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On a class of space–time intrinsic random
functions
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Power law generalized covariance functions provide a simple model for describing the local behavior of
an isotropic random field. This work seeks to extend this class of covariance functions to spatial-temporal
processes for which the degree of smoothness in space and in time may differ while maintaining other desir-
able properties for the covariance functions, including the availability of explicit convergent and asymptotic
series expansions.
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1. Introduction

Intrinsic random functions [1,21] provide a popular class of models for spatial processes. These
non-stationary random processes are specified by their generalized covariance functions, which
determine the variances of certain linear combinations of the process (see Section 2.1 for details).
A particularly simple and, therefore, useful class of generalized covariance functions is the power
law class, for which the “covariance” between two observations is proportional to the Euclidean
distance between the points raised to some power (unless the power is an even integer). More
specifically, for x ≥ 0 indicating interpoint distance, ζ > 0 and N the set of positive integers, the
function γζ

γζ (x) =
⎧⎨
⎩

�(−ζ )x2ζ , ζ /∈ N,
2(−1)ζ+1

ζ ! x2ζ logx, ζ ∈ N
(1)

gives a valid generalized covariance function in any number of dimensions. Despite its simplicity,
this class of models has the important virtue of admitting a broad range of local behaviors for the
process, which is critical when, for example, considering properties of spatial interpolants [30].
Specifically, the larger the value of ζ , the smoother the process, so that, for example, the pro-
cess is m times mean square differentiable in any direction if and only if ζ > m. A generalized
covariance function can be written as the Fourier transform of a positive measure; although,
in contrast to the stationary setting, the measure might not have finite total mass. In particular,
in d dimensions, the measure corresponding to γζ has density with respect to Lebesgue measure
proportional to |ω|−2ζ−d , where ω ∈ R

d is the spatial frequency.
The goal of this paper is to find a good extension of γζ to the space–time setting. The problem

is made difficult by what I will mean by “good.” The first requirement is that the class of models
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includes members allowing any degree of smoothness in space and any (possibly different) de-
gree of smoothness in time. Specifically, for G(x, t) a generalized covariance function of spatial
lag x and temporal lag t , and any positive ζ1, ζ2,C1 and C2, the class of generalized covariance
functions should include a member that satisfies

G(x,0) = C1γζ1(|x|) (2)

and

G(0, t) = C2γζ2(|t |) (3)

or, failing that, that (2) holds asymptotically as x → 0, and (3) holds asymptotically as t → 0.
The second requirement is that G be smoother away from the origin than it is at the origin.

This requirement is needed to avoid the kinds of anomalies described in [31] for covariance func-
tions that are not smoother away from the origin. As a simple example of this kind of anomaly,
consider the covariance function on R × R given by K(x, t) = exp(−|x| − |t |). Write corr for
correlation, and define ρ(x, t) = limε↓0 corr{Z(0, ε) − Z(0,0),Z(x, t + ε) − Z(x, t)}. Then for
x �= 0, straightforward calculations show ρ(x, t) = 0 for t �= 0 and ρ(x,0) = e−|x|. The discon-
tinuity in this limiting correlation is due to the fact that K(x, t) has a similar discontinuity in
its first derivative in the t direction everywhere along the x axis as it does at the origin. I con-
sider such a discontinuity in ρ as unrealistic for most natural space–time processes. In particular,
Stein and Handcock [32] and Stein [29] give examples showing how this lack of continuity away
from the origin can lead to optimal (kriging) predictors with undesirable properties. All sepa-
rable space–time covariance functions, that is, those that factor into a function of space and a
function of time such as e−|x|−|t |, have a similar problem unless the process is infinitely dif-
ferentiable [31], page 311. Furthermore, many non-separable space–time covariance functions
proposed in the literature share this problem [31], pages 311–312. For a space–time covariance
function with different degrees of smoothness in space and time, that is, satisfying (2) and (3)
with ζ1 �= ζ2, it is not so clear what one should mean by the function being smoother away from
the origin than at the origin. This issue is addressed in Section 2.4.

The smoothness of a covariance function away from the origin is closely related to regular-
ity properties of the corresponding spectral density at high frequencies [31]. Indeed, Stein [29]
argues that the spectral domain provides a more natural approach for considering the appro-
priateness of various models for space–time covariance functions. Specifically, [29] gives the
following condition as a plausible requirement for the spectral density f (ω) of a natural process
in space or space–time: for every R < ∞,

lim
ω→∞ sup

|ν|<R

∣∣∣∣f (ω + ν)

f (ω)
− 1

∣∣∣∣ = 0. (4)

That is, f changes slowly (on a relative scale) at high frequencies. This condition excludes, for
example, separable space–time models.

The third and final requirement for the generalized covariance functions is that they can be
computed accurately and efficiently via, for example, series expansions, to allow them to be
applied routinely to large space–time datasets. In particular, representations of the function as an
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integral will not be considered an adequate solution to the problem. As best as I am aware, no
existing class of generalized covariance functions satisfies all three of these requirements.

It will be convenient to avoid explicitly distinguishing between space and time and consider
processes Z(x,y) on R

d1 ×R
d2 for positive integers d1 and d2. Stein [31] proposed the following

class of spectral densities (with a different parameterization) as a flexible parametric model for
stationary space–time processes:

q(τ ,ω) =
{(

β2
1 + |τ |2

σ 2
1

)α1

+
(

β2
2 + |ω|2

σ 2
2

)α2
}−ν

(5)

for σ1, σ2 positive, β2
1 + β2

2 > 0 and 2ν > d1/α1 + d2/α2; this last condition being necessary
and sufficient (given the positivity constraints on the other parameters) for q to be integrable.
The parameters β1 and β2 are inverse range parameters, σ1 and σ2 are scale parameters and
α1, α2 and ν together describe the smoothness of the process in x and y. More specifically,
the process is p times mean square differentiable in each component of x if and only if 2ν >

(d1 + 2p)/α1 + d2/α2 and, similarly, is p times mean square differentiable in components of y
if and only if 2ν > d1/α1 + (d2 + 2p)/α2 [31]. Furthermore, when α1 and α2 are integers, the
resulting covariance function is infinitely differentiable away from the origin ([31], Proposition 4,
although this result also follows from [28], Theorem 1.1). All models in the class (5) satisfy the
spectral condition (4). Porcu [22] describes more general approaches to obtaining valid spectral
densities that could be useful in the space–time context.

An obstacle to using the class of models (5) is the lack of an explicit expression for the cor-
responding covariance functions. Except when α1 = α2 = 1 and some special cases with ν an
integer, α1 = 1 and α2 = 2, I am unaware of any cases for which an explicit expression has been
written down [31]. For rational spectral densities, which includes the model (5) when α1, α2 and ν

are all integers as a special case, the covariance function can be expressed as the solution of a cer-
tain set of equations that reduce to a partial differential equation when the rational function is just
a reciprocal of a polynomial [25,26]. However, writing down an explicit solution for all integers
α1, α2 and ν is not a simple task. Ma [18] gives explicit expressions for the covariance functions
of space–time processes with rational spectral densities in some limited special cases that do not
include any instances of (5). For all of the cases treated in [18], the covariance functions are not
smoother away from the origin than at the origin in the sense defined in Section 2.3, and the spec-
tral densities do not satisfy (4). Even if one had explicit expressions for the covariance functions
of all rational spectral densities, these covariance functions (asymptotically in a neighborhood of
the origin) satisfy (2) and (3) only for a countable nowhere dense set of (ζ1, ζ2) values. Kelbert,
Leonenko and Ruiz-Medina [12] consider the case d1 = d2 = 1, α1 = 1, α2 = 2 and β1 = 0 as a
stochastic fractional heat equation in some detail, but they only give integral representations for
the covariance functions. They consider additionally setting β2 = 0 and note that the resulting
random field has a self-similarity property when ν ∈ ( 3

4 , 7
4 ). Christakos [3], page 225, mentions

the case with d1 = 1, α1 = ν = 1 and β1 = 0 as a possible model for spatial-temporal processes,
but derives no results for these models.
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The parameters β1 and β2 are range parameters that do not affect the local behavior of the
process, so consider setting β1 = β2 = 0 in (5), yielding

f (τ ,ω) =
{( |τ |

σ1

)2α1

+
( |ω|

σ2

)2α2
}−ν

. (6)

These spectral densities are not integrable in a neighborhood of the origin, so they correspond to
generalized covariance functions. Section 2.1 gives some background on generalized covariance
functions. Theorem 1 in Section 2.2 gives a convergent power series for the generalized covari-
ance function corresponding to (6) when α2 = 1, α1 > 1 and y �= 0 and separate explicit formulae
to cover the case y = 0. For completeness, the known result [6] for the generalized covariance
function when α1 = 1 is also given in Theorem 1.

Section 2.3 shows how the generalized covariance functions in Theorem 1 can, in most cases,
be written in terms of the H -function [14], a generalization of the generalized hypergeometric
function that is sometimes called Fox’s H -function [5]. This result is used to obtain asymptotic
series for these generalized covariance functions and to motivate a conjecture extending Theo-
rem 1 to the case α1 < 1. Section 2.4 shows that for any positive C1,C2, ζ1 and ζ2, one can find
a spectral density of this form satisfying (2) and (3). Furthermore, in a sense made precise in
Section 2.4, the resulting generalized covariance function is shown to be smoother away from
the origin than at the origin. Finally, these results are used to show that at least some of these
covariance functions avoid what [13] calls the “dimple” that occurs in some proposed space–time
covariance functions, which is a lack of monotonicity in the correlation structure that might often
be viewed as unnatural.

Section 3 discusses some limitations and possible extensions of the generalized covariance
functions considered in Section 2. This section also touches on some of the difficulties in using
the series expansions to compute these functions quickly and accurately. Section A.1 gives a
proof of Theorem 1, and Section A.2 collects some needed material on H -functions.

There is a substantial recent literature on the development of space–time covariance functions
with explicit representations in terms of well-known special functions. Some references include
[3,4,7,9,10,15–19,23,24,27,31,33]. Although these works consider a broad range of models for
space–time covariance functions, none of them give a class of covariance functions meeting the
criteria set forth in this section of (locally) satisfying (2) and (3) for all positive ζ1 and ζ2 as well
as being smoother away from the origin than at the origin. As noted in [31], perhaps [16] comes
closest to this goal, in that this paper gives a class of models with d2 = 1 including elements
satisfying, asymptotically in a neighborhood of the origin, (2) with ζ1 = 1

2 and (3) with 0 < ζ2 <
1
4 , and the covariance functions are infinitely differentiable away from the origin.

2. Theoretical results

2.1. Generalized space–time covariance functions

Intrinsic random functions and generalized covariance functions have been a standard tool in
geostatistics since Matheron’s pioneering work [21]. These processes are nearly stationary in
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the sense that variances of some class of linear combinations of the process are translationally
invariant. Specifically, for a random field Z on R

d (so that d = d1 + d2 is the total number of
dimensions for space–time processes), call

∑n
j=1 λjZ(zj ) an authorized linear combination of

order k, or ALC-k, if
∑n

j=1 λjP (zj ) = 0 for every polynomial P of order at most k. A function

G on R
d is called a generalized covariance function of order k, or GC-k, if, for every ALC-k,∑n

�,j=1 λ�λjG(z� − zj ) ≥ 0. A process Z for which Var{∑n
j=1 λjZ(zj )} = ∑n

�,j=1 λ�λjG(z� −
zj ) ≥ 0 and E{∑n

j=1 λjZ(zj )} = 0 for every ALC-k is said to be an intrinsic random function
of order k, or IRF-k, with G as its GC-k. GC-ks are not unique; if G is a GC-k for Z, then so is
G plus any even polynomial of degree 2k in x. A function f is the spectral density of a GC-k G

if

n∑
�,j=1

λ�λjG(z� − zj ) =
∫

Rd

∣∣∣∣∣
n∑

j=1

λj eiω′zj

∣∣∣∣∣
2

f (ω)dω

for every ALC-k
∑n

j=1 λjZ(zj ). A nonnegative even function f is the spectral density for a real-

valued GC-k if and only if f (ω)|ω|2k+2/(1 + |ω|2k+2) is integrable [21]. Of course, if Z is an
IRF-k, it is also an IRF-k′ for all integers k′ ≥ k. Let 	x
 indicate the greatest integer less than or
equal to x. For the spectral density (6) and i = 1,2, define ki = 	αi{ν − d1/(2α1) − d2/(2α2)}

and k0 = max(k1, k2). Straightforward calculus shows that f in (6) satisfies the integrability
condition for an IRF-k if and only if k ≥ k0. Christakos [2] considers an extension of the notion of
IRFs to the space–time setting in which one essentially allows a different degree of differencing
in space and in time, but this concept is not used here.

2.2. Main theorem

This section gives a series expansion for the generalized covariance function corresponding to (6)
when α2 = 1, α1 > 1 and σ1 = σ2 = 1. Extending the result to other positive values of σ1 and
σ2 is trivial. Define the function Mν(y) = yν Kν(y), where Kν is a modified Bessel function.
When ν > 0, Mν is often called the Matérn covariance function with smoothness parameter ν.
Set θ = ν − 1

2d2 and θ ′ = θ − d1/(2α1) so that k0 = 	α1θ
′
 is the (minimal) order of the IRF

corresponding to this spectral density. As noted in [31] for the more general model (5), when
α2 = 1, the Fourier transform with respect to ω can be carried out explicitly. Specifically, for
τ �= 0, ∫

R
d2

(|τ |2α1 + |ω|2)−νeiω′y dω = πd2/2 Mθ (|τ |α1 |y|)
2θ−1�(ν)|τ |2α1θ

. (7)

Define r�j = |x� − xj |, s�j = |y� − yj | and, for t > 0,

�d(t) = 2(d−2)/2�

(
1

2
d

)
t−(d−2)/2J(d−2)/2(t) =

∞∑
m=0

(−(1/4)t2)m

m!(d/2)m
, (8)

where, for any real a and positive integer j , (a)j = a(a + 1) · · · (a + j − 1) and (a)0 = 1. For
every ALC-k0

∑n
j=1 λjZ(xj ,yj ), the GC-k0 G corresponding to the spectral density (|τ |2α1 +
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|ω|2)−ν satisfies

n∑
�,j=1

λ�λjG(x� − xj ,y� − yj )

=
∫

R
d1

∫
R

d2

n∑
�,j=1

λ�λj eiτ ′(x�−xj )+iω′(y�−yj )(|τ |2α1 + |ω|2)−ν dω dτ

= πd2/2

2θ−1�(ν)

∫
R

d1

n∑
�,j=1

λ�λj

Mθ (|τ |α1s�j )

|τ |2α1θ
eiτ ′(x�−xj ) dτ

(9)

= 4π(d1+d2)/2

2θ�(ν)�((1/2)d1)

∫ ∞

0

n∑
�,j=1

λ�λju
d1−1−2α1θ�d1(r�j u)Mθ (s�ju

α1)du

= 4π(d1+d2)/2

2θ�(ν)�((1/2)d1)α1

×
∫ ∞

0

n∑
�,j=1

λ�λj t
d1/α1−2θ−1�d1(r�j t

1/α1)Mθ (s�j t)dt,

where the second step uses (7), the third basic results on Fourier transforms of isotropic func-
tions [30], Section 2.10, and the last step the change of variables t = uα1 . What one would like
to do is substitute (8) into (9) and integrate termwise, but justifying this interchange requires
considerable care.

Define

cm(α1) = π(d1+d2)/2�((d1 + 2m)/(2α1))

m!�(m + (1/2)d1)

and the digamma function ψ by ψ(z) = d
dz

log�(z). Equations (10)–(12) are proven in Sec-
tion A.1. Equations (13) and (14) are taken from [6], Chapter II, Section 3.3, equations (2)
and (11).

Theorem 1. For the spectral density f (τ ,ω) = (|τ |2α1 + |ω|2)−ν on R
d1 × R

d2 with α1 ≥ 1,
θ ′ = ν − d1/(2α1) − d2/2 > 0 and k0 = 	α1θ

′
, a corresponding GC-k0 is given by G̃(|x|, |y|)
for the function G̃, defined by the following equations. First consider α1 > 1. For s > 0,

G̃(r, s) =
∞∑

m=0

cm(α1)

α1�(ν)

{
−

(
1

2
r

)2}m

γθ ′−m/α1

(
1

2
s

)
(10)

with γ (·) defined by (1). When α1θ
′ > k0,

G̃(r,0) = π(d1+d2)/2�(θ)

�(ν)�(α1θ)
γα1θ

′
(

1

2
r

)
, (11)
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and when α1θ
′ = k0,

G̃(r,0) = −ck0(α1)

�(ν0)

{
−

(
1

2
r

)2}k0
{

2 log

(
1

2
r

)
+ 1

α1
ψ

(
2k0 + d1

2α1

)
(12)

+ 1

α1
ψ(1) − ψ

(
k0 + 1

2
d1

)
− ψ(k0 + 1)

}
.

Finally, when α1 = 1 and θ ′ is not an integer,

G̃(r, s) = − π(d1+d2+2)/2

sin(πθ ′)�(θ ′ + 1)�(ν)22θ ′ (r
2 + s2)θ

′
, (13)

and when α1 = 1 and θ ′ is an integer,

G̃(r, s) = (−1)k+1π(d1+d2)/2

θ ′!�(ν)22θ ′ (r2 + s2)θ
′
log(r2 + s2). (14)

2.3. H -functions

The function G̃ can, in most cases, be written in terms of H -functions [14,20]. Section A.2 gives
the definition of H -functions as a contour integral and some other needed information about the
functions. If

� + m

α1
�= θ ′ for all whole numbers � and m, (15)

then (45) in Section A.2 is satisfied, and

H
2,1
2,2

⎛
⎜⎝z

∣∣∣∣∣∣∣
(1,1),

(
d1

2
,1

)
(

d1

2α1
,

1

α1

)
,

(
−θ ′, 1

α1

)
⎞
⎟⎠

is well defined. Since, by (47), � = 2
α1

− 2, which is negative for α1 > 1, [14], Theorem 1.4,
applies, yielding, for z �= 0,

H
2,1
2,2

⎛
⎜⎝z

∣∣∣∣∣∣∣
(1,1),

(
d1

2
,1

)
(

d1

2α1
,

1

α1

)
,

(
−θ ′, 1

α1

)
⎞
⎟⎠ =

∞∑
k=0

h1kz
−α1k, (16)

where

h1k = (−1)kα1�

(
d1 + 2k

2α1

)
�

(
−θ ′ + k

α1

)/(
k!�

(
d1

2
+ k

))
.
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Comparing this result to (10) yields (assuming (15))

G̃(r, s) = π(d1+d2)/2

�(ν)α1

(
1

2
s

)2θ ′

H
2,1
2,2

⎛
⎜⎝ ((1/2)s)2/α1

((1/2)r)2

∣∣∣∣∣∣∣
(1,1),

(
d1

2
,1

)
(

d1

2α1
,

1

α1

)
,

(
−θ ′, 1

α1

)
⎞
⎟⎠ , (17)

where this result holds for r = 0 by continuity. For the parameter values of the H -function
in (17), from (46) and (47) in Section 3.2, � < 0 and a∗ > 0, so that by [14], Theorem 1.11,
H

2,1
2,2 (z) has an asymptotic expansion as z → 0 for | arg z| < 1

2a∗π. To avoid complications, let
N0 be the set of nonnegative integers, assume θ /∈ N0 and that for all � ∈ N0, (θ ′ − �)α1 /∈ N0 and
(θ − �)α1 /∈ N. Then, as z → 0,

H
2,1
2,2

⎛
⎜⎝z

∣∣∣∣∣∣∣
(1,1),

(
d1

2
,1

)
(

d1

2α1
,

1

α1

)
,

(
−θ ′, 1

α1

)
⎞
⎟⎠ ∼

∞∑
�=0

{
h∗

1�z
�α1+d1/2 + h∗

2�z
(�−θ ′)α1

}
, (18)

where, using the duplication formula for �,

h∗
1� = (−1)�α1�(−θ − �)�((1/2)d1 + �α1)

�!�(−�α1)
(19)

= α1 sin(π�α1)�((1/2)d1 + �α1)�(�α1 + 1)

sin(πθ)�(θ + � + 1)�!
and

h∗
2� = (−1)�α1�(θ − �)�((� − θ ′)α1)

�!�(α1(θ − �))

= α1 sin{πα1(θ − �)}�((� − θ ′)α1)�((� − θ)α1 + 1)

sin(πθ)�(1 − θ + �)�! .

From (19), h∗
10 = 0 and, if α1 is an integer, h∗

1� = 0 for all �. For θ ∈ N0, [14], (1.8.2) applies,
yielding an asymptotic expansion with logarithmic terms, but the result is rather messy and is
omitted here.

When ( 1
2 s)2/α1/( 1

2 r)2 is small, (10) converges slowly and is numerically unstable. Specifically,
for any fixed m > α1θ

′ and r > 0, as s ↓ 0, the mth term in (10) tends to ±∞, even though
lims↓0 G̃(r, s) → G̃(r,0), which is finite. Thus, there must be a near canceling of large terms of
opposite signs in (10) for s small, so that high precision arithmetic would be needed to obtain
accurate results for s sufficiently small. Fortunately, the asymptotic expansion (18) can be used
to approximate G̃(r, s) for s small. Substituting (18) into (17) and considering r > 0 fixed,

G̃(r, s) ∼ π(d1+d2)/2

�(ν)α1

∞∑
�=0

{
h∗

1�

(
1

2
s

)2θ(1

2
r

)−d1

+ h∗
2�

(
1

2
r

)2α1θ
′}{

((1/2)s)2

((1/2)r)2α1

}�

(20)
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as s ↓ 0. Since h∗
10 = 0, when θ is not an integer,

G̃(r, s) =
	θ
+1∑
�=0

A�s
2� + Bγθ+1(s) + o(s2θ ) (21)

as s ↓ 0 for some constants (depending on r) A0, . . . ,A	θ
+1,B , where B = 0 if and only if
α1 is an integer. The asymptotic expansion (21) also holds when θ is an integer by [14], (1.8.2)
and (1.4.5).

It is apparent that (10) does not give a valid power series expansion for G̃ when α1 < 1, since
it is easy to show that the individual terms in the sum do not tend to 0 as m → ∞ for fixed and
positive r and s. Nevertheless, the representation in terms of H -functions given by (17) may still
be valid for α1 ≤ 1 when 2α1θ > d1 (so that θ ′ > 0). Excluding values of (α1, ν) for which (15)
is not satisfied, a natural conjecture is that (17) holds when α1 < 1 if 2α1θ > d1. A plausible
approach to proving this conjecture would be to use analytic continuation, but this would require
at the least extending the definition of H -functions to a strip of complex values of α1 containing
the positive real axis. Note that when α1 < 1, (47) implies � > 0 and, by [14], Theorem 1.3,
(18) becomes a convergent power series for H

2,1
2,2 . On the other hand, now (16) is no longer a

convergent power series, but, with a∗ defined as in (46), it is a valid asymptotic expansion as
z → ∞ for | arg z| < 1

2a∗π by [14], Theorem 1.7.
For α1 = 1, (17) can be directly verified when (15) holds. Specifically, for α1 = 1, using [14],

Property 2.2, the right-hand side of (17) reduces to

π(d1+d2)/2

�(ν)

(
1

2
s

)2θ ′

H
1,1
1,1

(
s2

r2

∣∣∣∣ (1,1)

(−θ ′,1)

)
. (22)

The parameter � defined in (47) equals 0 and, thus, one can show that the H -function has a
convergent power series given by [14], Theorem 1.3, when s < r and by [14], Theorem 1.4,
when s > r . Consider s < r and θ ′ /∈ N0. Then straightforward calculations yield that (22) equals

π(d1+d2)/2

�(ν)22θ ′ r2θ ′
∞∑

�=0

(−1)��(−θ ′ + �)

�!
(

s

r

)2�

= − π(d1+d2+2)/2

sin(πθ ′)�(θ ′ + 1)�(ν)22θ ′ r
2θ ′

∞∑
�=0

(
θ ′

�

)(
s

r

)2�

,

which, using the binomial series, equals (13). A similar argument shows (22) equals (13) for
s > r , and it additionally holds for s = r by continuity.

2.4. Consequences

One goal of this paper was to find a class of generalized covariance functions that has a mem-
ber satisfying (2) and (3) for all C1,C2, ζ1 and ζ2 positive. In fact, the functions of the form
G(b1x, b2y) with α1 ≥ 1 and b1 and b2 positive satisfy this requirement. To prove this, first
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suppose ζ1 �= ζ2 and, without loss of generality, take ζ1 > ζ2. Theorem 1 gives explicit ex-
pressions for positive constants D1 and D2 such that G(x,0) = D1γα1θ

′( 1
2 |x|) and G(0,y) =

D2γθ ′( 1
2 |y|). Setting θ ′ = ζ2 and α1 = ζ1/ζ2 achieves the desired degree of smoothness in all

directions. From (10), G̃(0, b2s) = D2(
1
2b2)

ζ2γζ2(s), so by appropriate choice of b2, one obtains
G̃(0, b2s) = C2γζ2(s). For ζ1 = α1θ

′ not an integer, by (11), G̃(b1r,0) = D1(
1
2b1)

ζ1γζ1(r), so by
appropriate choice of b1, one gets G̃(b1r,0) = C1γζ1(r). When ζ1 = α1θ

′ is an integer, by (12),
G̃(b1r,0) = D1(

1
2b1)

2ζ1γζ1(r) plus some constant times r2ζ1 , so that b1 can be chosen to make
G̃(b1r,0) = C1γζ1(r) plus some constant times r2ζ1 . When ζ1 = ζ2, set α1 = α2 = 1 and ζ1 =
ν − 1

2d1 − 1
2d2. By (13), there exists D > 0 such that G(b1x, b2y) = Dγζ1(

√|b1x|2 + |b2y|2). As
before, one can clearly choose b1 and b2 so that (2) and (3) are satisfied as long as one ignores
an even polynomial of degree 2ζ1 when ζ1 is an integer. Since a GC-k is only identified up to
even polynomials of degree at most 2k, it is fair to say that the class of generalized covariance
functions corresponding to (6) with α2 = 1 and α1 ≥ 1 includes members satisfying (2) and (3)
for all ζ1 ≥ ζ2,C1 and C2.

Now consider in what sense members of G achieve the goal, identified in Section 1, of being
smoother away from the origin than they are at the origin. If a function is not infinitely differen-
tiable in any direction at the origin but is infinitely differentiable everywhere but the origin, then
one might say without controversy that such a function is smoother away from the origin than at
the origin. Thus, when α1 ∈ N, the issue is settled. But when α1 is not an integer, B in (21) is
not 0, and G is not infinitely differentiable away from the origin.

One way to describe the smoothness of a function is by its pointwise Hölder exponent s.
Consider a function f from R

d to R, s > 0 and x0 ∈ R
d . Then f ∈ Cs(x0) if and only if there

exists ε > 0 and a polynomial P of degree less than 	s
 and a constant C such that |f (x)−P(x−
x0)| ≤ C|x − x0|s for all x satisfying |x − x0| < ε. The Hölder exponent of f at x0, which I will
denote by HE(x0, f ), equals sup{s: s ∈ Cs(x0)}. Because the degree of smoothness at the origin
of G varies in different directions, it will not suffice to compare the Hölder exponent at the origin
to the Hölder exponent elsewhere. To avoid the kind of anomaly described in Section 1, consider
the smoothness of G in each direction separately. Specifically, for vectors z0, z1 ∈ R

d1+d2 and
(generalized) covariance function K , consider the function of t ∈ R given by K̄(t; z0, z1) =
K(z0 + tz1). Define 0 to be a vector of zeroes whose length is apparent from context. Then I
claim that, in the present setting, a useful notion of K being smoother away from the origin than
at the origin is

HE(0, K̄(·; z0, z1)) > HE(0, K̄(·;0, z1)) for all z0 �= 0, z1 �= 0. (23)

To see why this definition might be appropriate here, consider the following generalization of
the example in the introduction. Suppose K is a covariance function or a generalized covariance
function of order 0 and, for nonzero z0 and z1 and 0 < α < 2, K(tz1) = C0 +C1|t |α +o(|t |α) and
K(z0 + tz1) = D0 +D1|t |α +D2t + o(|t |α) as t → 0 for some constants C0,C1,D0,D1 and D2
(possibly depending on z0 and z1) with C1 and D1 nonzero. It follows that HE(0, K̄(·;0, z1)) =
HE(0, K̄(·; z0, z1)) = α. Furthermore, limt→0 corr{Z(tz1) − Z(0),Z(z0 + tz1) − Z(z0)} =
D1/C1 �= 0. Now suppose the lack of smoothness of K at z0 is localized in the sense that there
exists ε > 0 such that HE(0, K̄(·; z0 + δz1, z1)) > α for all 0 < |δ| < ε, which, as far as I am
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aware, holds for any space–time covariance function that has been proposed in the literature.
This condition implies limt→0 corr{Z(tz1) − Z(0),Z(z0 + δz1 + tz1) − Z(z0 + δz1)} = 0 for
all 0 < |δ| < ε. Thus, when K is not smoother in the z1 direction at z0 than it is at 0, there is
a “discontinuity” in correlations of increments. If, instead, D1 = 0, which will be the case un-
der (23), then this limiting correlation is 0 for all δ in a neighborhood of 0 including δ = 0, and
no discontinuity occurs.

Define zj = (xj ,yj ) for j = 0,1 with xj ∈ R
d1 and yj ∈ R

d2 . For G as given in The-
orem 1, let Ḡ(t; z0, z1) = G(z0 + tz1). For z1 �= 0, by (10), HE(0, Ḡ(·;0, (x1,y1)) = 2θ ′ if
x1 �= 0 and HE(0, Ḡ(·;0, (0,y1)) = 2α1θ

′. Now consider z0 �= 0. If y0 �= 0, then it is pos-
sible to show (10) can be differentiated termwise and HE(0, Ḡ(·; (x0,y0), (x1,y1))) = ∞.
Next, HE(0, Ḡ(·; (x0,0), (0,y1))) = ∞ by (11) or (12). Finally, if x1 �= 0, then HE(0, Ḡ(·; (x0,

0), (x1,y1))) ≥ 2θ + 2 by (21). Because θ > θ ′, in all cases HE(0, Ḡ(·; z0, z1)) > HE(0, Ḡ(·;0,

z1)) + 2 for all nonzero z0 and z1, so (23) is more than satisfied.
It is not clear that satisfying (23), or even the stronger condition met by G here, will exclude

all possible “discontinuities” or other anomalies in the covariance structure, but it does avoid at
least the type considered here. It might be preferable to find covariance functions that satisfy (2)
and (3) and are infinitely differentiable away from the origin, but for ζ1, ζ2 and ζ1/ζ2 all irrational,
I am unaware of any generalized covariance functions that satisfy all of these conditions.

Next, consider the problem of the dimple in fully symmetric (even in both its arguments)
stationary space–time covariance functions described in [13]. A formal definition of the dimple
is given in [13], but the essential point is that the space–time covariance function K(x, t) has a
dimple in, say, the time lag t if, for some fixed spatial lag x, K(x, t) has a local minimum in t

at t = 0. This dimple implies that at the spatial lag x, correlation is stronger with both the near
future and the near past than with the present, and [13] argues that such a lack of monotonicity
in the covariance structure will often be undesirable. A dimple in the spatial lag can be defined
similarly.

For a GC-k with k > 0, it is not clear what one should mean by a dimple, but for k = 0, the
GC-0 that equals 0 at the origin is just minus the semivariogram for the process: 1

2 Var{Z(x, t) −
Z(0,0)} = −G(x, t). If the variogram is expected to increase as one moves “farther away” in
space–time, then GC-0s with dimples should be avoided.

Assume k0 = 0 or, equivalently, α1θ
′ < 1, so that G̃ is a GC-0. First, if α1 = 1, G̃(r, s) is a

decreasing function of
√

r2 + s2, and there is no dimple, so assume α1 > 1. In addition, assume θ

is not an integer so that (20) holds. To show that G̃(r, s) does not have a dimple, it suffices to
show that for every s ≥ 0, G̃(0, s) > G̃(r, s) for all r sufficiently small and, for every r ≥ 0,
G̃(r,0) > G̃(r, s) for all s sufficiently small. That G̃(0,0) = 0 is greater than G̃(r,0) and G̃(0, s)

for all positive r and s is immediate from (10) and (11). For fixed s > 0, from (10),

G̃(0, s) − G̃(r, s) = c1(α1)

4α1�(ν)
r2γθ ′−1/α1

(
1

2
s

)
+ O(r4)

as r ↓ 0. It follows from c1(α1) > 0 and 1/α1 −θ ′ > 0 that G̃(0, s) > G̃(r, s) for all r sufficiently
small. From (20), for fixed r > 0,

G̃(r,0) − G̃(r, s) = π(d1+d2)/2�(θ − 1)�((1 − θ ′)α1)

�(ν)�(α1(θ − 1))

(
1

2
r

)2α1(θ
′−1)(1

2
s

)2

+ o(s2)



398 M.L. Stein

as s ↓ 0. For θ > 1, G̃(r,0) − G̃(r, s) is clearly positive for all s sufficiently small, so now
consider 0 < θ < 1. In this case, �(θ − 1) < 0, so G̃(r,0) > G̃(r, s) follows for all s sufficiently
small if �(α1(θ − 1)) < 0, which holds if α1(θ − 1) ∈ (−2m − 1,−2m) for some nonnegative
integer m. This condition does not hold for all α1 and θ ′ for which α1 > 1 and α1θ

′ < 1, but
it does always hold when θ ′ ≥ 2

4+d1
. To prove this, it suffices to show α1(θ − 1) > −1, which

holds if θ ′ > 1 − (1 + 1
2d1)/α1. The curves θ ′ = 1 − (1 + 1

2d1)/α1 and θ ′ = 1/α1 intersect
at (α1, θ

′) = (2 + 1
2d2,2/(4 + d1)), from which it follows that α1(θ − 1) > −1 holds for all

θ ′ < 1/α1 whenever θ ′ ≥ 2
4+d1

. This lower bound is 2
5 for d1 = 1 and is smaller for larger d1.

The lower bound of 2
5 may not be too restrictive in practice: Brownian motion has generalized

covariance function proportional to γ1/2, and processes less smooth than Brownian motion are
somewhat uncommon in applications.

3. Discussion

For G as defined by (9), the series expansions (10) and (20) should, in principle, allow fast
and accurate calculation of G, but there do not appear to be any publicly available programs
for computing H -functions and writing general purpose code to carry out these calculations
would require a major effort. In particular, preliminary investigations suggest that considerable
care needs to be taken to piece together the convergent power series (10) and the asymptotic
expansion (20) to obtain accurate approximations for all values of the argument of the function.
Further work would also be needed to handle those values for (α1, ν) for which one of the
expansions has a singularity or near singularity, including values of α1 near 1.

Restricting α2 = 1 in (6) was essential to the derivation of series expansions for the resulting
generalized covariance functions. Model (6) was, in turn, a simplification of (5), which includes
two range parameters. Perhaps H -functions can be used to express, in at least some cases, the
(generalized) covariance functions corresponding to these more general models. However, even
the richer class of covariance functions given by (5) is inadequate for modeling many natural
processes. In particular, these covariance functions all satisfy G(x,y) = G(x,−y) and, hence, are
all what [7] calls fully symmetric. Any process with a predominant direction of flow will not be
fully symmetric, so this constraint is often inappropriate. Covariance functions that are not fully
symmetric can be generated from covariance functions that are [11,31], and these approaches
can, in principle, be applied to the models considered here. An easy extension of this model is to
allow for geometric anisotropies in either x or y by considering G̃(|Ax|, |By|) for any d1 × d1

matrix A and any d2 × d2 matrix B .
As noted in the Introduction, there has been quite a lot of research in recent years developing

new classes of space–time covariance functions. In many of these works, the focus has been on
obtaining simple closed form expressions for space–time covariance functions. Having closed
form expressions is certainly valuable in applying the models, but it is critical that any such
model provides a good description of the spatial-temporal variations of the process to which it
is to be applied. Comparing various models in a broad range of applications is one important
way to learn about which models will be of most use in practice, but it is also important to
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consider the theoretical properties of these models, such as their smoothness properties, both at
the origin and away from the origin, and the presence of dimples or other possible anomalies.
Finding covariance function models for space–time processes that allow for a different degree
of smoothness in space and in time, possess certain other desirable properties such as (4) and
are accurately computable using series expansions is a major challenge. The results obtained
here perhaps provide a first step to show that it may not be necessary to sacrifice desired the-
oretical properties of space–time models in order to gain computational tractability, although
admittedly quite a bit of work on numerical methods would be needed before the generalized
covariance functions proposed here could be used routinely (or even not so routinely) in prac-
tice.

Appendices

A.1. Proof of Theorem 1

To prove (10) for the process Z with spectral density (6), consider the process Z1(x1,y) =
Z((x1,0, . . . ,0),y), which has GC-k0 G1(x1,y) = G((x1,0, . . . ,0),y) = G̃(|x1|, |y|). Assume
for now that k0 = 	α1θ

′
 does not equal α1θ
′ so that α1θ

′ − 1 < k0 < α1θ
′. Then the process

Z1 is k0 times mean square differentiable in its first coordinate direction and, for m ≤ k0, denote
its mth mean square derivative process by Zm

1 (x1,y). The generalized covariance function for
Zm

1 (x1,y), denoted by Gm
1 (x1,y), can be chosen to satisfy

Gm
1 (x1,y) = (−1)m

∂2m

∂x2m
1

G1(x1,y). (24)

Now ∂2m+1

∂x2m+1
1

G1(0,y) = 0 for m < k0, so if one knew ∂2m

∂x2m
1

G1(0,y) for m ≤ k0, then G1(x1,y)

could be recovered from G
k0
1 (x1,y) by integration. Then, since G(x,y) has a version that only

depends on x through |x|, one can obtain G.
Suppose d1 > 1. The case d1 = 1 requires a slightly different but easier argument. The process

Z
k0
1 (x1,y) is an IRF-0, so its GC-0 can be taken to equal negative the semivariogram of the

process. Denoting |y| by s,

−G
k0
1 (x1,y)

=
∫

R
d1

∫
R

d2
(1 − eiτ1x1+iω′y)τ 2k0

1 (|τ |2α1 + |ω|2)−ν dω dτ

= πd2/2

2θ−1�(ν)

∫
R

d1

τ
2k0
1

|τ |2α1θ
{Mθ (0) − cos(τ1x1)Mθ (|τ |α1s)}dτ .
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Switching to hyperspherical coordinates with |τ | = u, τ1 = u cosφ1 and integrating over the
angles φ2, . . . , φd1−1 yields

−G
k0
1 (x1,y) = π(d1+d2−1)/2

2θ−2�(ν)�((d1 − 1)/2)

×
∫ ∞

0
u2k0−2α1θ

′−1
∫ π

0
cos2k0 φ1 sind1−2 φ1 (25)

× {Mθ (0) − cos(x1u cosφ1)Mθ (u
α1s)}dφ1 du.

Making the change of variables σ = cosφ1 and using [8], 3.251.1 and 3.771.4, and the series
expansion for the generalized hypergeometric function 1F2 yields∫ π

0
cos2k0 φ1 sind1−2 φ1{Mθ (0) − cos(x1u cosφ1)Mθ (u

α1s)}dφ1

= 2
∫ 1

0
σ 2k0(1 − σ 2)(d1−3)/2{Mθ (0) − cos(x1uσ)Mθ (u

α1s)}dσ

= B

(
k0 + 1

2
,
d1 − 1

2

)
(26)

×
{

Mθ (0) −1 F2

(
k0 + 1

2
; 1

2
, k0 + d1

2
;−x2

1u2

4

)
Mθ (u

α1s)

}

= B

(
k0 + 1

2
,
d1 − 1

2

)[
{Mθ (0) − Mθ (u

α1s)}

−
∞∑

�=1

(k0 + 1/2)�

(k0 + (1/2)d1)�(2�)! (−x2
1u2)�Mθ (u

α1s)

]
,

where B is the beta function.
The following properties of Mθ are used in the proof. For any θ > 0, as t ↓ 0,

Mθ (t) =
	θ
∑
r=0

Urt
2r + V γθ (t) + o(t2θ ) (27)

for appropriate values of the Ur s and V [30], Section 2.7. In addition, for any θ > 0, there exist
positive constants C and D (depending on θ ) such that

0 ≤ Mθ (t) ≤ Ce−Dt (28)

for all t ≥ 0. Furthermore, for all real θ and all t > 0,

d

dt
Mθ (t) = −t Mθ−1(t). (29)



Space–time intrinsic random functions 401

Assume s > 0 for now. The function u2k0−2α1θ
′−1{Mθ (0) − Mθ (u

α1s)} is integrable in u

over (0,∞) since, from (28) and k0 < α1θ
′, it is integrable over (0,1], and, from (27) and k0 >

α1θ
′ − 1, it is integrable over (1,∞). Furthermore,

∞∑
�=1

(k0 + 1/2)�

(k0 + (1/2)d1)�(2�)! (x
2
1u2)� ≤ cosh(x1u)

and cosh(x1u)Mθ (u
α1s) is integrable over (0,∞) for α1 > 1, so that

∞∑
�=1

(k0 + 1/2)�

(k0 + (1/2)d1)�(2�)! (−x2
1u2)�Mθ (u

α1s)

can be integrated termwise over (0,∞). Making the change of variables t = uα1 , integrating by
parts and using the definition of Mθ gives

∫ ∞

0
u2k0−2α1θ

′−1{Mθ (0) − Mθ (u
α1s)}du

= 1

α1

∫ ∞

0
t2k0/α1−θ ′−1{Mθ (0) − Mθ (ts)}dt

= − s2

2α1θ ′ − 2k0

∫ ∞

0
t2k0/α1−2θ ′+1 Mθ−1(ts)dt

= − sθ+1

2α1θ ′ − 2k0

∫ ∞

0
t (2k0+d1)/α1−θ Kθ−1(ts)dt.

Since (2k0 + d1)/α1 − θ > |1 − θ |, [8], 6.561.16, applies, and one obtains

∫ ∞

0
u2k0−2α1θ

′−1{Mθ (0) − Mθ (u
α1s)}du

(30)

= −2θ−2

α1
�

(
k0

α1
− θ ′

)
�

(
2k0 + d1

2α1

)(
1

2
s

)2θ ′−2k0/α1

.

Next, for � ≥ 1, again using the change of variables t = uα1 and [8], 6.561.16, gives

∫ ∞

0
u2k0+2�−2α1θ

′−1 Mθ (u
α1s)du

(31)

= 2θ−2

α1
�

(
k0 + �

α1
− θ ′

)
�

(
2k0 + 2� + d1

2α1

)(
1

2
s

)2θ ′−(2k0+2�)/α1

.
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For y �= 0, using (25), (26), (30) and (31),

G
k0
1 (x1,y)

= πd1+d2−1�((k0 + 1/2)

�(ν)�(k0 + (1/2)d1)α1

×
∞∑

�=0

(k0 + 1/2)�

(k0 + (1/2)d1)�(2�)!�
(

2k0 + 2� + d1

2α1

)
(−x2

1)�γθ ′−(k0+�)/α1

(
1

2
s

)
(32)

= 1

α1�(ν)

∞∑
�=0

(k0 + �)!(1/2)k0+�ck0+�(α1)

(2�)! (−x2
1)�γθ ′−(k0+�)/α1

(
1

2
s

)

= 1

α1�(ν)

∞∑
m=k0

m!(1/2)mcm(α1)

{2(m − k0)}! (−x2
1)�γθ ′−m/α1

(
1

2
s

)
.

Next consider Gm
1 (0,y) for m < k0. The process ∂m

∂xm
1

Z(x,y) has spectral density τ 2m
1 (|τ |2α1 +

|ω|2)−ν , and hence the process ∂m

∂xm
1

Z(0,y) = Zm
1 (0,y) considered just as a function of y ∈ R

d2

has spectral density

∫
R

d1

τ 2m
1

(|τ |2α1 + |ω|2)ν dτ

= 2π(d1−1)/2

�((d1 − 1)/2)

∫ ∞

0

∫ π

0

u2m+d1−1 cos2m φ1 sind1−2 φ1

(u2α1 + |ω|2)ν dφ1 du (33)

= π(d1−1)/2�(m + 1/2)B((2m + d1)/2α1, ν − (2m + d1)/2α1)

α1�(m + (1/2)d1)|ω|2ν−(2m+d1)/α1

by switching τ to hyperspherical coordinates and using [8], 3.241.4. The process Zm
1 (0,y) with

spectral density (33) is an IRF-(k0 − m) (it may be an IRF of lower order as well) and its corre-
sponding GC-(k0 − m) can be taken as [6], Chapter II, Section 3.3, equations (2) and (11),

Gm
1 (0,y) = cm(α1)m!�(m + 1/2)

π1/2α1�(ν)
γθ ′−m/α1

(
1

2
|y|

)
(34)

= cm(α1)m!(1/2)m

α1�(ν)
γθ ′−m/α1

(
1

2
|y|

)
.

To recover G1(x1,y) and hence G(x,y), repeatedly integrate (32) and use (34) to set the
boundary conditions. Specifically, G1(x1,y) must be of the form

G1(x1,y) =
k0−1∑
�=0

x2�
1 F�(y) + (−1)k0

∫ x1

0

∫ z1

0
· · ·

∫ z2k0−1

0
G

k0
1 (z2k0 ,y)dz2k0 · · · dz1
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for some suitable functions F0, . . . ,Fk0−1. Substituting the series for G
k0
1 in (32) into the pre-

ceding expression and integrating termwise, which is easily justified for s > 0 by dominated
convergence, yields

G1(x1,y) =
k0−1∑
�=0

x2�
1 F�(y)

(35)

+ 1

α1�(ν)

∞∑
m=k0

cm(α1)m!(1/2)m22m

(2m)!
{
−

(
1

2
x1

)2}m

γθ ′−m/α1

(
1

2
|y|

)
.

Elementary calculations demonstrate

m!(1/2)m22m

(2m)! = 1 (36)

for all m ∈ N0. For 0 ≤ m < k0, differentiating (35) 2m times, setting y = 0 and using (34)
and (36) gives

Fm(y) = (−1)m

(2m)! Gm
1 (0,y)

(37)

= (−1/4)mcm(α1)

α1�(ν)
γθ ′−m/α1

(
1

2
|y|

)
.

Substituting (36) and (37) into (35) yields

G1(x1,y) = 1

α1�(ν)

∞∑
m=0

{
−

(
1

2
x1

)}m

cm(α1)γθ ′−m/α1

(
1

2
|y|

)
,

and (10) follows from G1(x1,y) = G̃(|x1|, |y|).
To obtain an explicit expression for G̃(r,0), go back to (25) and change the order of integra-

tion. Integrating by parts and using [8], 3.761.4,∫ ∞

0
u2k0−2α1θ

′−1{1 − cos(x1u cosφ1)}du

= x1 cosφ1

2α1θ ′ − 2k0

∫ ∞

0
u2k0−2α1θ

′
sin(x1u cosφ1)du

= −�(2k0 − 2α1θ
′) sin{π(k0 − α1θ

′)}|x1 cosφ1|2α1θ
′−2k0 .

When k0 �= α1θ
′, substituting this result and Mθ (0) = 2θ−1�(θ) into (25) and integrating over φ1

yields

G
k0
1 (x1,0) = 2π(d1+d2−1)/2�(θ)�(α1θ

′ + 1/2)�(2k0 − 2α1θ
′)

�(ν)�(α1θ)

× cos(πα1θ
′)(−1)k0 |x1|2α1θ

′−2k0 .
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Now, �(2k0 − 2α1θ
′) = (2α1θ

′ − 2k0 + 1)2k0�(−2α1θ
′), so applying the duplication formula

for � to �(−2α1θ
′) and then the reflection formula to �(−α1θ

′ + 1
2 ) yields

G
k0
1 (x1,0)

= (−1)k0π(d1+d2)/2�(θ)�(−α1θ
′)(2α1θ

′ − 2k0 + 1)2k0

�(ν)�(α1θ)2α1θ
′ |x1|2α1θ

′−2k0 .

Integrating this expression 2k0 times and using the boundary condition Gm
1 (0,0) = 0 for m < k0

to make Gm
1 (0,y) continuous at y = 0 gives (11).

To show that (10) holds when k0 = α1θ
′, write G̃ν to make the dependence of G̃ on ν explicit

(but still suppressing the dependence on α1, d1 and d2). Define ν0 = (k0 + 1
2d1)/α1 + 1

2d2 and
view α1 as fixed. For any given ALC-k0, the last line of (9) is continuous as ν ↓ ν0, so the first
line is as well. Thus,

n∑
�,j=1

λ�λj G̃ν0(r�j , s�j ) = lim
ν↓ν0

n∑
�,j=1

λ�λj G̃ν(r�j , s�j ). (38)

Let M0 be the set of nonnegative integers m for which hm = (k0 − m)/α1 ∈ N0. This set is finite
and includes k0 as its largest element. Writing ν = ν0 + ε, define

Pε(r, s) =
∑

m∈M0

cm(α1)�(−hm − ε)

α1�(ν0 + ε)

{
−

(
1

2
r

)2}m(
1

2
s

)2hm

.

Because
∑n

�=1 λ�Z(x�) is an ALC-k0, for a, b ∈ N0 and a + b ≤ k0, subtracting any linear com-
bination of terms like r2a

�j s2b
�j from G̃ν(r�j , s�j ) on the right-hand side of (38) does not change the

result. Now α1 > 1 implies m + hm ≤ k0, so Pε(r�j , s�j ) is of this required form and

n∑
�,j=1

λ�λj G̃ν(r�j , s�j ) =
n∑

�,j=1

λ�λj {G̃ν(r�j , s�j ) − Pε(r�j , s�j )}.

Thus, to prove (10), it suffices to show that for all r, s nonnegative,

G̃ν0(r, s) = lim
ν↓ν0

{G̃ν(r, s) − Pε(r, s)}. (39)

For s > 0, for all ε sufficiently small,

G̃ν(r, s) − Pε(r, s) =
∞∑

m=0

cm(α1)

α1�(ν0 + ε)

{
−

(
1

2
r

)2}m

× �(−hm − ε)

(
1

2
s

)2hm
[(

1

2
s

)2ε

− 1{m ∈ M0}
]
.
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Dominated convergence justifies taking the limit ν ↓ ν0 (equivalently, as ε ↓ 0) inside this infinite
sum. For m /∈ M0, the limit is trivial, so consider m ∈ M0. By the reflection formula for �, for
n ∈ N0,

�(−n − ε) = π(−1)n+1

sin(πε)�(n + 1 + ε)
. (40)

Using this result and straightforward calculus yields

�(−hm − ε)

(
1

2
s

)2hm
{(

1

2
s

)2ε

− 1

}
→ γhm

(
1

2
s

)

as ν ↓ ν0, establishing (39) when s > 0.
It remains to establish (39) when s = 0 with G̃ν0(r,0) given by (12). For all ε sufficiently

small, applying (40) to �(−k0 − α1ε) and using �(1 − ε) = −ε�(−ε), for all ε sufficiently
small,

G̃ν(r,0) − Pε(r,0)

= (−1)k0+1π(d1+d2+2)/2�(θν)

sin(πα1ε)�(ν)�(α1θν)�(k0 + 1 + α1ε)

(
1

2
r

)2k0+2α1ε

− ck0(α1)�(−ε)

α1�(ν)

{
−

(
1

2
r

)2}k0

(41)

= −π(d1+d2)/2

�(ν)

{
−

(
1

2
r

)2}k0

×
{

π�(θν)

sin(πα1ε)�(α1θν)�(k0 + 1 + α1ε)

[{(
1

2
r

)2α1ε

− 1

}
+ 1

]

− �((d1 + 2k0)/2α1)�(1 − ε)

α1ε�(k0 + (1/2)d1)k0!
}
.

As ε ↓ 0,

π

sin(πα1ε)

{(
1

2
r

)2α1ε

− 1

}
→ 2 log

(
1

2
r

)
. (42)

By the definition of the digamma function ψ , �(x + ε) = �(x){1 + εψ(x)+ O(ε2)} as ε → 0 as
long as −x /∈ N0. Then

π�(θν)

sin(πα1ε)�(α1θν)�(k0 + 1 + α1ε)
− �((d1 + 2k0)/(2α1))�(1 − ε)

α1ε�(k0 + (1/2)d1)k0!
= �((d1 + 2k0)/(2α1))

k0!�(k0 + (1/2)d1)

×
[

1 + εψ((d1 + 2k0)/(2α1))

α1ε{1 + α1εψ(k0 + (1/2)d1)}{1 + α1εψ(k0 + 1)} − 1 − εψ(1)

α1ε

]
+ O(ε) (43)
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= �((d1 + 2k0)/(2α1))

k0!�(k0 + (1/2)d1)

×
{

1

α1
ψ

(
2k0 + d1

2α1

)
+ 1

α1
ψ(1) − ψ

(
k0 + 1

2
d1

)
− ψ(k0 + 1)

}
+ O(ε).

Thus, when k0 = α1θ
′ and G̃ν0(r,0) is defined as in (12), (41)–(43) imply (39) holds for s = 0.

A.2. Properties of H -functions

This Appendix provides some background material on H -functions and is taken from [14], Sec-
tion 1.1. Suppose m,n,p and q are integers satisfying 0 ≤ m ≤ q,0 ≤ n ≤ p, a1, . . . , ap, b1,

. . . bq are complex numbers and α1, . . . , αp,β1, . . . , βq are positive reals. Then the H -function
H

m,n
p,q is defined by, for complex z,

Hm,n
p,q

(
z

∣∣∣∣ (a1, α1), . . . , (ap,αp)

(b1, β1), . . . , (bq,βq)

)
(44)

= 1

2πi

∫
L

∏m
j=1 �(bj + βj s)

∏n
i=1 �(1 − aj + αj s)∏p

i=n+1 �(ai + αj s)
∏q

j=m+1 �(1 − bj + βj s)
z−s ds,

where [14], p. 2, gives the form of the contour L, and an empty product is defined to be 1. For
this integral to be well defined, none of the poles of the gamma functions in the two products in
the numerator of (44) may coincide, or

αi(bj + �) �= βj (ai − k − 1) (45)

for 1 ≤ i ≤ n,1 ≤ j ≤ m and all k, � ∈ N0. The validity of series expansions of H
m,n
p,q generally

depends on the signs of the following two quantities:

a∗ =
n∑

i=1

αi −
p∑

i=n+1

αi +
m∑

j=1

βj −
q∑

j=m+1

βj (46)

and

� =
q∑

j=1

βj −
p∑

i=1

αi, (47)

where an empty sum is defined to be 0.
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