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For the problem of estimating lower tail and upper tail copulas, we propose two bootstrap procedures
for approximating the distribution of the corresponding empirical tail copulas. The first method uses a
multiplier bootstrap of the empirical tail copula process and requires estimation of the partial derivatives
of the tail copula. The second method avoids this estimation problem and uses multipliers in the two-
dimensional empirical distribution function and in the estimates of the marginal distributions. For both
multiplier bootstrap procedures, we prove consistency.

For these investigations, we demonstrate that the common assumption of the existence of continuous
partial derivatives in the the literature on tail copula estimation is so restrictive, such that the tail copula
corresponding to tail independence is the only tail copula with this property. Moreover, we are able to
solve this problem and prove weak convergence of the empirical tail copula process under nonrestrictive
smoothness assumptions that are satisfied for many commonly used models. These results are applied in
several statistical problems, including minimum distance estimation and goodness-of-fit testing.

Keywords: comparison of tail copulas; goodness-of-fit; minimum distance estimation; multiplier bootstrap;
stable tail dependence function; tail copula

1. Introduction

The stable tail dependence function appears naturally in multivariate extreme value theory as a
function that characterizes extremal dependence. If a bivariate distribution function F lies in the
max-domain of attraction of an extreme-value distribution G, then the copula of G is completely
determined by the stable tail dependence function (see, e.g., Einmahl et al. [11]). The function
is closely related to tail copulas (see, e.g., Schmidt and Stadtmüller [24]) and represents the
current standard to describe extremal dependence (see Embrechts et al. [13] and Malevergne and
Sornette [20]). The lower and upper tail copulas are defined by

�L(x) = lim
t→∞ tC(x1/t, x2/t), �U(x) = lim

t→∞ tC̄(x1/t, x2/t), (1.1)

provided that the limits exist. Here x = (x1, x2) ∈ R̄2+ := [0,∞]2 \ {(∞,∞)}, C denotes the
(unique) copula of the two-dimensional continuous distribution function F , which relates F and
its marginals F1,F2 by

F(x) = C(F1(x1),F2(x2)) (1.2)

(see Sklar [26]), and C̄(u) = u1 + u2 − 1 + C(1 − u1,1 − u2) denotes the survival copula of
X = (X1,X2) ∼ F . The stable tail dependence function l and the upper tail copula �U are
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associated through the relationship

l(x) = x1 + x2 − �U(x) ∀x ∈ R2+.

Since its introduction various parametric and nonparametric estimates of the tail copulas and of
the stable tail dependence function have been proposed in the literature. Several authors assume
that the dependence function belongs to some parametric family. Coles and Tawn [4], Tiago de
Oliveira [28], and Einmahl et al. [9] imposed restrictions on the marginal distributions to estimate
multivariate extreme value distributions. Nonparametric estimates of the stable tail dependence
function were investigated in the pioneering thesis of Huang [15] and by Qi [22] and Drees and
Huang [7]. Schmidt and Stadtmüller [24] proposed analogous estimates as in Huang [15] for
tail copulas [except for rounding deviations due to the fact that Fn(F

−
n (x)), with the generalized

inverse function F−
n , is not exactly equal to x] and provided new proof of the asymptotic behavior

of the estimates. More recent work on inference on the stable tail dependence function was
done by Einmahl et al. [11] and Einmahl et al. [10], who investigated moment estimators of tail
dependence and weighted approximations of tail copula processes, respectively.

The present paper has two main purposes. First, we clarify some curiosities in the literature
on tail copula estimation, which stem from the fact that most authors assume the existence of
continuous partial derivatives of the tail copula (see, e.g., Huang [15], Drees and Huang [7],
Schmidt and Stadtmüller [24], Einmahl et al. [10], de Haan and Ferreira [5], Peng and Qi [21],
de Haan et al. [6]). However, the (lower or upper) tail copula corresponding to (lower or upper)
tail independence is the only tail copula with this property, because the partial derivatives of a
tail copula satisfy

∂1�(0, x) =
{

lim
t→∞�(1, t) if x > 0,

0 if x = 0,
(1.3)

where � denotes either �L or �U (see Appendix B for details). Consequently, we provide a
result on the weak convergence of the empirical tail copula process (and thus also of the empirical
stable tail dependence function) under weak smoothness assumptions (see Theorem 2.2 in the
next section). The smoothness conditions are nonrestrictive in the sense that in the case where
they are not satisfied, the candidate limiting process does not have continuous trajectories.

Note that similar investigations were recently carried out by Segers [25] in the context of
nonparametric copula estimation. In that paper it is demonstrated that many (even most) of the
most popular copula models do not have continuous partial derivatives on the whole unit square,
which has been the usual assumption for the asymptotic behavior of the empirical copula pro-
cess hitherto. Moreover, it is shown how the assumptions can be suitably relaxed such that the
asymptotics are not influenced.

The second objective of the present paper is to approximate the distribution of estimators
for the tail copulas by new bootstrap methods. In contrast to the problem of estimation of the
stable dependence function and tail copulas, this problem has received much less attention in
the literature. Recently, Peng and Qi [21] considered the tail empirical distribution function and
showed the consistency of the bootstrap based on resampling (again under the assumption of
continuous partial derivatives). They used their results to construct confidence bands for the tail
dependence function. Although the authors considered the naive bootstrap, the present paper is
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devoted to multiplier bootstrap procedures for tail copula estimation. On the one hand, our re-
search is motivated by the observation that the parametric bootstrap, which is commonly applied
in goodness-of-fit testing problems (see de Haan et al. [6]), has very high computational costs
because it relies heavily on random number generation and estimation. (See Kojadinovic and Yan
[17] and Kojadinovic et al. [18] for a more detailed discussion of the computational efficiency of
the multiplier bootstrap.) On the other hand, as pointed out by Bücher [1] and Bücher and Dette
[2] in the context of nonparametric copula estimation, some multiplier bootstrap procedures lead
to more reliable approximations compared with those from the bootstrap based on resampling.

In Section 2 we briefly review the nonparametric estimates of the tail copula and discuss their
main properties. In particular, we establish weak convergence of the empirical tail copula process
under nonrestrictive smoothness assumptions, which are satisfied for many commonly used mod-
els. In Section 3 we introduce the multiplier bootstrap for the empirical tail copula and prove its
consistency. In particular, we discuss two ways of approximating the distribution of the empirical
tail copula by a multiplier bootstrap. Our first method, called the partial derivatives multiplier
bootstrap, uses the structure of the limit distribution of the empirical tail copula process. As a
consequence, this approach requires estimation of the partial derivatives of the tail copula. The
second method, which we call the direct multiplier bootstrap, avoids this problem, using multi-
pliers in the two-dimensional empirical distribution function and in the estimates of the marginal
distributions. Finally, in Section 4 we discuss several statistical applications of the multiplier
bootstrap. In particular, we investigate the problem of testing for equality between two tail cop-
ulas and discuss the bootstrap approximations in the context of testing parametric assumptions
for the tail copula. We defer all proofs and some of the technical details to the Appendix.

2. Empirical tail copulas

Let X1, . . . ,Xn denote independent identically distributed random variables with distribution
function F and denote the empirical distribution functions of F and its marginals F1 and F2
by Fn(x) = n−1∑n

i=1 I{Xi ≤ x}, Fn1(x1) = Fn(x1,∞) and Fn2(x) = Fn(∞, x2), respectively.
Analogously, we define the joint empirical survival function by F̄n(x) = n−1∑n

i=1 I{Xi > x}
and the marginal empirical survival functions as F̄n1 = 1 − Fn1 and F̄n2 = 1 − Fn2. Following
Schmidt and Stadtmüller [24], we consider the estimators

�̂L(x) = n

k
Cn

(
kx1

n
,
kx2

n

)
, �̂U (x) = n

k
C̄n

(
kx1

n
,
kx2

n

)
(2.1)

for the lower and upper tail copulas, respectively, where k → ∞ such that k = o(n) and Cn (resp.,
C̄n) denotes the empirical copula (resp., empirical survival copula), that is,

Cn(u) = Fn(F
−
n1(u1),F

−
n2(u2)), C̄n(u) = F̄n(F̄

−
n1(u1), F̄

−
n2(u2)).

Here G− and Ḡ− denote the (left-continuous) generalized inverse functions of some real distri-
bution function G and its corresponding survival function Ḡ = 1 − G, defined by

G−(p) :=
{

inf{x ∈ R|G(x) ≥ p}, 0 < p ≤ 1,
sup{x ∈ R|G(x) = 0}, p = 0,
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Ḡ−(p) :=
{

sup{x ∈ R|Ḡ(x) ≥ p}, 0 < p ≤ 1,
inf{x ∈ R|Ḡ(x) = 0}, p = 0.

It is easy to see that the estimators �̂L and �̂U are asymptotically equivalent to the estimates

1

k

n∑
i=1

I{R(Xi1) ≤ kx1,R(Xi2) ≤ kx2} = �̂L(x) + O(1/k), (2.2)

1

k

n∑
i=1

I{R(Xi1) > n − kx1,R(Xi2) > n − kx2} = �̂U (x) + O(1/k), (2.3)

where R(Xij ) = nFn1(Xj1) denotes the rank of Xij among X1j , . . . ,Xnj (j = 1,2) (see Huang
[15] for an alternative asymptotic equivalent estimator). Therefore, we introduce analogs of (2.2)
and (2.3) where the marginals F1 and F2 are assumed known, that is,

�̃L(x) = 1

k

n∑
i=1

I

{
F1(Xi1) ≤ kx1

n
,F2(Xi2) ≤ kx2

n

}
, (2.4)

�̃U (x) = 1

k

n∑
i=1

I

{
F1(Xi1) > 1 − kx1

n
,F2(Xi2) > 1 − kx2

n

}
. (2.5)

For the sake of brevity, we restrict our investigations to the case of lower tail copulas. We assume
that this function is non-zero in a single point x ∈ [0,∞)2 \ {(0,0)}, and as a consequence non-
zero everywhere on [0,∞)2 (see Theorem 1 in Schmidt and Stadtmüller [24]).

Let B∞(R̄2+) denote the space of all functions f : R̄2+ → R, which are locally uniformly
bounded on every compact subset of R̄2+ = [0,∞]2 \ {(0,0)} (i.e., on closed subsets of [0,∞]2

that are bounded away from 0), equipped with the metric

d(f1, f2) =
∞∑
i=1

2−i (‖f1 − f2‖Ti
∧ 1),

where the sets Ti are defined by Ti = [0, i]2 ∪ [0, i] × {∞} ∪ {∞} × [0, i] and where ‖f ‖Ti
=

supx∈Ti
|f (x)| denotes the sup-norm on Ti . Note that with this metric, the set B∞(R̄2+) is a

complete metric space and that a sequence fn in B∞(R̄2+) converges with respect to d if and
only if it converges uniformly on every Ti (see Van der Vaart and Wellner [30]). Throughout this

paper, �∞(T ) denotes the set of uniformly bounded functions on a set T ,
P→ denotes convergence

in (outer) probability, and � denotes weak convergence in the sense of Hoffmann-Jørgensen
(see, e.g., Van der Vaart and Wellner [30]).

Schmidt and Stadtmüller [24] assumed that the lower tail copula �L satisfies the second-order
condition

lim
t→∞

�L(x) − tC(x1/t, x2/t)

A(t)
= g(x) (2.6)
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locally uniformly for x = (x1, x2) ∈ R̄2+, where g is a non-constant function and the function
A : [0,∞) → [0,∞) satisfies limt→∞ A(t) = 0. A detailed look at the proofs reveals that (2.6)
may be weakened to the condition

|�L(x) − tC(x1/t, x2/t)| = O(A(t)) (2.7)

for t → ∞, locally uniformly for x ∈ R̄2+. Under (2.6) and the additional assumptions �L �≡ 0,√
kA(n/k) → 0, k = k(n) → ∞, k = o(n), Schmidt and Stadtmüller [24] showed that the lower

tail copula process with known marginals defined by (2.4) converges weakly in B∞(R̄2+), that is,

√
k
(
�̃L(x) − �L(x)

)
� G�̃L

(x), (2.8)

where G�̃L
is a centered Gaussian field with covariance structure given by

EG�̃L
(x)G�̃L

(y) = �L(x1 ∧ y1, x2 ∧ y2). (2.9)

For the empirical tail copula �̂L(x) the authors established the weak convergence

αn(x) = √
k
(
�̂L(x) − �L(x)

)
� G

�̂L
(x) (2.10)

in B∞(R̄2+), provided that the tail copula has continuous partial derivatives. Here the limiting
process G

�̂L
has the representation

G
�̂L

(x) = G�̃L
(x) − ∂1�L(x)G�̃L

(x1,∞) − ∂2�L(x)G�̃L
(∞, x2). (2.11)

The assumption of continuous partial derivatives is made in the literature on estimation of
stable tail dependence functions and tail copulas. However, as demonstrated in (1.3), there does
not exist any tail copula �L �≡ 0 with continuous partial derivatives at the origin (0,0). With
our first result, we fill this gap and prove weak convergence of the empirical tail copula process
under suitable weakened smoothness assumptions. To do so, we use a similar approach as in
Schmidt and Stadtmüller [24], because this turns out to be useful for a proof of consistency of
the multiplier bootstrap as well. We first consider the case of known marginals. Because of the
second-order condition (2.7), the proof of (2.8) can be given by showing weak convergence of
the centered statistic

α̃n(x) := √
k

(
�̃L(x) − n

k
C(x1k/n, x2k/n)

)
. (2.12)

Lemma 2.1. If �L �≡ 0 and the second-order condition (2.7) holds with
√

kA(n/k) → 0, where
k = k(n) → ∞ and k = o(n), then we have, as n tends to infinity,

α̃n(x) = √
k

(
�̃L(x) − n

k
C(x1k/n, x2k/n)

)
� G�̃L

(x) (2.13)
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in B∞(R̄2+). Here G�̃L
is a tight centered Gaussian field concentrated on Cρ(R̄2+) with covari-

ance structure given in (2.9) and ρ is a pseudo-metric on the space R̄2+ defined by

ρ(x,y) = E
[(

G�̃L
(x) − G�̃L

(y)
)2]1/2 = (�L(x) − 2�L(x ∧ y) + �L(x)

)1/2
,

x = (x1, x2),y = (y1, y2),x ∧ y = (x1 ∧ y1, x2 ∧ y2) and Cρ(R̄2+) ⊂ B∞(R̄2+) denotes the subset
of all functions that are uniformly ρ-continuous on every Ti .

This assertion is proved in Theorem 4 of Schmidt and Stadtmüller [24] by showing conver-
gence of the finite-dimensional distributions and tightness. For an alternative proof based on
Donsker classes, see Remark A.2 in the Appendix. For a proof of a corresponding result for the
empirical tail copula process with estimated marginals as defined in (2.10), we use the functional
delta method in (2.8) with some suitable functional.

Theorem 2.2. Let �L �≡ 0 be a lower tail copula whose first-order partial derivatives satisfy the
condition

∂p�L exists and is continuous on {x ∈ R̄2+|0 < xp < ∞} (2.14)

for p = 1,2. If in addition the assumptions of Lemma 2.1 are satisfied, then we have

αn(x) = √
k
(
�̂L(x) − �L(x)

)
� G

�̂L
(x)

in B∞(R̄2+), where the process G
�̂L

is defined in (2.11) and ∂p�L,p = 1,2 is defined as 0 on

the set {x ∈ R̄2+|xp ∈ {0,∞}}.
Theorem 2.2 has been proven by Schmidt and Stadtmüller [24], Theorem 6, under the addi-

tional assumption that the tail copula has continuous partial derivatives. As pointed out earlier,
there is no tail copula �L �≡ 0 with this property. We point out that in the case where d = 2, it
can be shown that all tail copulas with continuous partial derivatives on the interior as required in
(2.14) also have continuous partial derivatives on the axes, expect for the origin. Therefore, in the
two-dimensional case, our condition just makes verification issues easier. Nevertheless, in higher
dimensions, the condition (as considered, e.g., Einmahl et al. [12]) becomes more meaningful.
Note that a careful inspection of our proof in the Appendix reveals that a generalization to higher
dimensions is not a trivial extension (especially the proof of Lemma A.1). Nevertheless, we are
convinced that such an extension is possible. Recently, Bücher and Volgushev [3] derived a sim-
ilar extension to the d-dimensional case for the usual empirical copula process. This program
should be transferred to the empirical tail copula process and is deferred to future research.

3. Multiplier bootstrap approximation

3.1. Asymptotic theory

In this section we construct multiplier bootstrap approximations of the Gaussian limit distribu-
tions G�̃L

and G
�̂L

specified in (2.8) and (2.10), respectively. Toward this end, let ξi be inde-
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pendent identically distributed positive random variables, independent of the Xi , with mean μ

in (0,∞) and finite variance τ 2. We first deal with the case of known marginals and define a
multiplier bootstrap analog of (2.4) by

�̃
ξ
L(x) = 1

k

n∑
i=1

ξi

ξ̄n

I

{
F1(Xi1) ≤ kx1

n
,F2(Xi2) ≤ kx2

n

}
, (3.1)

where ξ̄n = n−1∑n
i=1 ξi denotes the mean of ξ1, . . . , ξn. We have

α̃m
n (x) = μ

τ

1√
n

n∑
i=1

(
ξi

ξ̄n

− 1

)
fn,x(Ui) = μ

τ

√
k(�̃

ξ
L − �̃L), (3.2)

where the function fn,x(Ui) is defined by

fn,x(Ui ) =
√

n

k
I{Ui1 ≤ kx1/n,Ui2 ≤ kx2/n}, (3.3)

and

Ui = (Ui1,Ui2); Uip = Fp(Xip) for p = 1,2.

Throughout this paper, we use the notation

Gn
P�
ξ

G in D (3.4)

for conditional weak convergence in a metric space (D, d) in the sense of Kosorok [19], page 19.
To be precise, (3.4) holds for some random variables Gn = Gn(X1, . . . ,Xn, ξ1, . . . ξn),G ∈ D if
and only if

sup
h∈BL1(D)

|Eξ h(Gn) − Eh(G)| P→ 0 (3.5)

and

Eξ h(Gn)
∗ − Eξ h(Gn)∗

P→ 0 for every h ∈ BL1(D), (3.6)

where

BL1(D) = {f : D → R|‖f ‖∞ ≤ 1, |f (β) − f (γ )| ≤ d(β, γ ) ∀γ,β ∈ D}
denotes the set of all Lipschitz-continuous functions bounded by 1. The subscript ξ in the ex-
pectations indicates conditional expectation over the weights ξ = (ξ1, . . . , ξn) given the data, and
h(Gn)

∗ and h(Gn)∗ denote measurable majorants and minorants with respect to the joint data,
including the weights ξ . The condition (3.5) is motivated by the metrization of weak convergence
by the bounded Lipschitz metric (see, e.g., Theorem 1.12.4 in Van der Vaart [29]). The follow-
ing result shows that the process (3.2) provides a valid bootstrap approximation of the process
defined in (2.12).



1662 A. Bücher and H. Dette

Theorem 3.1. If �L �≡ 0 and the second-order condition (2.7) holds with
√

kA(n/k) → 0, k =
k(n) → ∞ and k = o(n) we have, as n tends to infinity,

α̃m
n = μ

τ

√
k(�̃

ξ
L − �̃L)

P�
ξ

G�̃L

in the metric space B∞(R̄2+).

Because Theorem 3.1 states that we have weak convergence of α̃m
n to G�̃L

conditional on
the data Ui , it provides a bootstrap approximation of the empirical tail copula in the case where
the marginal distributions are known. To be precise, consider B ∈ N independent replications
of the random variables ξ1, . . . , ξn and denote them by ξ1,b, . . . , ξn,b . Compute the statistics
α̃m

n,b = α̃m
n (ξ1,b, . . . , ξn,b) (b = 1, . . . ,B) and use the empirical distribution of α̃m

n,1, . . . , α̃
m
n,B

as an approximation for the limiting distribution of G�̃L
.

Because in most cases of practical interest there will be no information about the marginals,
Theorem 3.1 cannot be used in many statistical applications. We have developed two consistent
bootstrap approximation for the limiting distribution of the process (2.10) that do not require
knowledge of the marginals. Intuitively, it is natural to replace the unknown marginal distribu-
tions in (3.1) by their empirical counterparts, that is,

�̂
ξ,·
L (x) = 1

k

n∑
i=1

ξi

ξ̄n

I{Xi1 ≤ F−
n1(kx1/n),Xi2 ≤ F−

n2(kx2/n)}, (3.7)

which yields the process

βn(x) = μ

τ

√
k(�̂

ξ,·
L − �̂L)

= μ

τ

1√
k

n∑
i=1

(
ξi

ξ̄n

− 1

)
I{Xi1 ≤ F−

n1(kx1/n),Xi2 ≤ F−
n2(kx2/n)}.

Unfortunately, this intuitive approach does not yield an approximation for the distribution of the
process G

�̂L
, but only of G�̃L

.

Theorem 3.2. Suppose that the assumptions of Theorem 2.2 hold. Then we have, as n tends to
infinity,

βn = μ

τ

√
k(�̂

ξ,·
L − �̂L)

P�
ξ

G�̃L

in the metric space B∞(R̄2+).

Although Theorem 3.2 provides a negative result and shows that the distribution of βn cannot
be used for approximating the limiting law G

�̂L
, it turns out to be essential for our first consistent

multiplier bootstrap method. To be precise, we note that the distribution of βn can be calculated
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from the data without knowing the marginal distributions. Consequently, we obtain an approxi-
mation for the unknown distribution of the process G�̃L

. To get an approximation of G
�̂L

, we
follow Rémillard and Scaillet [23] and estimate the derivatives of the tail copula by

∂̂p�L(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̂L(x + hep) − �̂L(x − hep)

2h
, ∞ > xp ≥ h,

∂̂p�L(x + (h − xp)ep), xp < h,

0, xp = ∞,

where ep denotes the pth unit vector (p = 1,2) and h ∼ k−1/2 tends to 0 with increasing sample
size. In the Appendix (see the proof of the following theorem in Appendix A), we show that these
estimates are consistent, and thus we define the process

α
pdm
n (x) = βn(x) − ∂̂1�L(x)βn(x1,∞) − ∂̂2�L(x)βn(∞, x2). (3.8)

Note that α
pdm
n depends only on the data and the multipliers ξ1, . . . , ξn. Consequently, a bootstrap

sample can be readily generated as described in the previous paragraph; in what follows, we call
this method the partial derivatives multiplier bootstrap (pdm-bootstrap). Our next result shows
that the pdm bootstrap provides a valid approximation for the distribution of the process G

�̂L
.

Theorem 3.3. Under the assumptions of Theorem 2.2, we have

α
pdm
n

P�
ξ

G
�̂L

in the metric space B∞(R̄2+).

It turns out that there is an alternative valid multiplier bootstrap procedure in the case of un-
known marginal distributions, which is attractive because it avoids the problem of estimating
the partial derivatives of the lower tail copula. This method introduces multiplier random vari-
ables not only in the two-dimensional distribution function, but also in the inner estimators of the
marginals. To be precise, define

Fξ
n (x) = 1

n

n∑
i=1

ξi

ξ̄n

I{Xi1 ≤ x1,Xi2 ≤ x2},

F
ξ
nj (xj ) = 1

n

n∑
i=1

ξi

ξ̄n

I{Xij ≤ xj }, j = 1,2,

Cξ,ξ
n (u) = Fξ

n (F
ξ−
n1 (u1),F

ξ−
n2 (u2))

and consider the process

�̂
ξ,ξ
L (x) := n

k
Cξ,ξ

n

(
k

n
x
)

= 1

k

n∑
i=1

ξi

ξ̄n

I{Xi1 ≤ F
ξ−
n1 (kx1/n),Xi2 ≤ F

ξ−
n2 (kx2/n)}. (3.9)
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We call this bootstrap method the direct multiplier bootstrap (dm bootstrap).

Theorem 3.4. Under the assumptions of Theorem 2.2, we have

αdm
n = μ

τ

√
k(�̂

ξ,ξ
L − �̂L)

P�
ξ

G
�̂L

in B∞(R̄2+). (3.10)

Remark 3.5. As pointed out by a referee, an alternative multiplier bootstrap could be obtained
by multiplying each summand with ξi − 1, where ξ1, . . . , ξn are i.i.d. with E[ξ1] = Var(ξi) = 1
(see Kosorok [19], Section 11.4.2).

3.2. Finite-sample results

In this section we present a small comparison of the finite-sample properties of the two bootstrap
approximations given in this section. We also study the impact of the choice of the parameter
k on the properties of the estimates and the bootstrap procedure. For the sake of brevity, we
only consider data generated form the Clayton copula with a coefficient of lower tail dependence
λL = 0.25. The Clayton copula, defined by

C(u; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ , θ > 0, (3.11)

is widely used for modeling of negative tail-dependent data. Its lower tail copula is given by

�L(x) = (x−θ
1 + x−θ

2 )−1/θ .

Tables 1 and 2 show the accuracy of the bootstrap approximation of the covariances of the limit-
ing variable G

�̂L
.

We chose three points on the unit circle, {eiϕ,ϕ = �π/8 with � = 1,2,3}, and present in the
first four columns of Table 1, the true covariances of the limiting process G

�̂L
. The remaining

columns show the simulated covariances of the process αn on the basis of 5 ·105 simulation runs,
with a sample size of n = 1000 and the parameter k chosen as 50. This choice is motivated by the
left panel of Figure 1, which plots the sum of the squared bias, the variance, and the mean squared

Table 1. Left: True covariances of G
�̂L

for the Clayton copula with λL = 0.25. Right: Sample covariances
of the empirical tail copula process αn with sample size n = 1000 and parameter k = 50

True αn

π
8 2π

8 3π
8

π
8 2π

8 3π
8

π
8 0.0874 0.0754 0.0516 0.0889 0.0737 0.0476

2π
8 0.1160 0.0754 0.1218 0.0741

3π
8 0.0874 0.0892
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Table 2. Averaged sample covariances (rows 3–5) and MSE × 104 (rows 6–8) of the bootstrap approxima-

tions α
pdm
n , αdm

n and αres
n of G

�̂L
under the conditions of Table 1

α
pdm
n αdm

n αres
n

π
8 2π

8 3π
8

π
8 2π

8 3π
8

π
8 2π

8 3π
8

π
8 0.094 0.072 0.046 0.100 0.071 0.045 0.100 0.070 0.043

2π
8 0.130 0.072 0.136 0.707 0.136 0.070

3π
8 0.094 0.099 0.099

π
8 3.67 4.68 3.65 3.86 3.49 2.72 4.21 3.85 3.21

2π
8 8.11 4.87 8.89 3.25 8.73 3.64

3π
8 3.70 3.77 3.90

error (MSE) of the estimators �̂L(ei�π/4) for �L(ei�π/4) (� = 1,2,3). The MSE is minimized
for values of k in a neighborhood of the point 50. Note also that the literature provides several
data-adaptive proposals for the choice of the parameter k (see, e.g., Drees and Kaufmann [8] oder
Gomes and Oliveira [14]) in the univariate context.

The data in Table 1 serve as a benchmark for the multiplier bootstrap approximations of the
covariances stated in Table 2, where we investigate the quality of the approximation by various
bootstrap methods. The distribution of the multipliers in the dm and pdm bootstrap procedures
was chosen according to Bücher and Dette [2] as P(ξ = 0) = P(ξ = 2) = 0.5, such that μ =

Figure 1. Left: Averaged MSE, variance, and squared bias for the estimation of �L(ei�π/4) (� = 1,2,3) by
its empirical counterpart �̂L(eiπ/4) against the parameter k. Right: Averaged MSE, variance, and squared
bias for the bootstrap estimation of the covariances of G

�̂L
.
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τ = 1. For the sake of completeness, we also investigate the resampling bootstrap considered in
Peng and Qi [21], hereinafter denoted by αres

n . The estimated covariances given in the first part
(rows 3–5) of Table 2 were calculated by 1000 simulation runs, where in each run the covariance
is estimated on the basis of B = 500 bootstrap replications. The second part (rows 6–8) of Table 2
shows the corresponding MSE.

As the figures show, all bootstrap procedures yield approximations of comparable quality.
Considering only the bias in Table 2, the pdm bootstrap demonstrates slight advantages in all
cases, whereas there are basically no differences between the dm and the resampling bootstraps.
A comparison of the MSE in Table 2 shows that the pdm bootstrap has the best performance
on the diagonal. On the other hand, it yields a less accurate approximation for the off-diagonal
covariances, for which the dm bootstrap yields the best results.

The right panel of Figure 1 illustrates the sensitivity of the accuracy of the estimators for
the covariances with respect to the choice of k. For this purpose, we calculated the sum of the
MSE values given in Table 2 (as well as the variance and squared bias) for various choices of k.
As can be seen, the best choices for k lie in an interval of approximate length 100 around the
center k = 200. Compared with the “best” value k = 50, for estimating �L, the optimal values
for estimating the covariances of G

�̂L
are approximately four times larger for both the pdm

bootstrap and the dm bootstrap. This increase may be explained by the fact that the large bias of
�̂L(x), �̂

ξ,·
L (x) and �̂

ξ,ξ
L (x) for estimating �L(x) cancels out if the difference �̂

ξ,·
L (x) − �̂L(x)

or �̂
ξ,ξ
L (x) − �̂L(x) is calculated. As a result, we may choose larger values of k, resulting in a

notable decay of the variance.
These findings have ambiguous consequences. If we are interested only in the covariances

of the limiting variable G
�̂L

, then a larger value of k for the bootstrap is advisable. However,
because the bootstrap is not able to capture the true bias of the empirical tail copula process, some
care is needed if we are interested in approximations of the whole distribution of

√
k(�̂L − �L)

(as is required in Section 4). In this case a careful choice of k for estimating the tail copula
becomes even more important; we are confronted with the strong requirement of a small bias for
this estimator. Finally, a comparison of the variance and the bias of the two bootstrap procedures
investigated in Figure 1 reveals that the pdm bootstrap has a smaller bias, but a slightly larger
variance, than the dm bootstrap. On the other hand, the differences with respect to the MSE are
nearly undetectable.

4. Statistical applications

In this section we investigate several statistical applications of the multiplier bootstrap. In partic-
ular, we discuss the problem of comparing lower tail copulas from different samples, the problem
of constructing confidence intervals, and the problem of testing for a parametric form of the lower
tail copula.

4.1. Testing for equality between two tail copulas

Let X1, . . . ,Xn1 and Y1, . . . ,Yn2 denote two independent samples of i.i.d. random variables (we
relax the assumption of independence between the samples later) with continuous cumulative
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distribution function F = C(F1,F2) and H = D(H1,H2), respectively. We assume that for both
distributions, the corresponding lower tail copulas, say �L,X and �L,Y , exist and do not vanish
and the tails of the corresponding copulas converge to �L at the rate specified in (2.7). We are
interested in a test for the hypothesis

H0: �L,X ≡ �L,Y vs. H1: �L,X �≡ �L,Y . (4.1)

Given the homogeneity of tail copulas, we have �L(tx) = t�L(x) for all t > 0,x ∈ [0,∞)2, and
the hypotheses are equivalent to

H0: �(�L,X,�L,Y ) = 0 vs. H1: �(�L,X,�L,Y ) > 0,

where the distance � is defined by

�(�L,X,�L,Y ) :=
∫ π/2

0

(
�L,X(cosϕ, sinϕ) − �L,Y (cosϕ, sinϕ)

)2 dϕ

(4.2)

=
∫ π/2

0

(
�∠

L,X(ϕ) − �∠
L,Y (ϕ)

)2 dϕ

and we use the notation �∠
L,X(ϕ) = �L,X(cosϕ, sinϕ),�∠

L,Y (ϕ) = �L,Y (cosϕ, sinϕ). Note that
the integration in (4.2) over the unit circle with respect to the Euclidian norm is rather a matter
of taste. An integration along the unit circle with respect to the sup-norm on R2 (i.e., along
{x ∈ [0,∞)2: max(x1, x2) = 1}) would be possible as well.

We propose basing the test for the hypothesis (4.1) on the distance between the empirical tail
copulas and define

Sn = k1k2

k1 + k2
�(�̂L,X, �̂L,Y ) = k1k2

k1 + k2

∫ π/2

0

(
�̂∠

L,X(ϕ) − �̂∠
L,Y (ϕ)

)2 dϕ,

where �̂∠
L,X(ϕ) = �̂L,X(cos(ϕ), sin(ϕ)), �̂∠

L,Y = �̂L,Y (cos(ϕ), sin(ϕ)) denote the empirical tail

copulas �̂L,X and �̂L,Y with corresponding parameters k1 and k2, satisfying

kp → ∞, kp = o(np) (p = 1,2) and k1/(k1 + k2) → λ ∈ (0,1).

We assume that the tail copulas �L,X and �L,Y satisfy a second-order condition as in (2.7) (with
A replaced by Ap), and that kp is chosen appropriately, that is,

√
kpAp(kp/np) = o(1). Under

the null hypothesis (4.1) of equality between the tail copulas, we have Sn = Tn with

Tn =
∫ π/2

0
E 2

n(cosϕ, sinϕ)dϕ,

where

En(x) =
√

k2

k1 + k2

√
k1
(
�̂L,X(x) − �L,X(x)

)−√ k1

k1 + k2

√
k2
(
�̂L,Y (x) − �L,Y (x)

)
.
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Because the two samples X and Y are independent, we obtain, independent of the hypotheses,
that

En �
√

1 − λG
�̂L,X

− √
λG

�̂L,Y
=: E· (4.3)

in the metric space B∞(R̄2+), where the stochastically independent two-dimensional centered
Gaussian fields G

�̂L,X
and G

�̂L,Y
are as defined in (2.11). This yields, by the continuous mapping

theorem,

Tn �
∫ π/2

0
E 2(cosϕ, sinϕ)dϕ =: T

under both the null hypothesis and the alternative. Note that �(�̂L,X, �̂L,Y )
P→ �(�L,X,�L,Y ),

which vanishes if and only if the null hypothesis (4.1) is satisfied. Therefore, we can conclude
that

Sn �H0 T , Sn
P→H1 ∞, (4.4)

which shows that a test that rejects the null hypothesis (4.1) for large values of Tn is consistent.
Note that the latter convergence depends crucially on the assumption that

√
kA(n/k) → 0. If this

assumption does not hold, then a large value of Sn could occur even under the null hypothesis,
because of the biasedness of �̂L. Thus, as discussed at the end of Section 3.2, the choice of a
small k corresponding to a small bias is of prime importance.

To determine critical values for the test, we approximate the limiting distribution T by the
multiplier bootstrap proposed in Section 3. For this purpose, we consider the pdm bootstrap
(the extension to the dm bootstrap is straightforward) using the definition in equation (3.10) and
denote, for any b ∈ {1, . . . ,B}, ξ1,b, . . . , ξn1,b, ζ1,b, . . . , ζn2,b i.i.d. nonnegative random variables
with mean μ1 (resp., μ2) and variance τ 2

1 (resp., τ 2
2 ). For each b and both samples, we compute

the bootstrap statistics as given in (3.8), that is,

α
pdm
X,n1,b

(x) = βX,n1,b(x) − ̂∂1�L,X(x)βX,n1,b(x1,∞) − ̂∂2�L,X(x)βX,n1,b(∞, x2),

α
pdm
Y,n2,b

(x) = βY,n2,b(x) − ∂̂1�L,Y (x)βY,n2,b(x1,∞) − ∂̂2�L,Y (x)βY,n2,b(∞, x2),

where

βX,n1,b(x) = μ1

τ1

1√
k1

n1∑
i=1

(
ξi,b

ξ̄·,bn1

− 1

)
I{Xi1 ≤ F−

n11(k1x1/n1),Xi2 ≤ F−
n12(k1x2/n1)},

βY,n2,b(x) = μ2

τ2

1√
k2

n2∑
i=1

(
ζi,b

ζ̄·,bn2

− 1

)
I{Yi1 ≤ H−

n21(k2x1/n2), Yi2 ≤ H−
n22(k2x2/n2)},
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and ̂∂p�L,X and ̂∂p�L,Y are the corresponding estimates of the partial derivatives (p = 1,2).
For all x ∈ R̄2+ and all b ∈ {1, . . . ,B}, define

Ê (pdm,b)
n (x) :=

√
k2

k1 + k2
α

pdm
X,n1,b

(x) −
√

k1

k1 + k2
α

pdm
Y,n2,b

(x),

T̂ (pdm,b)
n :=

∫ π/2

0

{
Ê (pdm,b)

n (cosϕ, sinϕ)
}2 dϕ.

By Theorem 3.3 and Theorem 10.8 in Kosorok [19], it follows that for every b ∈ {1, . . . ,B},

T̂ (pdm,b)
n

P�
ξ

T (b),

where T (b) is an independent copy of T . (Note that we consider the processes Ê (pdm,b)
n in the

Banach space �∞([0,1]2).) Thus, from (4.4), we obtain a consistent asymptotic level α test for
the null hypothesis (4.1) by rejecting H0 for large values of Sn, that is,

Sn > q
pdm
1−α, (4.5)

where q
pdm
1−α denotes the (1 − α)-quantile of the c.d.f. K

pdm
n (s) = B−1∑B

b=1 I{T̂ (pdm,b)
n ≤ s}.

So far, we have focused our discussion on the case of two independent samples. It is easy
to check that our methodology also applies in cases of paired observations, that is, Xi is not
independent of Yi , but n1 = n2 = n. In that case we must set ζi,b = ξi,b for all i = 1, . . . , n and
b = 1, . . . ,B . To see this, set Zi = (Xi1,Xi2,Yi1,Yi2) and denote the (empirical) copula of Zi

by (Cn) C . Clearly,

C(u1, u2) = C(u1, u2,1,1), D(v1, v2) = C(1,1, v1, v2),

Cn(u1, u2) = Cn(u1, u2,1,1), Dn(v1, v2) = Cn(1,1, v1, v2).

If we set �L,Z(x,y) = limt→∞ t C(x/t,y/t), �̂L,Z(x,y) = n
k

Cn(
nx
k

,
ny
k

), then we obtain

�L,X(x) = �L,Z(x,∞,∞), �L,Y (y) = �L,Z(∞,∞,y),

�̂L,X(x) = �̂L,Z(x,∞,∞), �̂L,Y (y) = �̂L,Z(∞,∞,y).

Under a second-order condition on the joint tail copula �L,Z , the asymptotic properties of the
process �̂L,Z can be derived along similar lines as before; we omit the details for the sake
of brevity. As the only difference from the preceding discussion, note that the occurring lim-
iting fields G

�̂L,X
and G

�̂L,Y
are no longer independent. Because the asymptotic behavior of

the multiplier bootstrap approximations can be shown to reflect this dependence, we still obtain
consistency of the test; we again omit the details.

To investigate the finite-sample property, we consider two independent samples of i.i.d. ran-
dom variables with Clayton copula (see (3.11)) with a coefficient of lower tail dependence λL

varying in the set {0.25,0.5,0.75}.
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Table 3. Simulated rejection probabilities of the bootstrap tests defined in (4.5) for the hypothesis (4.1)

pdm dm

k λL,X λL,Y α = 0.15 α = 0.1 α = 0.05 α = 0.15 α = 0.1 α = 0.05

50 0.25 0.25 0.143 0.098 0.054 0.125 0.091 0.052
0.5 0.5 0.140 0.099 0.047 0.108 0.069 0.036
0.75 0.75 0.117 0.078 0.029 0.068 0.051 0.023

0.25 0.5 0.764 0.706 0.605 0.713 0.643 0.529
0.5 0.75 0.896 0.856 0.783 0.869 0.822 0.713
0.25 0.75 1 1 1 0.999 0.999 0.997

200 0.25 0.25 0.145 0.107 0.052 0.125 0.084 0.044
0.5 0.5 0.128 0.083 0.037 0.140 0.097 0.051
0.75 0.75 0.141 0.092 0.041 0.103 0.068 0.035

0.25 0.5 0.991 0.978 0.948 0.979 0.971 0.950
0.5 0.75 1 1 1 1 1 1
0.25 0.75 1 1 1 1 1 1

Table 3 presents the simulated rejection probabilities of the pdm and dm bootstrap tests defined
in (4.5) for various nominal levels on the basis of 1000 simulation runs. The sample size was
n1 = n2 = n = 1000 and, B = 500 bootstrap replications with U ({0,2}) multipliers (i.e., P(ξ =
0) = P(ξ = 2) = 0.5, such that μ = τ = 1) were used. The parameter k was chosen as either
k = 50 or k = 200 as suggested by the discussion in the preceding paragraph.

We observe that the nominal level is well approximated by the pdm bootstrap if the coefficient
of tail dependence is not too large. For a larger coefficient, the test tends to be conservative. Of
note, the approximation of the nominal level is rather robust with respect to the choice of k.
A comparison of the performance of the two bootstrap procedures shows that the dm bootstrap
test is slightly more conservative, and that this effect increases with the coefficient of tail depen-
dence.

The alternative of different lower tail copulas is detected with reasonable power. Both tests
yield rather similar results, with a slight advantage for the pdm bootstrap. Evaluation of the
impact of the choice of the parameter k under the alternative shows some advantages for k = 200.
This again may be explained by the fact that bias terms cancel out if the difference �̂L,X − �̂L,Y

is calculated.

4.2. Bootstrap approximation of a minimum distance estimate and a
computationally efficient goodness-of-fit test

In this section we estimate the tail copula of X under the additional assumption that it is an
element of some parametric class, say L = {�L(·; θ)|θ ∈ �}. Estimation of parametric classes
of tail copulas and stable tail dependence functions was recently investigated by de Haan et al.
[6] and Einmahl et al. [11], who proposed a censored likelihood estimator and a moment-based
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estimator, respectively. Here we investigate a different, based on the minimum distance method.
To be precise, let �L denote an arbitrary lower tail copula and �L(·; θ) denote an element in the
parametric class L, and consider the parameter corresponding to the best approximation by the
distance � defined in (4.2)

θB = T (�L) = arg min
θ∈�

�(�L,�L(·; θ)), (4.6)

where � is as defined in (4.2). We call θ̂MD
n = T (�̂L) a minimum distance estimator for θ , where

�̂L is the empirical lower tail copula defined in (2.1). Note that θB is the “true” parameter if and
only if the null hypothesis is satisfied.

Throughout this section, we let X1, . . . ,Xn denote i.i.d. bivariate random variables with c.d.f.
F = C(F1,F2) and existing lower tail copula �L. (For a proof of the following result, see Sec-
tion 4.5 in Bücher [1].)

Theorem 4.1. Suppose that the standard conditions of minimum distance estimation are satis-
fied. (For a precise formulation of these conditions, see Bücher [1], pages 89ff.) If the true tail
copula �L satisfies the first-order condition (2.14) of Theorem 2.2, and if the second-order con-
dition (2.7) holds with

√
kA(n/k) → 0, where k = k(n) → ∞ and k = o(n), then the minimum

distance estimator θ̂MD
n is consistent for the parameter θB corresponding to the best approxima-

tion with respect to the distance �. Moreover,

�MD
n := √

k(θ̂MD
n − θB) = √

k

∫
γθB

(ϕ)
(
�̂∠

L (ϕ) − �∠
L (ϕ)

)
dϕ + oP(1)

�
∫

γθB
(ϕ)G∠

�̂L
(ϕ)dϕ =: �MD,

where �∠
L (ϕ) = �L(cosϕ, sinϕ), �̂∠

L = �̂L(cosϕ, sinϕ), γθB
(ϕ) = A−1

θB
δ∠
θB

(ϕ), δ∠
θ (ϕ) =

∂θ�L(cosϕ, sinϕ, θ), G∠
�̂L

(ϕ) = G
�̂L

(cosϕ, sinϕ), and

AθB
:=
∫

δ∠
θB

(ϕ)δ∠
θB

(ϕ)T + ∂θ δ
∠
θB

(ϕ)
(
�∠

L (ϕ; θB) − �∠
L (ϕ)

)
dϕ,

with �∠
L (ϕ; θ) = �L(cosϕ, sinϕ; θ). The limiting variable �MD is centered normally dis-

tributed with variance

σ 2 =
∫

[0,π/2]2
γθB

(ϕ)γθB
(ϕ′)r(cosϕ, sinϕ, cosϕ′, sinϕ′)d(ϕ,ϕ′),

where r denotes the covariance functional of the process G
�̂L

defined in (2.11).

To make use of the latter result in statistical applications, we need the quantiles of the limiting
distribution. We propose to use the multiplier bootstrap discussed in the previous section. The
following theorem shows that the pdm and dm bootstraps yield a valid approximation of the
distribution of the random variable �MD.
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Table 4. Simulated coverage probability of the confidence intervals based on the pdm bootstrap for n =
1000. In the last two columns, the parameter k is chosen as 50 for the estimation of θ , whereas k is chosen
as 200 for the bootstrap approximation of G

�̂L

k

50 200 50/200

λL 90% 95% 90% 95% 90% 95%

0.25 0.895 0.955 0.014 0.044 0.830 0.915
0.5 0.893 0.936 0.779 0.882 0.888 0.934
0.75 0.838 0.887 0.900 0.949 0.863 0.894

Theorem 4.2. If the assumptions of Theorem 4.1 hold and �n denotes either the process α
pdm
n

(Theorem 3.3) or αdm
n (Theorem 3.4) obtained by the pdm- or dm-bootstrap, respectively, then

�MD,m
n :=

∫
γ
θ̂MD
n

(ϕ)�∠
n (ϕ)dϕ

P�
ξ

�MD,

where �∠
n (ϕ) = �n(cosϕ, sinϕ), γ

θ̂MD
n

= Â−1
θ̂MD
n

δ∠
θ̂MD
n

(ϕ), and

Â
θ̂MD
n

:=
∫

δ∠
θ̂MD
n

(ϕ)δ∠
θ̂MD
n

(ϕ)T + ∂θ δ
∠
θ̂MD
n

(ϕ)
(
�∠

L (ϕ; θ̂MD
n ) − �̂∠

L (ϕ)
)

dϕ.

Based on this result, it is possible to construct asymptotic confidence regions for the param-
eter θ , as well as to test point hypotheses regarding the parameter. Table 4 presents a small
simulation study regarding the finite-sample coverage probabilities of some confidence inter-
vals for the parameter of a Clayton tail copula. This interval is defined as KI1−α = [θ̂MD

n −
k−1/2q̂1−α/2, θ̂

MD
n − k−1/2q̂α/2], where q̂β denotes the estimated β-quantile of the distribution

of �MD
n based on the bootstrap approximation provided by Theorem 4.2. The sample size is

n = 1000, and B = 500 bootstrap replications are used for calculating the quantiles. All cov-
erage probabilities are calculated by 1000 simulation runs. The parameter of the Clayton tail
copula is chosen such that the tail dependence coefficient varies in the set {1/4,2/4,3/4}.

To investigate the impact of the choice of k, we chose three different scenarios: k = 50, k =
200, and two different values of k, namely k = 50 for the estimator θ̂MD

n and k = 200 for the
bootstrap estimator of the quantiles q̂β . This choice was motivated by the findings in Section 3.2,
which indicate that a smaller value of k should be used in the estimator �̂L.

The tables reveal that there is no unique “optimal” choice for k. For λL = 0.25, the best results
are obtained for the scenario with k = 50, followed by the scenario with two different values
of k. Compare these findings with the results of Section 3.2. For k = 200, the large bias of θ̂MD

n

(compare the left side of Figure 1) demonstrates that the true parameter does not lie in the es-
timated confidence interval for more than 95% of the repetitions. For stronger tail dependence,
λL = 0.5,0.75, the choice k = 200 yields better results, with almost perfect coverage probabil-
ities for λL = 0.75. Also note that the case with k = 50 in the estimator �̂L and k = 200 in the
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Table 5. Relative efficiency of the method-of-moments type estimate to the minimum distance estimate

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Eλ 0.86 0.87 0.89 0.92 0.97 1.03 1.14 1.38 2.11

corresponding bootstrap statistic does not yield improvements with respect to the approximation
of the coverage probability compared with the case where k = 50.

Remark 4.3. As pointed out at the beginning of this section, there are two alternative estima-
tors for parametric classes of tail copulas. De Haan et al. [6] proposed a censored maximum
likelihood estimator and proved weak convergence to a normal distribution, which involves the
partial derivatives up to the sixth order of the stable tail dependence function. Einmahl et al.
[11] proposed a method-of-moments type estimator and proved a similar statement as given in
Theorem 4.1 for the minimum distance estimate. Table 5 compares the asymptotic variances of
the method-of-moments and minimum distance estimators for the parameter θ in the Clayton
family chosen such that the coefficient of tail dependence λ varies in the set {0.1, . . . ,0.9}. The
calculated values Eλ are defined as

Eλ = Asymptotic variance of the minimum distance estimate

Asymptotic variance of the moment type estimate
.

(Note that we were not able to obtain the asymptotic variances for the censored maximum like-
lihood estimator, because of the complicated structure of the limiting distribution.) The method-
of-moments estimator requires the specification of a function g, which was chosen as in Einmahl
et al. [11] as the indicator of the set {x ∈ [0,1]2: x1 + x2 ≤ 1}. We observe that none of the
two estimates is globally preferable over the other. For small amounts of tail dependence, the
minimum distance estimate performs slightly better, whereas for increasing tail dependence, the
method-of-moments type estimator is more qualified from an asymptotic standpoint.

Also of note, the dm and pdm bootstraps can be used to construct a consistent approximation
of the asymptotic distribution of the censored likelihood and moment estimator investigated in
de Haan et al. [6] and Einmahl et al. [11]. The main argument for proving consistency is that
the limiting distribution of the method-of-moments and minimum distance estimators can be
represented in the form �(G

�̂L
,�L, ∂�L) for some appropriate functional � depending on the

method of estimation. Here ∂�L denotes any vector of partial derivatives of �L with respect to
its coordinates or the parameter. Given that the functional � is suitable smooth, the bootstrap
approximation is then obtained by �(αn, �̂L, ∂̂�L), where αn is α

pdm
n of αdm

n and ∂̂�L is a
consistent estimate of ∂�L.

In what follows, we use the multiplier bootstrap to construct a computationally efficient
goodness-of-fit test for the hypothesis that the lower tail copula has a specific parametric form,
that is,

H0: �L ∈ L = {�L(·, θ)|θ ∈ �}, H1: �L /∈ L. (4.7)
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This problem was also been discussed by de Haan et al. [6] and Einmahl et al. [11], who pro-
posed a comparison between a nonparametric estimate and a parametric estimate of the lower
tail copula by an L2-distance. In both cases, the limiting distribution of the corresponding test
statistic under the null hypothesis depends in a complicated way on the process G

�̂L
and the

unknown true parameter θB . Although Einmahl et al. [11] did not propose any bootstrap approx-
imation, de Haan et al. [6] proposed using the parametric bootstrap. However, Kojadinovic and
Yan [17] and Kojadinovic et al. [18] pointed out that for copula models, approximations based
on multiplier bootstraps are computationally more efficient, especially for large sample sizes. We
now illustrate how the multiplier bootstrap can be successfully applied to the problem of testing
the hypothesis (4.7).

To be precise, we propose comparing a parametric estimate (using the minimum distance
estimate θ̂MD

n ) and a nonparametric estimate of the tail copula, and rejecting the null hypothesis
(4.7) for large values of the statistic

GOFn := k�(�̂L,�L(·; θ̂MD
n )) = k

∫ (
�̂∠

L (ϕ) − �∠
L (ϕ; θ̂MD

n )
)2 dϕ,

where θ̂MD
n denotes the minimum distance estimate. If the standard assumptions of minimum

distance estimation are satisfied (see page 89 in Bücher [1] for details), then we obtain for the
process Hn = √

k(�̂L − �L(·; θ̂MD
n )) under the null hypothesis H0: �L = �L(·; θB)

Hn = √
k
(
�̂L − �L − δθ (θ̂

MD
n − θ)

)+ oP(1)

= √
k

(
�̂L − �L − δθ

∫
γθ (ϕ)

(
�̂∠

L (ϕ) − �∠
L (ϕ)

)
dϕ

)
+ oP(1)

� G
�̂L

− δθ

∫
γθ (ϕ)G∠

�̂L
(ϕ)dϕ = G

�̂L
− δθ�

MD.

Under the alternative hypothesis, we get an additional summand,

Hn = √
k
(
�̂L − �L − δθ (θ̂

MD
n − θ) − (�L(·; θB) − �L

))+ oP(1),

which converges to either plus or minus infinity whenever �L(x, θB) �= �L(x). The continuous
mapping theorem yields the following result.

Theorem 4.4. Assume that assumptions of Theorem 4.1 are satisfied. If the null hypothesis is
valid, then

GOFn =
∫

{H∠
n (ϕ)}2 dϕ � Z :=

∫ (
G∠

�̂L
(ϕ) − δ∠

θ (ϕ)�MD)2 dϕ, (4.8)

whereas under the alternative, GOFn = ∫ {H∠
n (ϕ)}2 dϕ

P→ ∞.

The critical values of the test, which rejects the null hypothesis for large values of GOFn, can
be calculated based on the following theorem. For a proof, see Theorem 4.10 in Bücher [1].
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Table 6. Simulated rejection probabilities of the pdm bootstrap test (4.9) for the hypothesis (4.7). The first
three rows represent models from the null hypothesis, and the next eight rows represent alternative models.
The sample size is n = 1000, and B = 500 bootstrap replications were performed. λL denotes the lower
tail dependence coefficient

k

50 200

Model α = 0.15 α = 0.1 α = 0.05 α = 0.15 α = 0.1 α = 0.05

Clayton (λL = 0.25) 0.124 0.087 0.037 0.174 0.108 0.049
Clayton (λL = 0.5) 0.097 0.068 0.032 0.117 0.073 0.039
Clayton (λL = 0.75) 0.091 0.048 0.018 0.091 0.058 0.024

Convex (λL = 1/12) 0.095 0.052 0.017 0.386 0.291 0.179
Convex (λL = 2/12) 0.124 0.066 0.029 0.502 0.401 0.253
Convex (λL = 3/12) 0.298 0.200 0.088 0.880 0.828 0.700
Aneglog (λL = 0.2) 0.119 0.071 0.028 0.257 0.185 0.109
Aneglog (λL = 0.4) 0.241 0.174 0.105 0.625 0.534 0.416
Aneglog (λL = 0.6) 0.874 0.833 0.732 1.000 1.000 1.000
Mixed (λL = 0.1) 0.118 0.069 0.022 0.523 0.424 0.268
Mixed (λL = 0.3) 0.148 0.068 0.032 0.405 0.315 0.187

Theorem 4.5. If the assumptions of Theorem 4.1 hold and �n denotes either the process α
pdm
n

(Theorem 3.3) or αdm
n (Theorem 3.4) obtained by the pdm bootstrap and the dm bootstrap, re-

spectively, then, independent of the hypotheses, it holds that

Hm
n := �n − δ

θ̂MD
n

∫
γ
θ̂MD
n

(ϕ)�∠
n (ϕ)dϕ

P�
ξ

G
�̂L

− δθB
�MD.

Therefore, GOFm
n = ∫ {Hm∠

n (ϕ)}2 dϕ
P�ξ Z, where Z is as defined in (4.8).

To investigate the finite-sample properties of a goodness-of-fit test on the basis of the multiplier
bootstrap, Table 6 presents the simulated rejection probabilities of the pdm bootstrap test,

GOFn > q
(pdm)

1−α , (4.9)

where q
(pdm)

1−α denotes the (1 − α) quantile of the bootstrap distribution. For the null hypothesis,
we considered the family of Clayton tail copulas as the parametric class. In particular, we in-
vestigated three scenarios corresponding to a coefficient of tail dependence �L(1,1) varying in
{0.25,0.5,0.75}. Under the alternative, we consider three models:

(1) A convex combination of the independence copula �(u) = u1u2 and a Clayton copula
(with convex parameter 1/3), such that the tail copula is given by �L(x) = 1/3(x−θ

1 +
x−θ

2 )−1/θ . The parameter θ is chosen such that λL = �L(1,1) = 1/3 × 2−1/θ varies in the
set {1/12,2/12,3/12}.
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(2) The asymmetric negative logistic model (see Joe [16]), defined by

�L(1 − t, t) = {(ψ1(1 − t)
)−θ + (ψ2t)

−θ
}−1/θ

, t ∈ [0,1],
with parameters ψ1 = 2/3,ψ2 = 1 and θ ∈ (0,∞) chosen such that λL = �L(1,1) varies
in the set {0.2,0.4,0.6}.

(3) The mixed model (see Tawn [27]), given by

�L(1 − t, t) = θt (1 − t), t ∈ [0,1],
where the parameter θ ∈ [0,1] is chosen such that λL = �L(1,1) = θ/2 equals 0.1 or 0.3.

The results are based on 1000 simulation runs, a sample size of n = 1000, and two choices,
k = 50,200, of the parameter k. For each scenario, the critical values were calculated by B = 500
bootstrap replications with U ({0,2})-multipliers. We observe a reasonable power and approxi-
mation of the nominal level in most cases. Under the null hypothesis, the test is conservative,
and this effect is increasing with the level of tail dependence. For the mixed model with k = 50,
the power of the test is close to the nominal level. This observation can be explained by the fact
that for λL = 0.5 (which corresponds to the case where θ = 1), the model is exactly the same as
the Clayton model with parameter 1; that is, we get close to the null hypothesis with increasing
tail dependence. Finally, we note that a choice of larger k results in substantially better power
properties, whereas we noted no notable differences in the quality of the approximation of the
nominal level. Again, this may be explained by the fact that bias terms in GOFn cancel out when
calculating the difference Hn = √

k(�̂L −�L(·; θ̂MD
n )). Therefore, we propose using rather large

values for k in applications of the goodness-of-fit test.

Appendix A: Proofs

A.1. Proof of Theorem 2.2

Let B∞(R+) denote the set of functions f : R+ → R (where R+ = [0,∞)) that are uniformly
bounded on compact sets (equipped with the topology of uniform convergence on compact sets),
and define BI,0∞ (R+) as the subset of all nondecreasing functions f : R+ → R+ that satisfy
f (0+) = 0 and for which sup ranf < ∞ (with ranf denoting the range of f ) implies that there
exists a x0 with f (x0) = sup ranf . The latter condition implies that the adjusted generalized
inverse function, defined by

f −(z) =
{ sup{x ∈ R+|f (x) = 0}, z = 0,

inf{x ∈ R+|f (x) ≥ z}, 0 < z < sup ranf ,
inf{x ∈ R+|f (x) = sup ranf }, z ≥ sup ranf ,

remains in B∞(R+) for every f ∈ BI,0∞ (R+). Further, set

BI,0∞ (R̄2+) := {γ ∈ B∞(R̄2+)|γ (·,∞) ∈ BI,0∞ (R+), γ (∞, ·) ∈ BI,0∞ (R+)}
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and now define a map � : BI,0∞ (R̄2+) → B∞(R̄2+) by

γ �−→ �(γ )(x, y) =
⎧⎨⎩γ (γ −(x,∞), γ −(∞, y)), if x, y �= ∞,

γ (γ −(x,∞),∞), if y = ∞,
γ (∞, γ −(∞, y)), if x = ∞

(see also Schmidt and Stadtmüller [24]). Observing that �̃L ∈ BI,0∞ (R̄2+), and that the ad-
justed generalized inverse of �̃L(x,∞) is given by n

k
F1(F

−
n1(kx/n)), we can conclude that

�(�L) = �L and �(�̃L) = �̂L (P-almost surely), and the proof of Theorem 2.2 follows from
the functional delta method (Theorem 3.9.4 of Van der Vaart and Wellner [30]) and the following
Lemma, which is an extension of the result in the proof of Theorem 5 of Schmidt and Stadtmüller
[24] to our weaker conditions.

Lemma A.1. Let �L be a lower tail copula whose partial derivatives satisfy the first-order
property (2.14) for p = 1,2. Then � is Hadamard-differentiable at �L tangentially to the set

C 0(R̄2+) = {γ ∈ B∞(R̄2+)|γ continuous with γ (·,0) = γ (0, ·) = 0}.
Its derivative at �L in γ ∈ C 0(R̄2+) is given by

�′
�L

(γ )(x) = γ (x) − ∂1�L(x)γ (x1,∞) − ∂2�L(x)γ (∞, x2), (A.1)

where ∂p�L,p = 1,2 is defined as 0 on the set {x ∈ R̄2+|xp ∈ {0,∞}}.

Proof. Decompose � = �3 ◦ �2 ◦ �1, where

�1 : BI,0∞ (R̄2+) → BI,0∞ (R̄2+) × BI,0∞ (R+) × BI,0∞ (R+),

γ �−→ (γ, γ (·,∞), γ (∞, ·)),
�2 : BI,0∞ (R̄2+) × BI,0∞ (R+) × BI,0∞ (R+) → BI,0∞ (R̄2+) × BI,0,−∞ (R+) × BI,0,−∞ (R+),

(γ, f, g) �−→ (γ, f −, g−),

�3 : BI,0∞ (R̄2+) × BI,0,−∞ (R+) × BI,0,−∞ (R+) → B∞(R̄2+),

(γ, f, g) �−→
{

γ (f (x), g(y)), if x, y �= ∞,
γ (f (x),∞), if y = ∞,
γ (∞, g(y)), if x = ∞,

where BI,0,−∞ (R+) denotes the set of all adjusted generalized inverse functions f − with f ∈
BI,0∞ (R+). Now �1 is Hadamard-differentiable at �L tangentially to C 0(R̄2+), because it is
linear and continuous. The second map, �2, is Hadamard-differentiable at (�L, idR+ , idR+)

tangentially to C 0(R̄2+) × C 0(R+) × C 0(R+), where C 0(R+) consists of all continuous func-
tions f on R+ with f (0) = 0 and its derivative at (�L, idR+ , idR+) in (γ, f, g) is given by
�′

2,(�L,idR+ ,idR+ )(γ, f, g) = (γ,−f,−g). The proof follows along similar lines as the proof of

Theorem 5 in Schmidt and Stadtmüller [24], page 321, and thus is omitted; we simply note that
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(idR+ + tnfn)
−(x) > 0 for all x > 0 is implied by the additional assumption of continuity in 0 for

functions in the set BI,0(R+). More effort is needed to show that �3 is Hadamard-differentiable
at (�L, idR+ , idR+) tangentially to C 0(R̄2+) × C 0(R+) × C 0(R+) with derivative

�′
3,(�L,idR+ ,idR+ )(γ, f, g)(x) = γ (x) + ∂1�L(x)f (x1) + ∂2�L(x)g(x2).

To see this, let tn → 0, (γn, fn, gn) ∈ B∞(R̄2+) × B∞(R+) × B∞(R+) with (γn, fn, gn) →
(γ, f, g) ∈ C 0(R̄2+) × C 0(R+) × C 0(R+) such that (�L + tnγn, idR+ + tnfn, idR+ + tngn) ∈
BI,0∞ (R̄2+) × BI,0,−∞ (R+) × BI,0,−∞ (R+). Now �3 is linear in its first argument, and we introduce
the decomposition

t−1
n {�3(�L + tnγn, idR+ + tnfn, idR+ + tngn) − �3(�L, idR+ , idR+)} = Ln1 + Ln2,

where

Ln1 = t−1
n {�3(�L, idR+ + tnfn, idR+ + tngn) − �3(�L, idR+ , idR+)},

Ln2 = �3(γn, idR+ + tnfn, idR+ + tngn).

By the definition of d , it suffices to show uniform convergence on the sets Ti , i ∈ N. Because
Ti ⊂ R̄2+ is compact, (fn, gn) converges uniformly and γ is uniformly continuous; thus Ln2
uniformly converges to γ .

Considering Ln1, we split the investigation into six different cases, depending on the position
of x ∈ Ti . First, let x ∈ (0, i]2. A series expansion at x yields

Ln1 = ∂1�L(x)fn(x1) + ∂2�L(x)gn(x2) + rn(x),

where the error term rn can be written as

rn(x) = (∂1�L(y) − ∂1�L(x)
)
fn(x1) + (∂2�L(y) − ∂2�L(x)

)
gn(x2)

with some intermediate point y = y(n) between x and (x1 + tnfn(x1), x2 + tnfn(x2)). The domi-
nating term converges uniformly to ∂1�L(x)f (x1)+ ∂2�L(x)g(x2); thus it remains to show that
rn(x) converges to 0 uniformly in x. For a given ε > 0, uniform convergence of fn and uniform
continuity of f on [0, i], as well as the fact that f (0) = 0, allows us to choose a δ > 0 such that
|fn(x1)| < ε for all x1 < δ. Because partial derivatives of tail copulas are bounded by 1, the first
term of rn(x) is uniformly small for x1 < δ. On the quadrangle [δ, i] × (0, i], the partial deriva-
tive ∂1�L is uniformly continuous, which yields the desired convergence under consideration of
y(n) → x and boundedness of f . The same arguments apply for the second derivative, and the
case x ∈ (0, i]2 is finished.

Now consider the case x ∈ (0, i] × {0}. By Lipschitz continuity of �L on R2+ (see Theorem 1
in Schmidt and Stadtmüller [24]), we get

|Ln1(x1,0)| = t−1
n

∣∣�L

(
x1 + tnfn(x1), tngn(0)

)∣∣
= t−1

n

∣∣�L

(
x1 + tnfn(x1), tngn(0)

)− �L

(
x1 + tnfn(x1),0

)∣∣
≤ |gn(0)| → g(0) = 0.
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Because ∂1�L(x1,0)f (x1) + ∂2�L(x1,0)g(0) = 0, this yields the assertion. The arguments are
similar for the cases x = (0,0)T and x ∈ {0} × (0, i], and we proceed with x ∈ [0, i] × {∞} (and
analogously x ∈ {∞} × [0, i])

Ln1(x1,∞) = t−1
n

(
�L

(
x1 + tnfn(x1),∞

)− �L(x1,∞)
)= fn(x1) → f (x1).

This yields the assertion by ∂1�L(x1,∞) = 1 and ∂2�L(x1,∞) = 0. To conclude, �3 is
Hadamard-differentiable as asserted.

An application of the chain rule (see Lemma 3.9.3 in Van der Vaart and Wellner [30]) com-
pletes the proof of the lemma. �

A.2. Proof of Theorem 3.1

In light of Lemma C.2 in Appendix B (an analog of Theorem 1.6.1 in [30] for the case of con-
ditional weak convergence), the proof of conditional weak convergence of α̃m

n in B∞(R̄2+) can
be given for each �∞(Ti) separately. For brevity, we suppress the index i and write T = Ti .
Recalling the notation of fn,x(Ui ) in (3.3) we can express α̃m

n as

α̃m
n (x) = μ

τ

√
k(�̃

ξ
L − �̃L) = μ

τ

1√
n

n∑
i=1

(
ξi

ξ̄n

− 1

)
fn,x(Ui),

and the assertion now follows by an application of Theorem 11.23 in Kosorok [19]. For this
purpose, we show that the assumptions for this result are satisfied. Let Fn = {fn,x: x ∈ T } be a
class of functions changing with n and let

Fn(u) =
√

n

k
I{u1 ≤ ki/n or u2 ≤ ki/n},

denote a corresponding sequence of envelopes of Fn. We must prove the following:

(i) (Fn,Fn) satisfies the bounded uniform entropy integral condition

lim sup
n→∞

sup
Q

∫ 1

0

√
logN(ε‖Fn‖Q,2, Fn,L2(Q))dε < ∞, (A.2)

where for each n, the supremum ranges over all probability measures Q with finite sup-
port and ‖Fn‖Q,2 = (

∫
Fn(x)2 dQ(x))1/2 > 0.

(ii) The limit H(x,y) = limn→∞ E[α̃n(x)α̃n(y)] exists for every x and y in T .
(iii) lim supn→∞ EF 2

n (U1) < ∞
(iv) limn→∞ EF 2

n (U1)I{Fn(U1) > ε
√

n} = 0 for all ε > 0.
(v) limn→∞ ρn(x,y) = ρ(x,y) for all x,y ∈ T , where

ρn(x,y) = (E(fn,x(U1) − fn,y(U1)
)2)1/2

. (A.3)

Furthermore, for all sequences (xn)n, (yn)n in T , the convergence ρn(xn,yn) → 0 holds,
provided ρ(xn,yn) → 0.
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(vi) The sequence Fn of classes is almost measurable Suslin (AMS), that is, for all n ≥ 1
there exists a Suslin topological space Tn ⊂ T with Borel sets Bn such that
(a) P∗(supx∈T infy∈Tn |fn,x(U1) − fn,y(U1)| > 0) = 0,
(b) fn,· : [0,1]2 × Tn → R is B|[0,1]2 × Bn-measurable for i = 1, . . . , n.

To prove the bounded uniform entropy integral condition (i), we decompose Fn =⋃3
i=1 F (i)

n

with F (i)
n = {f (i)

n,x,x ∈ T } and

f (1)
n,x (Ui ) =

√
n

k
I{Ui1 ≤ kx1/n}I{x2 = ∞},

f (2)
n,x (Ui ) =

√
n

k
I{Ui2 ≤ kx2/n}I{x1 = ∞},

f (3)
n,x (Ui ) =

√
n

k
I{Ui1 ≤ kx1/n,Ui2 ≤ kx2/n}I{x1 < ∞, x2 < ∞}.

The corresponding envelopes of the classes F (i)
n are given by

F (1)
n (Ui ) =

√
n

k
I(Ui1 ≤ ki/n),

F (2)
n (Ui ) =

√
n

k
I(Ui2 ≤ ki/n),

F (3)
n (Ui ) =

√
n

k
I(Ui1 ≤ ki/n,Ui2 ≤ ki/n),

so that Fn(Ui ) = max3
i=1{F (i)

n (Ui )}. If we prove that the sequences (F (i)
n ,F

(i)
n ) satisfy the

bounded uniform integral entropy condition given in (A.2), then the condition also holds for
(Fn,Fn) by Lemma C.1 in the Appendix, and thus the assertion in (i) is proved. We consider
only the (hardest) case of F (3)

n . Note that F (3)
n = {fn,x,x ∈ [0, i]2} = G(1)

n · G(2)
n , where

fn,x = (n/k)1/2I{Ui1 ≤ kx1/n,Ui2 ≤ kx2/n},
G(j)

n = {gn,t = (n/k)1/4I{Uij ≤ kt/n}|t ∈ [0, i]}
for j = 1,2. Because the functions gn,t are increasing in t , the G

(j)
n are VC classes with VC

index 2. Thus, by Lemma 11.21 in Kosorok [19], both classes satisfy the bounded uniform in-
tegral entropy condition (A.2). Proposition 11.22 in Kosorok [19] shows that F (3)

n has the same
property, and by the discussion at the beginning of this paragraph, (i) is satisfied.

For the proof of (ii), note that E[α̃n(x)α̃n(y)] = n/k(C(
(x∧y)k

n
) − C( xk

n
)C(

yk
n

)), which con-

verges to �L(x ∧ y) =: H(x,y), because n
k
C( xk

n
)C(

yk
n

) → 0.
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Regarding (iii) and (iv), we note that EFn(U1)
2 = 2i − n

k
C(ik/n, ik/n), which converges to

2i − �L(i, i). Furthermore,

EF 2
n (U1)I

{
Fn(U1) > ε

√
n
} =

∫
{Fn(U1)>ε

√
n}

F 2
n (U1)dP

≤ n

k
P

(
1

k
I{U11 ≤ ki/n or U12 ≤ ki/n} > ε

)
= 0

for sufficiently large n, such that k > 1/ε. For (v), we note that

ρn(x,y) = (
E
(
fn,x(U1) − fn,y(U1)

)2)1/2

=
√

n

k

(
C(xk/n) − 2C

(
(x ∧ y)k/n

)+ C(yk/n)
)1/2

→ (
�L(x) − 2�L(x ∧ y) + �L(y)

)1/2 =: ρ(x,y).

In light of Theorem 1 in Schmidt and Stadtmüller [24], we have locally uniform convergence in
the latter expression, which yields the second condition stated in (v).

For the proof of condition (vi), we use Lemma 11.15 and the discussion on page 224 in
Kosorok [19] and show separability of Fn; that is, for every n ≥ 1, there exists a countable
subset Tn ⊂ T such that

P∗(sup
x∈T

inf
y∈Tn

|fn,y(U1) − fn,x(U1)| > 0
)

= 0.

Choose Tn = (Q∩[0, i]×{∞})∪ ({∞}×Q∩[0, i])∪ (Q2 ∩[0, i]2). We then have (note that the
functions fn,x are built by indicators) that for every ω and every x ∈ T , there is an y ∈ Tn with
|fn,x(U1(ω))− fn,y(U1(ω))| = 0. This yields the assertion, and thus the proof of Theorem 3.1 is
complete.

Remark A.2. Given that

α̃n(x) = 1√
n

n∑
i=1

(
fn,x(Ui ) − Efn,x(Ui )

)
and that in Section A.2 we provided the sufficient conditions for an application of Theorem 11.20
in Kosorok [19], we obtain an alternative proof of Lemma 2.1.

A.3. Proof of Theorem 3.4

For technical reasons, we give a proof of Theorem 3.4 in advance of the proofs of Theorems 3.2
and 3.3. The proof is essentially a consequence of a bootstrap version of the functional delta
method (see Theorem 12.1 in Kosorok [19]). Because this result holds only for Banach space-
valued stochastic processes, some adjustments must be made. Note that the space B∞(R̄2+) is a
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complete topological vector space with a metric d , and some care is necessary whenever technical
results depending on the norm are used.

Given Lemma 2.1 and Theorem 3.1, we have

√
k(�̃L − �L) � G�̃L

,
√

k
μ

τ
(�̃

ξ
L − �̃L)

P�
ξ

G�̃L

in B∞(R̄2+). Observing that the generalized inverses of �̃L(x,∞) and �̃
ξ
L(x,∞) are (P-almost

surely) given by n
k
F1(F

−
n1(kx/n)) and n

k
F1(F

ξ−
n1 (kx/n)), respectively, we can conclude that

�(�L) = �L,�(�̃L) = �̂L and �(�̃
ξ
L) = �̂

ξ,ξ
L (P-almost surely). By Lemma A.1, � is

Hadamard-differentiable on BI∞(R̄2+) at γ0 = �L tangentially to C 0(R̄2+) ⊂ B∞(R̄2+). Therefore,
it remains to argue why Theorem 12.1 in Kosorok [19] can be applied in the present context.

A careful inspection of the proof of Theorem 12.1 in Kosorok [19] shows that properties
going beyond our specific assumptions (i.e., the complete topological vector space (B∞(R̄2+), d))
are used only three times. First, the mapping �′

�L
needs to be extended to the whole space

B∞(R̄2+), which is possible by using equation (A.1) as the defining identity. Second, the proof of
Theorem 12.1 in Kosorok [19] uses the usual functional delta method as stated in Theorem 2.8 in
the same reference, but this result can be replaced by Theorem 3.9.4 in Van der Vaart and Wellner
[30], which provides a functional delta method that holds in general metrizable topological vector
spaces. Finally, the proof of Theorem 12.1 in Kosorok [19] makes use of a bootstrap continuous
mapping theorem (see Theorem 10.8 in Kosorok [19]), which yields

√
k
μ

τ
(�̃

ξ
L − �̃L)

P�
ξ

G�̃L
⇒ �′

�L

(√
k
μ

τ
(�̃

ξ
L − �̃L)

)
P�
ξ

�′
�L

(G�̃L
).

In our specific context, this statement follows immediately from the Lipschitz continuity of the
derivative �′

�L
and an application of Lemma C.3 in Appendix C.

A.4. Proof of Theorem 3.2

Consider the mapping � : BI,0∞ (R̄2+) × BI,0∞ (R̄2+) −→ B∞(R̄2+) defined by � = �3 ◦ �2 ◦ �1,
where �3 and �2 are defined in the proof of Lemma A.1 and �1 is given by

�1 : BI,0∞ (R̄2+) × BI,0∞ (R̄2+) → BI,0∞ (R̄2+) × BI,0∞ (R+) × BI,0∞ (R+),

(β, γ ) �−→ (β, γ (·,∞), γ (∞, ·)).

Note that we obtain �(�L,�L) = �L, �(�̃L, �̃L) = �̂L and �(�̃
ξ
L, �̃L) = �̂

ξ,·
L (P-almost

surely). Clearly, �1 is Hadamard-differentiable at (�L,�L), because it is linear and continuous.
�2 and �3 are Hadamard-differentiable tangentially to suitable subspaces as well (see the proof
of Lemma A.1). By an application of the chain rule (see Lemma 3.9.3 in [30]), we can conclude
that � is Hadamard-differentiable (�L,�L) tangentially to C 0(R̄2+) × C 0(R̄2+) with derivative

� ′
(�L,�L)(β, γ )(x) = β(x) − ∂1�L(x)γ (x1,∞) − ∂2�L(x)γ (∞, x2). (A.4)
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Note that, unlike in the previous proof, we do not have weak convergence (resp., weak condi-
tional convergence) of

√
k((�̃L, �̃L)− (�L,�L)) and μ

τ

√
k((�̃

ξ
L, �̃L)− (�̃L, �̃L)) toward the

same limiting field, which is necessary for an application of the functional delta method to the
bootstrap (see, e.g., Theorem 12.1 in Kosorok [19]). Nevertheless, we can mimic certain steps in
the proof of this theorem to obtain the result. To be precise, note that, by arguments analogous to
those on page 236 of Kosorok [19], we obtain that

√
k

(
�̃

ξ
L − �L

�̃L − �L

)
�
(

c−1G1 + G2
G2

)
,

unconditionally, where G1 and G2 denote independent copies of G�̃L
and c = μτ−1. Hadamard-

differentiability of the mapping (β, γ ) �→ (�(β, γ ),�(γ, γ ), (β, γ ), (γ, γ )) and the usual func-
tional delta method (Theorem 3.9.4 in Van der Vaart and Wellner [30]) yield

√
k

⎛⎜⎜⎝
�(�̃

ξ
L, �̃L) − �(�L,�L)

�(�̃L, �̃L) − �(�L,�L)

(�̃
ξ
L, �̃L) − (�L,�L)

(�̃L, �̃L) − (�L,�L)

⎞⎟⎟⎠�

⎛⎜⎜⎝
� ′

(�L,�L)(c
−1G1 + G2,G2)

� ′
(�L,�L)(G2,G2)

(c−1G1 + G2,G2)

(G2,G2)

⎞⎟⎟⎠ .

Observing that � ′
(�L,�L) is linear, we can conclude that

c
√

k

(
�(�̃

ξ
L, �̃L) − �(�̃L, �̃L)

(�̃
ξ
L, �̃L) − (�̃L, �̃L)

)
�
(

� ′
(�L,�L)(G1,0)

(G1,0)

)
=
(

G1
(G1,0)

)
.

Continuity of the map (α,β, γ ) �→ d(α,β) yields

d
(
c
√

k
(
�(�̃

ξ
L, �̃L) − �(�̃L, �̃L)

)
, c

√
k(�̃

ξ
L − �̃L)

)−→0

in outer probability and thus by boundedness of the metric d also in outer expectation. Since

c
√

k(�̃
ξ
L − �̃L)

P�ξ G1 we obtain the assertion by Lemma C.4.

A.5. Proof of Theorem 3.3

Again, write T = Ti . We start the proof with an assertion regarding consistency of ∂̂p�L and
claim that for any δ ∈ (0,1),

sup
x∈T :xp≥δ

|∂̂p�L(x) − ∂p�L(x)| −→ 0 (A.5)

in outer probability. For the proof of (A.5), split T into three subsets as indicated by its definition,
and then proceed as for the proof of Lemma 4.1 in [25]. The details are omitted. Regarding the
assertion of the Theorem, we set

ᾱ
pdm
n (x) = βn(x) − ∂1�L(x)βn(x1,∞) − ∂2�L(x)βn(∞, x2).
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In light of Lemma C.4, it suffices to prove that d(α
pdm
n , ᾱ

pdm
n ) converges to 0 in outer probability.

By the definition of d , we need to show uniform convergence on the set T . Because |αpdm
n −

ᾱ
pdm
n | ≤ Dn1 + Dn2, where

Dn1 = |∂̂1�L − ∂1�L||βn(·,∞)|, Dn2 = |∂̂2�L − ∂2�L||βn(∞, ·)|,
we can consider both summands Dnp separately and deal with Dn1 as an example. First, consider
the case x ∈ [0, i]2. For arbitrary ε > 0 and δ ∈ (0,1),

P∗( sup
x∈[0,i]2

Dn1(x) > ε
)

≤ P∗( sup
x∈[0,i]2,x1≥δ

Dn1(x) > ε
)

+ P∗( sup
x∈[0,i]2,x1<δ

Dn1(x) > ε
)
. (A.6)

Because ∂̂1�L is uniformly consistent on {x ∈ [0, i]2|x1 ≥ δ}, and because βn is asymptotically
tight in �∞(T ) (βn converges unconditionally by the results in Chapter 10 of [19]), the first
probability on the right-hand side converges to 0.

Regarding the second summand, note that F−
n1(kx/n) = X�kx�:n,1 (where �x� = min{k ∈ Z|

k ≥ x}), so that

sup
x∈[0,i]2

|∂̂1�L(x)| ≤ sup
x∈[0,i]2,x1≥h

�k(x1 + h)� − �k(x1 − h)�
2kh

≤ 1 + 1

2kh
≤ 2

for sufficiently large n. Thus the right-hand side of equation (A.6) is bounded by

P∗( sup
x∈[0,i]2,x1<δ

|βn(x)| > ε/3
)

eventually. Because βn � G�̃L
(unconditionally), the lim sup of this outer probability is bounded

by

P
(

sup
x∈[0,i]2,x1<δ

|G�̃L
(x)| > ε/3

)
.

Because G�̃L
has continuous trajectories and G�̃L

(0, x2) = 0 (almost surely), this probability

can be made arbitrary small by choosing δ sufficiently small. The case x ∈ [0, i]2 is completed.
For x ∈ [0, i] × {∞}, the arguments are similar, whereas for x ∈ {∞} × [0, i], we have Dn1 = 0,
and nothing needs to be shown. To conclude, supx∈T Dn1(x) converges to 0 in outer probability,
and because the term supx∈T Dn2 can be treated similarly, the proof is complete.

Appendix B: Partial derivatives of tail copulas

Proposition B.1. The first partial derivative of a (lower or upper) tail copula � satisfies

∂1�(0, x) =
{ lim

t→∞�(1, t) if x ∈ (0,∞),

0 if x = 0.
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Consequently, the only tail copula that admits for continuous partial derivatives in the origin
is the tail copula corresponding to tail independence, that is, � ≡ 0 for either the lower or the
upper tail.

Proof. By the groundedness and homogeneity of � (see Theorem 1 in Schmidt and Stadtmüller
[24]), we have

∂1�(0, x) = lim
h→0

�(h,x) − �(0, x)

h
= lim

h→0
�(1, x/h) = lim

t→∞�(1, t)

for all x ∈ (0,∞). Similarly, ∂1�(0,0) = 0. The addendum follows by Theorem 1(iv) in Schmidt
and Stadtmüller [24]. �

As an example, note that for the Clayton copula given in (3.11), we obtain ∂1�L(0, x) = 1 for
all θ > 0.

Appendix C: Auxiliary results

Here we present several technical details. We omit the proofs of the assertions and refer the
reader to Bücher [1], pages 103ff.

Lemma C.1. Suppose that Gn and Hn are sequences of measurable functions with envelopes Gn

and Hn, so that (Gn,Gn) and (Hn,Hn) satisfy the bounded uniform integral entopry condition
as stated in (A.2). Then the bounded uniform entropy integral condition (A.2) also holds for

Fn = Gn ∪ Hn, with envelopes Fn = Gn ∨ Hn.

Lemma C.2. Suppose that Gn = Gn(X1, . . .Xn, ξ1, . . . ξn) is some statistic taking values in
B∞(R̄2+). Then a conditional version of Theorem 1.6.1 in Van der Vaart and Wellner [30] holds

– namely, Gn
P�ξ G in B∞(R̄2+) is equivalent to Gn

P�ξ G in �∞(Ti) for every i ∈ N.

Lemma C.3. Suppose that g : D1 −→ D2 is a Lipschitz-continuous map between metrized topo-

logical vector spaces. If Gn = Gn(X1, . . . ,Xn, ξ1, . . . , ξn)
P�ξ G in D1, where G is tight, then

g(Gn)
P�ξ g(G) in D2.

Lemma C.4. Let Yn = Yn(X1, . . . ,Xn, ξ1, . . . , ξn) and Zn = Zn(X1, . . . ,Xn, ξ1, . . . , ξn) be two
(bootstrap) statistics in a metric space (D, d), depending on the data X1, . . . ,Xn and on some

multipliers ξ1, . . . , ξn. If Yn
P�ξ Y in D, where Y is tight, and d(Yn,Zn)

P→ 0, then also Zn
P�ξ Y

in D.
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