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We propose a simple continuous time model for modeling the lead-lag effect between two financial assets.
A two-dimensional process (Xt , Yt ) reproduces a lead-lag effect if, for some time shift ϑ ∈ R, the process
(Xt , Yt+ϑ ) is a semi-martingale with respect to a certain filtration. The value of the time shift ϑ is the
lead-lag parameter. Depending on the underlying filtration, the standard no-arbitrage case is obtained for
ϑ = 0. We study the problem of estimating the unknown parameter ϑ ∈ R, given randomly sampled non-
synchronous data from (Xt ) and (Yt ). By applying a certain contrast optimization based on a modified
version of the Hayashi–Yoshida covariation estimator, we obtain a consistent estimator of the lead-lag
parameter, together with an explicit rate of convergence governed by the sparsity of the sampling design.

Keywords: contrast estimation; discretely observed continuous-time processes; Hayashi–Yoshida
covariation estimator; lead-lag effect

1. Introduction

Market participants usually agree that certain pairs of assets (X,Y ) share a “lead-lag effect,” in
the sense that the lagger (or follower) price process Y tends to partially reproduce the oscillations
of the leader (or driver) price process X, with some temporal delay, or vice-versa. This property
is usually referred to as the “lead-lag effect.” The lead-lag effect may have some importance
in practice, when assessing the quality of risk management indicators, for instance, or, more
generally, when considering statistical arbitrage strategies. Also, note that it can be measured at
various temporal scales (daily, hourly or even at the level of seconds, for flow products traded on
electronic markets).

The lead-lag effect is a concept of common practice that has some history in financial econo-
metrics. In time series for instance, this notion can be linked to the concept of Granger causal-
ity, and we refer to Comte and Renault [4] for a general approach. From a phenomenological
perspective, the lead-lag effect is supported by empirical evidence reported in [3,6] and [18], to-
gether with [20] and the references therein. To our knowledge, however, only few mathematical
results are available from the point of view of statistical estimation from discretely observed,
continuous-time processes. The purpose of this paper is to – partly – fill in this gap. (Also, re-
cently, Robert and Rosenbaum study in [23] the lead-lag effect by means of random matrices, in
a mixed asymptotic framework, a setting which is relatively different than in the present paper.)
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1.1. Motivation

(1) Our primary goal is to provide a simple – yet relatively general – model for capturing
the lead-lag effect in continuous time, readily compatible with stochastic calculus in financial
modeling. Informally, if τ−ϑ(Y )t := Yt+ϑ , with ϑ ∈ R, is the time-shift operator, we say that the
pair (X,Y ) will produce a lead-lag effect as soon as (X, τ−ϑ(Y )) is a (regular) semi-martingale
with respect to an appropriate filtration, for some ϑ , called the lead-lag parameter. The usual
no-arbitrage case is embedded into this framework for ϑ = 0. More in Section 2 below.

(2) At a similar level of importance, we aim at constructing a simple and efficient procedure
for estimating the lead-lag parameter ϑ based on historical data. The underlying statistical model
is generated by a – possibly random – sampling of both X and Y . The sampling typically happens
at irregularly and non-synchronous times for X and Y . We construct, in the paper, an estimator
of ϑ based on a modification of the Hayashi–Yoshida covariation estimator; see [11] and [13].
Our result is that the lead-lag parameter can be consistently estimated against a fairly general
class of sampling schemes. Moreover, we explicit the rate of convergence of our procedure.

(3) From a financial point of view, unless appropriate time shifts are operated, our model inca-
pacitates our primary assets X and Y to be a semi-martingale with respect to the same filtration.
This is consistent, as far as modeling is concerned, but allows, in principle, for market imper-
fections such as statistical arbitrage if the lead-lag parameter ϑ is different from zero. More in
Section 3.4 below. Addressing such a possibility is indeed the issue of the lead-lag effect, but we
will content ourselves with detecting whether the lead-lag effect is present or not. The quantiza-
tion of statistical arbitrage in terms of ϑ (and other parameters such as trading frequency, market
friction, volatility and so on) lies beyond the scope of this paper.

(4) From a statistical inference point of view, the statistician and the data provider are not
necessarily the same agents, and this leads to technical difficulties linked to the sampling strategy.
The data provider may choose the opening/closing for X and Y , possibly traded on different
markets, possibly on different time clocks. He or she may also sample points at certain trading
times or events which are randomly chosen in a particular time window. This typically happens if
daily data are considered. At a completely different level, if high-frequency data are concerned,
trading times are genuinely random and non-synchronous. Our approach will simultaneously
incorporate these different points of view.

1.2. Organization of the paper

In Section 2, we present our stochastic model for describing the lead-lag effect. We start with
the simplest Bachelier model with no drift in Section 2.1. The issue boils down to defining
properly the lead-lag effect between two correlated Brownian motions. In Section 2.2, a general
lead-lag model is presented for two-dimensional process, for which the marginal processes are
semi-martingales with locally bounded drift and continuous local martingale part, with properly
defined diffusion coefficients.

We present our main result in Section 3. Section 3.1 gives a precise construction of the un-
derlying statistical experiment with the corresponding assumptions on the observation sampling
schemes. The estimation procedure is constructed in Section 3.2, via an appropriate contrast
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function based on the covariation between X and Y when one asset is artificially shifted in time,
the amount of this shift being the argument of the contrast function. Our estimator is robust to
non-synchronous data and does not require any pre-processing contrary to the previous tick algo-
rithm; see, for example, [27]. In Section 3.3, we state our main result in Theorem 1: we show that
the lead-lag parameter between X and Y can be consistently estimated from non-synchronous
historical data over a fixed time horizon [0, T ]. The rate is governed by �n, the maximal distance
between two data points. We show that the rate of convergence of our estimator is essentially �−1

n

and not �
−1/2
n , as one would expect from a regular estimation problem in diffusion processes;

see, for example, [7]. This comes from the underlying structure of the statistical model, which is
not regular, and which shares some analogy with change-point problems. As for our procedure,
we investigate further its asymptotic properties in Proposition 1 when we confine ourselves to the
simpler case where X and Y are marginally Brownian motions that are observed at synchronous
data points. In that case, we can exhibit a central limit theorem for our contrast function. A closer
inspection of the limiting variance reveals the effect of the correlation between the two assets,
which also plays a role in the accuracy of the estimation procedure. Finally, we show in Propo-
sition 2 that a simple central limit theorem cannot hold for our estimator. We discuss this effect
which is somewhat linked to the discretisation of our method.

Theorem 1 is good news, as far as practical implementation is concerned, and is further ad-
dressed in the discussion in Section 3.4, appended with numerical illustrations on simulated data
in Section 5 and on real data in Section 6. The proofs are delayed until Section 4 and the Ap-
pendix contains auxiliary technical results.

2. The lead-lag model

2.1. The Bachelier model

A simple lead-lag Bachelier model with no drift between two Brownian motion components
can be described as follows. On a filtered space (�, F ,F = (Ft )t≥0,P), we consider a two-
dimensional F-Brownian motion B = (B(1),B(2)) such that 〈B(1),B(2)〉t = ρt for every t ≥ 0
and for some ρ ∈ [−1,1]. Let T > 0 be some terminal time, fixed throughout the paper. For
t ∈ [0, T ], set {

Xt := x0 + σ1B
(1)
t ,

Ỹt := y0 + σ2B
(2)
t ,

where x0, y0 ∈ R and σ1 > 0, σ2 > 0 are given constants. The corresponding Black–Scholes
version of this model is readily obtained by exponentiating X and Ỹ . We introduce a lead-lag
effect between X and Ỹ by operating a time shift: let ϑ ∈ R represent the lead or lag time
between X and Ỹ (and assume for simplicity that ϑ ≥ 0). Put

τϑ(Ỹ )t := Ỹt−ϑ , t ∈ [ϑ,T ]. (1)

Our lead-lag model is the two-dimensional process

(X, τϑ(Ỹ )) = (Xt , τϑ(Ỹ )t )t∈[ϑ,T ].



Estimation of the lead-lag parameter 429

Since we have B
(2)
t = ρB

(1)
t + (1 − ρ2)1/2Wt with W = (Wt)t∈[0,T ], a Brownian motion inde-

pendent of B(1), we obtain the simple and explicit representation{
Xt = x0 + σ1B

(1)
t ,

τϑ (Ỹ )t = y0 + ρσ2B
(1)
t−ϑ + σ2(1 − ρ2)1/2Wt−ϑ

(2)

for t ∈ [ϑ,T ]. In this representation, the interpretation of the lead-lag parameter ϑ is transparent.
Alternatively, if we start with a process (X,Y ) having representation

(X,Y ) = (X, τϑ(Ỹ )) (3)

as in (2), the lead-lag interpretation between X and Y readily follows. Since ϑ ≥ 0, the sample
path of X anticipates on the path of Y by a time shift ϑ and to an amount – measured in normal-
ized standard deviation – proportional to ρσ2/σ1. In that case, we say that X is the leader, and Y

is the lagger. For the case ϑ < 0, we intertwine the roles of X and Y in the terminology.

Remark 1. Note that, except in the case ϑ = 0, the process (Xt , Yt )t∈[ϑ,T ] is not an F-martingale.
However, each component is a martingale with respect to a different filtration: X is an F-
martingale and Y = τϑ(Ỹ ) is an F

ϑ -martingale, with F
ϑ = (F ϑ

t )t≥ϑ , and F ϑ
t = Ft−ϑ .

2.2. Lead-lag between two semi-martingales

We generalize the lead-lag model (3) to semi-martingales with local martingale components that
can be represented as Itô local martingales.

We need some notation. Let T > 0 be some terminal time, and let δ > 0 represent the max-
imum temporal lead-lag allowed for the model, fixed throughout the paper. On a probability
space (�, F ,P), let F = (Ft )t∈[−δ,T +δ] be a filtration satisfying the usual conditions. We denote
by F[a,b] = (Ft )t∈[a,b] the restriction of F to the time interval [a, b].
Definition 1. The two-dimensional process (X,Y )t∈[0,T +δ] is a regular semi-martingale with
lead-lag parameter ϑ ∈ [0, δ) if the following decomposition holds:

X = Xc + A, Y = Y c + B,

with the following properties:

• The process (Xc
t )t∈[0,T +δ] is a continuous F[0,T +δ]-local martingale, and the process

(Y c
t )t∈[0,T +δ] is a continuous F

ϑ
[0,T +δ]-local martingale.

• The quadratic variations 〈Xc〉t∈[0,T +δ] and 〈Y c〉t∈[0,T +δ] are absolutely continuous w.r.t.
the Lebesgue measure, and their Radon–Nikodym derivatives admit a locally bounded ver-
sion.

• The drifts A and B have finite variation over [0, T + δ].
Definition 2. The two-dimensional process (X,Y )t∈[0,T +δ] is a regular semi-martingale with
lead-lag parameter ϑ ∈ (−δ,0] if the same properties as in Definition 1 hold, with X and Y

intertwined and ϑ replaced by −ϑ .
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Remark 2. If (X,Y )t∈[0,T +δ] is a regular semi-martingale with lead-lag parameter ϑ ∈ [0, δ),
then the process (τ−ϑ(Y c))t∈[−ϑ,T ] is a continuous F[−ϑ,T ]-local martingale, with τ−ϑ(Y )t =
Yt+ϑ the (inverse of the) shift operator defined in (1).

Remark 3. If (X,Y )t∈[0,T +δ] is a regular semi-martingale with lead-lag parameter ϑ ∈ [0, δ),
then the process (Y,X)t∈[0,T +δ] is a regular semi-martingale with lead-lag parameter −ϑ .

3. Main result

3.1. The statistical model

We observe a two-dimensional price process (X,Y ) at discrete times. The components X and Y

are observed over the time horizon [0, T + δ]. The following assumption is in force throughout:

Assumption A. The process (X,Y ) = (Xt , Yt )t∈[0,T +δ] is a regular semi-martingale with lead-
lag parameter 	 ∈ ϑ = (−δ, δ).

The – possibly random – observation times are given by the following subdivisions of [0, T +
δ]:

T X := {s1,n1 < s2,n1 < · · · < sn1,n1} (4)

for X and

T Y := {t1,n2 < t2,n2 < · · · < tn2,n2} (5)

for Y , with n1 = n2 or not. For simplicity, we assume s1,n1 = t1,n2 = 0 and sn1,n1 = tn2,n2 =
T +δ. The sample points are either chosen by the statistician or dictated for practical convenience
by the data provider. They are usually neither equispaced in time nor synchronous, and may
depend on the values of X and Y .

For some unknown ϑ ∈ 	 := (−δ, δ), the process (X,Y ) is a regular semi-martingale with
lead-lag parameter ϑ , and we want to estimate ϑ based on the set of historical data

{Xs, s ∈ T X} ∪ {Yt , t ∈ T Y }. (6)

In order to describe precisely the property of the sampling scheme T X ∪ T Y , we need some
notation that we borrow from Hayashi and Yoshida [11]. The subdivision T X introduced in (4)
is mapped into a family of intervals

I = {I = (I , I ] = (si,n1 , si+1,n1 ], i = 1, . . . , n1 − 1}. (7)

Likewise, the subdivision T Y defined in (5) is mapped into

J = {J = (J , J ] = (tj,n2 , sj+1,n2 ], j = 1, . . . , n2 − 1}.



Estimation of the lead-lag parameter 431

We will systematically employ the notation I (resp., J ) for an element of I (resp., J ). We set

�n := max
{
sup{|I |, I ∈ I}, sup{|J |, J ∈ J }},

where |I | (resp., |J |) denotes the length of the interval I (resp., J ), and n is a parameter tending
to infinity.

Remark 4. One may think of n being the number of data points extracted from the sampling,
that is, n = 
I + 
J . However, as we will see, only the (random) quantity �n will prove relevant
for measuring the accuracy of estimation of the lead-lag parameter.

The assumptions on the sampling scheme is the following.

Assumption B.

B1. There exists a deterministic sequence of positive numbers vn such that vn < δ and vn → 0
as n → ∞. Moreover

v−1
n �n → 0

in probability as n → ∞.
B2. For all I ∈ I , the random times I and I are F

vn -stopping times if ϑ ≥ 0 (resp., F
−ϑ+vn -

stopping times if ϑ < 0). For all J ∈ J , the random times J and J are F
ϑ+vn -stopping

times if ϑ ≥ 0 (resp., F
vn -stopping times if ϑ < 0).

B3. There exists a finite grid Gn ⊂ 	 such that 0 ∈ Gn and

– For some γ > 0, we have 
Gn = O(v
−γ
n ).

– For some deterministic sequence ρn > 0, we have⋃
ϑ̃∈Gn

[ϑ̃ − ρn, ϑ̃ + ρn] ⊃ 	

and

lim
n→∞ρn min{E[
I],E[
J ]} → 0.

Remark 5. Since both E[
I] and E[
J ] diverge at rate no less than v−1
n , Assumption B3 implies

that ρn = o(vn). With no loss of generality, we thus may (and will) assume that ρn ≤ vn for all n.

3.2. The estimation procedure

Preliminaries

Assume first that the data arrive at regular and synchronous time stamps over the time interval
[0, T ] = [0,1], with �n = 1/n for simplicity. This means that we have 2n + 2 observations

(X0, Y0), (X1/n, Y1/n), (X2/n, Y2/n), . . . , (X1, Y1).
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For every integer k ∈ Z, we form the shifted time series

Y(k+i)/n, i = 1,2, . . .

for every i such that (k + i)/n is an admissible time stamp1. We can then construct the empirical
covariation estimator

Cn(k) :=
∑

i

(
Xi/n − X(i−1)/n

)(
Y(i+k)/n − Y(i+k−1)/n

)
,

where the sum in i expands over all relevant data points. Over the time interval [0,1], the number
of elements used for the computation of Cn(k) should be of order n as n → ∞. Assume further
for simplicity that the process (X,Y ) is a lead-lag Bachelier model in the sense of Section 2.1,
with lead-lag parameter ϑ = ϑn = k0

n/n, with k0
n an integer. On the one hand, for k = k0

n, we
have the decomposition

Cn(k
0
n) = T (1)

n + T (2)
n ,

with

T (1)
n = ρσ1σ2

∑
i

(
B

(1)
i/n − B

(1)
(i−1)/n

)2
,

T (2)
n =

√
1 − ρ2σ1σ2

∑
i

(
B

(1)
i/n − B

(1)
(i−1)/n

)(
Wi/n − W(i−1)/n

)
.

Computing successively the fourth-order moment of the random variables T
(1)
n −ρσ1σ2 and T

(2)
n

and applying Markov’s inequality and the Borel–Cantelli lemma, elementary computations show
that T

(1)
n → ρσ1σ2 and T

(2)
n → 0 as n → ∞ almost surely, and we derive

Cn(k
0
n) → ρσ1σ2 as n → ∞ almost surely.

On the other hand, for k �= k0
n, we have

Cn(k) = T̃ (1)
n + T̃ (2)

n ,

with

T̃ (1)
n = ρσ1σ2

∑
i

(
B

(1)
i/n − B

(1)
(i−1)/n

)(
B

(1)

(i+k−k0
n)/n

− B
(1)

(i+k−k0
n−1)/n

)
,

T̃ (2)
n =

√
1 − ρ2σ1σ2

∑
i

(
B

(1)
i/n − B

(1)
(i−1)/n

)(
W(i+k−k0

n)/n − W(i+k−k0
n−1)/n

)
.

1Possibly, we end up with an empty data set.
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Thus, for fixed n and k > k0
n, the process

j �
j∑

i=1

(
Xi/n − X(i−1)/n

)(
Y(i+k)/n − Y(i+k−1)/n

)
is (F(j+k−k0

n)/n)j≥1-martingale. Consequently, using the Burkholder–Davis–Gundy inequality,
we easily obtain that

E[Cn(k)6] ≤ cn−3,

up to some constant c > 0. The same result holds for k < k0
n. We infer

E

[(
sup
k �=k0

n

|Cn(k)|
)6]≤ cn−2

up to a modification of c. Using again Markov’s inequality and the Borel–Cantelli lemma, we
finally obtain that

sup
k �=k0

n

|Cn(k)| → 0 as n → ∞ almost surely.

Therefore, provided ρσ1σ2 �= 0, we can detect asymptotically the value k0
n that defines ϑ in the

very special case ϑ = k0
n�n, using k̂0

n defined as one maximizer in k of the contrast sequence

k � |Cn(k)|.

Indeed, from the preceding computations, we have

Almost surely, for large enough n, k̂0
n = k0

n. (8)

This is the essence of our method. For an arbitrary ϑ , we can anticipate that an approximation
of ϑ taking the form k0

n�n would add an extra error term of the order of the approximation, that
is, �n, which is a first guess for an achievable rate of convergence.

In a general context of regular semi-martingales with lead-lag effect, sampled at random non-
synchronous data points, we consider the Hayashi–Yoshida (later abbreviated by HY) covariation
estimator and modify it with an appropriate time shift on one component. We maximize the
resulting empirical covariation estimator with respect to the time shift over an appropriate grid.

Construction of the estimator

We need some notation. If H = (H,H ] is an interval, for ϑ ∈ 	, we define the shift interval
Hϑ := H + ϑ = (H + ϑ,H + ϑ]. We write

X(H)t :=
∫ t

0
1H (s)dXs
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for a (possibly random) interval, such that s � 1H (s) is an elementary predictable process. Also,
for notational simplicity, we will often use the abbreviation

X(H) := X(H)T +δ =
∫ T +δ

0
1H (s)dXs.

The shifted HY covariation contrast is defined as the function

ϑ̃ � U n(ϑ̃)

:= 1ϑ̃≥0

∑
I∈I,J∈J ,I≤T

X(I)Y (J )1{I∩J−ϑ̃
�=∅}

+ 1ϑ̃<0

∑
I∈I,J∈J ,J≤T

X(I)Y (J )1{J∩I
ϑ̃
�=∅}.

Our estimator ϑ̂n is obtained by maximizing the contrast ϑ̃ � |U n(ϑ̃)| over the finite grid Gn

constructed in Assumption B3 in Section 3.1 above. Eventually, ϑ̂n is defined as a solution of

|U n(ϑ̂n)| = max
ϑ̃∈Gn

|U n(ϑ̃)|. (9)

3.3. Convergence results

Since τ−ϑ(Y c) is a F-local martingale, the quadratic variation process 〈Xc, τ−ϑ(Y c)〉 is well
defined. We are now ready to assess our main result:

Theorem 1. Work under Assumptions A and B. The estimator ϑ̂n defined in (9) satisfies

v−1
n (ϑ̂n − ϑ) → 0

in probability, on the event {〈Xc, τ−ϑ(Y c)〉T �= 0}, as n → ∞.

Theorem 1 provides a rate of convergence for our estimator: the accuracy �−1
n is nearly achiev-

able, to within arbitrary accuracy. The next logical step is the availability of a central limit the-
orem. In the general case, this is not straightforward. We may, however, be more accurate if we
further restrict ourselves to synchronous data in the Bachelier case; that is, we have data

(X0, Y0), (X�n,Y�n), (X2�n,Y2�n), . . . (10)

over the time interval [0, T ], and the process (X,Y ) admits representation (3). We can then
exhibit the asymptotic behavior of the contrast function ϑ � U n(ϑ), in a vicinity of size �n, of
the lead-lag parameter. More precisely, we have the following proposition.

Proposition 1. Let ϕ(t) = (1 − |t |)1|t |≤1 denote the usual hat function. Let us consider the
Bachelier model (3) and a synchonous observation sampling scheme (10), with lead-lag pa-
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rameter ϑ ∈ 	. If |ϑ̃ − ϑ | ≤ �n, we have

U n(ϑ̃) = σ1σ2
(
Tρϕ

(
�−1

n (ϑ̃ − ϑ)
)+ T 1/2�

1/2
n

√
1 + ρ2ϕ

(
�−1

n (ϑ̃ − ϑ)
)
ξn
)
,

where ξn is a sequence of random variables that converge in distribution to the standard Gaus-
sian law N (0,1) as n → ∞.

This representation is useful to understand the behavior of the contrast function Un(ϑ̃): up to
a scaling factor, |U n(ϑ̃)| is asymptotically proportional to the realization of the absolute value of
Gaussian random variable |N (mn(ϑ̃), an(ϑ̃)2)|, with

mn(ϑ̃) = Tρϕ
(
�−1

n (ϑ̃ − ϑ)
)

and an(ϑ̃) = T 1/2�
1/2
n

√
1 + ρ2ϕ

(
�−1

n (ϑ̃ − ϑ)
)

which has asymptotic value mn(ϑ̃) as soon as the mean dominates the standard deviation. We
then have

|mn(ϑ̃)|
an(ϑ̃)

= �
−1/2
n ρT 1/2 ϕ(�−1

n (ϑ̃ − ϑ))√
1 + ρ2ϕ(�−1

n (ϑ̃ − ϑ))

→ ∞ as n → ∞,

and this is the case if |ϑ̃ − ϑ | ≤ �n; otherwise, the pike ρϕ(�−1
n (ϑ̃ − ϑ)) degenerates toward 0,

and the contrast behaves like a non-informative �
1/2
n |N (0,1)| up to a multiplicative constant.

It is noteworthy that Proposition 1 reveals the influence of the correlation ρ in the estimation
procedure. We see that if ρ is too small, namely of order �

1/2
n , the same kind of degeneracy

phenomenon occurs: we do not have the divergence mn(ϑ̃)/an(ϑ̃) → ∞ anymore, and both
mean and standard deviation are of the same order; in that latter case, maximizing |U n(ϑ̃)| does
not locate the true value ϑ .

The situation is a bit more involved when looking further for the next logical step, that is,
a limit theorem for ϑ̂n ∈ argmaxϑ̃∈Gn |U n(ϑ̃)|. The function ϑ̃ � U n(ϑ̃) is not smooth, even

asymptotically: up to normalizing by �−1
n , ϑ̃ � ϕ(�−1

n (ϑ̃ − ϑ)) weakly converges to a Dirac
mass at point ϑ , see Proposition 1. In that case, it becomes impossible, in general, to derive a
simple central limit theorem for ϑ̂n. Consider again the synchronous case over [0, T ] = [0,1],
and pick a regular grid Gn with mesh hn such that hn�

−1
n goes to zero. In this situation, the

contrast function is constant over all the points belonging to one given interval of the form
(i�n, (i + 1)�n), for i ∈ Z. For definiteness and without loss of generality, we set

ϑ̂n = min
{
ϑn, ϑn ∈ argmax

ϑ̃∈Gn

|U n(ϑ̃)|
}
.

From Theorem 1, we know that v−1
n (ϑ̂n − ϑ) goes to zero for any sequence vn such that

v−1
n �n → 0; therefore, we look for the behavior of the normalized error, with rate �−1

n . How-
ever, the following negative result shows that this cannot happen.

Proposition 2. Under the preceding assumptions, there is no random variable Z such that
�−1

n (ϑ̂n − ϑ) converges in distribution to Z.
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The proof is given in the Appendix. Proposition 2 stems from the fact that part of the error
of ϑ̂n is given by the difference between ϑ and its approximation on the grid Gn. This error is de-
terministic and cannot be controlled at the accuracy level �n; see the proof in the Appendix. This
phenomenon is somehow illustrated in the simulation in Section 5. Note that this negative result
is not in contradiction to result (8) which states that almost surely, for large enough n, ϑ̂n = ϑ .
Indeed, result (8) is obtained considering a grid with mesh �n and a very special sequence of
models where ϑ is of the form ϑ = ϑn = k0

n�n, with k0
n an integer. In the case where ϑ does

not depend on n, one can, of course, extend the almost sure result (8). However, what can be
obtained is essentially that almost surely, for large enough n, ϑ ∈ (ϑ̂n − �n, ϑ̂n + �n). There-
fore, we almost surely identify the interval of size 2�n in which ϑ lies, but our method does not
enable us to say something more accurate.

3.4. Discussion

Covariation estimation of non-synchronous data

The estimation of the covariation between two semi-martingales from discrete data from
non-synchronous observation times has some history. It was first introduced by Hayashi and
Yoshida [11] and subsequently studied in various related contexts by several authors. A com-
prehensive list of references include: Malliavin and Mancino [19], Hayashi and Yoshida [10–
14], Hayashi and Kusuoka [9], Ubukata and Oya [26], Hoshikawa et al. [15] and Dalalyan and
Yoshida [5].

About the rate of convergence

The condition �n = o(vn) of Assumption B1 is needed for technical reasons, in order to manage
the fact that �n is random in general. In the case of regular sampling �n = n−1 with T = 1,
the nearly obtained rate �n = n−1 is substantially better than the usual n−1/2-rate of a regular
parametric statistical model. This is due to the fact that the estimation of the lead-lag parameter
is rather a change-point detection problem; see [16] for a general reference for the structure
of parametric models. A more detailed analysis of the contrast function shows that its limit is
not regular (not differentiable in the ϑ -variable), and this explains the presence of the rate n−1.
However, the optimality of our procedure is not granted, and the rate �n could presumably be
improved in certain special situations.

Lead-lag effect and arbitrage

As stated, the lead-lag model for the two-dimensional process (X,Y ) is not a semi-martingale,
unless one component is appropriately shifted in time. This is not compatible in principle with
the dominant theory of no-arbitrage models. This kind of modeling, however, seems to have some
relevance in practice, and there is a natural way to reconcile both points of view.

We focus, for example, on the simplest Bachelier model of Section 2.1. We show in this paper
that the lead-lag parameter ϑ can almost be identified in principle. Consequently, the knowledge
of ϑ can then be incorporated into a trading strategy. If ϑ �= 0, we can obtain, in principle, some
statistical arbitrage, in the sense that we can find, in the Bachelier model without drift, a self
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financing portfolio of assets X and τ−ϑ(Y ) with initial value zero and whose expectation at
time T is positive.

This statistical arbitrage can be erased by introducing further trading constraints such as a
maximal trading frequency and transaction cost (slippage, execution risk and so on). In this set-
ting, we can no longer guarantee a statistical arbitrage. Moreover, we may certainly incorporate
risk constraints in order to define an admissible strategy.

This outlines that although we perturb the semi-martingale classical approach, our lead-lag
model is compatible in principle with non-statistical arbitrage constraints, under refined studies
of risk profiles. We intend to set out, in detail, these possibilities in a forthcoming work.

Microstructure noise

Our model does not incorporate microstructure noise. This is reasonable if �n is thought of on a
daily basis, say (if T is of the order of a year or more say), but is inconsistent in a high-frequency
setting where T is of the order of one day. In that context, efficient semi-martingale prices of
the assets are subject to the so-called microstructure noise; see, among others, Zhang et al. [28],
Bandi and Russell [1], Barndorff-Nielsen et al. [2], Hansen and Lunde [8], Jacod et al. [17],
Rosenbaum [24,25]. In [21] and [22], Robert and Rosenbaum introduce a model (model with
uncertainty zones) where the efficient semi-martingale prices of the assets can be estimated at
some random times from the observed prices. In particular, it is proved that the usual Hayashi–
Yoshida estimator is consistent in this microstructure noise context as soon as it is computed
using the estimated values of the efficient prices. Using the same approach, that is, applying the
lead-lag estimator to the estimated values of the efficient prices, one can presumably build an
estimator which is robust to microstructure noise.

How to use high-frequency data in practice

Nevertheless, when high-frequency data are considered, we propose a simple pragmatic method-
ology that allows us to implement our lead-lag estimation procedure without requiring the
relatively involved data pre-processing suggested in the previous paragraph. A preliminary in-
spection of the signature plot in trading time – the realized volatility computed with different
subsampling values for the trading times – enables us to select a coarse subgrid among the trad-
ing times where microstructure noise effects can be neglected. Thanks to the non-synchronous
character of high-frequency data, we can take advantage of this subsampling in trading time and
obtain accurate estimation of the lead-lag parameter, at a scale that is significantly smaller than
the average mesh size of the coarse grid itself. This would not be possible with a regular sub-
sampling in calendar, time where the price at time t would be defined as the last traded price
before t . This empirical approach is developed in the numerical illustration Section 6 on real
data, in the particular case of measuring lead-lag between the future contract on Dax (FDAX)
and the Euro-Bund future contract (FGBL) with same maturities.

Extension of the model

We consider this work as a first – and relatively simple – attempt for modeling the lead-lag effect
in continuous time models. As a natural extension, it would presumably be more reasonable to
consider more intricate correlations between assets in the model. For example, one could add a
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common factor in the two assets, without lead-lag effect, as suggested by the empirical study of
Section 6. Through this, and in addition to the “lead-lagged correlation,” one would also obtain
an instantaneous correlation between the assets. In order to estimate the lead-lag parameter in this
context, one would presumably be required to consider local maxima of the contrast function we
develop here. Such a development is again left out for future work.

4. Proof of Theorem 1

The proof of Theorem 1 is split in four parts. In the first three parts, we work under supplementary
assumptions on the processes and the parameter space (Assumption Ã). We first show that if we
compute the contrast function over points ϑn of the grid Gn such that the order of magnitude of
|ϑn −ϑ | is bigger than vn, then the contrast function goes to zero (Proposition 3). Then we prove
that, on the contrary, if the order of magnitude of |ϑn −ϑ | is essentially smaller than vn, then the
contrast function goes to the covariation between X and τ−ϑ(Y ) (Proposition 4). We put these
two results together in the third part which ends the proof of Theorem 1 under the supplementary
assumptions. The proof under the initial assumptions is given in the last part.

4.1. Preliminaries

Supplementary assumptions

For technical convenience, we will first prove Theorem 1 when the sign of ϑ is known and
when the components X and Y are local martingales. Moreover, we introduce a localization
tool. The quadratic variation processes of X and Y admitting locally bounded derivatives, there
exists a sequence of stopping times tending almost surely to T + δ such that the associated
stopped processes are bounded by deterministic constants. Since Theorem 1 is a convergence in
probability result, we can, without loss of generality, work under the supplementary assumption
that the quadratic variation processes are bounded over [0, T + δ]. Therefore, we add-up the
following restrictions:

Assumption Ã. We have Assumption A and:

Ã1. There exists L > 0 such that 〈X〉′T +δ ≤ L and 〈Y 〉′T +δ ≤ L.
Ã2. The parameter set is restricted to ϑ = [0, δ). Consequently, by Gn we mean here Gn ∩

[0, δ).
Ã3. X = Xc and Y = Y c .

Notation. We now introduce further notation. For I ∈ I and J ∈ J , let

In = I ∧ inf
{
t,max

I ′ {I ′ ∧ t − I ′ ∧ t} ≥ vn

}
∧ T

and

J n = J ∧ inf
{
t,max

J ′ {J ′ ∧ t − J ′ ∧ t} ≥ vn

}
∧ (T + δ).
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We define In and Jn in the same way for I and J , respectively. Let In = (In, In] and Jn =
(J n, J n].

Remark 6. We have the following interpretation of In and In: let τn denote the first time for
which we know that an interval I will have a width that is larger than vn. Then we keep only the
I and I that are smaller than τn. If τn ≤ T , we also consider τn among the observation times.
Note that τn is not a true observation time in general. However, this will not be a problem since
the set where �n is bigger than vn will be asymptotically negligible. Obviously In and In are
F-stopping times, and Jn and Jn are F

ϑ+vn -stopping times.

Finally, for two intervals H = (H,H ] and H ′ = (H ′,H ′], we define

K(H,H ′) := 1H∩H ′ �=∅.

4.2. The contrast function

We consider here the case where the order of magnitude of |ϑn − ϑ | is bigger than vn. We first
need to give a preliminary lemma that will ensure that the quantities we will use in the following
are well defined.

Lemma 1. Work under Assumption B2, under the slightly more general assumption that for all
I = (I , I ] ∈ I , the random variables I and I are F-stopping times. Suppose that ϑ̃ ≥ ϑ + εn

and 2vn ≤ εn. Then for any random variable X′ measurable w.r.t. FIn , the random variable
X′K(In

ϑ̃
, J n) is F ϑ

Jn -measurable. In particular, f (In)X(In)K(In
ϑ̃
, J n) is F ϑ

Jn -measurable for
any measurable function f .

The proof of Lemma 1 is given in the Appendix. It is important to note that Lemma 1 implies
that for ϑ̃ ≥ ϑ + εn and 2vn ≤ εn, the random variable

1{In≤T }X(In)K(In
ϑ̃
, J n)1Jn(s)

is F ϑ
s -measurable. Indeed, 1Jn(s) is F ϑ

s and 1Jn(s) = 1 implies s ≥ Jn. We now introduce a
functional version of U n by considering the random process

U
n(ϑ̃)t :=

∑
I∈I,J∈J ,In≤T

X(In)Y (J n)tK(In
ϑ̃
, J n).

We are now able to give the main proposition for the vanishing of the contrast function.

Proposition 3. Let εn = 2vn, Gn+ = {ϑ̃ ∈ Gn, ϑ̃ ≥ ϑ + εn} and Gn− = {ϑ̃ ∈ Gn, ϑ̃ ≤ ϑ − εn}. We
have

max
ϑ̃∈Gn+∪Gn−

|Un(ϑ̃)T +δ| → 0,

in probability.
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Proof. Assume first ϑ̃ ≥ ϑ + εn. Thanks to Lemma 1, we obtain a martingale representation of
the process U

n(ϑ̃) that takes the form

U
n(ϑ̃)t =

∑
I∈I,J∈J

∫ t

0
1{In≤T }X(In)K(In

ϑ̃
, J n)1Jn(s)dYs,

where the stochastic integral with respect to Y is taken for the filtration F
ϑ . As a result, the

F
ϑ -quadratic variation of U

n is given by

〈Un(ϑ̃)〉t =
∫ t

0

( ∑
I∈I,J∈J

1{In≤T }X(In)K(In
ϑ̃
, J n)1Jn(s)

)2

d〈Y 〉s .

Using that the intervals Jn are disjoint, we obtain

〈Un(ϑ̃)〉t =
∫ t

0

∑
J∈J

(∑
I∈I

1{In≤T }X(In)K(In
ϑ̃
, J n)

)2

1Jn(s)d〈Y 〉s .

For a given interval Jn, the union of the intervals In that have a non-empty intersection with
Jn is an interval of width smaller than 3vn. Indeed, the maximum width of Jn is vn and add to
this (if it exists) the width of the interval In such that In ≤ Jn, In ≥ Jn and the width of the
interval In such that In ≤ Jn, In ≥ Jn. Thus,∑

I∈I
1{In≤T }X(In)K(In

ϑ̃
, J n) ≤ sup

s≤T

sup
0≤u≤3vn

∣∣X(s+u)∧T − Xu

∣∣
≤ 2 max

1≤k≤�(3vn)−1T �
sup

t∈[3vn(k−1),3vnk]

∣∣Xt∧T − X3vn(k−1)

∣∣.
Consequently, we obtain for every t ∈ [0, T + δ] and ϑ̃ ∈ [ϑ + εn, δ],

〈Un(ϑ̃)〉t ≤ 4L(T + δ) max
1≤k≤�(3vn)−1T �

sup
t∈[3vn(k−1),3vnk]

∣∣Xt∧T − X3(k−1)vn

∣∣2.
For every p > 1, it follows from the Bürkholder–Davis–Gundy inequality that

E[|Un(ϑ̃)T +δ|2p] �
�(3vn)−1T �∑

k=1

E

[
sup

t∈[3vn(k−1),3vnk]

∣∣Xt∧T − X3(k−1)vn

∣∣2p
]

� v
p−1
n ,

where the symbol � means inequality in order, up to constant that does not depend on n. Pick
ε > 0. We derive

P

[
max
ϑ̃∈Gn+

|Un(ϑ̃)T +δ| > ε
]

≤ ε−2p
∑

ϑ̃∈Gn+

E[|Un(ϑ̃)T +δ|2p]

� v
p−1
n 
Gn+ → 0
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as n → ∞, provided p > γ + 1 where γ is defined in Assumption B3, a choice that is obviously
possible. The same argument holds for the case ϑ̃ ≤ ϑ −εn, but with an X-integral representation
in that latter case. The result follows. �

4.3. Stability of the HY estimator

We consider now the case where the order of magnitude of |ϑn −ϑ | is essentially smaller than vn.
We have the following proposition:

Proposition 4. Work under Assumptions Ã and B. For any sequence ϑn in [0, δ) such that ϑn ≤
ϑ and |ϑn − ϑ | ≤ ρn (remember that ρn is defined in Assumption B3), we have

U n(ϑn) → 〈X,τ−ϑ(Y )〉[0,T ], (11)

in probability as n → ∞.

Proof. The proof goes into several steps.
Step 1. In this step, we show that our contrast function can be regarded as the Hayashi–Yoshida

estimator applied to X and to the properly shifted values of Y plus a remainder term. If ϑ = 0,
then ϑn = 0, and Proposition 4 asserts nothing but the consistency of the standard HY-estimator;
see Hayashi and Yoshida [11] and Hayashi and Kusuoka [9]. Thus we may assume ϑ > 0.

By symmetry, we only need to consider the case where

E[
I] ≥ E[
J ].
Set δn = ϑn − ϑ , Ỹt = τ−ϑ(Y )t and J̃ n = J n−ϑ and

U
n(ϑn) =

∑
I∈I,J∈J ,I≤T

X(In)Y (J n)1{In∩Jn−ϑn
�=∅}.

We then have

U
n(ϑn) =

∑
I∈I,J∈J ,I≤T

X(In)Ỹ (J̃ n)1{In∩J̃ n−δn
�=∅}.

This can be written V n + Rn with

V n =
∑

I∈I,J∈J ,I≤T

X(In)Ỹ (J̃ n−δn
)1{In∩J̃ n−δn

�=∅},

Rn =
∑

I∈I,J∈J ,I≤T

X(In){Ỹ (J̃ n) − Ỹ (J̃ n−δn
)}1{In∩J̃ n−δn

�=∅}.

Remark that Ỹ (J̃ n) and Ỹ (J̃ n−δn
) are well defined since Ỹ is defined on [−ϑ,T ] and ϑn ≤ ϑ .

For every J ∈ J , Jn is a F
ϑ+vn -stopping time; therefore J̃ n−δn

= Jn−ϑn
is a F

vn−δn -stopping time,
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and a F-stopping time as well. Thus V n is a variant of the HY-estimator: more precisely,

Ṽ n :=
∑

I,J :I≤T

X(In)Ỹ (J̃ n−δn
∩ R+)1{In∩(J̃ n−δn

∩R+)�=∅}

is the original HY-estimator, and we have V n − Ṽ n → 0 in probability as n → ∞. It follows that
Ṽ n → 〈X, Ỹ 〉T in probability as n → ∞; see [11] and [9].

Step 2. Before turning to the term Rn, we give a technical lemma and explain a simplifying
procedure. For an interval I = [I , I ) ∈ I , set

MI := sup{J̃ n−δn
, J ∈ J , J̃ n−δn

≤ In}.

Note that if we consider the interval J at the extreme left end of the family J , we have, for large
enough n,

J̃ n−δn
≤ vn − ϑ − δn < −ϑ

2
,

say, so we may assume that the set over which we take the supremum is non-empty.

Lemma 2. Work under Assumption B2. The random variables MI are F-stopping times.

The proof of this lemma is given in the Appendix. We now use a simplifying operation. For
each In, we merge all the Jn such that J̃ n−δn

⊂ In. We call this procedure �-reduction. The �-
reduction produces a new sequence of increasing random intervals extracted from the original
sequence (J̃ n−δn

), which are F-predictable by Lemma 2. More precisely, the end-points are F-
stopping times. It is important to remark that the �-reduction implies that there are at most two
points of type J between any In and In. Moreover, since Rn is a bilinear form of the increments
of X and Ỹ , it is invariant under �-reduction. Likewise for the maximum length �n. Thus,
without loss of generality, we may assume that the J̃ n−δn

are �-reduced.
Step 3. We now turn to Rn. We write

In(J̃ n−δn
) =

⋃
I∈I,I≤T ,{In∩J̃ n−δn

�=∅}
In.

We have

|Rn| ≤
∑
J∈J

|Ỹ (J̃ n) − Ỹ (J̃ n−δn
)||X(In(J̃ n−δn

))|.

We now index the intervals J̃ n by j and set J̃ n
j = {0} if j > 
{J }. Thus, the preceding line can

be written

|Rn| ≤
∑
j

|Ỹ (J̃ n
j ) − Ỹ (J̃ n−δn,j )||X(In(J̃ n−δn,j ))|.
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Then the Cauchy–Schwarz inequality gives that (E[|Rn|])2 is smaller than∑
j

E[|Ỹ (J̃ n
j ) − Ỹ (J̃ n−δn,j )|2]

∑
j

E[|X(In(J̃ n−δn,j ))|2].

We easily get that ∑
j

E[|Ỹ (J̃ n
j ) − Ỹ (J̃ n−δn,j )|2] � δn
J ,

and we claim that (see next step)∑
j

E[|X(In(J̃ n−δn,j ))|2] � 1. (12)

Since δn ≤ ρn, Proposition 4 readily follows.
Step 4. It remains to prove (12). Here we extend (Xt )t∈R+ as Xs = 0 for s < 0, and denote

the extended one by the same “X.” This extension is just for notational convenience, and causes
no problem because, in what follows, we use the martingale property of X only over the time
interval R+. For ease of notation, we also stop writing the index j for the intervals. We begin with
the following remark. Take an interval J̃ n−δn

, say (J1, J2] and In(J̃ n−δn
) associated, say (I1, I2].

Call J0 the last observation point of type J occurring before J1 and J−1 the last observation
point of type J occurring before J0. Two situations are possible:

- If there is no observation point of type I between I1 and I2, then, if it exists, J0 is necessarily
before I1. If it does not exist, we have J1 ≤ vn.

- If there are some observation points of type I between I1 and I2, then J0 might also be
between I1 and I2. However, thanks to the �-reduction, we know that J−1 is necessarily
smaller than I1. Consequently, we have that |X(In(J̃ n−δn

))| is smaller than

sup
t∈[J̃ n,−1

−δn
,In,−1]

|Xt − X
J̃

n,−1
−δn

| + sup
t∈[J̃ n,−2

−δn
,In,−2]

|Xt − X
J̃

n,−2
−δn

| + sup
t∈[J̃ n−δn

,In+]
|Xt − XJ̃n−δn

|,

where we used the following notation:
- In+ is the first interval In such that In exits to the right of J̃ n−δn

.

- J̃
n,−1
−δn

denotes the interval of the form J̃ n−δn
which is the nearest neighbor to J̃ n−δn

on the
left.

- J̃
n,−2
−δn

denotes the interval of the form J̃ n−δn
which is the nearest neighbor to J̃

n,−1
−δn

on the
left.

- In,−1 is the first exit time to the right of J̃
n,−1
−δn

among the In.

- In,−2 is the first exit time to the right of J̃
n,−2
−δn

among the In.

- For k = 1,2, if J̃
n,−k
−δn

is not defined, sup
t∈[J̃ n,−k

−δn
,In,−k] |Xt − X

J̃
n,−k
−δn

| = 0.

Hence we obtain ∑
j

E[|X(In(J̃ n
−δn,j ))|2] �

∑
j

E

[
sup

t∈[J̃ n−δn
,In+]

|Xt − XJ̃n−δn
|2
]
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and so
∑

j E[|X(In(J̃ n−δn,j ))|2] can be bound in order by

∑
j

E

[(
sup

t∈[J̃ n−δn
,J̃ n−δn

]
|Xt − XJ̃n−δn

|
)2]+ E

[(∑
j

sup
t∈[In+,In+]

|Xt − XIn+|
)2]

.

Thanks to the �-reduction, we know that a given interval of the form (In+, I n+] can be associated
to, at most, two values of type J . Thus the second term of the preceding quantity is smaller than

2E

[(∑
i

sup
t∈[In,In]

|Xt − XIn |1i≤
I

)2]
,

where i is an indexing of the intervals [In, In). Note that each In+ is an F-stopping time as it is
the maximum among all

In ≤ J̃ n−δn
,

together with a strong predictability property; see Lemma 2 for a similar statement. So, using
Bürkholder–Davis–Gundy inequality, (12) is proved and Proposition 4 follows. �

4.4. Completion of proof of Theorem 1 under Assumption ˜A

Write A = {〈X,τ−ϑ(Y )〉T �= 0}. By Assumption B3, we have⋃
ϑ̃∈Gn

[ϑ̃ − ρn, ϑ̃ + ρn) ⊃ ϑ.

Therefore, there exists a sequence ϑn in Gn such that ϑn ≤ ϑ and |ϑn −ϑ | ≤ 2ρn. For sufficiently
large n, we have ρn ≤ εn = 2vn. Moreover, on the event A,

U n(ϑ̂n) > sup
ϑ̃∈Gn+∪Gn−

|U n(ϑ̃)|

implies |ϑ̂n − ϑ | < εn. It follows that

P[{|ϑ̂n − ϑ | ≥ εn} ∩ A] ≤ P

[{
sup

ϑ̃∈Gn+∪Gn−
|U n(ϑ̃)| ≥ |U n(ϑn)|

}
∩ A

]
.

Let ε > 0. For large enough n, the probability to have �n smaller than vn is larger than 1 − ε

and, consequently,

P[{|ϑ̂n − ϑ | ≥ εn} ∩ A] ≤ P

[{
sup

ϑ̃∈Gn+∪Gn−
|Un(ϑ̃)T +δ| ≥ |U n(ϑn)|

}
∩ A

]
+ ε.
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This can be bounded in order by

P

[
|U n(ϑn)| < 1

2
|〈X,τ−ϑ(Y )〉T |

]
+ P

[{
sup

ϑ̃∈Gn+∪Gn−
|Un(ϑ̃)T +δ| > 1

2
|〈X,τ−ϑ(Y )〉T |

}
∩ A

]
+ ε,

and this last quantity converges to ε as n → ∞ by applying Proposition 3 and Proposition 4.

4.5. The case with drifts

We now give the proof of Theorem 1 under Assumptions Ã1, Ã2 and B. The contrast U n(ϑ̃)

admits the decomposition U n(ϑ̃) = Ũ n(ϑ̃) + Rn(ϑ̃) with

Ũ n(ϑ̃) =
∑

I∈I,J∈J ,I≤T

Xc(I )Y c(J )1{I∩J−ϑ̃ �=∅}

and

Rn(ϑ̃) =
∑

I∈I,J∈J

(
X(I)B(J ) + A(I)Y c(J )

)
1{I∩J−ϑ̃ �=∅}.

For a function t → Zt defined on the interval H , introduce the modulus of continuity

wZ(a,H) = sup{|Zt − Zs |, s, t ∈ H, |s − t | < a}, a > 0.

We have

sup
ϑ̃∈[0,δ)

|Rn(ϑ̃)| ≤ wX(3�n, [0, T ]) sup
t∈[0,T +δ]

|Bt | + wYc(3�n, [0, T + δ]) sup
t∈[0,T ]

|At |,

and this term goes to 0 in probability as n → ∞.
Finally, the result is obtained in a similar way as in the no-drift case, using (Xc,Y c) in place

of (X,Y ).

4.6. The case where ϑ ∈ (−δ, δ)

We now give the proof of Theorem 1 under Assumptions Ã1 and B. Even in the case where ϑ is
negative, Proposition 3 is still in force, and we obtain

sup
ϑ̃∈Gn∩[0,δ)

|U n(ϑ̃)| → 0

in probability as n → ∞. The result follows from Remark 3.
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5. A numerical illustration on simulated data

5.1. Synchronous data: Methodology

We first superficially analyze the performances of ϑ̂n on a simulated lead-lag Bachelier model
without drift. More specifically, we take a random process (X, τ−ϑ(Y )) following the represen-
tation given in (2) in Section 2.1, having

T = 1, δ = 1, ϑ = 0.1, x0 = ỹ0 = 0, σ1 = σ2 = 1.

In this simple model, we consider again synchronous, equispaced data with period �n and corre-
lation parameters ρ. In that very simple model, we construct ϑ̂n with a grid Gn with equidistant
points with mesh2 hn = �n. We consider the following variations:

1. Mesh size: hn ∈ {10−3,3.10−3,6.10−3}.
2. Correlation value: ρ ∈ {0.25,0.5,0.75}.

5.2. Synchronous data: Estimation results and their analysis

We repeat 300 simulations of the experiment and compute the value of ϑ̂n each time, the true
value being ϑ = 0.1, letting ρ vary in {0.25,0.5,0.75}. We adopt the following terminology:

1. The fine grid estimation (abbreviated FG) with hn = 10−3.
2. The moderate grid estimation (abbreviated MG) with hn = 3.10−3.
3. The coarse grid estimation (abbreviated CG) with hn = 6.10−3.

The estimation results are displayed in Table 1 below. With no surprise, for a given mesh hn, the
difficulty of the estimation problem increases as ρ decreases.

In the fine grid approximation case (FG) with mesh hn = 10−3, the lead-lag parameter ϑ

belongs to Gn exactly. Therefore, the contrast U n(ϑ̂) is close to 0 for all values ϑ̃ ∈ Gn, except
perhaps for the exact value ϑ̃ = ϑ . This is illustrated in Figure 1 and Figure 2 below, where we
display the values or U n(ϑ̂n). Note how more scattered are the values of U n(ϑ̂n) for ρ = 0.25
compared to ρ = 0.75. This is, of course, no surprise.

For the moderate grid (MG) and the coarse grid (CH) cases, the lead-lag parameter ϑ /∈ Gn.

Hence, U n(ϑ̃) is close to 0 for almost all values of Gn except but two. When ρ is small, the
statistical error in the estimation of ρ is such that |maxϑ̃∈Gn U n(ϑ̃)| is not well located any-

2Note that, strictly speaking, such grid is not fine enough in order to fulfill our assumptions. However, the contrast
function is constant over all the points of a given interval (k�n, (k + 1)�n), k ∈ Z, and its value is just the sum of the
values obtained for the shifts k�n and (k + 1)�n .
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Table 1. Estimation of ϑ = 0.1 on 300 simulated samples for ρ ∈ {0.25,0.5,0.75}

ϑ̂n 0.096 0.099 0.1 0.102 Other

FG, ρ = 0.75 0 0 300 0 0
MG, ρ = 0.75 0 300 0 0 0
CG, ρ = 0.75 1 0 0 299 0

FG, ρ = 0.50 0 0 300 0 0
MG, ρ = 0.50 0 299 0 1 0
CG, ρ = 0.50 13 0 0 280 7

FG, ρ = 0.25 0 0 300 0 0
MG, ρ = 0.25 0 152 0 11 137
CG, ρ = 0.25 10 0 0 66 124

more. The error in the estimation can then be substantial, but is nevertheless consistent with our
convergence result. This is illustrated in Figures 3 to 8 below.

When ρ decreases or when the mesh hn of the grid increases, the performance of ϑ̂n deterio-
rates, as shown in Figures 7 and 8 below.

5.3. Non-synchronous data

We randomly pick 300 sampling times for X over [0,1] uniformly over a grid of mesh size 10−3.
We randomly pick 300 sampling times for Y likewise, and independently of the sampling for X.

Figure 1. Fine grid case (FG). Over one simulation: displayed values of |U n(ϑ̃)| for ϑ̃ ∈ Gn with mesh
hn = 10−3 and ρ = 0.75. The value maxϑ̃∈Gn |U n(ϑ̃)| is well located.
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Figure 2. Same setting as in Figure 1 for ρ = 0.25. The value maxϑ̃∈Gn |U n(ϑ̃)| is still correctly located.

The data generating process is the same as in Section 5.1. In Table 2, we display the estimation
results for 300 simulations, in the fine gird case (FG) with ϑ = 0.1 and ρ = 0.75.

The histograms for the case ρ = 0.5 and ρ = 0.25 are displayed in Figures 9 and 10.

Figure 3. Moderate grid case (MG). Over one simulation: displayed values of |U n(ϑ̃)| for ϑ̃ ∈ Gn with
mesh hn = 10−3 and ρ = 0.75. The value maxϑ̃∈Gn |U n(ϑ̃)| is still well located. We begin to see the effect
of the maximization over a grid Gn which does not match exactly with the true value ϑ with the appearance
of a second maximum.
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Figure 4. Same setting as in Figure 3 for ρ = 0.25. The value maxϑ̃∈Gn |U n(ϑ̃)| is still correctly located,

but the overall shape of |U n(ϑ̃)| deteriorates.

6. A numerical illustration on real data

6.1. The data set

We study here the lead-lag relationship between the following two financial assets:

Figure 5. Coarse grid case (CG). Over one simulation: displayed values of |U n(ϑ̃)| for ϑ̃ ∈ Gn with mesh
hn = 10−3 and ρ = 0.75. The value maxϑ̃∈Gn |U n(ϑ̃)| is still well located. The fact that Gn does not
match ϑ appears more clearly than in Figure 3.
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Figure 6. Same setting as in Figure 5 for ρ = 0.25. The value maxϑ̃∈Gn |U n(ϑ̃)| is no longer correctly
located.

- The future contract on the DAX index (FDAX for short), with maturity December 2010.
- The Euro-Bund future contract (Bund for short), with maturity December 2010, which is an

interest rate product based on a notional long-term debt instruments issued by the Federal
Republic of Germany.

Figure 7. Moderate grid case (MG). Histogram of the values of ϑ̂n with true value ϑ = 0.1 over 300
simulations for ρ = 0.25.
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Figure 8. Coarse grid case (CG). Histogram of the values of ϑ̂n with true value ϑ = 0.1 over 300 simula-
tions for ρ = 0.25.

These two assets are electronically traded on the EUREX market, and are known to be highly
liquid. Our data set has been provided by the company QuantHouse EUROPE/ASIA3. It consists
in all the trades for 20 days of October 2010. Each trading day starts at 8.00 am CET and finishes
at 22.00 CET, and the accuracy in the timestamp values is one millisecond.

6.2. Methodology: A one day analysis

In order to explain our methodology, we take the example of a representative day: 2010, Octo-
ber 13.

Microstructure noise

Since high-frequency data are concerned, we need to incorporate microstructure noise effects,
at least at an empirical level. A classical way to study the intensity of the microstructure noise
is to draw the signature plot (here in trading time). The signature plot is a function from N to
R

+. To a given integer k, it associates the sum of the squared increments of the traded price
(the realized volatility) when only 1 trade out of k is considered for computing the traded price.
If the price were coming from a continuous-time semi-martingale, the signature plot should be
approximately flat. In practice, it is decreasing, as shown by Figure 11.

According to Figure 11, for all our considered day, we subsample our data so that we keep one
trade out of 20. On 2010, October 13, after subsampling, it remains 2018 trades for the Bund and
3037 trades for the FDAX.

3http://www.quanthouse.com.

http://www.quanthouse.com


452 M. Hoffmann, M. Rosenbaum and N. Yoshida

Table 2. Estimation of ϑ = 0.1 on 300 simulated samples for ρ = 0.75 and non-synchronous data

ϑ̂ 0.099 0.1 0.101 0.102 0.103 0.104 0.105

FG, ρ = 0.75 16 106 107 46 19 4 2

Figure 9. Fine grid case (FG), non-synchronous data. Histogram of the values of ϑ̂n with true value ϑ = 0.1
over 300 simulations for ρ = 0.5.

Figure 10. Fine grid case (FG), non-synchronous data. Histogram of the values of ϑ̂n with true value
ϑ = 0.1 over 300 simulations for ρ = 0.25. The performances of ϑ̂n clearly deteriorates as compared to
Figure 9.
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Figure 11. Signature plot for the Bund (left) and the FDAX (right) for 2010, October 13.

Construction of the contrast function

The second step is to compute our contrast function. Here the Bund plays the role of X and the
FDAX the role of Y . Therefore, if the estimated value is positive, it means that the Bund is the
leader asset and the FDAX the lagger asset, and conversely. To have a first idea of the lead-lag
value, we consider our contrast function for a time shift between −10 minutes and 10 minutes,
on a grid with mesh 30 seconds. The result of this computation for October 2010, 13 is given in
Figure 12.

From Figure 12, we see that the lead-lag value is close to zero. Thus, we then compute the
contrast function for a time shift between −5 seconds and 5 seconds, on a grid with mesh 0.1
second. The result of this computation for 2010, October 13 is given in Figure 13.

From Figure 13, we can conclude that on 2010, October 13, the FDAX seems to lead the Bund,
with a small lead lag value of −0.8 second.

6.3. Systematic results over a one-month period

We now give, in Figure 14, the results for all the days of October 2010.
The results of Figure 14 seem to indicate that, on average, the FDAX tends to lead the Bund.

Indeed, the estimated lead-lag values are systematically negative. Of course these results have
to be taken with care since the estimated values are relatively small (the order of one second);
however, dealing with highly traded assets on electronic markets, the order of magnitude of the
lead-lag values that we find are no surprise and are consistent with common knowledge. A pos-
sible interpretation – yet speculative at the exploratory level intended here – for the presence of
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Figure 12. The function U n for 2010, October 13, time shift values between −10 minutes and 10 minutes,
on a grid with mesh 30 seconds. The contrast is obtained by taking the absolute value of U n.

such lead-lag effects is the difference between the tick sizes of the different assets. Indeed, the
negative values could mean that the tick size of the FDAX can be considered smaller than those
of the Bund.

Figure 13. The function U n for 2010, October 13, time shift values between −5 seconds and 5 seconds,
on a grid with mesh 0.1 second. The contrast is obtained by taking the absolute value of U n.
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Number of trades for the Number of trades for the Lead-lag
Day bund (after subsampling) FDAX (after subsampling) (seconds)

1 October 2010 2847 4215 −0.2
5 October 2010 2213 3302 −1.1
6 October 2010 2244 2678 −0.1

7 October 2010 1897 3121 −0.5
8 October 2010 2545 2852 −0.6
11 October 2010 1050 1497 −1.4

12 October 2010 2265 3018 −0.8
13 October 2010 2018 3037 −0.8
14 October 2010 2057 2625 −0.0

15 October 2010 2571 3269 −0.7
18 October 2010 1727 2326 −2.1
19 October 2010 2527 3162 −1.6

20 October 2010 2328 2554 −0.5
21 October 2010 2263 3128 −0.1
22 October 2010 1894 1784 −1.2

25 October 2010 1501 2065 −0.4
26 October 2010 2049 2462 −0.1
27 October 2010 2606 2864 −0.6

28 October 2010 1980 2632 −1.3
29 October 2010 2262 2346 −1.6

Figure 14. Estimated lead-lag values for October 2010.

Appendix

A.1. Proof of Proposition 1

For notational clarity, for a given interval I = (I , I ], we may sometimes write X(I, I ) instead
of X(I) when no confusion is possible. In the Bachelier case with lead-lag parameter ϑ ∈ 	, we
work with the following explicit representation of the observation process:{

Xt = x0 + σ1Bt ,

Yt = y0 + σ2
(
ρBt−ϑ +√1 − ρ2Wt−ϑ

)
,

(13)

where B and W are two independent Brownian motions. We have

U n(ϑ̃) =
∑

0≤i�n≤T

X
(
(i − 1)�n, i�n

)
τ−ϑ̃ Y

(
(i − 1)�n, i�n

)= σ1σ2

∑
0≤i�n≤T

χn
i (ϑ̃),

with

χn
i (ϑ̃) = B

(
(i − 1)�n, i�n

)[
ρτϑ−ϑ̃B

(
(i − 1)�n, i�n

)+√1 − ρ2τϑ−ϑ̃W
(
(i − 1)�n, i�n

)]
.
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We have

E[χn
i (ϑ̃)] = ρE

[
B
(
(i − 1)�n, i�n

)
τϑ−ϑ̃B

(
(i − 1)�n, i�n

)]= ρ�nϕ
(
�−1

n (ϑ̃ − ϑ)
)
,

where ϕ(x) = (1 − |x|)1|x|≤1 is the usual hat function. Assuming further, with no loss of gener-
ality, that T/�n is an integer, we obtain the representation

U n(ϑ̃) = σ1σ2T

(
ρϕ
(
�−1

n (ϑ − ϑ̃)
)+ T −1

∑
0≤i�n≤T

(
χn

i (ϑ̃) − E[χn
i (ϑ̃)])).

We now assume without loss of generality that 0 ≤ ϑ − ϑ̃ ≤ �n (the symmetric case being
treated the same way). The sequence of random variables χn

i (ϑ̃) is stationary. Moreover, since
the random variable χn

i (ϑ̃) involves increments of W and B over a domain included in [(i −
2)�n, i�n] because |ϑ − ϑ̃ | ≤ �n, it follows that χn

i (ϑ̃) and χn
j (ϑ̃) are independent as soon as

|i − j | ≥ 2. Moreover, we claim that

Cov(χn
i (ϑ̃),χn

j (ϑ̃)) = 0 if |i − j | = 1. (14)

Therefore, by the central limit theorem, we have that

�
1/2
n T −1/2

∑
0≤i�n≤T

(
χn

i (ϑ̃) − E[χn
i (ϑ̃)])

is approximately centred Gaussian, with variance

Var(χn
1 (ϑ̃)).

Computation of Var(χn
1 (ϑ̃))

To that end, we need to evaluate

I = ρ2
E[(B(0,�n)τϑ−ϑ̃B(0,�n))

2],
and

II = (1 − ρ2)E[(B(0,�n)τϑ−ϑ̃W(0,�n))
2],

since B(0,�n)τϑ−ϑ̃B(0,�n) and B(0,�n)τϑ−ϑ̃W(0,�n) are uncorrelated. Writing

B(0,�n)τϑ−ϑ̃B(0,�n)

= (B(0, ϑ − ϑ̃) + B(ϑ − ϑ̃,�n)
)(

B(ϑ − ϑ̃,�n) + B(�n,ϑ − ϑ̃ + �n)
)
,

taking square and expectation, we readily obtain that

I = 2ρ2(ϑ − ϑ̃)
(
�n − (ϑ − ϑ̃)

)+ ρ2(ϑ − ϑ̃)2 + 3ρ2(�n − (ϑ − ϑ̃)
)2

= ρ2(�2
n

(
1 + 2ϕ

(
�−1

n (ϑ − ϑ̃)
)2))

.
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Concerning II, since B and W are independent, we readily have

II = (1 − ρ2)�2
n,

therefore, from E[χn
1 (ϑ̃)] = ρ�nϕ(�−1

n (ϑ̃ − ϑ)), we finally infer

�−2
n Var(χn

1 (ϑ̃)) = 1 + ρ2ϕ
(
�−1

n (ϑ − ϑ̃)
)2

from which Proposition 1 follows. It remains to prove (14). By stationarity, this amounts to
evaluate

ρ2
E[B(0,�n)B(ϑ − ϑ̃,�n + ϑ − ϑ̃)B(�n,2�n)B(�n + ϑ − ϑ̃,2�n + ϑ − ϑ̃)] − E[χn

1 (ϑ)]2.

To that end, we split each of the terms as follows:

B(0,�n) = B(0, ϑ − ϑ̃) + B(ϑ − ϑ̃,�n),

B(ϑ − ϑ̃,�n + ϑ − ϑ̃) = B(ϑ − ϑ̃,�n) + B(�n + ϑ − ϑ̃),

B(�n,2�n) = B(�n,�n + ϑ − ϑ̃) + B(�n + ϑ − ϑ̃,2�n),

B(�n + ϑ − ϑ̃,2�n + ϑ − ϑ̃) = B(�n + ϑ − ϑ̃,2�n) + B(2�n,2�n + ϑ − ϑ̃).

Using the stochastic independence of each of these terms, multiplying and integrating, we easily
obtain

ρ2
E[B(0,�n)B(ϑ − ϑ̃,�n + ϑ − ϑ̃)B(�n,2�n)B(�n + ϑ − ϑ̃,2�n + ϑ − ϑ̃)]
= ρ2�2

nϕ
(
�−1

n (ϑ − ϑ̃)
)2 = E[χn

1 (ϑ̃)]2.

A.2. Proof of Proposition 2

Suppose that �−1
n (ϑ̂n − ϑ) → Z, in law, for some random random variable Z. For a ∈ R, we

write a[n], the best approximation of a by a point of the form k�n, k ∈ Z and a�n�, the best
approximation of a by a point smaller or equal to a and of the form k�n, k ∈ Z. We have

�−1
n (ϑ̂n − ϑ) = �−1

n

(
ϑ̂n − ϑ̂�n�

n

)+ �−1
n

(
ϑ̂�n�

n − ϑ
)
.

The first term in the right-hand side of the equality is smaller than �−1
n hn and so converges to

zero. The second term can be written as

�−1
n

(
ϑ̂�n�

n − ϑ [n])+ �−1
n

(
ϑ [n] − ϑ

)= T1,n + T2,n,

say. The sequence T1,n is a random sequence of integers, and T2,n is a deterministic sequence
with values in [0,1/2] which does not converge. Let ψn be a subsequence such that T2,ψn → l

with l ∈ (0,1/2]. Then T1,ψn converges in law to Z − l which implies that the support of Z is
included in {z + l, z ∈ Z}. Consider now ψ̃n such that T2,ψ̃n

→ l′ with l′ ∈ [0,1/2], l′ �= l. In the
same way, we get that the support of Z is also included in {z + l′, z ∈ Z}, a contradiction.
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A.3. Proof of Lemma 1

Preliminary results

We first prove the following results.

Lemma 3. Work under Assumption B2, under the slightly more general assumption that for all
I = [I, I ) ∈ I , the random variables I and I are F-stopping times.

(a) If ϑ̃ ≥ ϑ + vn, then for any F-stopping time σ and t ∈ R+, σ + ϑ̃ is an F
ϑ+vn -stopping

time. In particular, the random variables In
ϑ̃

and In
ϑ̃

are F
ϑ+vn -stopping times.

(b) For each J ∈ J , we have

F ϑ+vn

J n
⊂ F ϑ+vn

J n+vn
= F ϑ

Jn,

and for each I ∈ I ,

FIn = F ϑ+vn

In
(ϑ+vn)

.

(c) Suppose that ϑ̃ ≥ ϑ + εn and 2vn ≤ εn. Then for any random variable X′ measurable
w.r.t. FIn , the random variables X′1{In

ϑ̃
≤Jn} and X′1{In

ϑ̃
<Jn} are F ϑ

Jn -measurable.

Proof. Proof of (a). For any F-stopping time σ and t ∈ R+,

{σ + ϑ̃ ≤ t} = {σ ≤ t − ϑ̃} = {σ ≤ (t − (ϑ̃ − ϑ − vn)
)− ϑ − vn

}
∈ F ϑ+vn

t−(ϑ̃−ϑ−vn)
⊂ F ϑ+vn

t .

Proof of (b). Note first that under Assumption B2, the F
ϑ+vn -stopping time Jn is in particular

an F
ϑ -stopping time; thus F ϑ

Jn is a σ -field. Moreover, since Jn and Jn + vn are F
ϑ+vn -stopping

times by definition, both F ϑ+vn

J n
and F ϑ+vn

J n+vn
are σ -fields, and also the inclusion is trivial from

Jn ≤ J n + vn. To obtain the equality, it suffices to observe that each of the conditions “A ∈
F ϑ+vn

J n+vn
” and “A ∈ F ϑ

Jn” is equivalent to the condition

A ∩ {J n ≤ t − vn} ∈ F ϑ
t−vn

for all t ∈ R+. The second equality is proved in the same way.
Proof of (c). Since Jn and In

ϑ̃
are F

ϑ+vn -stopping times by assumption, we have

{In
ϑ̃

≤ Jn} ∈ F ϑ+vn

J n
⊂ F ϑ

Jn,

the last inclusion following from (b). If In
ϑ̃

≤ Jn, then

In ≤ In + vn ≤ Jn − ϑ̃ + vn ≤ Jn − ϑ − vn,
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which implies In
ϑ+vn

≤ Jn. Thus

X′1{In
ϑ̃
≤Jn} = X′1{In

(ϑ+vn)
≤Jn} × 1{In

ϑ̃
≤Jn}.

We have that X′ is measurable with respect to FIn = F ϑ+vn

In
(ϑ+vn)

. Also In
(ϑ+vn) is a stopping time

with respect to F
ϑ+vn by (a). Consequently, X′1{In

(ϑ+vn)
≤Jn} is F ϑ+vn

J n
-measurable, hence F ϑ

Jn -

measurable. Eventually, X′1{In
ϑ̃
≤Jn} is F ϑ

Jn -measurable. The other statement is proved the same

way. �

Proof of Lemma 1. We have

X′K(In
ϑ̃
, J n) = X′1{In

ϑ̃
≤Jn}1{Jn<In

ϑ̃
} + X′1{In

ϑ̃
>Jn}1{Jn>In

ϑ̃
}.

Since ϑ̃ ≥ ϑ + εn ≥ ϑ + vn, both In
ϑ̃

and In
ϑ̃

are F
ϑ+vn -stopping times. Therefore, the second

term on the right-hand side of the above equality is F ϑ
Jn -measurable by (c) of Lemma 3.

Now we notice that if In
ϑ̃

≤ Jn, then In
ϑ̃

≤ Jn, therefore

X′1{In
ϑ̃
≤Jn}1{Jn<In

ϑ̃
} = (X′1{In

ϑ̃
≤Jn}

)× (1{In
ϑ̃
≤Jn}1{Jn<In

ϑ̃
}
)
.

The first factor on the right-hand side of the above equality is F ϑ
Jn -measurable by (c) of Lemma 3,

and the second factor is obviously F ϑ
Jn -measurable. This completes the proof. �

A.4. Proof of Lemma 2

Let us fix I ∈ I . Let

TJ =
⎧⎨⎩ In − vn on {J̃ n−δn

> In},
J̃ n−δn on {J̃ n−δn

≤ In}.

We know that In − vn is an F-stopping time by Assumption B2, and also that J̃ n−δn
− vn is

an F-stopping time due to δn ≤ 0. Let us show first that the TJ s are F-stopping times. Let t ∈
[−δ, T + δ]. Let

A1 = {In − vn ≤ t, J̃ n−δn
− vn > In − vn}

and

A2 = {J̃ n−δn ≤ t, J̃ n−δn
− vn ≤ In − vn}.

It is obvious that A1 ∈ Ft since In − vn is an F-stopping time and also

{J̃ n−δn
− vn ≥ In − vn} ∈ FIn−vn

.
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For the term A2, if t ∈ [−δ,−δ +vn], then A2 = ∅ ∈ F−δ ⊂ Ft . Otherwise, if t ∈ (−δ +vn,T +
δ], then

A2 = {J̃ n−δn
− vn ≤ t − vn, J̃

n−δn
− vn ≤ In − vn} ∈ Ft−vn ⊂ Ft .

Eventually, we have {TJ ≤ t} ∈ Ft ; hence TJ is an F-stopping time.

In conclusion, there exists at least one J̃ n−δn
in [In−vn, In]. Therefore, we have MI = supJ TJ ,

and this implies that MI is also an F-stopping time.
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