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Since the seminal work by Nagel and Weiss, the iteration stable (STIT) tessellations have attracted con-
siderable interest in stochastic geometry as a natural and flexible, yet analytically tractable model for hier-
archical spatial cell-splitting and crack-formation processes. We provide in this paper a fundamental link
between typical characteristics of STIT tessellations and those of suitable mixtures of Poisson hyperplane
tessellations using martingale techniques and general theory of piecewise deterministic Markov processes
(PDMPs). As applications, new mean values and new distributional results for the STIT model are obtained.
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1. Introduction

Infinite divisibility or stochastic stability of a random object under a certain operation is one of
the most fundamental concepts in probability theory. Prominent examples include the classical
theory of infinite divisible and stable distributions with their applications around the central limit
theorem, max-stable distributions studied in extreme value theory or union infinitely divisible
random sets studied in classical stochastic geometry.

In the present paper, we deal with a class of iteration infinitely divisible random tessellations
of the d-dimensional Euclidean space and, more specifically, with random tessellations that are
stable under the operation of iteration – so-called STIT tessellations. Recall that a tessellation
(or mosaic) of Rd is a locally finite family of compact and convex polytopes with pairwise no
common interior points that cover the whole space. They are one of the central objects studied
in stochastic geometry and related fields, see [20,27]. They are also of great importance for ap-
plications of stochastic geometry to real-world problems for which we refer to [2–4,11,12]. In
particular and as discussed in [16], the STIT tessellations may serve as a reference model for hi-
erarchical spatial cell-splitting and crack formation processes in natural sciences and technology,
for example, to describe geological or material phenomena or aging processes or surfaces.

The motivation for iteration stable tessellations can be traced back to the 80s and the principle
of iteration of tessellations can roughly be explained as follows, cf. [17,18]. Take a random pri-
mary or frame tessellation and associate with each of its cells an independent copy of the primary
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tessellation, called component tessellation, which is independent of the primary tessellation as
well. In each cell, a local superposition of the primary tessellation and the associated compo-
nent tessellation is now performed. The described operation can be applied repeatedly and we
obtain this way a sequence of random tessellations. It can be shown that, after appropriate rescal-
ing, this sequence converges to a limit tessellation, which is easily seen to be infinitely divisible
or even stable with respect to iteration (depending on the stochastic properties of the primary
tessellation).

Starting with [17], STIT tessellations and their theoretical framework were formally intro-
duced in [18]. In [14,15], a tessellation-valued random process on the positive real half-axis was
constructed with the property that at each time the law of the tessellation is stable under iter-
ation. This dynamic point of view also provides the link to a class of more general iteration
infinitely divisible tessellations, which are in the focus of the present paper as well. In compact
and convex windows W ⊂ Rd with positive volume, this process can be explained as follows.
A terminal time t > 0 and a (in some sense nondegenerate) measure � on the space of hyper-
planes in Rd are fixed in advance. Now W is assigned a random lifetime. Upon expiry of its
lifetime, W dies and splits into two random sets separated by a hyperplane hitting W , which is
chosen according to the suitable normalization of �. The resulting new random sets are again
assigned independent random lifetimes and the entire construction continues recursively until the
deterministic time threshold t is reached, see Figure 1 for an illustration. The resulting random
structure tessellates the window W and is denoted by Y(t�,W). In order to ensure the Markov
property of this construction in the continuous-time parameter t and in order to keep the law of
Y(t�,W) infinitely divisible or stable with respect to iterations, we will have to take care of the
special choice of the lifetime distributions and the the cell-dividing hyperplanes, see Section 3
below. We would like to emphasize that the dynamical representation is a special feature of STIT
tessellations and their infinitely divisible counterparts and, as recently pointed out in [21], that
such and similar spatio-temporal random processes have remarkable potential for applications in
stochastic geometry.

The purpose of the present paper is to explore the dynamic representation further and to in-
troduce a new technique, which unifies and generalizes former approaches and which, moreover,
has the advantage that it allows to deal with properties of the model that were out of reach so far.
The crucial fact is that the construction above has an interpretation as a piecewise deterministic

Figure 1. Construction of a STIT tessellation in a convex window with curved boundary.
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Markov process (PDMP) on the space of tessellations of W , which paves the way to the general
theory of PDMP’s for which we refer to [6] in particular. This in turn puts us into the position
to construct certain martingales related to the tessellation (see Section 4), eventually leading to
fundamental comparison results of the tessellations under consideration with certain mixtures
of Poisson hyperplane tessellations in Section 5. We would like to remark at this point that the
theory of PDMP’s has previously successfully been applied in stochastic geometry and spatial
statistics for the modeling of crack-growth networks, cf. [3,4]. As applications of our comparison
results we calculate in Section 6 several new mean values and also some new distributions related
to geometric objects determined by the tessellation. To keep the paper self-contained, we recall
in Section 2 the construction of STIT tessellations as limit of repeated iterations and formally
introduce in Section 3 their Markovian dynamic representation. Moreover, we introduce there
the above mentioned class of iteration infinitely divisible random tessellations and summarize
some of their properties needed in this paper.

The current work is based on an extended version available online [22]. It also forms the basis
of our papers [23–26].

2. STIT tessellations as limits

Before explaining the concept of iteration of tessellations, let us fix some basic notions and nota-
tion. A tessellation of Rd is a locally finite partition of the space into compact convex polytopes,
the cells of the tessellation. One can regard a tessellation either as a collection of its cells or as
the closed set formed by the union of their boundaries. We will follow the second point of view
and denote by Cells(Y ) the set of cells of a tessellation Y . Thus, a random tessellation can be
regarded as a special random closed set in the classical sense of stochastic geometry, see [20]. In
particular, this imposes the usual Fell topology and the corresponding Borel measurable structure
on the family of tessellations, see ibidem. By Kd , we denote in this paper the space of compact
and convex set in Rd with positive volume.

A random tessellation Y is stationary if its distribution does not change upon actions of trans-
lations. Analogously a random tessellation is said to be isotropic if its distribution is invariant
under the action of the rotation group SOd .

Whenever two random tessellations Y1 and Y2 of Rd are given, we can define their itera-
tion/nesting. For this purpose, we associate to each cell c ∈ Cells(Y1) an independent copy Y2(c)

of Y2 and we assume furthermore the family {Y2(c): c ∈ Cells(Y1)} to be independent of Y1.
Then we define the iteration of Y1 with Y2 by

Y1 � Y2 := Y1 ∪
⋃

c∈Cells(Y1)

(
Y2(c) ∩ c

)
,

that is, we take the local superposition of Y1 and the family {Y2(c): c ∈ Cells(Y1)} inside the cells
of Y1. It was shown in [15] that with Y1 and Y2 also Y1 � Y2 is a stationary random tessellation.
A stationary random tessellation Y is called stable under iterations, or STIT for short, if

m(Y � · · · � Y︸ ︷︷ ︸
m times

)
D= Y, m = 2,3, . . . , (1)
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where
D= stands for equality in distribution (note that rescaling with factor m ensures that the

mean surface area of cell boundaries per unit volume remains constant). In fact, using the unique-
ness results Theorem 3 and Corollary 2 in [18] it is easy to see that it is enough to take one fixed
m > 1 in (1).

To proceed, let us be given a constant 0 < t < ∞ and an even (symmetric) probability mea-
sure R on the unit sphere Sd−1, usually identified with the induced distribution of orthogonal
hyperplanes on the space of (d − 1)-dimensional linear hyperplanes in Rd , also denoted by R in
the sequel for notational simplicity. Define the measure � on the space H of affine hyperplanes
in Rd by

� := �+ ⊗ R, (2)

with �+ standing for the Lebesgue measure on the positive real half-axis (0,∞). Throughout
this paper, we always require that the support of R spans the whole space. Assume now that we
are given a stationary random tessellation Y with surface intensity t (i.e., the mean surface area
of cell boundaries per unit volume equals t ) and directional distribution R (i.e., the distribution
of the normal direction of the facet containing the typical point is given by R) and define the
sequence (In(Y ))n≥1 by

I1(Y ) := 2(Y � Y), In(Y ) := n

n − 1
In−1(Y ) � nY = n(Y � · · · � Y︸ ︷︷ ︸

n times

), n ≥ 2.

It was shown in [18], Theorem 3, that In(Y ) converges in law, as n → ∞, to a stationary random
limit tessellation Y(t�) uniquely determined by t�. This tessellation is easily shown to be stable
under iterations, whence a STIT tessellation with parameter t and hyperplane measure �; we
refer to Figure 2 for an illustration of the limit tessellation.

Figure 2. Realizations of a planar and a spatial stationary and isotropic STIT tessellation in a square and a
cube, respectively.
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3. The Markovian construction

As already emphasized in the Introduction, it is a crucial feature of the random tessellations
Y(t�) introduced in the previous section that they admit a simple and intuitive spatio-temporal
Markovian construction. For a restriction Y(t�,W) of Y(t�) to a window W ∈ Kd , this con-
struction can be described as follows (the reader is referred to [18] for full details). Assign to
W an exponentially distributed random lifetime with parameter �([W ]) where [W ] := {H ∈

H: H ∩ W 
= ∅} stands for the family of all hyperplanes hitting W . Upon expiry of its lifetime,
W dies and splits into W± = W ∩ H± (H± are the two half-spaces determined by H ), which
are separated by a hyperplane in [W ] chosen according to the law �(· ∩ [W ])/�([W ]). The
resulting new random sets W+ and W− are again assigned independent exponential lifetimes
with respective parameters �([W+]) and �([W−]) and the entire construction continues recur-
sively until the deterministic time threshold t is reached, see Figure 1. The separating (d − 1)-
dimensional facets (the word facet stands for a (d − 1)-dimensional face here and throughout)
arising in subsequent splits are usually referred to as (d − 1)-dimensional maximal polytopes
or I-segments for d = 2 as assuming shapes similar to the letter I. (Note, that due to a possibly
curved boundary of W some of the maximal polytopes may also have a curved boundary and are
no polytopes in the usual sense. However, we abuse notation and include also these sets in our
class of maximal polytopes, which causes no difficulties in our theory.) The resulting random
closed set constructed inside W is denoted by Y(t�,W), whereas the collection of all (d − 1)-
dimensional maximal polytopes or I-segments is denoted by MaxPolytopesd−1(Y (t�,W)).
Moreover, we write MaxPolytopesk(Y (t�,W)) for the collection of k-dimensional maximal
polytopes of Y(t�,W), where a k-dimensional maximal polytope is just a k-dimensional face of
some (d − 1)-dimensional maximal polytope (again, some of them are no polytopes in the usual
sense).

It was shown in [18] that the law of Y(t�,W) is consistent in that Y(t�,W)∩V
D= Y(t�,V )

for convex V ⊂ W and thus Y(t�,W) can be extended to a random tessellation Y(t�) in the
whole space, which is then proved (see [18]) to coincide with the limit tessellation Y(t�) consid-
ered in the previous section as notation already suggests. Again, the family of all k-dimensional
maximal polytopes of Y(t�) is denoted by MaxPolytopesk(Y (t�)) (0 ≤ k ≤ d −1). The station-
ary random tessellation Y(t�) is additionally isotropic if and only if R is the uniform distribution
on Sd−1 in the factorization (2).

A simple yet crucial observation is that even though only translation-invariant measures � of
the form (2) show up in the limiting STIT tessellations, the dynamic construction can be carried
out with arbitrary non-atomic and locally finite measures � on H also leading to a consistent
family Y(t�,W) and eventually, by extension, yielding a whole space tessellation Y(t�). Many
of our theorems will be stated in this general context. It should be emphasized that such tessel-
lations are no longer iteration stable (STIT). However, they have the general property of being
iteration infinitely divisible, as they can be readily checked to arise as m-fold iterations of Y(t/m)

for each m ≥ 2 in all finite windows. Formally, this means that

Y
(
(t/m)�,W

)�m D= Y(t�,W)



1642 T. Schreiber and C. Thäle

for all W ∈ Kd , which follows directly by construction as yielding

Y(s�,W) � Y(u�,W)
D= Y

(
(s + u)�,W

)
.

It is worth pointing out that it is currently an open problem whether any iteration infinitely
divisible random tessellation in Rd can be constructed in this way.

4. Associated martingales

The finite volume continuous-time incremental Markovian construction of iteration infinitely di-
visible random tessellations, or more specially of stationary STIT tessellations, as discussed in
Sections 2 and 3 above, clearly enjoys the Markov property in the continuous time parameter.
Whence, natural martingales arise, which will be of crucial importance for our further considera-
tions. To discuss these processes, we notice that for any W ∈ Kd and any nonatomic locally finite
hyperplane measure �, (Y (t�,W))t>0 is a piecewise deterministic Markov process (PDMP) on
the space of tessellations of W and we cite Chapter 3 in [5], Chapter 7 in [6] and Chapter 12 in
[7] for the general theory of such processes. Using these general results, we conclude that the
PDMP (Y (t�,W))t>0 has its infinitesimal generator L := L�;W given by

LF(Y ) =
∫

[W ]

∑
f ∈Cells(Y∩H)

[F(Y ∪ {f }) − F(Y )]�(dH), (3)

where Y is some instant of Y(t�,W) and F is some bounded measurable function on space
of tessellations of W , cf. Theorem 12.22 in [7] in particular. Notice that for a tessellation Y of
W ∈ Kd and H ∈ [W ], Cells(Y ∩ H) stands for the collection of (d − 1)-dimensional cell of the
sectional tessellation Y ∩ H . By standard theory as given in Lemma 5.1, Appendix 1, Section 5
in [10] or, alternatively, by a direct check we readily conclude now.

Proposition 1. For F bounded and measurable, the stochastic process

F(Y (t�,W)) −
∫ t

0
LF(Y (s�,W))ds, t ≥ 0,

is a martingale with respect to the filtration �t := σ(Y (s�,W): 0 ≤ s ≤ t).

To proceed towards the crucial Proposition 2, consider F of the form

�φ(Y ) :=
∑

f ∈MaxPolytopesd−1(Y )

φ(f ), (4)

where φ(·) is a generic bounded and measurable functional on (d − 1)-dimensional facets in W ,
that is to say a bounded and measurable function on the space of closed (d − 1)-dimensional
polytopes in W , possibly chopped off by the boundary of W , with the standard measurable
structure inherited from space of closed sets in W .
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Proposition 2. The stochastic process

�φ(Y (t�,W)) −
∫ t

0

∫
[W ]

∑
f ∈Cells(Y (s�,W)∩H)

φ(f )�(dH)ds, t ≥ 0,

is a martingale with respect to �t .

Proof. The functional �φ defined by (4) is not necessarily bounded and thus Proposition 1
cannot be applied directly with F = �φ there. However, we can apply it for the truncations
�N

φ := (�φ ∧ N) ∨ −N,N ∈ N and let N → ∞ to conclude that

�φ(Y (t�,W)) −
∫ t

0
L�φ(Y (s�,W))ds, t ≥ 0

is a local �t -martingale with a localizing sequence given by

{τN }N∈N with τN = inf{t ≥ 0: |�φ(Y (t�,W))| ≥ N}.
Now, we apply the proof of Lemma 1 in [18], where the number of cells in Y(t�,W), and hence
for all Y(s�,W), s ≤ t , has been shown to be bounded by a Furry–Yule-type linear birth process
whose cardinality at any given finite time admits moments of all orders, to conclude that

�φ(Y (t�,W)) −
∫ t

0
L�φ(Y (s�,W))ds, t ≤ T ,

is of class DL for all T > 0 in the sense of Definition 4.8 in [8]. Using now the result of Prob-
lem 5.19(i) ibidem, we finally conclude that the random process

�φ(Y (t�,W)) −
∫ t

0
L�φ(Y (s�,W))ds, t ≥ 0,

is a martingale with respect to �t . Moreover, in view of (3) we have

L�φ(Y ) =
∫

[W ]

∑
f ∈Cells(Y∩H)

[�φ(Y ∪ {f }) − �φ(Y )]�(dH)

=
∫

[W ]

∑
f ∈Cells(Y∩H)

φ(f )�(dH),

which completes the proof. �

5. Relationships for intensity measures

In this section, we establish two fundamental first-order properties of Y(t�,W) for general lo-
cally finite nonatomic measures �, essentially obtained by comparison with suitable mixtures of
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Poisson hyperplane tessellations. The results are somehow surprising as formal identities and we
are not able to provide an intuitive understanding. However, their applications in Corollary 1 and
in Section 6 below have a very natural meaning and interpretation.

The key to our results is Proposition 2 from the previous section. To exploit it, consider the
random measure

MY(t�,W) :=
∑

c∈Cells(Y (t�,W))

δc and MY(t�,W) := EMY(t�,W) (5)

with δc standing for the unit mass Dirac measure at c. In full analogy, define MPHT(t�,W) and
MPHT(t�,W), where PHT(t�,W) is the Poisson hyperplane tessellation with intensity measure
t�, restricted to W (see [20] for background material). Further, put

F Y(t�,W)
k :=

∑
f ∈MaxPolytopesk(Y (t�,W))

δf , F
Y(t�,W)
k := EF Y(t�,W)

k , k = 1, . . . , d − 1,

where, recall, MaxPolytopesk(Y ) is the collection of k-dimensional maximal polytopes of Y .
Likewise, define

F PHT(t�,W)
k :=

∑
f ∈Facesk(PHT(t�,W))

δf , F
PHT(t�,W)
k := EF PHT(t�,W)

k , k = 1, . . . , d − 1,

where Facesk(PHT(t�,W)) is the collection of all k-face of the Poisson hyperplane tessellation
PHT(t�,W). Our first claim is

Theorem 1. It holds that MY(t�,W) = MPHT(t�,W).

Proof. Using (3) and (1) with

F(Y ) :=
∑

c∈Cells(Y )

φ(c)

for a general bounded measurable cell functional φ, with a localization argument as the one in
the proof of Proposition 2 we conclude that
∫

φ(c′)MY(t�,W)(dc′)

−
∫ t

0

∫
[W ]

∑
f ∈Cells(Y (s�,W)∩H)

[φ(Cell+(f,H |Y(s�,W))) + φ(Cell−(f,H |Y(s�,W))) (6)

− φ(Cell(f,H |Y(s�,W)))]�(dH)ds, t ≥ 0,

is a �t -martingale. Here, Cell(f,H |Y(s�,W)) stands for the a.s. uniquely determined cell of
Y(s�,W) that gets divided into Cell±(f,H |Y(s�,W)) by the facet f on the hyperplane H ∈
[W ]. To simplify the notation, we use c±(H) to denote the cells into which c gets divided by H ,
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lying, respectively, in the positive and negative half-space determined by H . With this notation,
(6) says that∫

φ(c′)MY(t�,W)(dc′)

−
∫ t

0

∫ ∫
[c]

[φ(c+(H)) + φ(c−(H)) − φ(c)]�(dH)MY(s�,W)(dc)ds, t ≥ 0

is a �t -martingale. Taking expectations leads to∫
φ(c′)MY(t�,W)(dc′)

(7)

=
∫ t

0

∫ ∫
[c]

[φ(c+(H)) + φ(c−(H)) − φ(c)]�(dH)MY(s�,W)(dc)ds

for all bounded measurable φ as above.
To proceed, we regard MY(s�,W) as an element of the space of bounded variation Borel mea-

sures on the family of polyhedral sub-cells of W endowed with the standard measurable structure
inherited from the space of closed sets in W . Consider the linear operator T� on this measure
space given by

T�μ =
∫ ∫

[c]
[δc+(H) + δc−(H) − δc]�(dH)μ(dc). (8)

By (8), ‖T�μ‖TV ≤ (
∫
[W ] d�)‖μ‖TV = �([W ])‖μ‖TV where ‖ · ‖TV is the standard total vari-

ation norm of a measure. This inequality turns into equality when μ = δW . Consequently, T�

is a bounded operator of operator norm �([W ]) < +∞ by the assumed locally finiteness of �.
Using the operator T�, relation (7) can be rewritten in form of an initial value problem for the
operator differential equation

∂

∂t
MY(t�,W) = T�MY(t�,W), MY(0,W) = δW , (9)

which, in view of the above properties of T�, admits by standard theory of linear operators (cf.
[9], Chapter IX.§2, Section 2) the unique solution

MY(t�,W) = exp(tT�)δW , t ≥ 0, (10)

where the operator exponential of tTλ is applied to the measure δW . It is easily seen that ex-
actly the same equations (7), (9) and thus also (10) hold for MPHT(t�,W). In particular, we have
MY(t�,W) = MPHT(t�,W), as required. �

It is interesting to note that in the translation-invariant set-up, we obtain as a corollary that
the distribution Q of the typical cell of the STIT tessellation Y(t�) coincides with the typical
cell distribution QPHT(t�) of a stationary Poisson hyperplane tessellation PHT(t�) with intensity
measure t�, a result that has previously been shown in [17] by completely different arguments.
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Recall, that – in intuitive terms – the typical cell of a tessellation is a randomly selected cell,
where each cell has the same chance of being selected.

Corollary 1. In the translation-invariant set-up as considered in the previous paragraph it holds
that Q = QPHT(t�).

Proof. The distribution Q is formally defined by the relation

λdQ(A) = lim
r→∞

E
∑

c∈Cells(Y (t�)) 1[c ⊂ rW ]1[c − m(c) ∈ A]
rdVd(W)

, (11)

where A is a measurable subset in the space of d-dimensional polytopes, λd is the cell den-
sity of Y(t�), W ∈ Kd and where m(c) stands for some translation-covariant selector of the
d-dimensional polytope c (for example the Steiner point or the center of gravity), cf. [20], equa-
tion (4.8, 4.9). The distribution QPHT(t�) is defined in a similar spirit. Here and below 1[·] stands
for the usual indicator function, which is 1 if the statement in brackets if fulfilled and 0 otherwise.
Rewriting the sum in (11) as an integral and using Campbell’s theorem, we obtain

E
∑

c∈Cells(Y (t�))

1[c ⊂ rW ]1[c − m(c) ∈ A]

=
∫

1[c ⊂ rW ]1[c − m(c) ∈ A]MY(t�,rW)(dc),

where the condition c ⊂ rW excludes from Y(t�, rW)
D= Y(t�) ∩ rW those cells that hit the

boundary of rW . Theorem 1 allows now to replace MY(t�,rW) by MPHT(t�,rW). Moreover, The-
orem 1 clearly implies that the tessellations Y(t�) and PHT(t�) have the same cell density,
which in view of (11) completes the argument. �

Having characterized MY(t�,W), we now turn to the lower-dimensional face intensity mea-
sures F

Y(t�,W)
k in our general set-up, not necessarily assuming the translation-invariance of the

hyperplane measure �.

Theorem 2. For all k = 0, . . . , d − 1, it holds that

F
Y(t�,W)
k = (d − k)2d−k−1

∫ t

0

1

s
F

PHT(s�,W)
k ds.

Proof. Fix k ∈ {0, . . . , d − 1}. Let ψ be a general bounded measurable function of a k-
dimensional maximal polytope, as usual regarded as a closed subset of W , and for a (d − 1)-
dimensional maximal polytope h put

φ(h) :=
∑

f ∈Facesk(h)

ψ(f ), (12)
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noting that the k-dimensional maximal polytopes of the tessellation Y(t�,W) are precisely the
k-faces of its (d − 1)-dimensional maximal polytopes. Using Proposition 2, taking expectations
and recalling (5) we see that

E�φ(Y (t�,W)) =
∫

φ dF
Y(t�,W)
d−1 =

∫ t

0

∫ ∫
[c]

φ(c ∩ H)�(dH)MY(s�,W)(dc)ds.

Applying Theorem 1, we get

∫
φ dF

Y(t�,W)
d−1 =

∫ t

0

∫ ∫
[c]

φ(c ∩ H)�(dH)MPHT(s�,W)(dc)ds. (13)

Now the Slivnyak–Mecke formula [20], Theorem 3.2.5 implies
∫ ∫

[c]
φ(c ∩ H)�(dH)MPHT(�,W)(dc) =

∫
φ dF

PHT(�,W)
d−1 . (14)

Indeed, identifying PHT(�,W) with the collection of Poisson hyperplanes hitting W we have
∫

φ dF
PHT(�,W)
d−1

= E
∑

H∈PHT(�,W)

∑
f ∈Cells(PHT(�,W)∩H)

φ(f ) =
∫

[W ]
E

∑
f ∈Cells(PHT(�,W)∩H)

φ(f )�(dH)

= E
∑

c∈Cells(PHT(�,W))

∫
[c]

φ(c ∩ H)�(dH) =
∫ ∫

[c]
φ(c ∩ H)�(dH)MPHT(�,W)(dc).

Taking in (14) now s� in place of � we find more generally
∫ ∫

[c]
φ(c ∩ H)�(dH)MPHT(s�,W)(dc) = 1

s

∫
φ dF

PHT(s�,W)
d−1 ,

whence, with (13), ∫
φ dF

Y(t�,W)
d−1 =

∫ t

0

1

s

∫
φ dF

PHT(s�,W)
d−1 ds.

We note now that, by (12),
∫

φ dF
Y(t�,W)
d−1 =

∫
ψ dF

Y(t�,W)
k ,

because each k-dimensional maximal polytope is a k-face of precisely one (d − 1)-dimensional
maximal polytope in Y(t�,W). On the other hand,

∫
φ dF

PHT(s�,W)
d−1 = (d − k)2d−k−1

∫
ψ dF

PHT(s�,W)
k ,
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because each k-face of PHT(s�,W) is a k-face of (d − k)2d−k−1 facets of PHT(s�,W), see
Theorems 10.1.2 and 10.3.1 in [20]. Hence, we conclude that

∫
ψ dF

Y(t�,W)
k = (d − k)2d−k−1

∫ t

0

1

s

∫
ψ dF

PHT(s�,W)
k ds

for all ψ bounded and measurable, which completes the proof of the theorem. �

Some of our arguments in the sequel and the theory developed in [23,24], for example, re-
quire a straightforward formal extension of Theorem 2. Namely, we formally mark all (d − 1)-
dimensional maximal polytopes of the tessellation Y(t�,W) by their birth times. This gives rise
to the birth-time augmented tessellation Ŷ (t,W) with birth-time-marked (d − 1)-dimensional
maximal polytopes and makes the Markovian construction of Ŷ (t,W) into a Markov process
whose generator L̂ is a clear modification of L as given in (3):

L̂F̂ (Ŷ (s,W)) =
∫

[W ]

∑
f ∈Cells(Y (s,W)∩H)

[
F̂ (Ŷ (s,W) ∪ [{f }, s]) − F̂ (Ŷ (s,W))

]
�(dH)

for F̂ bounded and measurable on the space of birth-time-marked tessellations of W . Conse-
quently, writing F̂

Y(t�,W)
k , k = 0, . . . , d−1, for the birth-time-marked version of F

Y(t�,W)
k , where

each k-dimensional maximal polytope is marked with its birth time, by a straightforward modi-
fication of the proof of Theorem 2 we are led to the following.

Corollary 2. For all k = 0, . . . , d − 1 it holds that

F̂
Y(t�,W)
k = (d − k)2d−k−1

∫ t

0

1

s

[
F

PHT(s�,W)
k ⊗ δs

]
ds.

6. Typical maximal polytope distributions

We are now going to apply the results obtained in the last section to the stationary set-up,
that is, with � translation-invariant, to study the distribution of typical k-dimensional maxi-
mal polytopes of the STIT tessellation Y(t�) in Rd . Recall, that, in intuitive terms, the typical
k-dimensional maximal polytope of Y(t�) is what we get when we equiprobably choose one of
the tessellations k-dimensional maximal polytopes. The typical k-dimensional maximal polytope
distribution Qk (1 ≤ k ≤ d − 1) is formally given by

λkQk(A) = lim
r→∞

1

Vd(rW)

∑
f ∈MaxPolytopesk(Y (t�))

1[f ⊂ rW ]1[f − m(f ) ∈ A], (15)

where λk is the mean number of k-dimensional maximal polytope selectors m(f ) of Y(t�) per
unit volume (this is the intensity of MaxPolytopesk(Y (t�))), A is a measurable subset of the
space of k-dimensional polytopes, W ∈ Kd and, as in the proof of Corollary 1, where m(f )

stands for some translation-covariant selector of f (as its Steiner point for example). Similarly,
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the distribution Q
PHT(t�)
k of the typical k-face of a Poisson hyperplane tessellation with intensity

measure t� is defined, see Chapter 4.1 in [20].

Theorem 3. For k ∈ {1, . . . , d − 1}, the distribution Qk of the typical k-dimensional maximal
polytope of Y(t�) is given by

Qk =
∫ t

0

dsd−1

td
Q

PHT(s�)
k ds.

The preceding theorem can be rephrased by saying that the distribution of the typical k-
dimensional maximal polytope of a STIT tessellation is a mixture of suitable rescalings of
distributions of typical k-dimensional faces of Poisson hyperplane tessellations, and that the
mixing distribution is a beta-distribution on (0, t) with parameters d and 1, which has density
dsd−1

td
1[0 < s < t].

Proof of Theorem 3. To start, let ϕk be a real-valued, bounded, translation-invariant, non-
negative measurable function on the space of k-dimensional polytopes (1 ≤ k ≤ d−1) and denote
by ϕk(Y (t�)) the (possibly infinite) ϕk-density of Y(t�) in the sense of [20], Chapter 4.1, that
is,

ϕk(Y (t�)) = lim
r→∞

1

Vd(rW)
E

∑
f ∈MaxPolytopesk(Y (t�))

1[f ⊂ rW ]ϕk(f ) (16)

with W ∈ Kd . The existence of this limit is guaranteed by Theorem 4.1.3 ibidem. Using now
Campbell’s theorem [20], Theorem 3.1.2 and Theorem 2 from above, we obtain, possibly with
both sides infinite,

ϕk(Y (t�)) = lim
r→∞

1

Vd(rW)
E

∑
f ∈MaxPolytopesk(Y (t�))

1[f ⊂ rW ]ϕk(f )

= lim
r→∞

1

Vd(rW)
E

∫
1[f ⊂ rW ]ϕk(f )F Y(t�,rW)

k (df )

= lim
r→∞

1

Vd(rW)

∫
1[f ⊂ rW ]ϕk(f )F

Y(t�,rW)
k (df )

= lim
r→∞

(d − k)2d−k−1

Vd(rW)

∫ t

0

1

s

∫
1[f ⊂ rW ]ϕk(f )F

PHT(s�,rW)
k (df )ds.

By dominated convergence, we can continue as follows:

= (d − k)2d−k−1
∫ t

0

1

s

[
lim

r→∞
1

Vd(rW)
E

∑
f ∈Facesk(PHT(s�))

1[f ⊂ rW ]ϕk(f )

]
ds

(17)

= (d − k)2d−k−1
∫ t

0

1

s
ϕk(PHT(s�))ds.
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For ϕk ≡ 1 we find λk = ϕk(Y (t�)), which clearly has an interpretation as intensity of k-
dimensional maximal polytopes. Similarly, we denote by λ

PHT(s�)
k the intensity of k-faces of the

Poisson hyperplane tessellation PHT(s�) and notice that s PHT(s�)
D= PHT(�). Hence, there

is a constant Ck ∈ (0,∞), which is independent of s, such that λ
PHT(s�)
k = Cks

d (in fact Ck is
explicitly known and given by equation (10.44) in [20]). Thus, in view of (17) we get

λk = (d − k)2d−k−1
∫ t

0

1

s
Cks

d ds = d − k

d
2d−k−1Ckt

d = d − k

d
2d−k−1λ

PHT(t�)
k . (18)

Let m(f ) with f ∈ MaxPolytopesk(Y (t�)) be as in (15). Using (17), this time with ϕk(f ) :=
1[f − m(f ) ∈ ·], together with (15), we obtain

λkQk = (d − k)2d−k−1
∫ t

0

1

s
λ

PHT(s�)
k Q

PHT(s�)
k ds. (19)

Combining (19) with (18) we find, with Ck as above,

Qk = (d − k)2d−k−1
∫ t

0

1

s

λ
PHT(s�)
k

λk

Q
PHT(s�)
k ds =

∫ t

0

d

s

λ
PHT(s�)
k

λ
PHT(t�)
k

Q
PHT(s�)
k ds

=
∫ t

0

d

s

Cks
d

Cktd
Q

PHT(s�)
k ds =

∫ t

0

dsd−1

td
Q

PHT(s�)
k ds,

which is the desired expression for Qk . �

It is interesting to note that formally marking the k-dimensional maximal polytopes with their
birth-times and repeating the argument leading to Theorem 3 with Theorem 2 replaced by its
time-marked extension in Corollary 2 we obtain the birth time-marked extension of Theorem 3:

Corollary 3. The distribution Q̂k of the typical birth-time-marked k-dimensional maximal poly-
tope of Y(t�) is given by

Q̂k =
∫ t

0

dsd−1

td

[
Q

PHT(s�)
k ⊗ δs

]
ds,

where k ∈ {1, . . . , d − 1} as above.

From these identities, mean values and also distributional results for the typical k-dimensional
maximal polytope of a stationary STIT tessellation can be deduced. To illustrate the general
method, we exemplarily calculate at first the mean intrinsic volumes of the typical k-dimensional
maximal polytope of the STIT tessellation Y(t�). To neatly formulate them, let  be the associ-
ated zonoid of the Poisson hyperplane tessellation PHT(t�). This is the convex body which has
its support h(u) function given by

h(u) = t

2

∫
Sd−1

|〈u,v〉|R(dv), u ∈ Rd,
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see [20], equation (4.59), where 〈·, ·〉 denotes the standard scalar product in Rd . Moreover, we
will denote by Vj (K) the intrinsic volume of order j of K ∈ Kd in the usual sense of integral
geometry. In particular, Vd(K) is the volume, 2Vd−1(K) the surface area, V1(K) a constant
multiple of the mean width and V0(K) = 1 the Euler-characteristic of K , cf. [20].

Corollary 4. Fix 0 ≤ j ≤ k ≤ d − 1. The mean j th intrinsic volume Vj of the typical k-
dimensional maximal polytope Ik (this is a random polytope with distribution Qk) is given by

EVj (Ik) = d

d − j

(
d−j
d−k

)
(
d
k

) Vd−k()

Vd()
.

Proof. Using Theorem 3, Theorem 10.3.3 in [20] and the homogeneity of the intrinsic volumes,
we get

EVj (Ik) =
∫ t

0

dsd−1

td

(
d−j
d−k

)
Vd−j ((s/t))(

d
k

)
Vd((s/t))

ds =
(
d−j
d−k

)
(
d
k

) Vd−k()

Vd()

∫ t

0

dsd−1

td

(s/t)d−j

(s/t)d
ds

= d

d − j

(
d−j
d−k

)
(
d
k

) Vd−k()

Vd()
,

which completes the proof. �

Note that in the isotropic case, that is, when R is the uniform distribution on Sd−1 in the factor-
ization (2), the zonoid  is a d-dimensional ball with radius proportional to t . More specifically,
we have in this case

EVj (Ik) = d

d − j

(
k

j

)(
dκd

κd−1

)j 1

κj tj
,

where κj is the volume of the j -dimensional unit ball.

Remark 1. In the planar (d = 2) and in the spatial case (d = 3), the mean values EVj (Ik) are in
accordance with the values obtained earlier in [13,19], for example. The method there was based
on the stochastic stability of the tessellation under iterations, which leads to balance equations
for EVj (Ik) that can be solved by using intersection formulae for random tessellations. It seems,
however, that this method becomes impracticable in higher space dimensions.

Remark 2. Corollary 4 shows that the intrinsic volumes Vj (0 ≤ j ≤ k) are integrable with
respect to Qk (1 ≤ k ≤ d − 1), the typical k-dimensional maximal polytope distribution. In view
of Theorem 4.1.2 in [20] this allows us to replace the definition (16) of ϕk by

ϕk(Y (t�)) = lim
r→∞

1

Vd(rW)
E

∑
f ∈MaxPolytopesk(Y (t�,rW))

ϕk(f )

= lim
r→∞

1

Vd(rW)

∫
ϕk(f )F

Y(t�,rW)
k ,
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not excluding thereby those maximal polytopes hitting the boundary of W ∈ Kd , which is some-
how more natural in view of our setting in Section 5.

As a second example, we turn now to the length distribution of the typical I-segment, which is
nothing than the typical maximal polytope of dimension one.

Corollary 5. The distribution of the length of the typical I-segment of a stationary and isotropic
STIT tessellation with time parameter t > 0 is a mixture of exponential distributions with pa-
rameter γ s. The mixing distribution is a beta-distribution on (0, t) with parameters d and 1. Its
density is given by

pd(x) =
∫ t

0
γ se−γ sx dsd−1

td
ds = d

(γ t)dxd+1
�(d + 1, γ tx), x > 0,

where �(·, ·) is the lower incomplete Gamma-function and γ = �(d/2)/(�(1/2)�((d + 1)/2)).

Proof. This follows immediately from Theorem 3 and the well-known fact that the length dis-
tribution of the typical edge of a stationary and isotropic Poisson hyperplane tessellation with
intensity 0 < s < t is an exponential distribution with parameter γ s, see [1]. �

In particular for d = 2 and d = 3, we have the densities

p2(x) = 1

t2x3

(
π2 − (π2 + 2πtx + 2t2x2)e−(2/π)tx

)
, x > 0,

p3(x) = 3

t3x4

(
48 − (48 + 24tx + 6t2x2 + t3x3)e−(1/2)tx

)
, x > 0.

The mean segment lengths are π/t in the planar case and 3/t for d = 3. Moreover, the variance of
the length of the typical I-segment in the spatial case is given by 24/t2, which was not available
before. In general, from the explicit length density formula it is easily seen that for the length of
the typical I-segment only the moments of order 1 up to d − 1 are finite.

Let us finally remark that Corollary 5 allows an extension to the anisotropic setting. Theorem 3
also implies that the conditional length distribution of the typical I-segment in Y(t�) (where now
� is a general translation-invariant hyperplane measure as in (2)), given its birth time s ∈ (0,1)

and direction u ∈ Sd−1, is an exponential distribution with parameter s�([e(u)]), where e(u) is
a line segment of unit length parallel to u. Thus, the conditional distribution of the length of the
typical I-segment with a given direction is a mixture of these exponential distributions and the

mixing distribution has again density dsd−1

td
1[0 < s < t].

Remark 3. The length density p2(x) of the typical I-segment in a planar stationary and isotropic
STIT tessellation has been calculated in [13] by an entirely different method based on Palm
theory. However, this method seems to be restricted to the study of I-segments and does not lead
to results for higher-dimensional maximal polytopes as in Theorem 3 above.
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