this statistic compared with Tn is that Un is less sensitive to possible problems
that can occur with large values of Hn.

The main result of this paper concerns the asymptotic distribution of Tn and Un. Suppose that
h0 satisfies:
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Condition 1. h0 is strictly positive on [0, a], with a strictly positive continuous derivative h′
0 on

(0, a), which also has a strictly positive right limit at 0 and a strictly positive left limit at a.

Then

n5/6{Tn − EDn} D−→ N
(
0, σ 2

H0

)
and n5/6{Un − EUn} D−→ N

(
0, σ 2

F0

)
, (1.3)

where Dn is a modified version of Tn; see Theorems 5.1 and 5.2. Here σ 2
H0

and σ 2
F0

are con-
stants depending on f0. Results of a similar flavor were established by, for example, [15] for
the difference between the empirical distribution function and its concave majorant. Note that
the asymptotic variances of the test statistics depend on the unknown underlying hazard rate.
Thus, the limit results cannot be applied immediately to compute approximate critical values. As
mentioned earlier, [8] proposed a bootstrap procedure to approximate critical values for the test
statistics. First, the underlying hazard rate h0 is estimated under the null hypothesis. Then sam-
ples from the corresponding distribution are drawn and bootstrap realizations of the test statistic
obtained. These latter realizations can be used to approximate appropriate critical values. In fact,
the proof of [8] that shows that the bootstrap works is based on the limit results obtained in this
paper.

The basic idea of the proof of the limit theorems is to approximate the integral in the test statis-
tic by a sum of increasingly many local integrals, using the crucial localization Lemma 3.4, and
then apply a central limit theorem to the components that arise in this way. The behavior of the
local integrals is determined by a canonical process, the difference between a Brownian motion
with parabolic drift and its convex minorant. Relevant properties of this process are derived in
Section 2. In Section 3, a statistic related to Tn (where the integral is taken with respect to F0
rather than Fn) is closely approximated by an integral involving the independent increments of
Brownian motion. Moreover, the resulting integral is represented as a sum of local integrals using
a “big blocks separated by small blocks” construction as introduced by [20]. The local integrals
over the big blocks reduce to the processes considered in Section 2. Finally, because the local
integrals are based on the independent increments of a Brownian motion process, a central limit
theorem can be applied to obtain the first result in the spirit of (1.3), but still with integrating
measure dF0 rather than dFn. The asymptotic distribution of the statistic related to Un (with dF0
instead of dFn) is derived in Section 4. In Section 5, the main results of the paper are established
by showing that the differences between the integrals with respect to dFn and dF0 are sufficiently
small to pass on the asymptotic normality results obtained in Sections 3 and 4 to the original test
statistics. Moreover, a result is proved for the case where the underlying hazard rate is constant
on [0, a], showing that this leads to completely different asymptotics. This also explains the
aforementioned conservative behavior of the tests considered by [2], in which critical values are
obtained using the exponential distribution (with flat hazard rate).

2. Local asymptotic process and its integral

A key factor in proving (1.3) is that the ‘global integral’ can be approximated by a sum of
increasingly many ‘local integrals.’ By normalization, these local integrals are all related to the
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Figure 1. The greatest convex minorant of W(x) + x2, restricted to [−2,2].

integral of a canonical local asymptotic process. Consider the process

x �→ V (x) = W(x) + x2, x ∈ R, (2.1)

with W standard two-sided Brownian motion on R, and let C be the greatest convex minorant
of V on R. Then, for c > 0, define the functional Qc as the integral of the ‘canonical process’
x �→ V (x) − C(x) over the interval [0, c]:

Qc =
∫ c

0

{
V (x) − C(x)

}
dx. (2.2)

A picture of the process V and its greatest convex minorant, restricted to the interval [−2,2] is
provided in Figure 1.

In this section, we first derive asymptotic properties of Qc for c → ∞ in Theorem 2.1. In
Theorem 2.2, we show that changing the integration bounds in the definition of Qc in a specific
way and changing the definition of V slightly does not essentially affect the asymptotic proper-
ties of Qc. Because we use the asymptotic result later in the paper in conjunction with a local
rescaling argument, we also prove a slightly more general result allowing for this in Theorem 2.3.

The basic result of this section is as follows:

Theorem 2.1.

c−1/2{Qc − cE
∣∣C(0)

∣∣} D−→ N
(
0, σ 2), c → ∞,
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where C(0) is the value of the greatest convex minorant C of the process V at 0 and

σ 2 = 2
∫ ∞

0
covar

(−C(0),V (x) − C(x)
)

dx. (2.3)

All moments of c−1/2{Qc − cE|C(0)|} exist, and in particular, the fourth moment is uniformly
bounded in c and converges to the fourth moment of the normal N(0, σ 2) distribution as c → ∞.

In the proof we use the following lemma, which is proved in the Appendix.

Lemma 2.1.

(i) For the process V defined in (2.1), there exist positive constants c and c′ such that for all
u ≥ 0,

P
(

min
x /∈[−u,u]V (x) ≤ 0

)
≤ ce−c′u3

.

(ii) Let τ(a) be defined by:

τ(a) = arg min
x∈R

{
W(x) + (x − a)2}.

For each fixed a, τ(a) is almost surely unique, and the process a �→ τ(a), a ∈ R is sta-
tionary. Moreover, there exist constants c1, c2 > 0, such that for events A and B satisfying

A ∈ σ
{
τ(a) :a ≤ 0

}
and B ∈ σ

{
τ(a) :a ≥ m

}
,

we have that ∣∣P(A ∩ B) − P(A)P(B)
∣∣ ≤ c1e

−c2m
3
. (2.4)

(iii) The process

V (x) − C(x), x ∈ R,

is stationary and that there exist constants c1, c2 > 0, such that for events A and B satis-
fying

A ∈ σ
{
V (x) − C(x) :x ≤ 0

}
and B ∈ σ

{
V (x) − C(x) :x ≥ m

}
,

we have ∣∣P(A ∩ B) − P(A)P(B)
∣∣ ≤ c1e

−c2m
3
. (2.5)

Proof of Theorem 2.1. By part (iii) of Lemma 2.1, the process

V (x) − C(x), x ∈ R, (2.6)

is stationary. In fact, the process touches 0 at changes in the slope of C and behaves between
these touches of 0 as an excursion of a Brownian motion path above a parabola of the form

φ(x) = s − (x − a)2, x ∈ R,
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where φ is a parabola touching two local minima of Brownian motion, and where the (random)
values a and s depend on the Brownian motion path. Defining

Dk =
∫ k+1

k

{
V (x) − C(x)

}
dx, k ∈ Z,

we get a stationary sequence of random variables. Fubini and the stationarity of (2.6) give

EDk =
∫ k+1

k

E
{
V (x) − C(x)

}
dx =

∫ k+1

k

E
{
V (0) − C(0)

}
dx = E

∣∣C(0)
∣∣,

where we also use that V (0) = 0. Moreover, all moments of Dk exist. This follows from the fact
that maxx∈[0,1]{V (x) − C(x)} has a distribution with tails that die out faster than exponentially.
To see this, note that ∀u ≥ 0,

P

{
max

x∈[0,1]
{
V (x) − C(x)

} ≥ M
}

≤ P

{
max

x∈[0,1]
V (x) ≥ 1

2
M

}
+ P

{
min
x∈R

C(x) ≤ −1

2
M

}

≤ P

{
max

x∈[0,1]
W(x) ≥ 1

2
M − 1

}
+ P

{
min
x∈R

V (x) ≤ −1

2
M

}
(2.7)

≤
√

2

π

∫ ∞

M/2−1
e−x2/2 dx + P

{
min

x∈[−u,u]W(x) ≤ −1

2
M

}

+ P

{
min

x /∈[−u,u]V (x) ≤ 0
}
.

The first term on the right-hand side is bounded by c exp{−c′M2/4} for some c, c′ > 0. By
part (i) of Lemma 2.1, for the third term we have

P
(

min
x /∈[−u,u]V (x) ≤ 0

)
≤ ce−c′u3

for constants c, c′ > 0. For the second term in (2.7), by Brownian scaling, we get

P

{
min

x∈[−u,u]W(x) ≤ −M/2
}

= P

{
min

x∈[−1,1]W(ux) ≤ −M/2
}

= P

{
min

x∈[−1,1]u
−1/2W(ux) ≤ −u−1/2M/2

}

= P

{
max

x∈[−1,1]
W(x) ≥ u−1/2M/2

}

≤ 2

√
2

π

∫ ∞

u−1/2M/2
e−x2/2 dx ≤ 2

√
2

π

2
√

u

M
exp

{
−1

8
M2/u

}
.
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Thus, taking u = √
M in the second and third terms in (2.7) and observing that the first term is

of lower order, we obtain

P

{
max

x∈[0,1]
{
V (x) − C(x)

} ≥ M
}

≤ c1e
−c2M

3/2
(2.8)

for constants c1, c2 > 0.
By part (iii) of Lemma 2.1, the process x �→ V (x) − C(x) is strongly mixing. Thus, we can

apply Theorem 18.5.3 of [13], page 347, yielding that

c−1/2{Qc − cE
∣∣C(0)

∣∣} D−→ N
(
0, σ 2) where σ 2 = var(D0) + 2

∞∑
k=1

covar(D0,Dk).

Using the stationarity of the process (2.6) again, we obtain (2.3). The last statement of the theo-
rem follows from (2.8) and (2.5). �

To successfully apply the “big blocks separated by small blocks” method in the sequel, the
following extension of Theorem 2.1 is needed. It shows that the theorem essentially goes through
if the convex minorant is taken over a finite interval and the region of integration is altered
slightly.

Theorem 2.2. Let Cc be the greatest convex minorant on [0, c] of the process V defined by (2.1).
Note that Cc is not the restriction of C to [0, c], because C is defined globally on R and Cc is
the greatest convex minorant of the process V on [0, c] and is defined only on [0, c].

(i) For c > 4, let the interval Ic be defined by Ic = [√c, c − √
c]. Then, for σ 2 as defined in

Theorem 2.1,

c−1/2
{∫

Ic

{
V (x) − Cc(x)

}
dx − E

∫
Ic

{
V (x) − Cc(x)

}
dx

}
(2.9)

D−→ N
(
0, σ 2), c → ∞.

(ii) Relation (2.9) also holds if the interval Ic is given by Ic = [0, c − √
c] or Ic = [√c, c].

(iii) For any choice of Ic in (i) or (ii), the fourth moment of

c−1/2
{∫

Ic

{
V (x) − Cc(x)

}
dx − E

∫
Ic

{
V (x) − Cc(x)

}
dx

}

is uniformly bounded in c, and converges to the fourth moment of a normal N(0, σ 2)

distribution, as c → ∞.

Proof. (i) The probability that Cc differs from C on the interval Ic is less than or equal to
k1 exp{−k2c

3/2} for constants k1, k2 > 0. The proof of this is analogous to the proof of Lem-
ma 3.4 in the next section. Thus, if Kc denotes the event that Cc �≡ C on Ic, then we get, using
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stationarity of x �→ (V (x) − C(x))2 and the fact that EC(0)2 < ∞,

E

∫
Ic

∣∣Cc(x) − C(x)
∣∣dx ≤

{∫
Ic

E
{
V (x) − C(x)

}2 dx

}1/2

P(Kc)
1/2

≤ {|Ic|EC(0)2}1/2
k1 exp

{−k2c
3/2}

= O
(
c1/2e−kc3/2)

, c → ∞,

for some k > 0. Thus,

c−1/2
{∫

Ic

{
V (x) − Cc(x)

}
dx − E

∫
Ic

{
V (x) − Cc(x)

}
dx

}

= c−1/2
{∫

Ic

{
V (x) − C(x)

}
dx − E

∫
Ic

{
V (x) − C(x)

}
dx

}

+ Op

(
ce−kc3/2)

,

and the statement now follows.
(ii) We can repeat the argument on the interval [0,

√
c], and apply the argument used in (i) on

the subinterval I ′
c = [c1/4,

√
c − c1/4] (but leaving Cc as defined in (i)). This yields

c−1/4
{∫

I ′
c

{
V (x) − Cc(x)

}
dx − E

∫
I ′
c

{
V (x) − Cc(x)

}
dx

}
D−→ N

(
0, σ 2), c → ∞,

implying that

c−1/2
{∫

I ′
c

{
V (x) − Cc(x)

}
dx − E

∫
I ′
c

{
V (x) − Cc(x)

}
dx

}
p−→ 0, c → ∞.

Moreover,

c−1/2
∫

[0,c1/4]
E

∣∣V (x) − Cc(x)
∣∣dx = O

(
c−1/4), c → ∞.

The statement now follows for the first choice of the interval Ic in (ii). For the second choice
of Ic, the argument is similar.

(iii) Let Ic be as in (i). Then

c−2E

{∫
Ic

{
V (x) − Cc(x)

}
dx − E

∫
Ic

{
V (x) − Cc(x)

}
dx

}4

= c−2E

{∫
Ic

{
V (x) − C(x)

}
dx − E

∫
Ic

{
V (x) − C(x)

}
dx

}4

+ O
(
e−kc3/2)
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for some k > 0, and the statement now follows from Theorem 2.1, (2.8), and (2.5), along with
the fact that c2(c − 2

√
c)−2 → 1 as c → ∞. If, for example, Ic = [0, c − √

c], then we write∫
Ic

{
V (x) − Cc(x)

}
dx − E

∫
Ic

{
V (x) − Cc(x)

}
dx = Ac + Bc,

where

Ac =
∫

[0,
√

c]
{
V (x) − Cc(x)

}
dx − E

∫
[0,

√
c]
{
V (x) − Cc(x)

}
dx

and

Bc =
∫

[√c,c−√
c]
{
V (x) − Cc(x)

}
dx − E

∫
[√c,c−√

c]
{
V (x) − Cc(x)

}
dx.

Thus, we get

c−2E

{∫
Ic

{
V (x) − Cc(x)

}
dx − E

∫
Ic

{
V (x) − Cc(x)

}
dx

}4

= c−2EB4
c + c−2{4EB3

c Ac + 6EB2
c A2

c + 4EBcA
3
c + EA4

c

}
.

We have

c−2EA4
c =

(√
c

c

)2

c−1EA4
c = O

(
c−1)

and similarly, using the Cauchy–Schwarz inequality,

c−2EBcA
3
c = Ec−3/2A3

cc
−1/2Bc ≤

√
Ec−3A6

c

√
Ec−1B2

c = O
(
c−3/4).

Continuing in this way, we find that the only non-vanishing term is c−2EB4
c . The statement now

follows from what we proved for Ic = [√c, c − √
c]. �

Finally, we also need the following extension of Theorem 2.2, allowing for some scaling in
the arguments of the various processes and coefficients.

Theorem 2.3. Let Fc, Gc , and Hc be twice-differentiable increasing functions on [0, c], with
continuous derivatives fc, gc , and hc , respectively, satisfying

Fc(x) = fc(0)x
(
1 + o(1)

)
, Gc(x) = gc(0)x

(
1 + o(1)

)
, Hc(x) = 1

2h′
c(0)x2(1 + o(1)

)
as c → ∞, where the o(1) term is uniform in x. We assume that fc(0), gc(0), hc(0), and h′

c(0)

are positive and stay away from 0 and ∞ as c → ∞, where h′
c(0) denotes the right derivative of

hc at 0. Let Cc be the greatest convex minorant on [0, c] of the process

Vc(x) = Hc(x) + W
(
Gc(x)

)
, x ∈ [0, c].
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In addition, let Sc be defined by

Sc(x) = Vc(x) − Cc(x), x ∈ [0, c].

(i) For c > 4, define the interval Ic = [√c, c − √
c]. Then, as c → ∞,

c−1E

∫
Ic

Sc(x)dFc(x) ∼ gc(0)2/3fc(0)

(h′
c(0)/2)1/3

E
∣∣C(0)

∣∣,
(2.10)

var

(
c−1/2

∫
Ic

Sc(x)dFc(x)

)
∼ σ 2

c ,

where

σ 2
c = gc(0)5/3fc(0)2

(h′
c(0)/2)4/3

σ 2, (2.11)

and C and σ 2 are defined as in Theorem 2.1. Moreover, the fourth moment of

c−1/2
∫

Ic

{
Sc(x) − ESc(x)

}
dFc(x)

is uniformly bounded and satisfies

E

(
c−1/2

∫
Ic

{
Sc(x) − ESc(x)

}
dFc(x)

)4

∼ M(4)
c , c → ∞, (2.12)

where M
(4)
c denotes the fourth moment of a normal N(0, σ 2

c ) distribution.
(ii) Relations (2.10) and (2.12) also hold if the interval Ic is given by Ic = [0, c − √

c], Ic =
[√c, c] or Ic = [0, c].

Proof. Because the proof proceeds along the lines of the proofs of Theorems 2.1 and 2.2, we
focus only on the new type of scaling present in the process

x �→ 1
2h′

c(0)x2 + W
(
gc(0)x

)
, x ∈ [0, c],

which replaces the process V defined in (2.1) on [0, c].
Let a, b > 0. By Brownian scaling, the process

x �→ ax2 + W(bx), x ∈ [0, c], (2.13)

has the same distribution as the process

x �→ a−1/3b2/3{(a2/3b−1/3x
)2 + W

(
a2/3b−1/3x

)}
, x ∈ [0, c]. (2.14)
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Thus, if Ca,b is the greatest convex minorant of the process given in (2.13) and C̃a,b of the process
given in (2.14), then we get∫ c

0

{
ax2 + W(bx) − Ca,b(x)

}
fc(0)dx

D= a−1/3b2/3fc(0)

∫ c

0

{(
a2/3b−1/3x

)2 + W
(
a2/3b−1/3x

) − a1/3b−2/3C̃a,b(x)
}

dx

= bfc(0)

a

∫ a2/3b−1/3c

0

{
u2 + W(u) − a1/3b−2/3C̃a,b

(
a−2/3b1/3u

)}
du

= bfc(0)

a

∫ a2/3b−1/3c

0

{
u2 + W(u) − Cc(u)

}
du,

where Cc is the greatest convex minorant of the process

u �→ u2 + W(u), u ∈ [
0, a2/3b−1/3c

]
.

Thus, for c → ∞,

c−1E

∫ c

0

{
ax2 + W(bx) − Ca,b(x)

}
fc(0)dx ∼ b2/3fc(0)

a1/3
E

∣∣C(0)
∣∣.

Given that a = 1
2h′

c(0), b = gc(0), (2.10) follows. Moreover,

var

(
c−1/2

∫ c

0

{
ax2 + W(bx) − Ca,b(x)

}
fc(0)du

)

= b2fc(0)2

a2c
var

(∫ a2/3b−1/3c

0

{
u2 + W(u) − Cc(u)

}
du

)

= b5/3fc(0)2

a4/3
var

(
1√

b−1/3a2/3c

∫ a2/3b−1/3c

0

{
u2 + W(u) − Cc(u)

}
du

)

∼ b5/3fc(0)2

a4/3
σ 2

for c → ∞. Taking a = 1
2h′

c(0), b = gc(0) now yields (2.11). �

3. Embedding and central limit result for Tn-type statistic

In this section, we establish a central limit result for the quantity

n5/6
∫ a

0

{
Hn(x) − Ĥn(x) − μn

}
dF0(x) = n5/6

∫ a

0

{
Hn(x−) − Ĥn(x) − μn

}
dF0(x), (3.1)
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where μn denotes a centering sequence to be specified below. This result is the first step in
obtaining the limit result for Tn defined in (1.1), where the integral is taken with respect to
dFn rather than dF0. To derive the limiting distribution of (3.1), we first replace the process
Hn(x) − Ĥn(x) by

x �→ H0(x) + En(x)√
n{1 − F0(x)} − H̃n(x), x ∈ [0, a],

where En is the empirical process
√

n{Fn − F0} and H̃n is the greatest convex minorant of the
process

x �→ H0(x) + En(x)√
n{1 − F0(x)} , x ∈ [0, a]. (3.2)

We next use the strong approximation of the empirical process by a Brownian bridge Bn, yielding
the approximation

x �→ H0(x) + n−1/2Bn(F0(x))

1 − F0(x)
, x ∈ [0, a],

to the process (3.2). This process is distributed as

x �→ H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
, x ∈ [0, a], (3.3)

where W is standard Brownian motion on [0,∞). Next, the interval [0, a] is split into so-called
“big blocks” separated by small blocks. The local contributions to the integral over the big blocks
can be treated using the results of Section 2.

The first lemma to be proven states a contraction property for convex minorants that will
be used repeatedly in the sequel. It is related to Marshall’s lemma in the theory of isotonic
regression.

Lemma 3.1. Let f and g be bounded functions on an interval I ⊂ R, and let Cf and Cg be
their greatest convex minorants, respectively. Then

sup
x∈I

∣∣Cf (x) − Cg(x)
∣∣ ≤ sup

x∈I

∣∣f (x) − g(x)
∣∣.

Proof. Given that f ≥ g − supu∈I |f (u) − g(u)| and that g ≥ Cg by definition, it follows that
f ≥ Cg − supu∈I |f (u) − g(u)|. Because the right-hand side is convex, this means that it is a
convex minorant of f on I . Thus, it lies below the greatest convex minorant Cf of f on I ,

Cf (x) ≥ Cg(x) − sup
u∈I

∣∣f (u) − g(u)
∣∣, x ∈ I.

Because this inequality also holds with f and g interchanged, the result follows. �
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We now consider the functional∫
[0,a]

{
Hn(x) − Ĥn(x)

}
dF0(x)

(3.4)

=
∫

[0,a]

{
H0(x) − log

(
1 − En(x)√

n{1 − F0(x)}
)

− Ĥn(x)

}
dF0(x),

where En = √
n{Fn − F0} is the empirical process. The following lemma allows us to dispense

with the logarithms.

Lemma 3.2. Let H̃n be the greatest convex minorant of the process given in (3.2), where
F0(a) < 1. Then:

(i) ∫
[0,a]

∣∣∣∣Hn(x) − H0(x) − En(x)√
n{1 − F0(x)}

∣∣∣∣dF0(x) = Op

(
n−1).

(ii) ∫
[0,a]

∣∣Ĥn(x) − H̃n(x)
∣∣dF0(x) = Op

(
n−1).

Proof. (i) Let An denote the event∣∣∣∣ sup
x∈[0,a]

En(x)√
n{1 − F0(x)}

∣∣∣∣ ≤ 1

2
.

Then, by a well-known result in large deviation theory (Chernoff’s theorem), we have P(Ac
n) =

O(e−nc) for a constant c > 0. If An occurs, then we can expand the logarithm, which yields

− log

{
1 − En(x)√

n{1 − F0(x)}
}

= En(x)√
n{1 − F0(x)} + n−1O

(
sup

x∈[0,a]

∣∣En(x)
∣∣),

and (i) now follows.
(ii) This follows from Lemma 3.1 and the argument of the proof of (i). �

Below, we prove that

n5/6
∫

[0,a]

{
H0(x) + En(x)√

n{1 − F0(x)} − H̃n(x)

− E

{
H0(x) + En(x)√

n{1 − F0(x)} − H̃n(x)

}}
dF0(x)

converges in distribution to a normal distribution, which, together with Lemma 3.2, implies that

n5/6
∫

[0,a]

{
Hn(x) − Ĥn(x) − E

{
H0(x) + En(x)√

n{1 − F0(x)} − H̃n(x)

}}
dF0(x)
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converges to the same normal distribution.

Remark 3.1. We avoid taking the expectation of Hn(x) − Ĥn(x), because Hn is infinite with a
positive (but vanishing) probability on [0, a], as is Ĥn. This occurs when the empirical distribu-
tion function Fn reaches the value 1 on [0, a].

By Theorem 3 of [14], we can construct Brownian bridges Bn on the same sample space as Fn

such that

Yn = sup
x∈[0,a]

n1/2|En(x) − Bn(F0(x))|
2 ∨ logn

is a random variable with with EYn ≤ C < ∞ for all n. Thus, for n ≥ 2,

0 ≤ E sup
x∈[0,a]

n−1/2
∣∣∣∣ En(x)

1 − F0(x)
− Bn(F0(x))

1 − F0(x)

∣∣∣∣ ≤ EYn logn

n(1 − F0(a))
= O

(
logn

n

)
. (3.5)

We now have the following result.

Lemma 3.3. Let Ẽn be defined by

Ẽn(x) = Bn(F0(x))

1 − F0(x)
, x ∈ [0, a], (3.6)

where Bn is as defined above. Let CB
n be the greatest convex minorant of

x �→ H0(x) + n−1/2Ẽn(x), x ∈ [0, a]. (3.7)

Then ∫
[0,a]

{
Hn(x) − Ĥn(x)

}
dF0(x)

(3.8)

=
∫

[0,a]
{
H0(x) + n−1/2Ẽn(x) − CB

n (x)
}

dF0(x) + Op

(
logn

n

)
.

Proof. The result follows immediately from (3.5) and Lemmas 3.1 and 3.2(i). �

Now note that the process defined in (3.7) has the same distribution as the process

x �→ Vn(x)
def= H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
, x ∈ [0, a], (3.9)

where W is standard Brownian motion on R+. Therefore, if Cn is the greatest convex minorant
of the process Vn on [0, a], then we have∫

[0,a]
{
H0(x) + n−1/2Ẽn(x) − CB

n (x)
}

dF0(x)
D=

∫
[0,a]

{
Vn(x) − Cn(x)

}
dF0(x). (3.10)
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For (3.10), the asymptotic distribution is given in Theorem 3.1 below.

Theorem 3.1. Let h0 satisfy Condition 1, and let Sn be defined by

Sn(x) = H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
− Cn(x) = Vn(x) − Cn(x), x ∈ [0, a], (3.11)

where Cn is the greatest convex minorant of Vn defined in (3.9). Let Dn be defined by

Dn =
∫ a

0
Sn(x)dF0(x). (3.12)

Finally, let C(0) and σ 2 be defined as in Theorem 2.1. Then

n5/6{Dn − EDn} D−→ N
(
0, σ 2

H0

)
, n → ∞,

where

n2/3EDn → E
∣∣C(0)

∣∣ ∫ a

0

(
2h0(t)f0(t)

h′
0(t)

)1/3

dH0(t) (3.13)

and

σ 2
H0

= 24/3σ 2
∫ a

0

h0(t)
2{h0(t)f0(t)}1/3

h′
0(t)

4/3
dH0(t). (3.14)

For the proof of Theorem 3.1, we divide the interval [0, a] into mn intervals In,k with (equal)
length of order n−1/3 logn (big blocks), separated by intervals Jn,k (k = 2,3, . . . ,mn) with length
of order 2n−1/3√logn (small blocks). The small interval Jn,1 to the left of In,1 has half the length
of the other separating blocks, as has the small interval Jn,mn+1 to the right of In,mn . Thus,

[0, a] = Jn,1 ∪ In,1 ∪ Jn,2 ∪ In,2 ∪ · · · ∪ Jn,mn ∪ In,mn ∪ Jn,mn+1.

For k = 2,3, . . . ,mn, let J̃n,k be the interval with the same right endpoint as Jn,k with half the
length of Jn,k , and take J̃n,1 = Jn,1. For k = 1,2, . . . ,mn − 1 let J̄n,k+1 be the interval with the
same left endpoint as Jn,k+1 with half the length of Jn,k+1 and J̃n,mn+1 = Jn,mn+1. Then

[0, a] = J̃n,1 ∪ In,1 ∪ J̄n,2 ∪ J̃n,2 ∪ In,2 ∪ · · · ∪ J̃n,mn ∪ In,mn ∪ J̄n,mn+1,

where all I intervals have the same length, of order n−1/3 logn, and the J intervals have the same
length of (smaller) order n−1/3√logn. Finally, let the interval Ln,k be defined by

Ln,k = J̃n,k ∪ In,k ∪ J̄n,k+1 = [ank, an,k+1), k = 1,2, . . . ,mn

(3.15)

yielding [0, a) =
mn⋃
k=1

Ln,k.
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Note that mn ∼ an1/3/ logn, and see the figure for the structure of the partition.

0

J̃n,1 In,1 J̄n,2 J̃n,2 In,2

��
Ln,2

J̄n,3

a

J̄n,mn+1In,mn

The (key) localization lemma below, which is proven in the Appendix, shows that on inter-
vals In,k , the global convex minorant of Vn (defined in (3.9)) over [0, a] coincides with high
probability with the restriction to In,k of the local convex minorant of the process Vn on the
interval Ln,k .

Lemma 3.4. Let h0 satisfy Condition 1. Then:

(i) The probability that there exists a k, 1 ≤ k ≤ mn such that the greatest convex minorant
Cn of Vn is different on the interval In,k from the restriction to In,k of the (local) greatest
convex minorant of Vn on Ln,k , is bounded above by

c1 exp
{−c2(logn)3/2}

for constants c1, c2 > 0, uniformly in n.
(ii) The probability that there exists a k, 1 ≤ k ≤ mn, such that Cn has no change of slope in

an interval J̄n,k or J̃n,k is also bounded by

c1 exp
{−c2(logn)3/2}

for constants c1, c2, uniformly in n.

For each n ≥ 1 and 1 ≤ k ≤ mn, define independent standard Brownian motions Wn1, . . . ,

Wn,mn and consider the processes

x �→ H0(x) − H0(ank) + n−1/2Wnk

(
F0(x)

1 − F0(x)
− F0(ank)

1 − F0(ank)

)
, x ∈ Ln,k.

Denote the greatest convex minorants of these processes (on Ln,k) by Cnk . Furthermore, define
the processes Snk by

Snk(x) = H0(x) − H0(ank)
(3.16)

+ n−1/2Wnk

(
F0(x)

1 − F0(x)
− F0(ank)

1 − F0(ank)

)
− Cnk(x), x ∈ Ln,k.

Lemma 3.5. Assume that the conditions of Theorem 3.1 are satisfied. Moreover, let C(0) be
defined as in Theorem 2.1 and let σ 2

H0
be defined as in Theorem 3.1. Then

n5/6
mn∑
k=1

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

D−→ N
(
0, σ 2

H0

)
, n → ∞,
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where (see (3.13))

n2/3
mn∑
k=1

∫
In,k

ESnk(x)dF0(x) → E
∣∣C(0)

∣∣ ∫ a

0

(
2h0(t)f0(t)

h′
0(t)

)1/3

dH0(t), n → ∞. (3.17)

Proof. Let cn = n1/3|Ln,k| ∼ logn and In,k = [ank + n−1/3√cn, ank + n−1/3(cn − √
cn)]. We

then have

n

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

=
∫ cn−√

cn

√
cn

{
n1/6Wnk

(
F0(ank + n−1/3x)

1 − F0(ank + n−1/3x)
− F0(ank)

1 − F0(ank)

)

− n2/3Cnk

(
ank + n−1/3x

)
− E

{
n1/6Wnk

(
F0(ank + n−1/3x)

1 − F0(ank + n−1/3x)
− F0(ank)

1 − F0(ank)

)

− n2/3Cnk

(
ank + n−1/3x

)}}
f0

(
ank + n−1/3x

)
dx.

Here we use the fact that the (first two) deterministic terms in (3.16) drop out because of subtrac-
tion of the expectation. This implies that

n

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

D=
∫ cn−√

cn

√
cn

{
n1/6W

(
F0(ank + n−1/3x)

1 − F0(ank + n−1/3x)
− F0(ank)

1 − F0(ank)

)
− C′

nk(x)

− E

{
n1/6W

(
F0(ank + n−1/3x)

1 − F0(ank + n−1/3x)
− F0(ank)

1 − F0(ank)

)
− C′

nk(x)

}}

× f0
(
ank + n−1/3x

)
dx,

where C′
nk is the greatest convex minorant of the process

x �→ n2/3{H0
(
ank + n−1/3x

) − H0(ank) − n−1/3xh0(ank)
}

+ n1/6W

(
F0(ank + n−1/3x)

1 − F0(ank + n−1/3x)
− F0(ank)

1 − F0(ank)

)
, x ∈ [0, cn].

Here we use the fact that adding a linear function to a function does not change the difference
between this function and its greatest convex minorant. Note that the integrals on In,k depend
only on the increments of the Brownian motion process on the corresponding disjoint intervals
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Ln,k and thus are independent. For the individual integrals, we are close to the situation of The-
orem 2.3, with, for cn → ∞ on [0, cn] (note that n is determined by cn, n = ecn ),

Fcn(x) = n1/3{F0
(
ank + n−1/3x

) − F0(ank)
} = f0(ank)x

(
1 + o(1)

)
,

Hcn(x) = n2/3{H0
(
ank + n−1/3x

) − H0(ank) − n−1/3xh0(ank)
}

= 1
2h′

0(ank)x
2(1 + o(1)

)
and

Gcn(x) = n1/3
{

F0(ank + n−1/3x)

1 − F0(ank + n−1/3x)
− F0(ank)

1 − F0(ank)

}
= f0(ank)x

(1 − F0(ank))2

(
1 + o(1)

)
.

This yields

var

(
n√
cn

∫
In,k

Snk(x)dF0(x)

)
∼ σ 2

nk, n → ∞,

uniformly in k = 1, . . . ,mn, where

σ 2
nk = (f0(ank)/{1 − F0(ank)}2)5/3f0(ank)

2

(h′
0(ank)/2)4/3

σ 2

= (h0(ank))
10/3f0(ank)

1/3

(h′
0(ank)/2)4/3

σ 2

= 24/3h0(ank)
3{h0(ank)f0(ank)}1/3

h′
0(ank)4/3

σ 2,

and σ 2 is defined as in Theorem 2.1. Likewise, with C(0) as defined in Theorem 2.1,

n

cn

∫
In,k

ESnk(x)dF0(x) ∼ 21/3h0(ank){h0(ank)f0(ank)}1/3E|C(0)|
h′

0(ank)1/3
.

Because the fourth moments of

n√
cn

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

are uniformly bounded by Theorem 2.3, for each ε > 0, using Chebyshev’s inequality, we get

mn∑
k=1

P

{
m

−1/2
n

∣∣∣∣ n√
cn

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

∣∣∣∣ ≥ ε

}
→ 0, n → ∞.
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Using the fact that m−1
n ∼ a−1n−1/3 logn and that the intervals In,k have lengths of order

n−1/3 logn, we get

m−1
n

mn∑
k=1

σ 2
nk ∼ m−1

n

mn∑
k=1

24/3h0(ank)
3{h0(ank)f0(ank)}1/3

h′
0(ank)4/3

σ 2

−→ 24/3σ 2

a

∫ a

0

h0(t)
3{h0(t)f0(t)}1/3

h′
0(t)

4/3
dt.

Because mn = an1/3/cn, the normal convergence criterion on page 316 of [16] now gives

n5/6
mn∑
k=1

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

= m
−1/2
n

mn∑
k=1

n
√

a√
cn

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

D−→ N
(
0, σ 2

H0

)
.

Also note that

m
−1/2
n

mn∑
k=1

n

c
1/2
n

∫
In,k

ESnk(x)dF0(x) ∼ m
−1/2
n c

1/2
n

mn∑
k=1

21/3h0(ank){h0(ank)f0(ank)}1/3

h′
0(ank)1/3

∼ √
mncnE

∣∣C(0)
∣∣ ∫ a

0

21/3h0(t){h0(t)f0(t)}1/3

h′
0(t)

1/3
dt

= n1/6
∫ a

0

(
2h0(t)f0(t)

h′
0(t)

)1/3

dH0(t). �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. By Lemmas 3.4 and 3.5, we have

n5/6
mn∑
k=1

∫
In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

D−→ N
(
0, σ 2

H0

)
, n → ∞.

For similar reasons, we have

n5/6
mn∑
k=1

∫
Ln,k\In,k

{
Snk(x) − ESnk(x)

}
dF0(x)

p−→ 0, n → ∞,

where we use Theorem 2.3. (This is the essence of the “big blocks, small blocks” method.) The
result now follows, because

Dn = n5/6
mn∑
k=1

∫
Ln,k

{
Snk(x)−ESnk(x)

}
dF0(x). �
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The corollary below follows from Lemma 3.3, (3.10), and Theorem 3.1.

Corollary 3.1. Let h0 satisfy Condition 1. Then

n5/6
{∫ a

0

{
Hn(x) − Ĥn(x)

}
dF0(x) − EDn

}
D−→ N

(
0, σ 2

H0

)
, n → ∞,

where EDn and σ 2
H0

are defined as in Theorem 3.1.

4. Central limit result for Un-type statistics

To derive the asymptotic distribution of the statistic Un defined in (1.2) and used in the simula-
tions in [8], we first consider the statistic∫

[0,a]
{
Fn(x) − F̂n(x)

}
dF0(x), (4.1)

which is analogous to the statistic discussed in the preceding section but has Fn(x)− F̂n(x) as an
integrand instead of Hn(x) − Ĥn(x). Note that this is not Un; the difference is in the integrating
measure (dF0 instead of dFn). If En again denotes the empirical process, and arguing as in the
proof of Lemma 3.2(i), then we have

Fn(x) = 1 − exp
{−Hn(x)

} = 1 − exp

{
−H0(x) + log

{
1 − n−1/2En(x)

1 − F0(x)

}}

= 1 − exp

{
−H0(x) − n−1/2En(x)

1 − F0(x)

}
+ Op

(
n−1),

uniformly for x ∈ [0, a]. Thus, defining, as in Lemma 3.2, H̃n as the greatest convex minorant of
the process given in (3.2), by Lemma 3.2, we get

Fn(x) − F̂n(x) = exp
{−H̃n(x)

} − exp

{
−H0(x) − n−1/2En(x)

1 − F0(x)

}
+ Op

(
n−1)

= exp
{−H̃n(x)

}{
1 − exp

{
−H0(x) − n−1/2En(x)

1 − F0(x)
+ H̃n(x)

}}
+ Op

(
n−1).

Next, replacing En(x) by Bn(F0(x)) as in Lemma 3.3, where (Bn) are the approximating Brow-
nian bridges, and CB

n is the greatest convex minorant of the process (3.7), we get

Fn(x) − F̂n(x) = exp
{−CB

n (x)
}{

1 − exp

{
−H0(x) − n−1/2Bn(F0(x))

1 − F0(x)
+ CB

n (x)

}}

+ Op

(
logn

n

)
.
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Again using the results of the preceding section, and denoting by Cn the greatest convex mi-
norant of the process defined in (3.9), this implies that

Fn(x) − F̂n(x)

D= exp
{−Cn(x)

}{
1 − exp

{
−H0(x) − n−1/2W

(
F0(x)

1 − F0(x)

)
+ Cn(x)

}}
(4.2)

+ Op

(
logn

n

)
.

Based on this representation, we now first consider the following approximation to (4.2):

exp
{−H0(x)

}{
H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
− Cn(x)

}

= {
1 − F0(x)

}{
H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
− Cn(x)

}

= {
1 − F0(x)

}
Sn(x)

for x ∈ [0, a], where Sn as defined in Theorem 3.1. For the integral of this process with respect
to dF0, we have the following result.

Lemma 4.1. Let h0 satisfy Condition 1. Moreover, let Cn,Sn, and Vn be defined as in Theo-
rem 3.1, and let D

F0
n be defined by

DF0
n =

∫ a

0
Sn(x)

{
1 − F0(x)

}
dF0(x). (4.3)

Then, for n → ∞,

n5/6{DF0
n − EDF0

n

} D−→ N
(
0, σ 2

F0

)
with σ 2

F0
= σ 2

∫ a

0

(
2h0(t)f0(t)

h′
0(t)

)4/3

dF0(t),

where σ 2 is defined as in Theorem 2.1 and

ED
F0
N ∼ n−2/3E

∣∣C(0)
∣∣ ∫ a

0

(
2h0(t)f0(t)

h′
0(t)

)1/3

dF0(t), n → ∞.

Proof. The difference with Theorem 3.1 is that dF0(t) is replaced by {1 − F0(t)}dF0(t) in the
integral. This means that instead of EDn, we get

ED
F0
N ∼ n−2/3E

∣∣C(0)
∣∣ ∫ a

0

21/3h0(t){h0(t)f0(t)}1/3{1 − F0(t)}
h′

0(t)
1/3

dt, n → ∞,
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and instead of σ 2
H0

, we get

σ 2
F0

= 24/3σ 2
∫ a

0

h0(t)
3{h0(t)f0(t)}1/3

h′
0(t)

4/3

{
1 − F0(t)

}2 dt

= σ 2
∫ a

0

(
2h0(t)f0(t)

h′
0(t)

)4/3

dF0(t). �

Based on Lemma 4.1, we now derive the asymptotic distribution of (4.1).

Theorem 4.1. Let h0 satisfy Condition 1. Moreover, let S ′
n be defined by S′

n(x) = Fn(x) −
F̂n(x), x ∈ [0, a], where F̂n is as defined in (1.2), and let D′

n be defined by

D′
n =

∫ a

0
S′

n(x)dF0(x). (4.4)

Then, with σ 2
F0

defined as in Lemma 4.1,

n5/6{D′
n − ED′

n

} D−→ N
(
0, σ 2

F0

)
, n → ∞.

Proof. This is, in a sense, an application of the delta method. By (4.2), we can replace Fn − F̂n

by

exp
{−Cn(x)

}{
1 − exp

{
−H0(x) − n−1/2W

(
F0(x)

1 − F0(x)

)
+ Cn(x)

}}
.

Using notation of the same type as in the proof of Lemma 3.5, we also have that

∫ a

0
E

{
H0(x) − Cn(x)

}2 dF0(x)

∼
mn∑
k=1

∫ cn

0
E

{
H0

(
ank + n−1/3u

) − H0(ank) − Cn

(
ank + n−1/3u

) + Cn(ank)
}2

× f0(ank)du

∼ n−5/3
mn∑
k=1

∫ cn

0
E

{
1

2
h′

0(ank)u
2 − Cnk(u)

}2

f0(ank)du,

where Cnk is the greatest convex minorant of the process

x �→ 1

2
h′

0(ank)u
2 + W

(
h0(ank)u

1 − F0(ank)

)
, u ∈ [0, cn].
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By Brownian scaling, we get

∫ cn

0
E

{
1

2
h′

0(ank)u
2 − Cnk(u)

}2

f0(ank)du

∼ cnf0(ank)

(
1

2
h′

0(ank)

)2/3(
h0(ank)

1 − F0(ank)

)4/3

EC(0)2,

where C is the greatest convex minorant of x �→ W(x) + x2, x ∈ R. Thus, we find that∫ a

0
E

{
H0(x) − Cn(x)

}2 dF0(x)

(4.5)

∼ n−4/3EC(0)2
∫ a

0

(
1

2
h′

0(t)

)2/3(
h0(t)

1 − F0(t)

)4/3

dF0(t).

We also have that ∫ a

0
E

{
H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
− Cn(x)

}2

dF0(x)

(4.6)

∼ n−4/3EC(0)2
∫ a

0

(
1

2
h′

0(t)

)2/3(
h0(t)

1 − F0(t)

)4/3

dF0(t).

Thus, by (4.5) and (4.6),∫ a

0
exp

{−Cn(x)
}{

1 − exp

{
−H0(x) − n−1/2W

(
F0(x)

1 − F0(x)

)
+ Cn(x)

}}
dF0(t)

=
∫ a

0

{
1 − F0(t)

}{
1 − exp

{
−H0(x) − n−1/2W

(
F0(x)

1 − F0(x)

)
+ Cn(x)

}}
dF0(t)

+ Op

(
n−4/3)

=
∫ a

0

{
1 − F0(t)

}{
H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
− Cn(x)

}
dF0(t) + Op

(
n−4/3),

where we also use the Cauchy–Schwarz inequality in the first equality.
Similarly, for the expectation, we get∫ a

0
E

{
Fn(x) − F̂n(x)

}
dF0(x) = EDF0

n + O

(
logn

n

)
,

where D
F0
n is defined by (4.3). This is seen in the following way. Because we assume that

F0(a) < 1, by Chernoff’s theorem (as in the proof of Lemma 3.2), we have

P
{
1 − Fn(a) < 1

2

{
1 − F0(a)

}} ≤ e−nc
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for c > 0, and thus, defining the event An = {1 − Fn(a) ≥ 1
2 {1 − F0(a)}}, we get

∫ a

0
E

{
Fn(x) − F̂n(x)

}
dF0(x)

=
∫ a

0
E

{
Fn(x) − F̂n(x)

}
1An dF0(x) + O

(
e−nc

)

=
∫ a

0
E

{
e−Ĥn(x) − e−Hn(x)

}
1An dF0(x) + O

(
e−nc

)

=
∫ a

0
E

{
1 − Fn(x)

}{
e−{Ĥn(x)−Hn(x)} − 1

}
1An dF0(x) + O

(
e−nc

)

=
∫ a

0

{
1 − F0(x)

}
E

{
e−{Ĥn(x)−Hn(x)} − 1

}
1An dF0(x) + O

(
n−1)

=
∫ a

0

{
1 − F0(x)

}
E

{
H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
− Cn(x)

}
dF0(x) + O

(
logn

n

)

= EDF0
n + O

(
logn

n

)
.

The result now follows from Lemma 4.1. �

5. Asymptotic distribution of the test statistics

We are now in the position to prove the main results for the original test statistics Tn and Un. In
view of Theorems 3.1 and 4.1, this essentially amounts to proving that the integrating measure
in the statistics may be changed from dF0 to dFn.

Theorem 5.1. Let Dn be defined as in Theorem 3.1, and let the conditions of Theorem 3.1 be
satisfied. Then

n5/6
{∫ a

0

{
Hn(x−) − Ĥn(x)

}
dFn(x) − EDn

}
D−→ N

(
0, σ 2

H0

)
, n → ∞,

where EDn and σ 2
H0

are defined as in Theorem 3.1.

Theorem 5.2. Let the conditions of Lemma 4.1 be satisfied, and let σ 2
F0

and C(0) be defined as
in Lemma 4.1. Then, as n → ∞,

n5/6
{∫ a

0

{
Fn(x−) − F̂n(x)

}
dFn(x) −

∫ a

0
E

{
Fn(x−) − F̂n(x)

}
dF0(x)

}
D−→ N

(
0, σ 2

F0

)
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and ∫ a

0
E

{
Fn(x−) − F̂n(x)

}
dF0(x) ∼ n−2/3E

∣∣C(0)
∣∣ ∫ a

0

(
2h0(t)f0(t)

h′
0(t)

)1/3

dF0(t).

We prove only Theorem 5.1, given that the proof of Theorem 5.2 proceeds along similar lines.

Proof of Theorem 5.1. Again using Lemma 3.1, we get∫ a

0

{
Hn(x−) − Ĥn(x)

}
dFn(x)

D=
∫ a

0

{
H0(x) + n−1/2Wn

(
F0(x)

1 − F0(x)

)
− Cn(x)

}
dFn(x)

+ Op

(
logn

n

)
,

where Cn is the greatest convex minorant of Vn, defined as in (3.9), with Wn replacing W . The
process Wn is distributed as a standard Brownian motion on [0, a], and Wn ◦ (F0/(1 − F0)) is
given by

Wn

(
F0(x)

1 − F0(x)

)
= Bn(F0(x))

1 − F0(x)
, x ∈ [0, a],

where Bn is coupled to the empirical process as in Lemma 3.3.
We need only show that∫ a

0

{
Vn(x) − Cn(x)

}
d(Fn − F0)(x) = op

(
n−5/6), (5.1)

because we then have∫ a

0

{
Hn(x−) − Ĥn(x)

}
dFn(x)

=
∫ a

0

{
Vn(x) − Cn(x)

}
dFn(x) + Op

(
logn

n

)

=
∫ a

0

{
Vn(x) − Cn(x)

}
dF0(x) +

∫ a

0

{
Vn(x) − Cn(x)

}
d(Fn − F0)(x) + Op

(
logn

n

)

=
∫ a

0

{
Vn(x) − Cn(x)

}
dF0(x) + op

(
n−5/6).

To show that this relation holds, we follow a method somewhat similar to that used by [15] but
that uses the Brownian motion representation instead of the empirical process and does not bring
the derivative of the greatest convex minorant into play.

The p-variation of a function f on the interval I = [0, a] is defined by

νp(f ; I ) = sup

{
m∑

i=1

∣∣f (xi) − f (xi−1)
∣∣p :x0 = 0 < x1 < · · · < xm = a

}
.
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The p-variation norm of f on I is defined by

‖f ‖[p] = νp(f ; I )1/p + sup
x∈I

∣∣f (x)
∣∣.

By Theorem II.3.27 of [1], for p,q > 0 and 1/p + 1/q > 1, we have∣∣∣∣
∫

[0,a]
{
Vn(x) − Cn(x)

}
d(Fn − F0)(x)

∣∣∣∣ ≤ c‖Vn − Cn‖[p]‖Fn − F0‖[q] (5.2)

for a constant c > 0. Moreover, by Theorems I.6.1 and I.6.2 [1] and Theorem 3.2 of [18], we
have

‖Fn − F0‖[q] =

⎧⎪⎪⎨
⎪⎪⎩

Op

(
n(1−q)/q

)
, q ∈ [1,2),

Op

(
n−1/2

√
L

(
L(n)

))
, q = 2,

Op

(
n−1/2

)
, q > 2,

(5.3)

where L(n) = 1 ∨ logn.
Let τ1, . . . , τm be the points of jump of the derivative cn of Cn on [0, a], and let τ0 = 0,

τm+1 = a. The function Cn is linear on the intervals [τi, τi+1], and Vn behaves on such an in-
terval as an excursion above its greatest convex minorant Cn, with the same values as Vn at the
endpoints of the interval. Thus, for p > 2, by Lemma 4 of [12], we have

νp

(
Vn − Cn; [0, a]) ≤ 2p−1

m+1∑
k=1

νp

(
Vn − Cn; [τi−1, τi]

) = 2p−1
m+1∑
i=1

νp

(
Ṽn; [τi−1, τi]

)
,

where, using the fact that the linear part drops out in taking the comparison with the greatest
convex minorant,

Ṽn(x) = n−1/2
{
W

(
F0(x)

1 − F0(x)
− F0(τi−1)

1 − F0(τi−1)

)

− x − τi−1

τi − τi−1
W

(
F0(τi)

1 − F0(τi)
− F0(τi−1)

1 − F0(τi−1)

)}

+ H0(x) − H0(τi−1) − x − τi−1

τi − τi−1

{
H0(τi) − H0(τi−1)

}
, x ∈ [τi−1, τi].

By part (ii) of Lemma 3.4, we have E maxi (τi − τi−1) = O(n−1/3 logn). Let ui be the midpoint
of the interval [τi−1, τi] and let fH0 by defined by

fH0(x) = H0(x) − H0(τi−1) − x − τi−1

τi − τi−1

{
H0(τi) − H0(τi−1)

}
, x ∈ [τi−1, τi].

Then

fH0(x) = − 1
2h′

0(ui){x − τi−1}{τi − x}{1 + op(1)
}
,
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where x �→ {x − τi−1}{τi − x} is increasing on [τi−1, ui] and decreasing on [ui, τi], and

νp

(
fH0; [τi−1, τi]

) ∼ 21−ph′
0(ui)

p{ui − τi−1}p{τi − ui}p,

(see, e.g., (3.4) of [12]). Thus, for any p > 2,

m+1∑
i=1

νp

(
fH0; [τi−1, τi]

) ∼ 21−p
m+1∑
i=1

h′
0(ui)

p{ui − τi−1}p{τi − ui}p

= 21−3p
m+1∑
i=1

h′
0(ui)

p{ui − τi−1}2p

≤ 2−3p max
i

{ui − τi−1}2p−1
m+1∑
i=1

h′
0(ui)

p{τi − τi−1}

∼ 2−5p+1 max
i

{τi − τi−1}2p−1
∫ a

0
h′

0(u)p du

= Op

(
n−(2p−1)/3(logn)(2p−1)/2).

Note that the Op-term becomes Op(n−1(logn)3/2) for p = 2.
For the Brownian part,

Bnk(x)
def= n−1/2

{
W

(
F0(x)

1 − F0(x)
− F0(τi−1)

1 − F0(τi−1)

)

− x − τi−1

τi − τi−1
W

(
F0(τi)

1 − F0(τi)
− F0(τi−1)

1 − F0(τi−1)

)}

for p > 2, we find that

m+1∑
i=1

νp

(
Bnk; [τi−1, τi]

) = Op

(
n−p/2)

by the fact that almost all Brownian motion paths are Hölder continuous of any order < 1/2.
Thus, we find that

‖Vn − Cn‖[p] = Op

(
n−1/2(logn)(2p−1)/(2p)

)
(5.4)

for any p > 2. Thus, (5.2), (5.3), and (5.4) imply that∫
[0,a]

{
Vn(x) − Cn(x)

}
d(Fn − F0)(x) = Op

(
n−1+ε

)
for arbitrarily small ε > 0. �
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We end this section with a result for the situation that the hazard is nondecreasing, but not
strictly nondecreasing. Clearly, the asymptotics are quite different from the case where h0 in-
creases strictly on [0, a]; the rate of convergence drops from n5/6 to n1/2, and the asymptotic
distribution is not normal. Cases where h0 has intervals in [0, a] where it is constant lead to
similar results, because these intervals will dominate the asymptotic behavior of the test statistic.

Theorem 5.3. Let F̂n and Fn be defined as in Theorem 5.2, and let Un as in (1.2). Let U be given
by

U =
∫ a

0

{
1 − F0(x)

}{
W

(
F0(x)

1 − F0(x)

)
− C(x)

}
dF0(x),

where W is standard Brownian motion on [0,∞) and C is the greatest convex minorant of

x �→ W

(
F0(x)

1 − F0(x)

)
, x ∈ [0, a]. (5.5)

Suppose that the underlying hazard h0 is constant on [0, a]. Then

n1/2Un
D−→ U, n → ∞.

Proof. The proof follows lines that by now are familiar. We first consider

U ′
n =

∫
[0,a]

{
Fn(x−) − F̂n(x)

}
dF0(x).

By (4.2), we can replace Fn − F̂n by

exp
{−Cn(x)

}{
1 − exp

{
−H0(x) − n−1/2W

(
F0(x)

1 − F0(x)

)
− Cn(x)

}}
,

where Cn is the greatest convex minorant of the process

x �→ H0(x) + n−1/2W

(
F0(x)

1 − F0(x)

)
, x ∈ [0, a],

with a remainder term of order Op((logn)/n). Using the delta method, as in the proof of Theo-
rem 4.1, we can replace this (apart from a remainder term of order Op(n−1)) by

n−1/2{1 − F0(x)
}{

W

(
F0(x)

1 − F0(x)

)
− C(x)

}
, x ∈ [0, a],

where C is the greatest convex minorant of the process (5.5) and H0 is linear on [0, a]. The
statement for Un now follows by an application of [1], as in the proof of Theorem 5.1. �

Remark 5.1. The limit behavior in Theorem 5.3 can be analyzed using the methods of [4], where
the concave majorant of Brownian motion without drift is characterized via a Poisson process of
jump locations and Brownian excursions.
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Appendix

Proof of Lemma 2.1. Part (i). Let u > 0. Then, for x ≥ u,

V (x) = W(x) + (x − u)2 + 2u(x − u) + u2

≥ W(x) + (x − u)2 + u2

= W(u) + u2 + W(x) − W(u) + (x − u)2.

Thus,

P

(
min
x≥u

V (x) ≤ 0
)

≤ P

(
min
x≥u

W(u) + u2 + W(x) − W(u) + (x − u)2 ≤ 0
)

= P

(
W(u) + u2 + min

x≥u
W(x) − W(u) + (x − u)2 ≤ 0

)

≤ P

(
W(u) ≤ −1

2
u2

)
+ P

(
min
x≥u

W(x) − W(u) + (x − u)2 ≤ −1

2
u2

)
.

The process

x �→ W(x) − W(u) + (x − u)2, x ≥ u,

behaves in the same way as the process t �→ V (t), t ≥ 0, but starts at x instead of 0. By Corol-
lary 2.1 of [9], we have that for all z > 0,

P

{
min
t∈R

V (t) ≤ −z
}

∼ 2 · 3−1/2 exp
{−8z3/2/

√
27

}
, z → ∞, (A.1)

implying that there exist positive constants c1 and c2 such that for all u ≥ 0

P

(
min
x≥u

W(x) − W(u) + (x − u)2 ≤ −1

2
u2

)
≤ c1 exp

{−c2u
3}.

We also have, for all u > 0,

P

{
W(u) < −1

2
u2

}
= P

{
W(u)/

√
u < −1

2
u3/2

}
≤ exp{−u3/8}

u3/2
√

π/2
,

implying that there exist positive constants c3 and c4 such that for all u ≥ 0,

P
{
W(u) < − 1

2u2} ≤ c3 exp
{−c4u

3}.
Combining these upper bounds with the fact that the process V running to the left from 0 behaves
in the same way as the process V running to the right from 0, part (i) now follows.

Part (ii). The (stationary) process a �→ τ(a) − a is studied in [5] and [6]. Theorem 2.5 in
[6] shows that {τ(a) :a ∈ R} is a Markovian pure jump process. Moreover, it states that given
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τ(a−) = x, the jump density at time a is given by

u �→ 2g(x − a + u)up(u)

g(x − a)φ(x − a)
, u > 0, (A.2)

and the conditional distribution function of the waiting time to the next jump is given by

Fx−a(b − a) = 1 − exp

{
−

∫ x−a

u=x−b

φ(u)du

}
, b − a > 0. (A.3)

The functions g, p, and φ are specified in terms of Airy functions and power series in [6], and
have the properties

φ(t) ∼ 2t2, t → −∞, φ(t) ∼ 1

t
, t → ∞,

p(t) ∼ (
2πt3)−1/2

, t ↓ 0, p(t) ∼ 2e21/3ã1t

as t → ∞, where ã1 denotes the largest 0 of Ai on the negative half-line and

g(x) = 1

22/3π

∫ ∞

−∞
e−iux

Ai(i2−1/3u)
du. (A.4)

A picture of g using this representation is shown in Figure 2.
The meaning of this result is that we can generate the process V by first generating the sta-

tionary process {τ(a) :a ∈ R}, which is done by first generating τ(0) according to its (known)
distribution, and then generating the points τ(a), a > 0 and τ(a), a < 0, using the waiting time
distribution between jumps (A.3). Note that the distribution of the jump sizes is both space-

Figure 2. The function g, defined by (A.4).
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dependent and time-dependent, not exponential. By part (iii) of Lemma 2.5 of [6], we have

φ(−u) ∼ 2u2, u → ∞.

This yields, for fixed x, a ∈ R,∫ x−a

u=x−b

φ(u)du ∼ 2

3
(b − x)3 ∼ 2

3
b3, b → ∞,

implying that

log
{
1 − Fx−a(b − a)

} ∼ − 2
3b3, b → ∞,

in accordance with

log
(
1 − P

{∣∣τ(a) − a
∣∣ > t

}) ∼ − 2
3 t3, t → ∞;

see Corollary 3.4, part (iii), in [5]. Part (ii), particularly (2.4), now follow.
Part (iii). After generating the points τ(a), we can generate excursions of the Brownian path

above the pieces of the greatest convex minorant, given by the jump times ai , where we take
a1 as the first jump time to the right of 0 and number the jump times to the left and right from
here. The slopes of the greatest convex minorant are in fact given by . . . ,2a−1,2a0,2a1, . . . . The
distribution of the excursions depends only on the duration of the intervals between successive
jumps and the slope of the line segment of the convex minorant between these points. The only
thing left to do is to pin down the paths at some point, and we do that by letting each path be 0 at
time 0.

This construction reveals that the process of excursions {V (x) − C(x) :x ∈ R} inherits its
stationarity from the stationarity of the point process {τ(a) :a ∈ R}, and that

A ∈ σ
{
V (x) − C(x) :x ≤ 0

}
and B ∈ σ

{
V (x) − C(x) :x ≥ m

}
(A.5)

are independent, given a jump time of the process of slopes of the greatest convex minorant
between 0 and m and the slopes of the segments to the left and right of the vertex of the greatest
convex minorant at this jump time. This implies that there also exist positive constants c1 and c2
such that ∣∣P(A ∩ B) − P(A)P(B)

∣∣ ≤ c1e
−c2m

3

for events A and B as defined in (A.5), noting that, by part (ii), the probability that there is no
change of slope on the interval [0,m] (meaning that the process τ has no jump in the interval
[0,m]) is O(exp{−cm3}) for a c > 0. �

Proof of Lemma 3.4. (i). The interval In,k is bounded on the left by the interval J̃n,k and on the
right by the interval J̄n,k+1. The intervals J̃n,k and J̄n,k+1 both have length of order n−1/3√logn.
If the greatest convex minorant Cn of Vn on [0, a] has changes of slope in the intervals J̃n,k and
J̄n,k+1, the greatest convex minorant of Vn on [0, a], restricted to the interval In,k , coincides with
the greatest convex minorant Cnk of Vn on Ln,k , restricted to the interval In,k . Thus, we have to
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find bounds for the probability that the greatest convex minorant of Vn on [0, a] has no changes
of slope in J̃nk or J̄n,k+1. To do this, we follow the method used by [10], page 96.

Let ank and bnk be the left and right endpoints of J̄n,k+1, respectively, and let unk be its
midpoint. If

cn(ank) < h0(unk) < cn(bnk), (A.6)

where cn is the left-continuous slope of Cn, then Cn has a change of slope in the interval J̄n,k+1.
Note that for x ≥ bnk , using the assumed smoothness of H0 and inf[0,a] h′

0(x) = 2κ > 0,

Vn(x) − Vn(unk) ≥ n−1/2
{
W

(
F0(x)

1 − F0(x)

)
− W

(
F0(unk)

1 − F0(unk)

)}
(A.7)

+ h0(unk)(x − unk) + κ(x − unk)
2.

Now consider the event that

cn(bnk) ≤ h0(unk), (A.8)

and let τnk be the first point of jump of cn to the right of bnk . Then

cn(x) ≤ h0(unk), x < τnk,

and thus,

Vn(τnk) − Vn(x) ≤ Cn(τnk) − Cn(x) =
∫ τnk

x

cn(y)dy ≤ h0(unk)(τnk − x), x < τnk.

Using (A.7) and the stationarity of Brownian motion, this means that the probability of (A.8) is
bounded above by

P
{
Vn(τnk) − Vn(unk) ≤ h0(unk)(τnk − unk)

}
≤ P

{∃x ≥ bnk :Vn(x) − Vn(unk) ≤ h0(unk)(x − unk)
}

(A.9)

≤ P

{
∃x ≥ bnk :n−1/2

{
W

(
F0(x)

1 − F0(x)

)
− W

(
F0(unk)

1 − F0(unk)

)}
≤ −κ(x − unk)

2
}

= P

{
∃x ≥ bnk :n−1/2

{
W

(
F0(x)

1 − F0(x)
− F0(unk)

1 − F0(unk)

)}
≤ −κ(x − unk)

2
}
.

We can see that this probability will become exponentially small. Toward this end, define the
following covering of [bnk, a]:

Knkj
def= [tnkj , tnk,j+1] def= [

bnk + jn−1/3, bnk + (j + 1)n−1/3] = [bnk, a]
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for 0 ≤ j ≤ �n1/3(a − bnk)�, where the right endpoint of the last interval is taken to be a. Then
the probability in (A.9) can be bounded above by

�n1/3(a−bnk)�∑
j=0

P

{
∃x ∈ Knkj :n−1/2

{
W

(
F0(x)

1 − F0(x)
− F0(unk)

1 − F0(unk)

)}
(A.10)

≤ −κ(x − unk)
2
}
.

Denoting the probabilities in this sum by pnkj , we get

pnkj ≤ P

{
sup

x∈Knkj

W

(
F0(x)

1 − F0(x)
− F0(unk)

1 − F0(unk)

)
≥ κ

√
n(tnkj − unk)

2
}

≤ P

{
sup

0≤z≤F0(tnk,j+1)/(1−F0(tnk,j+1))−F0(unk)/(1−F0(unk))

W(z) ≥ κ
√

n(tnkj − unk)
2
}
.

Because tnk,j+1 ∈ [bnk, a] for all j ’s under consideration,

0 ≤ F0(tnk,j+1)

1 − F0(tnk,j+1)
− F0(unk)

1 − F0(unk)
≤ (F0(tnk,j+1) − F0(unk))

(1 − F0(a))2
≤ λ(tnk,j+1 − unk)

for some 0 < λ < ∞, we obtain, for a standard normal random variable Z,

pnkj ≤ P

{
sup

0≤z≤λ(tnk,j+1−unk)

W(z) ≥ κ
√

n(tnkj − unk)
2
}

= P

{
|Z| ≥ κ

√
n(tnkj − unk)

2√
λ(tnk,j+1 − unk)

}

≤ P
{|Z| ≥ κ̃

√
n(tnkj − unk)

3/2}
≤ 1

2
exp

{
−1

2
nκ̃2(tnkj − unk)

3
}
.

Using that tnkj − unk = bnk − unk + jn−1/3 and bnk − unk ∼ 1
2n−1/3√logn, we get

pnkj ≤ exp

{
−1

2
κ̃
(
(logn)3/2 + j3)} �⇒

�n1/3(a−bnk)�∑
j=0

pnkj ≤ ρ exp
{−ρ ′(logn)3/2}

for some ρ,ρ′ > 0. In combination with (A.9) and (A.10), this bounds the probability of (A.8)
from above. Because a similar bound holds for the probability of the event cn(ank) ≥ h0(unk),
the probability that (A.6) does not hold for a specific k, is bounded by a bound of the same
structure. Moreover, because this upper bound does not depend on k and mn ∼ an1/3/ logn, the
probability that there exists a 1 ≤ k ≤ mn for which (A.6) does not hold satisfies the same bound
(with slight change in ρ and ρ′), this proves (i). Part (ii) is an immediate consequence of (i). �
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