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Limit theorems for beta-Jacobi ensembles
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For a β-Jacobi ensemble determined by parameters a1, a2 and n, under the restriction that the three pa-
rameters go to infinity with n and a1 being of small orders of a2, we obtain some limit theorems about the
eigenvalues. In particular, we derive the asymptotic distributions for the largest and the smallest eigenvalues,
the central limit theorems of the eigenvalues, and the limiting distributions of the empirical distributions of
the eigenvalues.
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1. Introduction

Let β > 0 be a constant and n ≥ 2 be an integer. A beta-Jacobi ensemble, also called in the
literature as the beta-MANOVA ensemble, is a set of random variables (λ1, . . . , λn) ∈ [0,1]n
with probability density function

fβ,a1,a2(λ) = c
β,a1,a2
J

∏
1≤i<j≤n

|λi − λj |β ·
n∏

i=1

λ
a1−p
i (1 − λi)

a2−p, (1.1)

where a1, a2 >
β
2 (n − 1) are parameters, p = 1 + β

2 (n − 1), and

c
β,a1,a2
J =

n∏
j=1

�(1 + β/2)�(a1 + a2 − (β/2)(n − j))

�(1 + (β/2)j)�(a1 − (β/2)(n − j))�(a2 − (β/2)(n − j))
. (1.2)

The ensemble has close connections to the multivariate analysis of variance (MANOVA). For
β = 1,2 and 4, the function fβ(λ) in (1.1) is the density function of the eigenvalues of
Y∗Y(Y∗Y + Z∗Z)−1 with a1 = β

2 m1 and a2 = β
2 m2, where Y = Ym1×n and Z = Zm2×n are

independent matrices with m1,m2 ≥ n, and the entries of both matrices are independent random
variables with the standard real, complex or quaternion Gaussian distributions. See [9] and [37]
for β = 1,2. Other references about the connections between the Jacobi ensembles and statistics
are [3,7–9,12,20,24,29,30,37].

In statistical mechanics, the model of the log gases can be characterized by the beta-Jacobi
ensembles. A log gas is a system of charged particles on the real line which are subject to a
logarithmic interaction potential and Brownian-like fluctuations. If the particles are contained in
the interval [0, 1] and are also subject to the external potential

∑n
i=1(

r+1
2 − 1

β
) logλi + ( s+1

2 −
1
β
) log(1 − λi), where r = 2

β
a1 − n and s = 2

β
a2 − n, and β is the inverse of the temperature,
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then it is known that the stationary distribution of the system of charges in the long term is the
Jacobi ensemble as in (1.1), see, for example, [5,19,25,43].

The beta-Jacobi ensembles also have connections to other subjects in mathematics and physics.
See, for instance, the lattice gas theory [24,25], Selberg integrals [26,36,38] and Jack func-
tions [4,32,42].

Now we briefly recall some research on the beta-Jacobi ensembles. Lippert [35] gives a model
to generate the beta-Jacobi ensembles (see also [34] for a similar method used in the construction
of the beta-circular ensembles). In studying the largest principal angles between random sub-
spaces, Absil, Edelman and Koev [1] obtain a formula related to the Jacobi ensembles. Edelman
and Sutton [22] study CS decomposition and singular values about these models. Dumitriu and
Koev [18] derive the exact distributions of the largest eigenvalues for the ensembles. Jiang [30]
derives the bulk and the edge scaling limits for the beta-Jacobi ensembles for β = 1 and 2 when p

and a1 in (1.1) are of small orders of a2. Johnstone [31] obtains the asymptotic distribution of
the largest eigenvalues for β = 1 and 2 when a1, a2 and p in (1.1) are proportional to each other.
Recently, Demni [10] investigates the beta-Jacobi processes.

In this paper, for the beta-Jacobi ensembles, we study the asymptotic distributions of the largest
and smallest eigenvalues, the limiting empirical distributions of the eigenvalues, the law of large
numbers and the central limit theorems for the eigenvalues. Before stating the main results, we
need some notation.

Let β > 0 be a fixed constant, n ≥ 2 be an integer, a1 and a2 be positive variables. The follow-
ing condition will be used later.

n → ∞, a1 → ∞ and a2 → ∞ such that
(1.3)

a1 = o(
√

a2), n = o(
√

a2) and
nβ

2a1
→ γ ∈ (0,1].

For two Borel probability measures μ and ν on R
k , recall the metric

d(μ, ν) = sup
‖f ‖BL≤1

∣∣∣∣
∫

Rk

f (x)dμ −
∫

Rk

f (x)dν

∣∣∣∣, (1.4)

where f (x) is a bounded Lipschitz function defined on R
k with

‖f ‖BL = sup
x 
=y

|f (x) − f (y)|
‖x − y‖ + sup

x∈Rk

∣∣f (x)
∣∣.

Then, for a sequence of probability measures {μn;n = 0,1,2, . . .} defined on (Rk, B(Rk)), we
know μn converges weakly to μ0 if and only if d(μn,μ0) → 0 as n → ∞, see, for example, [14].
Similarly, we say that a sequence of random variables {Zn;n ≥ 1} taking values in R

k converges
weakly (or in distribution) to a Borel probability measure μ on R

k if Ef (Zn) → ∫
Rk f (x)μ(dx)

for any bounded and continuous function f (x) defined on R
k. This is also equivalent to that

d(L(Zn),μ) → 0 as n → ∞, where L(Zn) is the probability distribution of Zn, see also [14].
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For γ ∈ (0,1], let γmin = (
√

γ − 1)2 and γmax = (
√

γ + 1)2. The Marchenko–Pastur law is
the probability distribution with density function

fγ (x) =
⎧⎨
⎩

1

2πγ x

√
(x − γmin)(γmax − x), if x ∈ [γmin, γmax],

0, otherwise.
(1.5)

Our first result is the global behavior of the eigenvalues of the beta-Jacobi ensembles.

Theorem 1 (Empirical law). Let λ1, . . . , λn be random variables with density function
fβ,a1,a2(λ) as in (1.1). Set

μn = 1

n

n∑
i=1

δ(a2/n)λi

for n ≥ 2. Assuming (1.3), then d(μn,μ0) converges to zero in probability, where μ0 has density
c · fγ (cx) with c = 2γ /β and fγ (x) is as in (1.5).

The next result gives the scales of the largest and smallest eigenvalues for the beta-Jacobi
ensembles.

Theorem 2 (Law of large numbers for extreme eigenvalues). Let λ1, . . . , λn be random
variables with density function fβ,a1,a2(λ) as in (1.1). Set λmax(n) = max{λ1, . . . , λn}, and
λmin(n) = min{λ1, . . . , λn}. Assuming (1.3), we have that

a2

n
· λmax(n) → β · (1 + √

γ )2

2γ
and

a2

n
· λmin(n) → β · (1 − √

γ )2

2γ

in probability.

The following is the asymptotic behavior of the “trace” of the beta-Jacobi ensembles.

Theorem 3 (Central limit theorems). Let λ1, . . . , λn be random variables with density function
fβ,a1,a2(λ) as in (1.1). Given integer k ≥ 1, define

Xi =
n∑

j=1

(
ca2

n
λj

)i

− n

i−1∑
r=0

1

r + 1

(
i

r

)(
i − 1

r

)
γ r

for i ≥ 1, where c = 2γ /β and γ is as in (1.3). Assuming (1.3), then (X1, . . . ,Xk) converges
weakly to a multivariate normal distribution Nk(μ,	) for some μ and 	 given in Theorem 1.5
from [17].

Killip [33] obtains the central limit theorem for
∑n

i=1 I (λi ∈ (a, b)), where a < b are two
constants. Theorem 3 is the central limit theorem for homogenous polynomials of λi ’s.
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From the recent results by Ramírez and Rider [40] and Ramírez, Rider and Virág [39], we
are able to investigate the asymptotic distributions of the smallest and largest eigenvalues for the
beta-Jacobi ensembles next. Look at the operator

Tβ,a = − exp

[
(a + 1)x + 2√

β
b(x)

]
d

dx

{
exp

[
−ax − 2√

β
b(x)

]}
,

where a > −1 and β > 0 are constants, and b(x) is a standard Brownian motion on [0,∞). With
probability one, when restricted to the positive half-line with Dirichlet conditions at the origin,
Tβ,a has discrete spectrum comprised of simple eigenvalues 0 < 
0(β, a) < 
1(β, a) < · · · ↑ ∞
as stated in Theorem 1 from [40].

For a sequence of pairwise different numbers a1, . . . , an, let a(1) > a(2) > · · · > a(n) be their
order statistics.

Theorem 4 (Limiting distribution of smallest eigenvalues). Let λ1, . . . , λn be random vari-
ables with density function fβ,a1,a2(λ) as in (1.1). Let c > 0 be a constant, and 2β−1a1 − n = c.
If n → ∞ and a2 → ∞ such that n = o(

√
a2), then (2β−1na2) · (λ(n), . . . , λ(n−k+1)) converges

weakly to (
0(β, c),
1(β, c), . . . ,
k−1(β, c)).

Now look at another random operator

−Hβ = d2

dx2
− x − 2√

β
b′
x, (1.6)

where bx is a standard Brownian motion on [0,+∞) (b′
x is not the derivative of bx since it is not

differentiable almost everywhere). We use equation (1.6) in the following sense. For λ ∈ R and
function ψ(x) defined on [0,+∞) with ψ(0) = 0 and

∫ ∞
0 ((ψ ′)2 + (1 + x)ψ2)dx < ∞, we say

(ψ,λ) is an eigenfunction/eigenvalue pair for −Hβ if
∫ ∞

0 ψ2(x)dx = 1 and

ψ ′′(x) = 2√
β

ψ(x)b′
x + (x + λ)ψ(x)

holds in the sense of integration-by-parts, that is,

ψ ′(x) − ψ ′(0) = 2√
β

ψ(x)bx +
∫ x

0
− 2√

β
byψ

′(y)dy +
∫ x

0
(y + λ)ψ(y)dy.

Theorem 1.1 from [40] says that, with probability one, for each k ≥ 1, the set of eigenvalues of
−Hβ has well-defined k-largest eigenvalues 
k. Recall (1.1), set

mn = (√
n +

√
2β−1a1

)2 and σn = (2β−1na1)
1/6

(
√

n + √
2β−1a1)4/3

.

Theorem 5 (Limiting distribution of largest eigenvalues). For each k ≥ 1, let 
k be the kth
largest eigenvalue of −Hβ as in (1.6). Let λ1, . . . , λn be random variables with joint density
function fβ,a1,a2(λ) as in (1.1). Assuming (1.3), then σn((2a2β

−1)λ(l) − mn)l=1,...,k converges
weakly to (
1, . . . ,
k).
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Remark 1.1. Dumitriu and Koev [18] derive the exact formulas for the cumulative distribution
functions of the largest and smallest eigenvalue of the beta-Jacobi ensembles as in (1.1) for
fixed parameter β,a1, a2 and n. Here we complement their work by proving the asymptotic
distributions in Theorems 4 and 5.

Remark 1.2. In [30], Jiang studies Theorems 1, 2, 3 and 5 for β = 1 and 2, which are special
cases of the current theorems. The method used in [30] is the approximation of the entries of
Haar-invariant orthogonal or unitary matrices by independent and identically distributed real or
complex Gaussian random variables.

Remark 1.3. In the above theorems, the assumption that a1 = o(
√

a2) is important. It is possible
that some of the above theorems may still hold if a1 = o(a2), see, for example, Theorem 2
from [13] as β = 2 for a conclusion on the circular law. However, Theorems 1 and 5 will no
longer be true if a1/a2 → c ∈ (0,∞). See, for example, [11] in the context of Theorem 1 for any
β > 0, or [31] in the context of Theorem 5 as β = 1.

In summary, we study the eigenvalues of the beta-Jacobi ensembles in this paper. We obtain the
empirical law and the central limit theorems for the eigenvalues as well as the scales and limiting
distributions of the largest and smallest eigenvalues. These results can be applied to various
statistical, mathematical and physical problems mentioned at the beginning of this section if the
three parameters n,a1 and a2 satisfy the restriction (1.3).

The proofs of the above theorems are based on an approximation result. In fact, we approxi-
mate the beta-Jacobi ensembles by the beta-Laguerre ensembles through measuring the variation
distance between the eigenvalues in the two ensembles. Then the known results for the beta-
Laguerre ensemble are used to get those for the beta-Jacobi ensembles.

Let μ and ν be probability measures on (Rm, B), where m ≥ 1 and B is the Borel σ -algebra
on R

m. The variation distance ‖μ − ν‖ is defined by

‖μ − ν‖ = 2 · sup
A∈B

∣∣μ(A) − ν(A)
∣∣ =

∫
Rm

∣∣f (x) − g(x)
∣∣dx1 · · ·dxm, (1.7)

where f (x) and g(x) are the density functions of μ and ν with respect to the Lebesgue measure,
respectively. For a random variable Z, we use L(Z) to denote its probability distribution. The
following is the tool to obtain the results stated earlier.

Theorem 6. Let μ = (μ1, . . . ,μn) and λ = (λ1, . . . , λn) be random variables with density
fβ,a1(μ) as in (2.1) (taking a = a1) and fβ,a1,a2(λ) as in (1.1). Assuming (1.3), then ‖L(2a2λ)−
L(μ)‖ → 0.

Finally the outline of this paper is given as follows. In Section 2, some known conclusions and
some results on the beta-Laguerre ensembles are reviewed and proved. They will be used in the
proofs of the main theorems. In Section 3, the proof of Theorem 6 is presented. In Section 4, we
prove Theorems 1–5.
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2. Some auxiliary results on β-Laguerre ensembles

Let β > 0 be a constant, n ≥ 2 be an integer, p = 1 + β
2 (n − 1) and parameter a >

β
2 (n − 1).

A β-Laguerre (Wishart) ensemble is a set of non-negative random variables (λ1, . . . , λn) := λ

with probability density function

fβ,a(λ) = c
β,a
L

∏
1≤i<j≤n

|λi − λj |β ·
n∏

i=1

λ
a−p
i · e−1/2

∑n
i=1 λi , (2.1)

where

c
β,a
L = 2−na

n∏
j=1

�(1 + β/2)

�(1 + (β/2)j)�(a − (β/2)(n − j))
. (2.2)

One can see [16] for the construction of a matrix to generate eigenvalues with such a distribu-
tion. If X = (xij ) is an m × n matrix with m ≥ n, where xij ’s are independent and identically
distributed random variables with the standard real normal (β = 1), complex normal (β = 2)
or quaternion normal (β = 4) distribution, then fβ(λ) is the density function of the eigenvalues
λ = (λ1, . . . , λn) of X∗X with a = β

2 m for β = 1,2, or 4. See [23,28,37] for the cases β = 1
and 2, and [36] for β = 4, or (4.5) and (4.6) from [21].

The next lemma follows from Theorem 1.5 in [17].

Lemma 2.1. Let λ = (λ1, . . . , λn) be random variables with the density function as in (2.1). If
n → ∞, a → ∞ and nβ/(2a) → γ ≤ 1, then

(i)
1

ni+1

n∑
j=1

λi
j converges to

(
β

γ

)i i−1∑
r=0

1

r + 1

(
i

r

)(
i − 1

r

)
γ r in probability;

(ii)
1

ni

n∑
j=1

λi
j −

(
β

γ

)i

n

i−1∑
r=0

1

r + 1

(
i

r

)(
i − 1

r

)
γ r converges to N

(
μi,σ

2
i

)

in distribution for any integer i ≥ 1, where μi and σ 2
i are constants depending on γ,β and i

only.

Lemma 2.2. Let λ1, . . . , λn be random variables with the density as in (2.1). Assume nβ/(2a) →
γ ∈ (0,1], and let γmin = (

√
γ − 1)2 and γmax = (

√
γ + 1)2. Let μn be the empirical dis-

tribution of Yi := λiγ /(nβ) for i = 1,2, . . . , n. Then μn converges weakly to the distribu-
tion μ∞ with density fγ (x) as in (1.5) almost surely. Moreover, lim infn→∞ Ymax(n) ≥ γmax

a.s. and lim supn→∞ Ymin(n) ≤ γmin a.s., where Ymax(n) = max{Y1, . . . , Yn} and Ymin(n) =
min{Y1, . . . , Yn}.
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Proof. The first part of the above lemma is obtained in [15]. Now we prove the second part. For
any integer k ≥ 1, it is easy to see

Ymax(n) ≥
(∫ ∞

0
yk dμn(y)

)1/k

and
1

Ymin(n)
≥

(∫ ∞

0
y−k dμn(y)

)1/k

.

Since μn converges weakly to μ∞ almost surely, by the Fatou lemma,

lim inf
n→∞ Ymax(n) ≥

(∫ γmax

γmin

ykfγ (y)dy

)1/k

a.s. and

lim inf
n→∞

1

Ymin(n)
≥

(∫ γmax

γmin

y−kfγ (y)dy

)1/k

a.s.

for any integer k ≥ 1. Letting k → ∞, we have

lim inf
n→∞ Ymax(n) ≥ γmax a.s. and lim sup

n→∞
Ymin(n) ≤ γmin a.s. �

By following the proof in [41], we have a result below on the β-Laguerre ensembles. It is also
reported in Theorem 10.2.2 from [15] without proof.

Lemma 2.3. Let λ = (λ1, . . . , λn) be random variables with the density function as in (2.1). Set
λmax(n) = max{λ1, . . . , λn} and λmin = min{λ1, . . . , λn}. If n → ∞, a → ∞ and nβ/(2a) →
γ ∈ (0,1], then

λmax(n)

n
→ β

(
1 +

√
γ −1

)2
a.s. and

λmin(n)

n
→ β

(
1 −

√
γ −1

)2
a.s.

as n → ∞.

3. The proof of Theorem 6

First, we give the outline of the proof of Theorem 6. Recalling fβ,a1,a2(λ) in (1.1), we see the
part

∏n
i=1(1 − λi)

a2−p appeared in the expression of fβ,a1,a2(λ). The basic idea is to make (1 −
λi)

a2−p ∼ e−(a2−p)λi after rescaling λi so that it is small enough. Then the beta-Jacobi ensemble
is asymptotically the beta-Laguerre ensemble. Concretely, to show that ‖L(2a2λ) − L(μ)‖ → 0,
we write ∥∥L(2a2λ) − L(μ)

∥∥ = E
∣∣Kn · Ln(μ) − 1

∣∣, (3.1)

where Kn is a constant depending on n,a1, a2, and Ln(μ1, . . . ,μn) is a function of random
variables μ1, . . . ,μn whose joint density function is the beta-Laguerre ensemble as in (2.1) (in
this step we actually make a measure transformation in evaluating the integral). We then analyze
the constant Kn very precisely, and study random variable Ln by using the known results on the
beta-Laguerre ensemble. Eventually we obtain from the two subtle estimates that Kn ·Ln(μ) → 1
in probability, which concludes (3.1) by a uniform integrability property of KnLn.
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Now we start to prove Theorem 6 by developing several lemmas according to the outline given
above.

Lemma 3.1. Let n ≥ 2. Let μ = (μ1, . . . ,μn) and λ = (λ1, . . . , λn) be random variables with
density functions fβ,a1(μ) as in (2.1) (taking a = a1) and fβ,a1,a2(λ) in (1.1), respectively. Then∥∥L(2a2λ) − L(μ)

∥∥ = E
∣∣Kn · Ln(μ) − 1

∣∣
and E(Kn · Ln(μ)) = 1, where the expectation is taken under the density function in (2.1), and

Kn = a
−na1
2 ·

n−1∏
i=0

�(a1 + a2 − (β/2)i)

�(a2 − (β/2)i)
and (3.2)

Ln(μ) = e(1/2)
∑n

i=1 μi ·
n∏

i=1

(
1 − μi

2a2

)a2−p

· I
(

max
1≤i≤n

μi ≤ 2a2

)
. (3.3)

Proof. It is enough to show

∥∥L(2a2λ) − L(μ)
∥∥ =

∫
[0,∞)n

∣∣Kn · Ln(μ) − 1
∣∣ · fβ,a1(μ)dμ. (3.4)

First, since p = β
2 (n− 1)+ 1, we have n(n− 1)β/2 +n(a1 −p)+n = na1. It is easy to see that

the density function of θ := 2a2λ is

gβ,a1,a2(θ)

:= c
β,a1,a2
J

(
1

2a2

)n(n−1)β/2+n(a1−p)+n ∏
1≤i<j≤n

|θi − θj |β ·
n∏

i=1

θ
a1−p
i

(
1 − θi

2a2

)a2−p

= c
β,a1,a2
J

(
1

2a2

)na1 ∏
1≤i<j≤n

|θi − θj |β ·
n∏

i=1

θ
a1−p
i

(
1 − θi

2a2

)a2−p

for 0 ≤ θi ≤ 2a2 and 1 ≤ i ≤ n, and is equal to zero, otherwise. Therefore,

∥∥L(2a2λ) − L(μ)
∥∥ =

∫
[0,∞)n

∣∣gβ,a1,a2(μ) − fβ,a1(μ)
∣∣dμ

(3.5)

=
∫

[0,∞)n

∣∣∣∣gβ,a1,a2(μ)

fβ,a1(μ)
− 1

∣∣∣∣ · fβ,a1(μ)dμ.

Now, review fβ,a1(μ) as in (2.1) to see that

gβ,a1,a2(μ)

fβ,a1(μ)
= c

β,a1,a2
J

c
β,a1
L

(
1

2a2

)na1

·
n∏

i=1

(
1 − μi

2a2

)a2−p

· e
∑n

i=1 μi/2
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for 0 ≤ μi ≤ 2a2, i = 1,2, . . . , n, and is zero, otherwise. It is easy to check that

c
β,a1,a2
J

c
β,a1
L

(
1

2a2

)na1

= 2na1 ·
(

1

2a2

)na1 n∏
j=1

�(a1 + a2 − (β/2)(n − j))

�(a2 − (β/2)(n − j))

= a
−na1
2

n−1∏
i=0

�(a1 + a2 − (β/2)i)

�(a2 − (β/2)i)
= Kn.

Thus, gβ,a1,a2(μ)/fβ,a1(μ) = Kn · Ln(μ), which together with (3.4) and (3.5) yields the first
conclusion. Finally,

E
(
Kn · Ln(μ)

) =
∫

gβ,a1,a2(μ)

fβ,a1(μ)
· fβ,a1(μ)dμ =

∫
gβ,a1,a2(μ)dμ = 1. �

Lemma 3.2. Let h(x) = x logx for x > 0. For a fixed constant β > 0, an integer n ≥ 1 and
variables a1 > 0 and a2 > 0, set b1 = 2

β
a1 and b2 = 2

β
a2. If n → ∞, a1 → ∞ and a2 → ∞ in a

way that a1 = o(
√

a2) and n = o(
√

a2), then

n∑
i=1

{
h(b1 + b2 − i + 1) − h(b2 − i + 1)

} = nb1

(
1 + logb2 + b1 − n

2b2

)
+ o(1).

Proof. Note that h′(x) = 1 + logx,h′′(x) = 1/x and h(3)(x) = −1/x2. Given x0 > 0, for any
�x > −x0, by the Taylor expansion,

h(x0 + �x) − h(x0) = h′(x0)�x + 1

2
h′′(x0)(�x)2 + 1

6
h(3)(ξ)(�x)3

= (1 + logx0)�x + 1

2x0
(�x)2 − 1

6ξ2
(�x)3,

where ξ is between x0 and x0 + �x. Now take x0 = b2 − i + 1 and �x = b1, we have that

h(b1 + b2 − i + 1) − h(b2 − i + 1)
(3.6)

= b1
(
1 + log(b2 − i + 1)

) + b2
1

2
· 1

b2 − i + 1
+ O

(
b3

1

b2
2

)

uniformly for all 1 ≤ i ≤ n. Obviously,

log(b2 − i + 1) = logb2 + log

(
1 − i − 1

b2

)
= logb2 − i − 1

b2
+ O

(
n2

b2
2

)
(3.7)

uniformly over all 1 ≤ i ≤ n as

n → ∞, b1 → ∞ and b2 → ∞ such that b1 = o(
√

b2) and n = o(
√

b2). (3.8)
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Now,

b2
1

2
· 1

b2 − i + 1
= b2

1

2b2
+ b2

1

2
·
(

1

b2 − i + 1
− 1

b2

)

= b2
1

2b2
+ b2

1

2
· i − 1

b2(b2 − i + 1)

= b2
1

2b2
+ O

(
nb2

1

b2
2

)

uniformly for all 1 ≤ i ≤ n as (3.8) holds. Therefore, by (3.6) and (3.7),

h(b1 + b2 − i + 1) − h(b2 − i + 1)

= b1 + b1 logb2 − b1(i − 1)

b2
+ b2

1

2b2
+ O

(
b3

1 + n2b1 + nb2
1

b2
2

)

uniformly for all 1 ≤ i ≤ n as (3.8) holds. Thus,

n∑
i=1

{
h(b1 + b2 − i + 1) − h(b2 − i + 1)

}

= nb1 + nb1 logb2 − b1n(n − 1)

2b2
+ nb2

1

2b2
+ n · O

(
b3

1 + n2b1 + nb2
1

b2
2

)

= nb1

(
1 + logb2 + b1 − n

2b2

)
+ b1n

2b2
+ n · O

(
b3

1 + n2b1 + nb2
1

b2
2

)
.

The conclusion follows since the last two terms are all of order o(1) by (3.8). �

Lemma 3.3. Let Kn be as in (3.2). Assuming (1.3), we then have

Kn = exp

{
(1 − γ )β2n3

8a2γ 2
+ o(1)

}
. (3.9)

Proof. We claim that it suffices to prove

Kn = exp

{
na1(a1 − (β/2)n)

2a2
+ o(1)

}
(3.10)

under assumption (3.8). If this is true, under the condition that nβ/(2a1) → γ ≤ 1, it is easy to
check that

na1(a1 − (β/2)n)

2a2
= β2n3tn(tn − 1)

8a2
= (1 − γ )β2n3

8a2γ 2
+ o(1)
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as (3.8) holds, where tn := 2a1/(βn) → γ −1. Thus, (3.9) is obtained.
Now we prove (3.10). Set α = β

2 , b1 = 2
β
a1 and b2 = 2

β
a2. It is easy to see that

Kn =
(

1

αb2

)nαb1

·
n∏

i=1

�(α(b1 + b2 − i + 1))

�(α(b2 − i + 1))
.

Recall the Stirling formula:

log�(z) = z log z − z − 1

2
log z + log

√
2π + 1

12z
+ O

(
1

x3

)

as x = Re(z) → +∞, where �(z) = ∫ ∞
0 tz−1e−t dt with Re(z) > 0, see, for example, page 368

from [27] or (37) on page 204 from [2]. It follows that

logKn (3.11)

= −αnb1 log(αb2)

+
n∑

i=1

{
α(b1 + b2 − i + 1) logα(b1 + b2 − i + 1)

(3.12)
− α(b2 − i + 1) logα(b2 − i + 1)

}
− αnb1 − 1

2

n∑
i=1

log
b1 + b2 − i + 1

b2 − i + 1
+ O

(
1

b2 − n

)
(3.13)

as (3.8) holds.
Now, write (αx) log(αx) = (α logα)x + α(x logx) and set h(x) = x logx for x > 0. Calcu-

lating the difference between the two terms in the sum of (3.12), we know that the whole sum
in (3.12) is identical to

α(logα)nb1 + α

n∑
i=1

(
h(b1 + b2 − i + 1) − h(b2 − i + 1)

)

= α(logα)nb1 + αnb1

(
1 + logb2 + b1 − n

2b2

)
+ o(1) (3.14)

= αnb1 + (αnb1) log(αb2) + αnb1 · b1 − n

2b2
+ o(1)

by Lemma 3.2. From the fact that log(1 + x) ≤ x for any x ≥ 0, we have

0 <

n∑
i=1

log
b1 + b2 − i + 1

b2 − i + 1
=

n∑
i=1

log

(
1 + b1

b2 − i + 1

)
≤ nb1

b2 − n
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for any b2 > n. Thus, the sum of the three terms in (3.13) is equal to −αnb1 + O(nb1
b2

) as (3.8)
holds. Combining this and (3.11)–(3.14), we get

logKn = αnb1 · b1 − n

2b2
+ o(1) = na1(a1 − (β/2)n)

2a2
+ o(1)

as (3.8) holds. This gives (3.10). �

In the proofs next, we use oP (1) to denote a random variable that approaches zero in proba-
bility.

Lemma 3.4. Let μ = (μ1, . . . ,μn) be a random variable with the density function as in (2.1)
with a = a1. Let Ln(μ) be as in (3.3). If (1.3) holds, then

exp

{
(1 − γ )β2n3

8a2γ 2

}
· Ln(μ) → 1

in probability as n → ∞.

Proof. From (3.3), we see that

Ln(μ) = e(1/2)
∑n

i=1 μi ·
n∏

i=1

(
1 − μi

2a2

)a2−p

· I
(

max
1≤i≤n

μi ≤ 2a2

)
.

By Lemma 2.3, since nβ
2a1

→ γ ∈ (0,1] by (1.3),

max1≤i≤n μi

n
→ β

(
1 +

√
γ −1

)2 (3.15)

in probability as n → ∞. Since n = o(
√

a2), choose δn = (n
√

a2)
1/2, then δn/n → ∞ and

δn/
√

a2 → 0 as taking the limit as in (1.3). Therefore, to prove the lemma, it is enough to show

exp

{
(1 − γ )β2n3

8a2γ 2

}
· L̃n(μ) → 1 (3.16)

in probability as n → ∞, where

L̃n(μ) := e(1/2)
∑n

i=1 μi ·
n∏

i=1

(
1 − μi

2a2

)a2−p

· I
(

max
1≤i≤n

μi ≤ δn

)
. (3.17)

This is because, for any two sequences random variables {ξn;n ≥ 1} and {ηn;n ≥ 1}, if ξn → 1
in probability and P(ξn 
= ηn) → 0 as n → ∞, then ηn → 1 in probability as n → ∞. Rewrite

L̃n(μ) = exp

{
1

2

n∑
i=1

μi + (a2 − p)

n∑
i=1

log

(
1 − μi

2a2

)}
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on �n := {max1≤i≤n μi ≤ δn}. Noticing log(1 − x) = −x − (x2/2) + O(x3) as x → 0,

n∑
i=1

log

(
1 − μi

2a2

)
= − 1

2a2

n∑
i=1

μi − 1

8a2
2

n∑
i=1

μ2
i + O

(
1

a3
2

n∑
i=1

μ3
i

)
(3.18)

on �n. Now, on �n again,

1

a3
2

n∑
i=1

μ3
i ≤ n(δn)

3

a3
2

=
(

δn√
a2

)3

· n√
a2

· 1

a2
→ 0 (3.19)

as taking the limit in (1.3). Recall p = 1+ β
2 (n−1). We have from (3.18) and (3.19) that, on �n,

(a2 − p)

n∑
i=1

log

(
1 − μi

2a2

)

= −a2 − p

2a2

(
−βn2

γ
+

n∑
i=1

μi

)
− (a2 − p)βn2

2a2γ

− a2 − p

8a2
2

(
−β2n3

γ 2
(1 + γ ) +

n∑
i=1

μ2
i

)
− β2n3(a2 − p)

8a2
2γ 2

(1 + γ ) + O

((
δn√
a2

)3

· n√
a2

)

by (1.3). From Lemma 2.1, as n → ∞,

1

n2

n∑
i=1

μi
P→ β

γ
; 1

n

n∑
i=1

μi − β

γ
n ⇒ N

(
0, σ 2

1

); (3.20)

1

n3

n∑
i=1

μ2
i

P→ β2

γ 2

(
1 + 1

2
· 2γ

)
= β2

γ 2
(1 + γ );

(3.21)
1

n2

n∑
i=1

μ2
i − β2

γ 2
(1 + γ )n ⇒ N

(
0, σ 2

2

)
,

where σ1, σ2 are constants depending on γ only, the notation “
P→” means “converges in proba-

bility to” and “⇒” means “converges weakly to”. Now, write (a2 − p)/2a2 = (1/2) − p/2a2,

then

−a2 − p

2a2

(
−βn2

γ
+

n∑
i=1

μi

)

= βn2

2γ
− 1

2

n∑
i=1

μi + pn

2a2
· 1

n

(
−βn2

γ
+

n∑
i=1

μi

)

= βn2

2γ
− 1

2

n∑
i=1

μi + oP (1)
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by (3.20) and (1.3). Also, under the same condition, (a2 −p)n2/a2
2 = O(n2/a2) = o(1). It follows

from (3.21) that

−a2 − p

8a2
2

(
−β2n3

γ 2
(1 + γ ) +

n∑
i=1

μ2
i

)

= − (a2 − p)n2

8a2
2

(
−β2n

γ 2
(1 + γ ) + 1

n2

n∑
i=1

μ2
i

)
→ 0

in probability as taking the limit in (1.3). In summary, combining all the computations above,

1

2

n∑
i=1

μi + (a2 − p)

n∑
i=1

log

(
1 − μi

2a2

)

= βn2

2γ
− (a2 − p)βn2

2a2γ
− β2n3(a2 − p)

8a2
2γ 2

(1 + γ ) + oP (1)

= βpn2

2a2γ
− β2n3

8a2γ 2
(1 + γ ) + β2n3p

8a2
2γ 2

(1 + γ ) + oP (1)

on �n. Now, since p = 1 + β
2 (n − 1), n/

√
a2 → 0, we see that

βpn2

2a2γ
= β2n3

4a2γ
+ o(1) and

β2n3p

8a2
2γ 2

(1 + γ ) → 0

by (1.3). Thus, on �n,

1

2

n∑
i=1

μi + (a2 − p)

n∑
i=1

log

(
1 − μi

2a2

)

= β2n3

4a2γ
− β2n3

8a2γ 2
(1 + γ ) + oP (1) = (γ − 1)β2n3

8a2γ 2
+ oP (1)

as taking the limit in (1.3). By reviewing (3.17), we conclude (3.16). �

The following is a variant of the Scheffé Lemma, see, for example, Corollary 4.2.4 from [6].

Lemma 3.5. Let {Xn;n ≥ 1} be a sequence of non-negative random variables. If Xn → 1 in
probability and EXn → 1 as n → ∞, then E|Xn − 1| → 0 as n → ∞.

Proof of Theorem 6. It is known from Lemma 3.1 that∥∥L(2a2λ) − L(μ)
∥∥ = E

∣∣Kn · Ln(μ) − 1
∣∣
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with E(Kn · Ln(μ)) = 1 for all n ≥ 2, where μ has density fβ,a1(μ) as in (2.1). By Lemmas 3.3
and 3.4,

Kn = exp

{
(1 − γ )β2n3

8a2γ 2
+ o(1)

}
and exp

{
(1 − γ )β2n3

8a2γ 2

}
· Ln(μ) → 1

in probability as taking the limit in (1.3). These imply that Kn · Ln(μ) → 1 in probability as
taking the same limit. Then the desired conclusion follows from Lemma 3.5. �

4. The proofs of Theorems 1–5

After proved Theorem 6 in Section 3, we now are ready to use it to prove Theorems 1–5 stated
in Section 1.

Proof of Theorem 1. Set

νn = 1

n

n∑
i=1

δ(a2/n)λ′
i

for (λ′
1, . . . , λ

′
n) ∈ [0,+∞)n. Then, recall the definition of d in (1.4), by the triangle inequality,∣∣d(μn,μ0) − d(νn,μ0)

∣∣ ≤ d(μn, νn)

= sup
‖f ‖BL≤1

∣∣∣∣∣1

n

n∑
i=1

(
f

(
n−1a2λi

) − f
(
n−1a2λ

′
i

))∣∣∣∣∣
≤ a2

n
· max

1≤i≤n

∣∣λi − λ′
i

∣∣,
where the Lipschitz inequality |f (x) − f (y)| ≤ |x − y| is used in the last step. This says that
d(μn,μ0), as a function of (λ1, . . . , λn), is continuous for each n ≥ 2. Thus, for any ε > 0, there
exists a (non-random) Borel set A ⊂ R

n such that {d(μn,μ0) ≥ ε} = {(λ1, . . . , λn) ∈ A}. Then,
by the definition of the variation norm in (1.7) we see that

P
(
d(μn,μ0) ≥ ε

) ≤ P
(
d
(
μ′

n,μ0
) ≥ ε

) + ∥∥L(2a2λ) − L(μ)
∥∥ (4.1)

for any ε > 0, where μ′
n = (1/n)

∑n
i=1 δμi/(2n) and μ = (μ1, . . . ,μn) has density fβ,a1(μ) as

in (2.1) with a = a1 and nβ/2a1 → γ ∈ (0,1]. By Lemma 2.2, with probability one,

1

n

n∑
i=1

δμiγ /(nβ) converges weakly to μ∞ (4.2)

with density fγ (x) as in (1.5). Write μi/(2n) = (μiγ /nβ)c−1, where c = 2γ /β . Then, by (4.2),
with probability one, μ′

n converges weakly to μ0, where μ0 has density function c · fγ (cx).

Equivalently, d(μ′
n,μ0) → 0 almost surely. This, (4.1) and Theorem 6 prove the theorem. �
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Proof of Theorem 2. First, λmax(n) and λmin(n) are continuous functions of λ1, . . . , λn for any
n ≥ 1. Then

P

(∣∣∣∣a2

n
λmax(n) − β(1 + √

γ )2

2γ

∣∣∣∣ ≥ ε

)
(4.3)

≤ P

(∣∣∣∣ 1

2n
μmax(n) − β(1 + √

γ )2

2γ

∣∣∣∣ ≥ ε

)
+ ∥∥L(2a2λ) − L(μ)

∥∥
for any ε > 0, where μ = (μ1, . . . ,μn) has density fβ,a1(μ) as in (2.1) with a = a1 and
nβ/2a1 → γ ∈ (0,1]. From Lemma 2.3, we know μmax(n)/(2n) → β(1 + √

γ −1)2/2 = β(1 +√
γ )2/(2γ ) in probability. This together with (4.3) and Theorem 6 yields the desired conclusion.

By the same argument, (a2/n)λmin(n) converges to β(1 − √
γ )2/(2γ ) in probability. �

Proof of Theorem 3. Evidently,∣∣P (
(X1, . . . ,Xk) ∈ A

) − P
(
(Y1, . . . , Yk) ∈ A

)∣∣ ≤ ∥∥L(2a2λ) − L(μ)
∥∥

for any Borel set A ∈ R
k , where

Yi =
n∑

j=1

(
c

2n
μj

)i

− n

i−1∑
r=0

1

r + 1

(
i

r

)(
i − 1

r

)
γ r

=
n∑

j=1

(
γ

nβ
μj

)i

− n

i−1∑
r=0

1

r + 1

(
i

r

)(
i − 1

r

)
γ r

for i ≥ 1 (since c = 2γ /β), and μ = (μ1, . . . ,μn) has density fβ,a1(μ) as in (2.1) with a =
a1 and nβ/2a1 → γ ∈ (0,1]. The conclusion then follows from this, Theorem 1.5 in [17] and
Theorem 6. �

Proof of Theorem 4. The assumption that 2β−1a1 − n = c and n = o(
√

a2) imply that
nβ/2a1 → 1 and a1 = o(

√
a2). Thus, Theorem 6 holds.

Let (θ1, . . . , θn) have density fβ,a1 as in (2.1) with a = a1. Noticing, “βλi” and “a” in Theo-
rem 1 from [40] correspond to “θi” and “c” here, respectively. By Theorem 1 from [40], for fixed
integer k ≥ 1,(

n

β
θ(n), . . . ,

n

β
θ(n−k+1)

)
converges weakly to

(

0(β, c), . . . ,
k−1(β, c)

)
as n → ∞. By Theorem 6,

P
(
(2a2λ1, . . . ,2a2λn) ∈ Bn

) − P
(
(θ1, . . . , θn) ∈ Bn

) → 0

for any Borel set Bn ⊂ R
n for n ≥ 1. From the Weyl perturbation theorem, we know that λ(i)

is a continuous function of (λ1, . . . , λn) for any 1 ≤ i ≤ n. Combining the above two limits, we
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obtain(
2a2n

β
λ(n), . . . ,

2a2n

β
λ(n−k+1)

)
converges weakly to

(

0(β, c), . . . ,
k−1(β, c)

)

as n → ∞ and a2 → ∞ with n = o(
√

a2). The proof is complete. �

Proof of Theorem 5. Recalling (2.1), let

m̃n = (√
n +

√
2β−1a

)2 and σ̃n = (2β−1na)1/6

(
√

n + √
2β−1a)4/3

. (4.4)

Let (θ1, . . . , θn) have density fβ,a as in (2.1). Noticing, “βλi” in Theorem 1.4 from [39] corre-
sponds to “θi” here; “κ” in Theorem 1.4 from [39] is equal to 2β−1a, and β

2 (n − 1) + 1 = p,

and the kth lowest eigenvalue of Hβ is the (n − k + 1)th largest eigenvalue of −Hβ . Then by
Theorem 1.4 from [39],

σ̃n

(
θ(l)

β
− m̃n

)
l=1,...,k

converges weakly to (
1, . . . ,
k) (4.5)

as n → ∞ and a → ∞ such that n/a converges to a non-zero, finite constant. In other words,

P

(
σ̃n

(
θ(l)

β
− m̃n

)
l=1,...,k

∈ A

)
→ P

(
(
1, . . . ,
k) ∈ A

)

for any Borel set A ⊂ R
k. By Theorem 6, assuming (1.3) and a = a1,

P
(
(2a2λ1, . . . ,2a2λn) ∈ Bn

) − P
(
(θ1, . . . , θn) ∈ Bn

) → 0

for any Borel set Bn ⊂ R
n for n ≥ 1. The Weyl perturbation theorem says that g(x) := x(l), the

lth largest one in {x1, . . . , xm}, is a continuous function of (x1, . . . , xm) ∈ R
m for any 1 ≤ l ≤ m.

Replacing a by a1 in (4.4), the above two assertions conclude that

σn

(
2a2λ

(l)

β
− mn

)
l=1,...,k

converges weakly to (
1, . . . ,
k). �
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