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We propose a flexible stochastic framework for modeling the market share dynamics over time in a multiple
markets setting, where firms interact within and between markets. Firms undergo stochastic idiosyncratic
shocks, which contract their shares, and compete to consolidate their position by acquiring new ones in both
the market where they operate and in new markets. The model parameters can meaningfully account for
phenomena such as barriers to entry and exit, fixed and sunk costs, costs of expanding to new sectors with
different technologies and competitive advantage among firms. The construction is obtained in a Bayesian
framework by means of a collection of nonparametric hierarchical mixtures, which induce the dependence
between markets and provide a generalization of the Blackwell–MacQueen Pólya urn scheme, which in
turn is used to generate a partially exchangeable dynamical particle system. A Markov Chain Monte Carlo
algorithm is provided for simulating trajectories of the system, by means of which we perform a simulation
study for transitions to different economic regimes. Moreover, it is shown that the infinite-dimensional prop-
erties of the system, when appropriately transformed and rescaled, are those of a collection of interacting
Fleming–Viot diffusions.

Keywords: Bayesian nonparametrics; Gibbs sampler; interacting Fleming–Viot processes; interacting
Pòlya urns; market dynamics; particle system; species sampling models

1. Introduction

The idea of explaining firm dynamics by means of a stochastic model for the market evolution
has been present in the literature for a long time. However, only recently, firm-specific stochastic
elements have been introduced to generate the dynamics. Jovanovic [26] was the first to formu-
late an equilibrium model where stochastic shocks are drawn from a distribution with known
variance and firm-specific mean, thus determining selection of the most efficient. Later Ericson
and Pakes [12] provide a stochastic model for industry behavior which allows for heterogeneity
and idiosyncratic shocks, where firms invest and the stochastic outcome determines the firm’s
success, thus accounting for a selection process which can lead to the firm’s exit from the mar-
ket. Hopenhayn [24] performs steady state analysis of a dynamic stochastic model which allows
for entry, exit and heterogeneity. In [38] a stochastic model for market share dynamics, based
on simple random walks, is introduced. The common feature of this non-exhaustive list is that,
despite the mentioned models being inter-temporal and stochastic, the analysis and the explicit
description of the model dynamics are essentially done at equilibrium, thus projecting the whole
construction onto a static dimension and accounting for time somehow implicitly. Indeed, the
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researcher usually finds herself before the choice between a dynamic model with a representa-
tive agent and a steady-state analysis of an equilibrium model with heterogeneity. Furthermore,
relevant for our discussion are two technical difficulties with reference to devising stochastic
models for market share dynamics: the interdependence of market shares, and the fact that the
distribution of the size of shocks to each firm’s share is likely to depend on that firm’s current
share. As stated in [38], these together imply that an appropriate model might be one in which
the distribution of shocks to each firm’s share is conditioned on the full vector of market shares
in the current period.

The urge to overcome these problems from an aggregate perspective, while retaining the micro
dynamics, has lead to a recent tendency of borrowing ideas from statistical physics for modeling
certain problems in economics and finance. A particularly useful example of these tools is given
by interacting particle systems, which are arbitrary-dimensional models describing the dynamic
interaction of several variables (or particles). These allow for heterogeneity and idiosyncratic
stochastic features but still permit a relatively easy investigation of the aggregate system prop-
erties. In other words, the macroscopic behavior of the system is derived from the microscopic
random interactions of the economic agents, and these techniques allow us to keep track of the
whole tree of outcomes in an inter-temporal framework. A recent example of such an approach
is given in [5], where interacting particle systems are used to model the propagation of financial
distress in a network of firms. Another example is [36], which studies limit theorems for the pro-
cess of empirical measures of an economic model driven by a large system of agents that interact
locally by means of mechanisms similar to what, in population genetics, are called mutation and
recombination.

Here we propose a Bayesian nonparametric approach for modeling market share dynamics by
constructing a stochastic model with interacting particles which allows us to overcome the above
mentioned technical difficulties. In particular, a nonparametric approach allows us to avoid any
unnecessary assumption on the distributional form of the involved quantities, while a Bayesian
approach naturally incorporates probabilistic clustering of objects and features conditional pre-
dictive structures, easily admitting the representation of agents’ interactions based on the current
individual status. Thus, with respect to the literature on market share dynamics, we model time
explicitly, instead of analyzing the system at equilibrium, while retaining heterogeneity and con-
ditioning on the full vector of market shares. And despite the different scope, with respect to the
particles approach in [36], we instead consider many subsystems with interactions among each
other and thus obtain a vector of dependent continuous-time processes. In constructing the model,
the emphasis will be on generality and flexibility, which necessarily implies a certain degree of
stylization of the dynamics. However, this allows the model to be easily adapted to represent di-
verse applied frameworks, such as, for example, population genetics, by appropriately specifying
the corresponding relevant parameters. As a matter of fact, we will follow the market share mo-
tivation throughout the paper, with the parallel intent of favoring intuition behind the stochastic
mechanisms. A completely micro-founded economic application will be provided in a follow-up
paper [32]. However, besides the construction, the present paper includes an asymptotic distribu-
tional result which shows weak convergence of the aggregate system to a collection of dependent
diffusion processes. This is a result of independent mathematical interest, relevant, in particular,
for the population genetics literature, where our construction can be seen as a countable approx-
imation of a system of Fleming–Viot diffusions with mutation, selection and migration (see [6]).
Appendix A includes some basic material on Fleming–Viot processes.
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Finally, it is worth mentioning that our approach is also allied to recent developments in the
Bayesian nonparametric literature: although structurally different, our model has a natural in-
terpretation within this field as belonging to the class of dependent processes, an important line
of research initiated in the seminal papers of [30,31]. Among others, we mention interesting
dependent models developed in [9–11,35,39] where one can find applications to epidemiology,
survival analysis and functional data analysis. See the monograph [23] for a recent review of the
discipline. Although powerful and flexible, Bayesian nonparametric methods have not yet been
extensively exploited for economic applications. Among the contributions to date, we mention
[22,27,33] for financial time series, [19,21] for volatility estimation, [28] for option pricing and
[3,8] for discrete choice models, [20] for stochastic frontier models. With respect to this litera-
ture, the proposed construction can be seen as a dynamic partially exchangeable array, so that
the dependence is meant both with respect to time and in terms of a vector of random probability
measures.

To be more specific, we introduce a flexible stochastic model for describing the time dynamics
of the market concentration in several interacting, self-regulated markets. A potentially infinite
number of companies operate in those markets where they have a positive share. Firms can enter
and exit a market, and expand or contract their share in competition with other firms by means
of endogenous stochastic idiosyncratic shocks. The model parameters allow for barriers to entry
and exit, costs of expansion in new markets (e.g., technology conversion costs), sunk costs and
different mechanisms of competitive advantage. The construction is achieved by first defining
an appropriate collection of dependent nonparametric hierarchical models and deriving a related
system of interacting generalized Pòlya urn schemes. This underlying Bayesian framework is de-
tailed in Section 2. The collection of hierarchies induces the dependence between markets and al-
lows us to construct, in Section 3, a dynamic system, which is driven by means of Gibbs sampling
techniques [18] and describes how companies interact among one another within and between
markets over time. These undergo stochastic idiosyncratic shocks that lower their current share
and compete to increment it. An appropriate set of parameters regulates the mechanisms through
which firms acquire and lose shares and determines the competitive selection in terms of relative
strengths as functions of their current position in the market and, possibly, the current market
configuration as a whole. For example, shocks can be set to be random in general but determinis-
tic when a firm crosses upwards some fixed threshold, meaning that some antitrust authority has
fixed an upper bound on the market percentage which can be controlled by a single firm, which
is thus forced away from the dominant position. The competitive advantage allows for a great
degree of flexibility, involving a functional form with very weak assumptions. In Section 4 the
dynamic system is then mapped into a measure-valued process, which pools together the local
information and describes the evolution of the aggregate markets. The system is then shown to
converge in distribution, under certain conditions and after appropriate rescaling, to a system of
dependent diffusion processes, each with values in the space of probability measures, known as
interacting Fleming–Viot diffusions. In Section 5 two algorithms which generate sample paths of
the system are presented, corresponding to competitive advantage directly or implicitly modeled.
A simulation study is then performed to explore dynamically different economic scenarios with
several choices of the model parameters, investigating the effects of changes in the market char-
acteristics on the economic dynamics. Particular attention is devoted to transitions of economic
regimes as dependent on specific features of the market, on regulations imposed by the policy
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maker or on the interaction with other markets with different structural properties. Finally, Ap-
pendix A briefly recalls some background material on Gibbs sampling, Fleming–Viot processes
and interacting Fleming–Viot processes, while all proofs are deferred to Appendix B.

2. The underlying framework

In this section we define a collection of dependent nonparametric hierarchical models, which will
allow a dynamic representation of the market’s interaction.

Let α be a finite non-null measure on a complete and separable space X endowed with its
Borel sigma algebra X , and consider the Pòlya urn for a continuum of colors, which represents
a fundamental tool in many constructions of Bayesian nonparametric models. This is such that
X1 ∼ α(·)/α(X), and, for n ≥ 2,

Xn|X1, . . . ,Xn−1 ∼ α(·) + ∑n−1
i=1 δXk

(·)
α(X) + n − 1

, (1)

where δy denotes a point mass at y. We will denote the joint law of a sequence (X1, . . . ,Xn)

from (1) with Mα
n , so that

Mα
n = α

α(X)

n∏
i=2

α + ∑
k<i δXk

α(X) + i − 1
. (2)

In [2] it is shown that this prediction scheme is closely related to the Dirichlet process prior,
introduced by [16]. A random probability measure P on (X,X ) is said to be a Dirichlet process
with parameter measure α, henceforth denoted P ∼ D(·|α), if for every k ≥ 1 and every mea-
surable partition B1, . . . ,Bk of X, the vector (P (B1), . . . ,P (Bk)) has Dirichlet distribution with
parameters (α(B1), . . . , α(Bk)).

Among the various generalizations of the Pòlya urn scheme (1) present in the literature, a
recent extension given in [37] will be particularly useful for our construction. Consider, for every
n ≥ 1, the joint distribution

qn(dx1, . . . ,dxn) ∝ pn(dx1, . . . ,dxn)

n∏
k=1

βn(xk), (3)

where βn is a given bounded measurable function on X. A representation for (3) can be provided
in terms of a Dirichlet process mixture model [29]. In particular, it can be easily seen that when
pn ≡ Mα

n in (3), the predictive distribution for Xi , given x(−i) = (x1, . . . , xi−1, xi+1, . . . , xn), is

qn,i

(
dxi |x(−i)

) ∝ βn(xi)α(dxi) +
n∑

k �=i

βn(xi)δxk
(dxi). (4)

This can be thought of as a weighted version of (1), which is recovered when βn ≡ 1 for all
n ≥ 1. A more general version of (4) can be obtained by making βn depend on the whole vector
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and thus allowing for a broad range of interpretations. See the discussion following (18) for this
and for a more detailed interpretation of (4) in the context of the present paper.

Consider now the following setting. For each n, let (X1, . . . ,Xn) ∈ X
n be an n-sized sample

from Mα
n , and let

αx1,...,xn(dy) = α(dy) +
n∑

k=1

δxk
(dy). (5)

Define the double hierarchy

X1, . . . ,Xn|P i.i.d.∼ P, P ∼ D(·|α),
(6)

Y1, . . . , Yn|Qn
i.i.d.∼ Qn, Qn ∼ D(·|αx1,...,xn).

Here (X1, . . . ,Xn) are drawn from a Dirichlet process P ∼ D(·|α) and (Y1, . . . , Yn), given
(X1, . . . ,Xn), are drawn from a Dirichlet process Qn := Q|(X1, . . . ,Xn) ∼ D(·|αX1,...,Xn). It
can be easily seen that the joint law of (Y1, . . . , Yn) conditional on (X1, . . . ,Xn) is Mαx1,...,xn

n ,
with Mα

n as in (2). The following result, stated here for ease of reference, can be found in [41].

Lemma 2.1. Let Mα
n be as in (2). Then

∫
Xn

Mαx1,...,xn
n (dy1, . . . ,dyn)Mα

n(dx1, . . . ,dxn) = Mα
n(dy1, . . . ,dyn). (7)

In particular, Lemma 2.1 yields a certain symmetry in (6), so that we could also state that the
joint law of (X1, . . . ,Xn) conditional on (Y1, . . . , Yn) is Mαy1,...,yn

n . Denote x = (x1, . . . , xn) and
extend (3) to

qn(dx) ∝ pn(dx)

n∏
k=1

βn(xk), qn(dy) ∝ pn(dy)

n∏
k=1

βn(yk).

From (4), when (X1, . . . ,Xn) and (Y1, . . . , Yn) come from (6) we have for 1 ≤ i ≤ n

q2n,i

(
dxi |x(−i),y

) ∝ βn(xi)αy1,...,yn(dxi) +
n∑

k �=i

βn(xk)δxk
(dxi) (8)

and similarly for yi . It is now straightforward to iterate the above argument and allow for an
arbitrary number of dependent hierarchies. Denote xr = (xr

1, . . . , xr
n) and αxr = αxr

1 ,...,xr
n
, where

r, r ′, r ′′ belong to some finite index set I , whose cardinality is denoted #I . Then, for every n ≥ 1,
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let

Xr |P i.i.d.∼ P, P ∼ D(·|α),

Xr |P r i.i.d.∼ P r, P r ∼ D(·|αxr ),

Xr ′′ |P r ′,r ′′ i.i.d.∼ P r ′,r ′′
, P r ′,r ′′ ∼ D(·|αxr ,xr′ ),

...
...

(9)

where the dimension subscript n has been suppressed in Xr ,Xr ′
,Xr ′′

, . . . , for notational simplic-
ity. Denote now with

Dn = n · #I (10)

the total number of components in (9). The joint law of the Dn items in (9) can be written

Mα
n(dxr )Mαxr

n (dxr ′
)M

α
xr ,xr′

n (dxr ′′
) · · · , (11)

where, in view of Lemma 2.1, (11) is invariant with respect to the order of r, r ′, r ′′, . . . . With a
slight abuse of notation, define

I(−r) = {xr ′
: r ′ ∈ I, r ′ �= r}, (12)

to be the set of all system components without the vector xr , and

I(−xr
i ) = {xr ′

: r ′ ∈ I} \ {xr
i } (13)

to be the set of all system components without the item xr
i . Analogously to (8) in this enlarged

framework, the predictive law for xr
i , conditional on the rest of the system, can be written

q
Dn,i

(dxr
i |I(−xr

i )) ∝ βn(x
r
i )αI(−r)

(dxr
i ) +

n∑
k �=i

βn(x
r
k )δxr

k
(dxr

i ), (14)

where the interpretation of αI(−r)
is clear from (5) and (12). Note that this predictive law reduces

to (1) when βn ≡ 1 and αI(−r)
≡ α. Expression (14) will be the key for the definition of the market

dynamics by means of an interacting system of particles. A detailed interpretation for qDn,i will
be provided in the following section. See (18) and the following discussion.

To conclude the section, it is worth noting that (9) generates a partially exchangeable array,
where partial exchangeability is intended in the sense of de Finetti (see, e.g., [4]). That is, if
r, r ′, r ′′ identify rows, then the system components are row-wise exchangeable but not exchange-
able.
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3. Dynamic models for market evolution

In this section we define a dynamical model for the temporal evolution of the firms’ market
shares in multiple interacting markets. The model can be regarded as a random element whose
realizations are right-continuous functions from [0,∞) to the space (XDn,X Dn), Dn ∈ N being
(10), and we refer to it as a particle system, since it explicitly models the evolution of the share
units, or particles, in several markets. For ease of presentation, we approach the construction
by first considering a single market for a fixed number n of share units, and then extend it to a
collection of markets. The investigation of the asymptotic properties as n → ∞ is, instead, the
object of Section 4.

For any fixed n ≥ 1, consider a vector x = x(n) = (x1, . . . , xn) ∈ X
n, and let (x∗

1 , . . . , x∗
Kn

)

denote the Kn ≤ n distinct values in x, with x∗
j having multiplicity nj . The elements of

(x∗
1 , . . . , x∗

Kn
) represent the Kn firms operating in the market at a given time. Here x∗

j is a random
label to be seen as a unique firm identifier. The vector x represents the current market configu-
ration, carrying implicitly the information on the shares. Namely, the fraction of elements in x
equal to x∗

j is the market share possessed by firm j . Here n represents the level of share frac-
tionalization in the market. Dividing the market into n fractions is not restrictive, since any share
can be approximated by means of a sufficiently large n. See Remark 5.1 below for a discussion
of the implications of this assumption on the computational costs.

Define now a Markov chain taking values in X
n as follows. At each step an index i is chosen

from {1, . . . , n} with probability γn,i ≥ 0 for i = 1, . . . , n, with
∑n

i=1 γn,i = 1. Equivalently, let
γj (nn) be the probability that firm x∗

j loses an nth fraction of its market share at a certain tran-
sition, where γj (nn) depends on the frequencies nn = (n1, . . . , nKn). That is, firm x∗

j undergoes
a shock whose probability is idiosyncratic, depending on the firm itself and on the current mar-
ket configuration, summarized by the vector of frequencies. Different choices of γj (nn) reflect
different market regulations, possibly imposed by the policy maker. We provide some examples:

(1) γj (nn) = 1/Kn: neutrality. All firms have equal probability of undergoing a shock;
(2) γj (nn) = nj/n: firms with higher shares are the weakest, with a flattening effect on the

share distribution. This parametrization is also useful in population genetics contexts,
where particles represent individuals;

(3) γj (nn) = (1 − nj/n)/(Kn − 1) when Kn ≥ 2: firms with higher shares are the strongest.
The probability of losing shares is decreasing in the firms’ positions in the market;

(4) γj (nn) = 1(maxi ni ≤ nC)γ̃j (nn) + 1(nj > nC) for some constant 0 < C < 1, where
1(A) is the indicator function of the event A. The probability of selecting x∗

j is γ̃j (nn)

provided no firm controls more than C% of the market. If firm x∗
j controls more than

C% of the market, at the following step, x∗
j is selected with probability one. Thus C is

an upper bound imposed by the policy maker to avoid dominant positions. Incidentally,
there is a subtler aspect of this mechanism which is worth commenting upon. It will be
seen later that there is positive probability that the same firm acquires the vacant share
again, but this only results in picking again x∗

j with probability one, until the threshold C

is crossed downwards. This seemingly anomalous effect can be thought of as the viscosity
with which a firm in a dominant position gets back to a legitimate status when condemned
by the antitrust authority, which in no real world occurs instantaneously.
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Suppose now xi = x∗
j has been chosen in x. Once firm x∗

j looses a fraction of its share, the
next state of the chain is obtained by sampling a new value for Xi from (4), leaving all other
components unchanged. Hence the ith fraction of share is reallocated, according to the predictive
distribution of Xi |x(−i), either to an existing firm or to a new one entering the market.

Remark 3.1. The above Markov chain can also be thought of as generated by a Gibbs sam-
pler on qn(dx1, . . . ,dxn). This consists of sequentially updating one randomly selected compo-
nent at a time in (x1, . . . , xn) according to the component-specific full conditional distribution
qn,i(dxi |x(−i)). The Gibbs sampler is a special case of a Metropolis–Hastings Markov chain
Monte Carlo algorithm, and, under some assumptions satisfied within the above framework,
yields a chain which is reversible with respect to qn(dx1, . . . ,dxn), hence also stationary. See
[18] for details and Appendix A for a brief account.

Consider now an arbitrary collection of markets, indexed by r, r ′, r ′′, . . . ∈ I , so that the total
size of the system is (10), and extend the construction as follows. At each transition, a market r

is selected at random with probability �r , and a component of (xr
1, . . . , xr

n) is selected at random
with probability γ r

n,i . The next state is obtained by setting all components of the system, different
from xr

i , equal to their previous state, and by sampling a new value for xr
i from (14). Choose now

αI(−r)
(dy) = θπν0(dy) + θ(1 − π)

∑
r ′∈I

m(r, r ′)μr ′(dy), (15)

where θ > 0, π ∈ [0,1], ν0 is a non-atomic probability measure on X,

μr ′ = n−1
n∑

i=1

δ
xr′
i

(16)

and m(r, r ′) : I × I → [0,1] is such that

m(r, r) = 0,
∑
r ′∈I

m(r, r ′) = 1. (17)

In this case (14) becomes

q
Dn,i

(dxr
i |I(−xr

i )) ∝ θπβn(x
r
i )ν0(dxr

i )
(18)

+ θ(1 − π)βn(x
r
i )

∑
r ′∈I

m(r, r ′)μr ′(dxr
i ) +

n∑
k �=i

βn(x
r
k )δxr

k
(dxr

i )

with normalizing constant q̄
Dn,i

= O(n) when βn = 1 + O(n−1). By inspection of (18), there are
three possible destinations for the allocation of the vacant share:

(i) A new firm is created and enters the market. The new value of the location xr
i is sampled

from ν0, which is non-atomic, so that xr
i has (almost surely) never been observed. Here ν0

is common to all markets. The possibility of choosing different ν0,r , r ∈ I , is discussed
in Section 5 below.
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(ii) A firm operating in the same market r expands its share. The location is sampled from
the last term, which is a weighted empirical measure of the share distribution in market
r , obtained by ignoring the vacant share unit xr

i .
(iii) A firm operating in another market r ′ either enters market r or expands its current position

in r . The location is sampled from the second term. In this case, an index r ′ �= r is chosen
according to the weights m(r, ·); then within r ′ a firm xr ′

j∗ is chosen according to the
weighted empirical measure

μr ′(dy) = n−1
n∑

k=1

βn(x
r ′
k )δ

xr′
k
(dy).

If the cluster associated to xr
i has null frequency in the current state, we have an entrance

from r ′; otherwise, we have a consolidation in r of a firm that operates, at least, on both
those markets.

We can now provide interpretation for the model parameters:

(a) θ governs barriers to entry: the lower the θ , the higher the barriers to entry, both for
entrance of new firms and for those operating in other markets.

(b) π regulates sunk costs: given θ , a low π makes expansions from other sectors more likely
than start-up of new firms, and vice versa.

(c) m(r, ·) allows us to set the costs of expanding to different sectors. For example, it might
represent costs of technology conversion a firm needs to sustain or some regulation con-
straining its ability to operate in a certain market. Tuning m(·, ·) on the base of some
notion of distance between markets allows us to model these costs, so that a low m(r, r ′)
implies, say, that r and r ′ require very different technologies, and vice versa.

(d) βn is probably the most flexible parameter of the model, which, due to the minimal as-
sumptions on its functional form (see Section 2), can reflect different features of the mar-
ket, implying several possible interpretations. For example, it might represent competi-
tive advantage. Since βn assigns different weights to different locations of X, the higher
βn(x

r
j∗), the more favored is xr

j∗ when competing with the other firms in the same market.
Here, and later, xr

j∗ denotes the j th firm in market r . It is, however, to be noted that set-
ting β ≡ 1 does not imply competitive neutrality among firms, as the empirical measure
implicitly favors those with higher shares. More generally, observe that the model allows
us to consider a weight function of type βn(x

r
k ,μr), where μr is the empirical measure

of market r , making βn depend on the whole current market configuration and on xr
k ex-

plicitly. This indeed allows for multiple interpretations and to arbitrarily set how firms
relate to one another when competing in the same market. For example, this more general
parametrization allows us to model neutrality among firms by setting βn(x

r
k ,μr) = 1/nr

j ,
with nr

j being the number of share units possessed by firm j in market r .
(e) Weights γn,i can model barriers to exit, if appropriately tuned (see also points (1) to (4)

above). For example, setting γj (nn) very low (null) whenever nj , or nj/n, is lower than a
given threshold makes the exit of firm xr

j∗ very unlikely (impossible).

The function βn, in point (d) above, will represent the crucial quantity which will be used for
introducing explicitly the micro-foundation of the model. However, we do not pursue this here
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since we focus on generality and adaptability of the model. The micro-foundation will be the
object of a subsequent work.

4. Infinite dimensional properties

From a qualitative point of view the outlined discrete-time construction would be enough for
many applications. Indeed Section 5 below presents two algorithms which generate realizations
of the system and are used to perform a simulation study, based on the above description. It is,
however, convenient to embed the chain in continuous time, which makes the investigation of
its properties somewhat simpler and leads to a result of independent mathematical interest. This
will enable us to show that an appropriate transformation of the continuous time chain converges
in distribution to a well-known class of processes which possess nice sample path properties. To
this end, superimpose the chain to a Poisson point process with intensity λn, which governs the
waiting times between points of discontinuity. The following proposition identifies the generator
of the resulting process under some specific assumptions which will be useful later. Recall that
the infinitesimal generator of a stochastic process {Z(t), t ≥ 0} on a Banach space L is the linear
operator A defined by

Af = lim
t↓0

1

t

[
E[f (Z(t))|Z(0)] − f (Z(0))

]
with domain given by the subspace of all f ∈ L, for which the limit exists. In particular, the
infinitesimal generator carries all the essential information about the process, since it determines
the finite-dimensional distributions. Before stating the result, we need to introduce some notation.
Let B(X) be the space of bounded measurable functions on X, and (�r)r∈I be a sequence with
values in the corresponding simplex

�#I =
{
(�r)r∈I : ρr ≥ 0,∀r ∈ I,

∑
r∈I

�r = 1

}
. (19)

Furthermore, let q
Dn,i

be as in (18), with q̄
Dn,i

its normalizing constant, and let

βn(z) = 1 + σ(z)/n, σ ∈ B(X), (20)

Cn,r,i = λn�rγ
r
n,i/q̄Dn,i

. (21)

Define also the operators

ηi(x|z) = (x1, . . . , xi−1, z, xi+1, . . . , xn), (22)

Mng(w) =
∫

[g(y) − g(w)](1 + σ(y)/n
)
ν0(dy), g ∈ B(X), (23)

Gn,r ′
g(w) =

∫
[g(y) − g(w)](1 + σ(y)/n

)
μr ′(dy), g ∈ B(X), (24)
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and denote by

ηri , Mn
ri
f, Gn,r ′

ri
f (25)

such operators as applied to the ith coordinate of those in x which belong to r . For instance,
if y = (yr ′

1 , yr
2, yr

3, yr ′
4 ), where y2, y3 belong to market r and the others to r ′, then ηr2(y|z) =

η3(y|z) = (yr ′
1 , yr

2, z, yr ′
4 ).

Proposition 4.1. Let X(Dn)(·) = {X(Dn)(t), t ≥ 0} be the right-continuous process with values
in X

Dn which updates one component according to (18) at each point of a Poisson point process
with intensity λn. Then X(Dn)(·) has infinitesimal generator, for f ∈ B(XDn), given by

ADnf (x) =
∑
r∈I

{
θπ

n∑
i=1

Cn,r,iM
n
ri
f (x)

+ θ(1 − π)
∑
r ′

m(r, r ′)
n∑

i=1

Cn,r,iG
n,r ′
ri

f (x)

(26)
+

∑
1≤k �=i≤n

Cn,r,i[f (ηri (x|xr
k )) − f (x)]

+ 1

n

∑
1≤k �=i≤n

Cn,r,iσ (xr
k )[f (ηri (x|xr

k )) − f (x)]
}

.

With respect to the market dynamics, generator (26) can be interpreted as follows. The first
term governs the creation of new firms, obtained by means of operator (23) which updates with
new values from ν0. The second regulates the entrance of firms from other markets, via operator
(24) and according to the “distance” kernel m(·, ·). The last two terms deal with the expansion of
firms in the same market. These parallel, respectively, points (i), (iii) and (ii) above.

Consider now the probability-measure-valued system associated with X(Dn)(·), that is,
Y (n)(·) = {Y (n)(t), t ≥ 0}, where

Y (n)(t) = (μr(t),μr ′(t), . . .) (27)

and μr is as in (16). Y (n)(t) is thus the collection of the empirical measures associated to each
market, which provides aggregate information on the share distributions at time t . The following
result identifies the generator of Y (n)(·), for which we need some additional notation. Let

n[k] = n(n − 1) · · · (n − k + 1), n[0] = 1. (28)

For every sequence (r1, . . . , rm) ∈ I m, m ∈ N, and given r ∈ I , define kr = ∑m
j=1 1(rj = r) to be

the number of elements in (r1, . . . , rm) equal to r . Define also μ
(kr )
r and μ(m) to be the probability

measures

μ(kr )
r = 1

n[kr ]

∑
1≤ir,1 �=···�=ir,kr ≤n

δ(xr
ir,1

,...,xr
ir,kr

), (29)
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μ(m) =
∏
r∈I

μ(kr )
r , (30)

and let

φm(μ) =
∫

f dμ(m), f ∈ B(Xm). (31)

Finally, denote σrk (·) = σ(xr
k ) and

rk,i = (rk, ri), (32)

with ri as in (25), and define the map �ki :B(Xn) → B(Xn−1) by

�kif (x1, . . . , xn) = f (x1, . . . , xi−1, xk, xi+1, . . . , xn). (33)

Proposition 4.2. Let Y (n)(·) be as in (27). Then, for φm(μ) as in (31), m ≤ Dn and under the
hypothesis and notation of Proposition 4.1, the generator of Y (n)(·) is

ADnφm(μ) =
∑
r∈I

{
θπ

m∑
i=1

Cn,r,i

∫
Mn

ri
f dμ(m)

+ θ(1 − π)
∑
r ′

m(r, r ′)
m∑

i=1

Cn,r,i

∫
Gn,r ′

ri
f dμ(m)

+
∑

1≤k �=i≤m

Cn,r,i

∫
(�rk,i

f − f )dμ(m) (34)

+ 1

n

m∑
i=1

kr∑
k �=i

Cn,r,i

∫
σrk (·)(�rk,i

f − f )dμ(m)

+ n − kr

n

m∑
i=1

Cn,r,i

∫
σm+1(·)(�m+1,ri f − f )dμ(m+1)

}
.

The interpretation of (34) is similar to that of (26), except that (34) operates on the product
space P(X)#I instead of the product space of particles. Let Pn(X) ⊂ P(X) be the set of purely
atomic probability measures on X with atom masses proportional to n−1, DP(X)#I ([0,∞))

be the space of right-continuous functions with left limits from [0,∞) to P(X)#I and
CP(X)#I ([0,∞)) the corresponding subset of continuous functions. The following theorem,
which is the main result of the section, shows that the measure-valued system of Proposition 4.2
converges in distribution to a collection of interacting Fleming–Viot processes. These generalize
the celebrated class of Fleming–Viot diffusions, which take values in the space of probability
measures, to a system of dependent diffusion processes. See Appendix A for a brief review
of the essential features. Here convergence in distribution means weak convergence of the se-
quence of distributions induced for each n by Y (n)(·) (as in Proposition 4.2) onto the space
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DP(X)#I ([0,∞)), to that induced on the same space by a system of interacting Fleming–Viot
diffusions, with the limiting measure concentrated on CP(X)#I ([0,∞)).

Theorem 4.3. Let Y (n)(·) = {Y (n)(t), t ≥ 0} be as in Proposition 4.2 with initial distribution
Qn ∈ (Pn(X))#I , and let Y(·) = {Y(t), t ≥ 0} be a system of interacting Fleming–Viot processes
with initial distribution Q ∈ (P(X))#I and generator defined in Appendix A by (38)–(39). As-
sume X = [0,1], a(·, ·) ≡ m(·, ·) and M∗(x,dy) = ν0(dy). If additionally σ in (39) is univariate,
λn = O(n2#I) and Qn ⇒ Q, then

Y (n)(·) ⇒ Y(·) as n → ∞
in the sense of convergence in distribution in CP(X)#I ([0,∞)).

5. Algorithms and simulation study

In this section we device suitable simulation schemes for the above constructed systems by means
of Markov chain Monte Carlo techniques. This allows us to explore different economic scenarios
and perform sensitivity analysis on the effects of the model parameters on the regime changes.
Remark 3.1 points out that the discrete representation for a single market can be obtained by
means of Gibbs sampling the joint distribution qn,i in (3). A similar statement holds for the
particle system in a multi market framework. The particle system in Section 3 is such that after a
market r and an item xr

i are chosen with probability �r and γ r
n,i respectively, a new value for xr

i

is sampled from

q
Dn,i

(dxr
i |I(−xr

i )) ∝ βn(x
r
i )αI(−r)

(dxr
i ) +

n∑
k �=i

βn(x
r
k )δxr

k
(dxr

i ),

which selects the next ownership of the vacant share, and all other items are left unchanged. It
is clear that q

Dn,i
is the full conditional distribution of xr

i given the current state of the system.
Since the markets, and the particles within the markets, are updated in random order, it follows
immediately that the particle system is reversible, hence stationary, with respect to (11).

Algorithm 1 is the random scan Gibbs sampler which generates a sample path of the particle
system with the desired number of markets. Here we restrict to the case of σ ≡ 0, which implies
that the normalizing constant q̄

Dn,i
is θ + n − 1.

Remark 5.1. Note that the fact that updating the whole vector implies sampling from n different
distributions does not lead to an increase in computational costs if one wants to simulate from
the model. Indeed, acceleration methods such as those illustrated in [25] can be easily applied to
the present framework.

As previously mentioned, setting σ ≡ 0, hence β ≡ 1, as in Algorithm 1, does not lead to
neutrality among firms, determining instead a competitive advantage of the largest (in terms of
shares) on the smallest. A different choice for β allows us to correct or change arbitrarily this
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Algorithm 1
Initialize; then:

1. select a market r with probability �r ;
2. within r , select xr

i with probability γ r
n,i ;

3. sample u ∼ Unif(0,1);
4. update xr

i :
a. if u < πθ

θ+n−1 , sample xr
i ∼ ν0;

b. if u > θ
θ+n−1 , sample uniformly an xr

k , k �= i, within market r and set xr
i = xr

k ;
c. else:

i. select a market r ′ with probability m(r, r ′);
ii. sample uniformly an xr ′

j within market r ′ and set xr
i = xr ′

j ;
5. go back to 1.

feature. For example, choosing β(xr
j∗ ,μr) = n−1

j , where nj is the absolute frequency associ-
ated with cluster xr

j∗ , yields actual neutrality. Observe also that sampling from (18), which is
composed of three additive terms, is equivalent to sampling either from

βn(x
r
i ,μr)ν0(dxr

i )∫
βn(y,μr)ν0(dy)

(35)

with probability

θπ

q̄
Dn,i

∫
βn(y,μr)ν0(dy),

from ∑
r ′∈I m(r, r ′)

∑n
j=1 βn(x

r ′
j ,μr)δxr′

j
(dxr

i )∑
r ′∈I m(r, r ′)

∑n
j=1 βn(x

r ′
j ,μr)

(36)

with probability

θ(1 − π)

q̄
Dn,i

∑
r ′∈I

m(r, r ′)1

n

n∑
j=1

βn(x
r ′
j ,μr)

or from ∑n
k �=i βn(x

r
k ,μr)δxr

k
(dxr

i )∑n
k �=i βn(x

r
k ,μr)

(37)

with probability

1

q̄
Dn,i

n∑
k �=i

βn(x
r
k ,μr),
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Algorithm 2
Initialize; then:

1. select a market r with probability �r ;
2. within r , select xr

i with probability γ r
n,i ;

3. sample u ∼ Unif(0,1);
4. update xr

i :
a. if u < q̄−1

Dn,i
πθ

∫
βn(y,μr)ν0(dy), sample xr

i from (35);

b. if u > 1 − q̄−1
Dn,i

∑n
k �=i βn(x

r
k ,μr), sample xr

i from (37);
c. else sample xr

i from (36);
5. go back to 1.

where the normalizing constant q̄
Dn,i

is given by

θπ

∫
βn(x)ν0(dx) + θ(1 − π)

∑
r ′∈I

m(r, r ′)
∫

βn(x)μr ′(dx) +
n∑

k �=i

βn(x
r
k ).

Once the functional forms for β and m are chosen, computing q̄
Dn,i

is quite straightforward.
If, for example, X = [0,1], and the type of an individual admits also interpretation as index of
relative advantage, then one can set β(x) = x, and q̄

Dn,i
becomes

θπν̄0 + θ(1 − π)
∑
r ′∈I

m(r, r ′)x̄r ′ +
n∑

k �=i

xr
k ,

where ν̄0 is the mean of ν0, and x̄r ′
is the average of the components of market r ′. To this end,

note also that the assumption of ν0 being non-atomic can be relaxed simplifying the computation.
Algorithm 2 is the extended algorithm for βn �≡ 1.

In the following we illustrate how the above algorithms produce different scenarios where
economic regime transitions are caused or affected by the choice of parameters, which can be
structural or imposed by the policy maker during the observation period. We first consider a
single market and then two interacting markets, and for simplicity we confine to the use of Algo-
rithm 1. As a common setting to all examples we take X = [0,1], n = 500, ν0 to be the probability
distribution corresponding to a Beta(a, b) random variable, with a, b > 0, with the state space
discretized into 15 equally spaced intervals. The number of iterations is 5 × 105, of which about
150 are retained at increasing distance. Every figure below shows the time evolution of the em-
pirical measure of the market, which describes the concentration of market shares, where time is
in log scale.

Figure 1 shows a single market which is in an initial state of balanced competition among
firms, which have similar sizes and market shares: this can be seen by the flat side closest to the
reader. As time passes, though, the high level of sunk costs, determined by setting a low θ , is such
that exits from the market are not compensated by the entrance of new firms, and a progressive
concentration occurs. The competitive market first becomes an oligopoly, shared by no more
than three or four competitors, and eventually a monopoly. Here ν0 corresponds to a Beta(1,1)
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Figure 1. High sunk costs progressively transform a perfectly competitive market into an oligopoly and
then into a monopoly.

and θ = 1. The fact that the figure shows the market attaining monopoly and staying there for a
time greater than zero could be interpreted as conflicting with the diffusive nature of the process
with positive (although small) entrance rate of new firms (mutation rate in population genetics
terms). In this respect it is to be kept in mind, as already mentioned, that the figure is based on
observations farther and farther apart in time. So the picture does not rule out the possibility of
having small temporary deviations from the seeming fixation at monopoly, which, however, do
not alter the long-run overall qualitative behavior.

In Figure 2 we observe a different type of transition. We initially have an oligopolistic market
with three actors. The structural features of the market are such that the configuration is initially
stable, until the policy maker, in correspondence to the first black solid line, introduces some
new regulation which abates sunk costs or barriers to entry. Note that in the single market case
the parameter θ can represent both, since this corresponds to setting π = 1 in (15), while in a
multiple market framework we can distinguish the two effects by means of the joint use of θ

and π . Here all parameters are as in Figure 1, except θ , which is set equal to 1 up to iteration
200, equal to 100 up to iteration 4.5 × 104 and then equal to 0. The concentration level pro-
gressively decreases and the oligopoly becomes a competitive market with multiple actors. In
correspondence of the second threshold, namely the second black solid line, there is a second
regulation change in the opposite direction. The market concentrates again, and, from this point
onward, we observe a dynamic similar to Figure 1 (recall that time is in log scale, so graphics
are compressed toward the farthest side). The two thresholds can represent, for example, the ef-
fects of government alternation when opposite parties have very different political views about a
certain sector.

We now proceed to illustrate some effects of the interaction between two markets with different
structural properties and regulations when some of these parameters change. Figure 3 shows three
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Figure 2. An Oligopoly becomes a competitive market after the policy maker reforms the sector regulation
(threshold 1), and concentrates again after the reform is abolished (threshold 2).

scenarios regarding a monopolistic (left) and a competitive market (right). In all three cases ν0
corresponds to a Beta(1,1) for both markets. Case 1 represents independent markets, due to
very high technological conversion costs or barriers to entry, which is for comparison purposes.
Here θa = 0, θb = 100 and πb = 1. In Case 2 the monopolistic market has low barriers to entry,
while (2b) is still closed, and a transition from monopoly to competition occurs. Here θa =
30, θb = 100, πa = 0.01, πb = 1. Case 3 shows the opposite setting, that is, a natural monopoly
and a competitive market with low barriers to entry. The monopolist enters market (3b) and
quickly assumes a dominant position. Here θa = 0, θb = 100, πb = 0.7. Recall, in this respect,
the implicit effect due to setting β ≡ 1, commented upon above.

Case (2a) in Figure 3 suggests another point. The construction of the particle system by means
of the hierarchical models defined in Section 2 compels us to have the same centering measure
ν0, which generates new firms for all markets. In particular, this makes it essentially impossible
to establish, by mere inspection of Figure 3(2a), whether the transition is due to new firms or to
entrances from (2b). Relaxing this assumption on ν0 partially invalidates the underlying frame-
work above, in particular, due to the fact that one loses the symmetry implied by Lemma 2.1.
Nonetheless the validity of the particle system is untouched, in that the conditional distributions
of type (14) are still available, where now ν0,r , in place of a common ν0, is indexed by r ∈ I .
This enables us to appreciate the difference between the two above mentioned effects. If one is
willing to give a specific meaning to the location of the point x ∈ X which labels the firm, then
ν0,r �= ν0,r ′ can model the fact that, say, in two different sectors, firms are polarized on opposite
sides of X, which, in turn, represents some measurement of a certain exogenous feature pos-
sessed by those firms. Consider a monopoly and a competitive market, where we now take ν0,a
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Figure 3. Effects of parameters’ change in interacting monopolistic and competitive markets. (1a) and (1b)
are both closed, hence independent, markets. (2b) is closed, but (2a) has low barriers to entry (π ≈ 0), and
firms from (2b) progressively lower the concentration in (2a). (3b) has low barriers to entry, so that the
monopolist of (3a) enters the market and conquers a dominant position.

and ν0,b to be the probability measures corresponding to a Beta(2,4) and a Beta(4,2) random
variable for the monopolistic and competitive market, respectively. We are assuming that firms
on the left half of the state space have a certain degree of difference, with respect to those on the
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Figure 4. Firms in the competitive market (right) are polarized towards the right half of the state space.
(1a) is a monopoly with high sunk costs and low barriers to entry, so firms from (1b) enters market (1a).
(2a) is a monopoly with high barriers to entry and low sunk costs, so that a transition to a competitive regime
occurs independently of (2b).

other side, in terms of a certain characteristic. Figure 4 shows the different impact of barriers to
entry and sunk costs on the monopolistic market, due to the joint use of π and θ , thus splitting
Figure 3(2a) into two different scenarios. The competitive market is composed by firms which
are polarized toward the right half of the state space, meaning, for example, that they have a high
level of a certain feature. Then case 1 of Figure 4 shows the monopoly when sunk costs are high,
but barriers to entry are low, so that the concentration is lowered by entrance of firms from the
other market, rather than from the creation of new firms from within; while case 2 shows the
effects of high barriers to entry and low sunk costs, so that a transition to a competitive regime
occurs independently of (2b). The parameters for case 1 are θa = 30, θb = 100, πa = 0, πb = 1,
while for case 2 we have θa = 30, θb = 100, πa = 1, πb = 1.

6. Concluding remarks

In this paper we propose a model for market share dynamics which is both well founded, from
a theoretical point of view, and easy to implement, from a practical point of view. In illustrat-
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ing its features we focus on the impact of changes in market characteristics on the behaviors
of individual firms taking a macroeconomic perspective. An enrichment of the model could be
achieved by incorporating exogenous information via sets of covariates. This can be done, for
example, by suitably adapting the approach recently undertaken in [34] to the present framework.
Alternatively, and from an economic viewpoint, more interestingly, one could modify the model
adding a microeconomic understructure: this would consist of modeling explicitly the individual
behavior by appropriately specifying the function βn at Point (d) in Section 3, which can account
for any desired behavioral pattern of a single firm depending endogenously on both the status of
all other firms and the market characteristics. This additional layer would provide a completely
explicit micro-foundation of the model, allowing us to study the effect of richer types of het-
erogeneous individual decisions on industry and macroeconomic dynamics through comparative
statics and dynamic sensitivity analysis. These issues of more economic flavor will be the focus
of a forthcoming work.

Appendix A: Background material

Basic elements on the Gibbs sampler

The Gibbs sampler is a special case of the Metropolis–Hastings algorithm, which, in turn, be-
longs to the class of Markov chain Monte Carlo procedures; see, for example, [18]. These are
often applied to solve integration and optimization problems in large dimensional spaces. Sup-
pose the integral of f : X → R

d with respect to π ∈ P(X) is to be evaluated, and Monte Carlo
integration turns out to be unfeasible. Markov chain Monte Carlo methods provide a way of con-
structing a stationary Markov chain with π as the invariant measure. One can then run the chain,
discard the first, say, N iterations, and regard the successive output from the chain as approxi-
mate correlated samples from π , which are then used to approximate

∫
f dπ . The construction

of a Gibbs sampler is as follows. Consider a law π = π(dx1, . . . ,dxn) defined on (Xn,X n), and
assume that the conditional distributions

π(dxi |x1, . . . , xi−1, xi+1, . . . , xn)

are available for every 1 ≤ i ≤ n. Then, given an initial set of values (x0
1 , . . . , x0

n), update itera-
tively

x1
1 ∼ π(dx1|x0

2 , . . . , x0
n),

x1
2 ∼ π(dx2|x1

1 , x0
3 , . . . , x0

n),

...

x1
n ∼ π(dxn|x1

1 , . . . , x1
n−1),

x2
1 ∼ π(dx1|x1

2 , . . . , x1
n),
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and so on. Under mild conditions, this routine produces a Markov chain with equilibrium law
π(dx1, . . . ,dxn). The above updating rule is known as a deterministic scan. If instead the com-
ponents are updated in a random order, called random scan, one also gets reversibility with
respect to π .

Basic elements on Fleming–Viot processes

Fleming–Viot processes, introduced in [17], constitute, together with Dawson–Watanabe super-
processes, one of the two most studied classes of probability-measure-valued diffusions, that is,
diffusion processes which take values on the space of probability measures. A review can be
found in [15].

A Fleming–Viot process can be seen as a generalization of the neutral diffusion model. This
describes the evolution of a vector z = (zi)i∈S representing the relative frequencies of individual
types in an infinite population, where each type is identified by a point in a space S. The process
takes values on the simplex

�S =
{
(zi)i∈S ∈ [0,1]S : zi ≥ 0,

∑
i∈S

zi = 1

}

and is characterized by the infinitesimal operator

L = 1

2

∑
i,j∈S

zi(δij − zj )
∂2

∂zi ∂zj

+
∑
i∈S

bi(z)
∂

∂zi

,

defined, for example, on the set C(S) of continuous functions on S, if S is compact. Here the
first term drives the random genetic drift, which is the diffusive part of the process, and bi(z)

determines the drift component, with

bi(z) =
∑

j∈S,j �=i

qjizj −
∑

j∈S,j �=i

qij zi + zi

(∑
j∈S

σij zj −
∑
k,l∈S

σklzkzl

)
,

where qij is the intensity of a mutation from type i to type j and σij = σji is the selection term in
a diploid model. This specification is valid for S finite, which yields the classical Wright–Fisher
diffusion, or countably infinite; see, for example, [13]. Fleming and Viot [17] generalized to the
case of an uncountable type space S by characterizing the corresponding process, which takes
values in the space P(S) of Borel probability measures on S, endowed with the topology of weak
convergence. Its generator on functions φm(μ) = F(〈f1,μ〉, . . . , 〈fm,μ〉) = F(〈f,μ〉), where
F ∈ C2(Rm), f1, . . . , fm continuous on S and vanishing at infinity, for m ≥ 1, and 〈f,μ〉 =∫

f dμ, can be written

Lφ(μ) = 1

2

m∑
i,j=1

(〈fifj ,μ〉 − 〈fi,μ〉〈fj ,μ〉)Fzizj
(〈f,μ〉)

+
m∑

i=1

〈Mfi,μ〉Fzi
(〈f,μ〉) +

m∑
i=1

(〈(fi ◦ π)σ,μ2〉 − 〈fi,μ〉〈σ,μ2〉)Fzi
(〈f,μ〉),
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where μ2 denotes product measure, π is the projection onto the first coordinate, M is the gener-
ator of a Markov process on S, known as the mutation operator, σ is a non-negative, bounded,
symmetric, Borel measurable functions on S2, called selection intensity function and Fzi

is the
derivative of F with respect to its ith argument. Recombination can also be included in the model.

Interacting Fleming–Viot processes

Introduced by [40], and further investigated by [7] and [6], a system of interacting Fleming–Viot
processes extends a Fleming–Viot process to a collection of dependent diffusions of Fleming–
Viot type, whose interaction is modeled as migration of individuals between subdivided popula-
tions. Following [6], the model without recombination can be described as follows. Let the type
space be the interval [0,1]. Each component of the system is an element of the set P([0,1]),
denoted μr and indexed by a countable set I of elements r, r ′, . . . . For F : (P([0,1]))I → R of
the form

F(μ) =
∫

[0,1]
· · ·

∫
[0,1]

f (x1, . . . , xm)μr1(dx1) · · ·μrm(dxm) (38)

with f ∈ C([0,1]m), (r1, . . . , rm) ∈ (I)m, m ∈ N, the generator of a countable system of inter-
acting Fleming–Viot processes is

GF(μ) =
∑

r∈�N

{
q

∫
[0,1]

[∫
[0,1]

∂F (μ)

∂μr

(y)M∗(x,dy) − ∂F (μ)

∂μr

(x)

]
μr(dx)

+ c
∑

r ′∈�N

a(r, r ′)
∫

[0,1]
(μr ′ − μr)(dx)

∂F (μ)

∂μr

(x)

(39)

+ d

∫
[0,1]

∫
[0,1]

∂2F(μ)

∂μr ∂μr

(x, y)Qμr (dx,dy)

+ s

∫
[0,1]

∫
[0,1]

∫
[0,1]

∂F (μ)

∂μr

(x)σ (y, z)μr(dy)Qμr (dx,dz)

}
,

where the term Qμr (dx,dy) = μr(dx)δx(dy)−μr(dx)μr(dy) drives genetic drift, M∗(x,dy) is
a transition density on [0,1] × B([0,1]) modeling mutation, B([0,1]) is the Borel sigma alge-
bra on [0,1], a(·, ·) on I × I such that a(r, r ′) ∈ [0,1] and

∑
r a(r, r ′) = 1 is a transition kernel

modeling migration and σ(·, ·) is a bounded symmetric selection intensity function on [0,1]2.
The non-negative reals q, c, d, s represent, respectively, the rate of mutation, immigration, re-
sampling and selection. Let the mutation operator be

Mf (z) =
∫

[f (y) − f (z)]M∗(x,dy), f ∈ B(X) (40)

and the migration operator be

Gr ′
f (z) =

∫
[f (y) − f (z)]μr ′(dy), f ∈ B(X), (41)
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for r ′ ∈ I . Using this notation, and when F is as in (38), (39) can be written

GF(μ) =
∑

r∈�N

{
q

m∑
i=1

∫
[0,1]

· · ·
∫

[0,1]
Mri f dμr1 · · · dμrm

+ c
∑

r ′∈�N

a(r, r ′)
m∑

i=1

∫
[0,1]

· · ·
∫

[0,1]
Gr ′

ri
f dμr1 · · · dμrm

+ d

m∑
i=1

m∑
k �=i

∫
[0,1]

· · ·
∫

[0,1]
(�rk,i

f − f )dμr1 · · · dμrm (42)

+ s

m∑
i=1

∫
[0,1]

· · ·
∫

[0,1]
(σri ,m+1(·, ·)f

− σm+1,m+2(·, ·)f )dμr1 · · · dμrm dμr dμr

}
,

where Mj and Gr ′
j are M and Gr ′

applied to the j th coordinate of f , ri is as in Proposition 4.1,
rk,i as in (32) and �hj as in (33). When I is single-valued, (42) simplifies to

GF(μ) = q

m∑
i=1

〈Mif,μm〉 + d

m∑
i=1

m∑
k �=i

〈�kif − f,μm〉

+ s

m∑
i=1

(〈σi,m+1(·, ·)f,μm+1〉 − 〈σm+1,m+2(·, ·)f,μm+2〉),
which is the generator of a Fleming–Viot process with selection with F(μ) = 〈f,μm〉, f ∈
C([0,1]).

Appendix B: Proofs

Proof of Proposition 4.1. The infinitesimal generator of the X
n-valued process described at the

beginning of Section 3 can be written, for any f ∈ B(Xn), as

Anf (x) = λn

n∑
i=1

γn,i

∫
[f (ηi(x|y)) − f (x)]qn,i

(
dy|x(−i)

)
, (43)

where qn,i(dy|x(−i)) is (4) and ηi is as in (22). Within the multi-market framework, (43) is the
generator of the process for the configuration of market r , say, conditionally on all markets r ′ ∈ I ,
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r ′ �= r , and can be written

ADnf (xr |I(−r)) = λn

n∑
i=1

γ r
n,i

∫
[f (ηi(xr |y)) − f (xr )]q

Dn,i
(dy|I(−xr

i )), (44)

where I(−r) and I(−xr
i ) are as in (12) and (13), γ r

n,i are the market-specific removal probabil-
ities and q

Dn,i
(dy|I(−xr

i )) is (14). Then the generator for the whole particle system, for every
f ∈ B(XDn), is

ADnf (x) = λn

∑
r∈I

�r

n∑
i=1

γ r
n,i

∫
[f (ηri (x|y)) − f (x)]q

Dn,i
(dy|I(−xr

i )), (45)

where ηri is as in (25). Setting now βn as in (20), (45) becomes

ADnf (x) =
∑
r∈I

{
n∑

i=1

Cn,r,i

∫
[f (ηri (x|y)) − f (x)]

(
1 + 2σ(y)

n

)
αI(−r)

(dy)

+
∑

1≤k �=i≤n

Cn,r,i[f (ηri (x|xr
k )) − f (x)] (46)

+ 1

n

∑
1≤k �=i≤n

Cn,r,iσ (xr
k )[f (ηri (x|xr

k )) − f (x)]
}

,

with Cn,r,i as in (21). Substituting (15) in (46) yields

ADnf (x) =
∑
r∈I

{
θπ

n∑
i=1

Cn,r,i

∫
[f (ηri (x|y)) − f (x)]

(
1 + σ(y)

n

)
ν0(dy)

+ θ(1 − π)
∑
r ′

m(r, r ′)
∑

1≤j �=i≤n

Cn,r,i

∫
[f (ηri (x|y)) − f (x)]

×
(

1 + σ(y)

n

)
μr ′(dy) (47)

+
∑

1≤k �=i≤n

Cn,r,i[f (ηri (x|xr
k )) − f (x)]

+ 1

n

∑
1≤k �=i≤n

Cn,r,iσ (xr
k )[f (ηri (x|xr

k )) − f (x)]
}

.
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By means of (23) and (24), with Mn
i f and G

n,r ′
i f denoting, respectively, Mn and Gn,r ′

, applied

to the ith coordinate of f , and Mn
ri
f and G

n,r ′
ri f interpreted according to (25), (47) can be written

ADnf (x) =
∑
r∈I

{
θπ

n∑
i=1

Cn,r,iM
n
ri
f (x)

+ θ(1 − π)
∑
r ′

m(r, r ′)
n∑

i=1

Cn,r,iG
n,r ′
ri

f (x)

+
∑

1≤k �=i≤n

Cn,r,i[f (ηri (x|xr
k )) − f (x)]

+ 1

n

∑
1≤k �=i≤n

Cn,r,iσ (xr
k )[f (ηri (x|xr

k )) − f (x)]
}

.
�

Proof of Proposition 4.2. For k ≤ n, let n[k] be as in (28), and define the probability measure

μ(Dk) =
∏
r∈I

1

n[k]

∑
1≤ir,1 �=···�=ir,k≤n

δ(xr
ir,1

,...,xr
ir,k

), (48)

where Dk is as in (10). Define also

φDk
(μ) = 〈

f,μ(Dk)
〉
, f ∈ B(XDk )

and

ADnφDk
(μ) = 〈

ADnf,μ(Dk)
〉
, (49)

where 〈f,μ〉 = ∫
f dμ. Then ADnφDn(μ) is the generator of the (P(X))#I -valued system (27),

which from (26), letting f ∈ B(XDn) in (49), can be written

ADnφDn(μ) =
∑
r∈I

[
θπ

n∑
i=1

Cn,r,i〈Mn
ri
f,μ(Dn)〉

+ θ(1 − π)
∑
r ′

m(r, r ′)
n∑

i=1

Cn,r,i

〈
Gn,r ′

ri
f,μ(Dn)

〉
(50)

+
∑

1≤k �=i≤n

Cn,r,i

〈
�rk,i

f − f,μ(Dn)
〉

+ 1

n

∑
1≤k �=i≤n

Cn,r,i

〈
σrk (·)(�rk,i

f − f ),μ(Dn)
〉]

,
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where σrk (·) denotes σ(xr
k ) and �ki is as in (33). Note now that for f ∈ B(Xm), m ≤ Dn, we

have

Mn
ri
f = f, Gn,r ′

ri
f = f, �rk,i

f = f, if i > m

and 〈
�rk,i

f,μ(m)
〉 = 〈

f,μ(m)
〉
, i ≤ m,m + 1 ≤ k ≤ n.

Given (29) and (30), it follows that when f ∈ B(Xm), m ≤ Dn, (50) can be written

ADnφm(μ) =
∑
r∈I

{
θπ

m∑
i=1

Cn,r,i

〈
Mn

ri
f,μ(m)

〉

+ θ(1 − π)
∑
r ′

a(r, r ′)
m∑

i=1

Cn,r,i

〈
Gn,r ′

ri
f,μ(m)

〉

+
∑

1≤k �=i≤m

Cn,r,i

〈
�rk,i

f − f,μ(m)
〉

+ 1

n

m∑
i=1

kr∑
k �=i

Cn,r,i

〈
σrk (·)(�rk,i

f − f ),μ(m)
〉

+ n − kr

n

m∑
i=1

Cn,r,i

〈
σm+1(·)(�m+1,ri f − f ),μ(m)μr

〉}
.

�

Proof of Theorem 4.3. For f ∈ B(Xk), k ≥ 1, let ‖f ‖ = supx∈Xk |f (x)|. Observe that (23) and
(24) converge uniformly, respectively to (40) and (41), as n tends to infinity, implying∥∥〈

Mn
ri
f,μ(m)

〉 − 〈
Mri f,μ(m)

〉∥∥ → 0 , f ∈ B(Xm),∥∥〈
Gn,r ′

ri
f,μ(m)

〉 − 〈
Gr ′

ri
f,μ(m)

〉∥∥ → 0 , f ∈ B(Xm).

Here the supremum norm is intended with respect to the vector x ∈ Xm of atoms in μ(m), with
μ(m) as in (30). Let now μ

(kr )
r be as in (29), so that μr = n−1 ∑n

i=1 δxr
i
. Then it is easy to check

that ∥∥〈
f,μ(kr )

r

〉 − 〈
f,μkr

r

〉∥∥ → 0, f ∈ B(Xkr ),

as n → ∞, where μkr denotes a kr -fold product measure μr × · · · × μr , and that∥∥〈
f,μ(m)

〉 − 〈f,μ×m〉∥∥ → 0, f ∈ B(Xm),

as n → ∞, where we have denoted

μ×m =
∏
r∈I

μkr
r .
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We also have, from (21) Cn,r,i = λn�rγ
r
n,i/q̄Dn,i

, where λn is the Poisson rate driving the holding

times, �r = O(#I −1) and γ r
n,i = O(n−1) are the probability of choosing market r and xr

i respec-
tively during the update, and q̄

Dn,i
= O(n) is the normalizing constant of (18). Then choosing

λn = O(nDn) = O(n2#I) implies Cn,r,i → 1 as n → ∞. Finally, let ϕm ∈ B(P(Xm)) be

ϕm(μ) = 〈f,μ×m〉 =
∫

[0,1]
· · ·

∫
[0,1]

f (x1, . . . , xm)μr1(dx1) · · ·μrm(dxm) (51)

for any sequence (r1, . . . , rm) ∈ I m. Then it can be checked that (34) converges, as n tends to
infinity, to

Aϕm(μ) =
∑
r∈I

[
θπ

m∑
i=1

〈Mri f,μ×m〉 + θ(1 − π)
∑
r ′∈I

m(r, r ′)
m∑

i=1

〈Gr ′
ri
f,μ×m〉

+
∑

1≤k �=i≤m

〈�rk,i
f − f,μ×m〉 +

m∑
i=1

〈σri (·)f − σm+1(·)f,μ×mμr 〉
]

which, in turn, implies

‖ADnφm(μ) − Aϕm(μ)‖ −→ 0 as n → ∞.

Using (51), and letting X = [0,1], Aϕm(μ) can be written

Aϕm(μ) =
∑
r∈I

[
θπ

m∑
i=1

∫
[0,1]

· · ·
∫

[0,1]
Mri f dμr1 · · · dμrm

+ θ(1 − π)
∑
r ′∈I

m(r, r ′)
m∑

i=1

∫
[0,1]

· · ·
∫

[0,1]
Gr ′

ri
f dμr1 · · · dμrm

(52)

+
∑

1≤k �=i≤m

∫
[0,1]

· · ·
∫

[0,1]
(�rk,i

f − f )dμr1 · · · dμrm

+
m∑

i=1

∫
[0,1]

· · ·
∫

[0,1]
(
σri (·)f − σm+1(·)f

)
dμr1 · · · dμrm dμr

]
,

which equals (42) for appropriate values of q, c, d, s and for univariate σ . The statement with
CP(X)#I ([0,∞)) replaced by DP(X)#I ([0,∞)) now follows from Theorems 1.6.1 and 4.2.11
of [14], which, respectively, imply the strong convergence of the corresponding semigroups and
the weak convergence of the law of Y (n)(·) to that of Y(·). Replacing DP(X)#I ([0,∞)) with
CP(X)#I ([0,∞)) follows from [1], Section 18, by relativization of the Skorohod topology to
CP(X)#I ([0,∞)). �



Bayesian modeling of market dynamics 91

Acknowledgements

The authors are grateful to the Editor, an Associate Editor and a referee for valuable remarks and
suggestions that have lead to a substantial improvement in the presentation. Thanks are also due
to Tommaso Frattini and Filippo Taddei for useful discussions. This research was supported by
the European Research Council (ERC) through StG “N-BNP” 306406.

References

[1] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley. MR0233396
[2] Blackwell, D. and MacQueen, J.B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist.

1 353–355. MR0362614
[3] Burda, M., Harding, M. and Hausman, J. (2008). A Bayesian mixed logit-probit model for multinomial

choice. J. Econometrics 147 232–246. MR2478523
[4] Cifarelli, D.M. and Regazzini, E. (1996). De Finetti’s contribution to probability and statistics. Statist.

Sci. 11 253–282. MR1445983
[5] Dai Pra, P., Runggaldier, W.J., Sartori, E. and Tolotti, M. (2009). Large portfolio losses: A dynamic

contagion model. Ann. Appl. Probab. 19 347–394. MR2498681
[6] Dawson, D.A. and Greven, A. (1999). Hierarchically interacting Fleming–Viot processes with selec-

tion and mutation: Multiple space time scale analysis and quasi-equilibria. Electron. J. Probab. 4 no.
4, 81 pp. (electronic). MR1670873

[7] Dawson, D.A., Greven, A. and Vaillancourt, J. (1995). Equilibria and quasiequilibria for infinite col-
lections of interacting Fleming–Viot processes. Trans. Amer. Math. Soc. 347 2277–2360. MR1297523

[8] De Blasi, P., James, L.F. and Lau, J.W. (2010). Bayesian nonparametric estimation and consistency of
mixed multinomial logit choice models. Bernoulli 16 679–704. MR2730644

[9] De Iorio, M., Müller, P., Rosner, G.L. and MacEachern, S.N. (2004). An ANOVA model for dependent
random measures. J. Amer. Statist. Assoc. 99 205–215. MR2054299

[10] Duan, J.A., Guindani, M. and Gelfand, A.E. (2007). Generalized spatial Dirichlet process models.
Biometrika 94 809–825. MR2416794

[11] Dunson, D.B. and Park, J.H. (2008). Kernel stick-breaking processes. Biometrika 95 307–323.
MR2521586

[12] Ericson, R. and Pakes, A. (1985). Markov-perfect industry dynamics: A framework for empirical
work. Rev. Econ. Stud. 62 53–82.

[13] Ethier, S.N. (1981). A class of infinite-dimensional diffusions occurring in population genetics. Indi-
ana Univ. Math. J. 30 925–935. MR0632861

[14] Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes: Characterization and Convergence. Wiley
Series in Probability and Mathematical Statistics. New York: Wiley. MR0838085

[15] Ethier, S.N. and Kurtz, T.G. (1993). Fleming–Viot processes in population genetics. SIAM J. Control
Optim. 31 345–386. MR1205982

[16] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.
MR0350949

[17] Fleming, W.H. and Viot, M. (1979). Some measure-valued Markov processes in population genetics
theory. Indiana Univ. Math. J. 28 817–843. MR0542340

[18] Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densi-
ties. J. Amer. Statist. Assoc. 85 398–409. MR1141740

[19] Griffin, J.E. (2011). The Ornstein–Uhlenbeck Dirichlet process and other time-varying processes for
Bayesian nonparametric inference. J. Statist. Plann. Inference 141 3648–3664.

http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=0362614
http://www.ams.org/mathscinet-getitem?mr=2478523
http://www.ams.org/mathscinet-getitem?mr=1445983
http://www.ams.org/mathscinet-getitem?mr=2498681
http://www.ams.org/mathscinet-getitem?mr=1670873
http://www.ams.org/mathscinet-getitem?mr=1297523
http://www.ams.org/mathscinet-getitem?mr=2730644
http://www.ams.org/mathscinet-getitem?mr=2054299
http://www.ams.org/mathscinet-getitem?mr=2416794
http://www.ams.org/mathscinet-getitem?mr=2521586
http://www.ams.org/mathscinet-getitem?mr=0632861
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=1205982
http://www.ams.org/mathscinet-getitem?mr=0350949
http://www.ams.org/mathscinet-getitem?mr=0542340
http://www.ams.org/mathscinet-getitem?mr=1141740


92 I. Prünster and M. Ruggiero

[20] Griffin, J.E. and Steel, M.F.J. (2004). Semiparametric Bayesian inference for stochastic frontier mod-
els. J. Econometrics 123 121–152. MR2126161

[21] Griffin, J.E. and Steel, M.F.J. (2006). Order-based dependent Dirichlet processes. J. Amer. Statist.
Assoc. 101 179–194. MR2268037

[22] Griffin, J.E. and Steel, M.F.J. (2011). Stick-breaking autoregressive processes. J. Econometrics 162
383–396. MR2795625

[23] Hjort, N.L., Holmes, C.C., Müller, P. and Walker, S.G., eds. (2010). Bayesian Nonparametrics.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge Univ. Press.
MR2722987

[24] Hopenhayn, H.A. (1992). Entry, exit, and firm dynamics in long run equilibrium. Econometrica 60
1127–1150. MR1180236

[25] Ishwaran, H. and James, L.F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer.
Statist. Assoc. 96 161–173. MR1952729

[26] Jovanovic, B. (1982). Selection and the evolution of industry. Econometrica 50 649–670. MR0662724
[27] Lau, J.W. and Siu, T.K. (2008). Modelling long-term investment returns via Bayesian infinite mixture

time series models. Scand. Actuar. J. 4 243–282. MR2484128
[28] Lau, J.W. and Siu, T.K. (2008). On option pricing under a completely random measure via a general-

ized Esscher transform. Insurance Math. Econom. 43 99–107. MR2442035
[29] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist.

12 351–357. MR0733519
[30] MacEachern, S.N. (1999). Dependent nonparametric Processes. In ASA Proc. of the Section on

Bayesian Statistical Science. Alexandria, VA: Amer. Statist. Assoc.
[31] MacEachern, S.N. (2000). Dependent Dirichlet processes. Technical Report, Ohio State Univ.
[32] Martin, A., Prünster, I., Ruggiero, M. and Taddei, F. (2012). Inefficient credit cycles via generalized

Pólya urn schemes. Working paper.
[33] Mena, R.H. and Walker, S.G. (2005). Stationary autoregressive models via a Bayesian nonparametric

approach. J. Time Ser. Anal. 26 789–805. MR2203511
[34] Park, J.H. and Dunson, D.B. (2010). Bayesian generalized product partition model. Statist. Sinica 20

1203–1226. MR2730180
[35] Petrone, S., Guindani, M. and Gelfand, A.E. (2009). Hybrid Dirichlet mixture models for functional

data. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 755–782. MR2750094
[36] Remenik, D. (2009). Limit theorems for individual-based models in economics and finance. Stochastic

Process. Appl. 119 2401–2435. MR2532206
[37] Ruggiero, M. and Walker, S.G. (2009). Bayesian nonparametric construction of the Fleming–Viot

process with fertility selection. Statist. Sinica 19 707–720. MR2514183
[38] Sutton, J. (2007). Market share dynamics and the “persistence of leadership” debate. Amer. Econ. Rev.

97 222–241.
[39] Trippa, L., Müller, P. and Johnson, W. (2011). The multivariate beta process and an extension of the

Pólya tree model. Biometrika 98 17–34.
[40] Vaillancourt, J. (1990). Interacting Fleming–Viot processes. Stochastic Process. Appl. 36 45–57.

MR1075600
[41] Walker, S. and Muliere, P. (2003). A bivariate Dirichlet process. Statist. Probab. Lett. 64 1–7.

MR1995803

Received May 2010 and revised January 2011

http://www.ams.org/mathscinet-getitem?mr=2126161
http://www.ams.org/mathscinet-getitem?mr=2268037
http://www.ams.org/mathscinet-getitem?mr=2795625
http://www.ams.org/mathscinet-getitem?mr=2722987
http://www.ams.org/mathscinet-getitem?mr=1180236
http://www.ams.org/mathscinet-getitem?mr=1952729
http://www.ams.org/mathscinet-getitem?mr=0662724
http://www.ams.org/mathscinet-getitem?mr=2484128
http://www.ams.org/mathscinet-getitem?mr=2442035
http://www.ams.org/mathscinet-getitem?mr=0733519
http://www.ams.org/mathscinet-getitem?mr=2203511
http://www.ams.org/mathscinet-getitem?mr=2730180
http://www.ams.org/mathscinet-getitem?mr=2750094
http://www.ams.org/mathscinet-getitem?mr=2532206
http://www.ams.org/mathscinet-getitem?mr=2514183
http://www.ams.org/mathscinet-getitem?mr=1075600
http://www.ams.org/mathscinet-getitem?mr=1995803

	Introduction
	The underlying framework
	Dynamic models for market evolution
	Infinite dimensional properties
	Algorithms and simulation study
	Concluding remarks
	Appendix A: Background material
	Basic elements on the Gibbs sampler
	Basic elements on Fleming-Viot processes
	Interacting Fleming-Viot processes

	Appendix B: Proofs
	Acknowledgements
	References

