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Convergence of the largest eigenvalue of
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Let Xp = (s1, . . . , sn) = (Xij )p×n where Xij ’s are independent and identically distributed (i.i.d.) random

variables with EX11 = 0,EX2
11 = 1 and EX4

11 < ∞. It is showed that the largest eigenvalue of the random

matrix Ap = 1
2
√

np
(XpX′

p − nIp) tends to 1 almost surely as p → ∞, n → ∞ with p/n → 0.
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1. Introduction

Consider the sample covariance type matrix S = 1
n

XpX′
p , where Xp = (s1, . . . , sn) = (Xij )p×n

and Xij , i = 1, . . . , p, j = 1, . . . , n, are i.i.d. random variables with mean zero and variance 1.
For such a matrix, much attention has been paid to asymptotic properties of its eigenvalues in the
setting of p/n → c > 0 as p → ∞ and n → ∞. For example, its empirical spectral distribution
(ESD) function F S(x) converges with probability one to the famous Marčenko and Pastur law
(see [9] and [8]). Here, the ESD for any matrix A with real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λp is
defined by

F A(x) = 1

p
#{i: λi ≤ x},

where #{· · ·} denotes the number of elements of the set. Also, with probability one its maximum
eigenvalue and minimum eigenvalue converge, respectively, to the left end point and right end
point of the support of Marčenko and Pastur’s law (see [7] and [3]).

In contrast with asymptotic behaviors of S in the case of p/n → c, the asymptotic properties
of S have not been well understood when p/n → 0. The first breakthrough was made in Bai and
Yin [2]. They considered the normalized matrix

Ap = 1

2
√

np
(XpX′

p − nIp)
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and proved with probability one

F Ap → F(x),

which is the so-called semicircle law with a density

F ′(x) =
⎧⎨
⎩

2

π

√
1 − x2, if |x| ≤ 1,

0, if |x| > 1.

One should note that the semicircle law is also the limit of the empirical spectral distribution
of a symmetric random matrix whose diagonal are i.i.d. random variables and above diagonal
elements are also i.i.d. (see [10]). Second, when X11 ∼ N(0,1), El Karoui [5] proved that the
largest eigenvalue of XpX′

p after properly centering and scaling converges to the Tracy−Widom
law.

In this paper, for general X11, we investigate the maximum eigenvalue of Ap under the setting
of p/n → 0 as p → ∞ and n → ∞. The main results are presented in the following theorems.

Theorem 1. Let Xp = (Xij )p×n where {Xij : i = 1,2, . . . , p; j = 1,2, . . . , n} are i.i.d. real ran-
dom variables with EX11 = 0,EX2

11 = 1 and EX4
11 < ∞. Suppose that n = n(p) → ∞ and

p/n → 0 as p → ∞. Define

Ap = (Aij )p×p = 1

2
√

np
(XpX′

p − nIp).

Then as p → ∞
λmax(Ap) → 1 a.s.,

where λmax(Ap) represents the largest eigenvalue of Ap .

Indeed, after truncation and normalization of the entries of the matrix Ap , we may obtain a
better result.

Theorem 2. Let n = n(p) → ∞ and p/n → 0 as p → ∞. Define a p × p random matrix Ap:

Ap = (Aij )p×p = 1

2
√

np
(XpX′

p − nIp),

where Xp = (Xij )p×n. Suppose that Xij ’s are i.i.d. real random variables and satisfy the follow-
ing conditions

(1) EX11 = 0,EX2
11 = 1,EX4

11 < ∞ and
(2) |Xij | ≤ δp

4
√

np, where δp ↓ 0, but δp
4
√

np ↑ +∞, as p → ∞.

Then, for any ε > 0, � > 0

p
(
λmax(Ap) ≥ 1 + ε

) = o(p−�).
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So far we have considered the sample covariance type matrix S. However, a common used
sample covariance matrix in statistics is

S1 = 1

n

n∑
j=1

(sj − s̄)(sj − s̄)′,

where

s̄ = 1

n

n∑
j=1

sj .

Similarly we renormalize it as

Ap1 = 1

2

√
n

p
(S1 − Ip).

Theorem 3. Under assumptions of Theorem 1, as p → ∞
λmax(Ap1) → 1 a.s.,

where λmax(Ap1) stands for the largest eigenvalues of Ap1.

Estimating a population covariance matrix for high dimension data is a challenging task. Usu-
ally, one can not expect the sample covariance matrix to be a consistent estimate of a population
covariance matrix when both p and n go to infinity, especially when the orders of p and n are
very close to each other. In such circumstance, as argued in [4], operator norm consistent estima-
tion of large population covariance matrix still has nice properties.

Suppose that � is a population covariance matrix, nonnegative definite symmetric matrix.
Then �1/2sj , j = 1, . . . , n, may be viewed as i.i.d. sample drawn from the population with co-
variance matrix �, where (�1/2)2 = �. The corresponding sample covariance matrix is

S2 = 1

n

n∑
j=1

(�1/2sj − �1/2s̄)(�1/2sj − �1/2s̄)′.

Theorem 3 indicates that the matrix S2 is an operator consistent estimation of � as long as
p/n → 0 when p → ∞. Specifically, we have the following theorem.

Theorem 4. In addition to the assumptions of Theorem 1, assume that ‖�‖ is bounded. Then,
as p → ∞

‖S2 − �‖ = O

(√
p

n

)
a.s.,

where ‖ · ‖ stands for the spectral norm of a matrix.
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Remark 1. Related work is [1], where the authors investigated quantitative estimates of the con-
vergence of the empirical covariance matrix in the Log-concave ensemble. Here we obtain a
convergence rate of the empirical covariance matrix when the sample vectors are in the form of
�1/2sj .

Remark 2. Theorems 1–4 are stated for the real random matrix Xp , but they also hold for the
complex case under moment conditions EX11 = 0,E|X11|2 = 1 and E|X11|4 < ∞. The proofs
are similar to those for the real case except some notation changes.

2. Proof of Theorem 1

Throughout the paper, C denotes a constant whose value may vary from line to line. Also, all
limits in the paper are taken as p → ∞.

It follows from Theorem in [2] that

lim inf
p→∞ λmax(Ap) ≥ 1 a.s. (1)

Thus, it suffices to show that

lim sup
p→∞

λmax(Ap) ≤ 1 a.s. (2)

Let Âp = 1
2
√

np
(X̂pX̂′

p −nIp), where X̂p = (X̂ij )p×n and X̂ij = Xij I (|Xij | ≤ δp
4
√

np) where
δp is chosen as the larger of δp constructed as in (3) and δp as in (5). On the one hand, since
EX4

11 < ∞ for any δ > 0 we have

lim
p→∞ δ−4E|X11|4I

(|X11| > δ 4
√

np
) = 0.

Since the above is true for arbitrary positive δ there exists a sequence of positive δp such that

lim
p→∞ δp = 0, lim

p→∞ δ−4
p E|X11|4I

(|X11| > δp
4
√

np
) = 0, δp

4
√

np ↑ +∞. (3)

On the other hand, since EX4
11 < ∞ for any ν > 0

∞∑
k=1

2kP (|X11| > ν2k/4) < ∞.

In view of the arbitrariness of ν, there is a sequence of positive number νk such that

νk → 0, as k → ∞,

∞∑
k=1

2kP (|X11| > νk2k/4) < ∞. (4)
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For each k, let pk be the maximum p such that n(p) · p ≤ 2k . For pk−1 < p ≤ pk , set

δp = 2νk. (5)

Let Zt = Xij , t = (i − 1)n + j and obviously {Zt } are i.i.d. We then conclude from (4) and (5)
that

P(Ap �= Âp, i.o.) ≤ lim
K→∞P

( ∞⋃
k=K

⋃
pk−1<p≤pk

⋃
i≤p,j≤n

{|Xij | > δp
4
√

np
})

≤ lim
K→∞

∞∑
k=K

P

( ⋃
pk−1<p≤pk

2k⋃
t=1

{|Zt | > νk2k}
)

= lim
K→∞

∞∑
k=K

P

(
2k⋃

t=1

{|Zt | > νk2k}
)

≤ lim
K→∞

∞∑
k=K

2kP (|Z1| > νk2k/4)

= 0 a.s.

It follows that λmax(Ap) − λmax(Âp) → 0 a.s. as p → ∞.
From now on, we write δ for δp to simplify notation. Moreover, set Ãp = 1

2
√

np
(X̃pX̃′

p −nIp),

where X̃p = (X̃ij )p×n and X̃ij = X̂ij −EX̂11
σ

. Here, σ 2 = E(X̂11 − EX̂11)
2 and σ 2 → 1 as p →

∞.
We obtain via (3)

|EX̂11| ≤ E|X11|4I (|X11| > δp
4
√

np)

δ3(np)3/4
≤ C

(np)3/4
(6)

and

|σ 2 − 1| ≤ CE|X11|2I
(|X11| > δ 4

√
np

) ≤ E|X11|4I (|X11| > δ 4
√

np)

δ2√np
= o

(
1√
np

)
. (7)

We conclude from the Rayleigh–Ritz theorem that

|λmax(Ãp) − λmax(Âp)|

≤ 1

2
√

np

∣∣∣∣∣ sup
‖z‖=1

(∑
i �=j

zizj

n∑
k=1

X̂ikX̂jk +
p∑

i=1

z2
i

n∑
k=1

(X̂2
ik − 1)

)

− sup
‖z‖=1

(∑
i �=j

zizj

n∑
k=1

X̃ikX̃jk +
p∑

i=1

z2
i

n∑
k=1

(X̃2
ik − 1)

)∣∣∣∣∣
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≤ 1

2
√

np

∣∣∣∣1 − 1

σ 2

∣∣∣∣ sup
‖z‖=1

∣∣∣∣∣
∑
i �=j

zizj

1√
np

n∑
k=1

X̂ikX̂jk +
p∑

i=1

z2
i

n∑
k=1

(X̂2
ik − 1)

∣∣∣∣∣
+ 1

2
√

np

2|EX11|
σ 2

sup
‖z‖=1

∣∣∣∣∣
p∑

i=1

p∑
j=1

zizj

n∑
k=1

X̂ik

∣∣∣∣∣
+ 1

2
√

np

n|EX11|2
σ 2

sup
‖z‖=1

∣∣∣∣∣
p∑

i=1

p∑
j=1

zizj

∣∣∣∣∣ + n

2
√

np

∣∣∣∣1 − 1

σ 2

∣∣∣∣
= A1 + A2 + A3 + A4.

By (7) and the strong law of large numbers, we have

A1 = |σ 2 − 1|
2
√

npσ 2
sup

‖z‖=1

∣∣∣∣∣
n∑

k=1

((
p∑

i=1

ziX̂ik

)2

−
p∑

i=1

z2
i X̂

2
ik

)
+

p∑
i=1

z2
i

n∑
k=1

(X̂2
ik − 1)

∣∣∣∣∣
≤ |σ 2 − 1|√np

2σ 2
· 1

np

(
2

∣∣∣∣∣
n∑

k=1

p∑
i=1

X̂2
ik

∣∣∣∣∣ +
∣∣∣∣∣

p∑
i=1

n∑
k=1

(X̂2
ik − 1)

∣∣∣∣∣
)

≤ |σ 2 − 1|√np

2σ 2
· 1

np

(
3

∣∣∣∣∣
n∑

k=1

p∑
i=1

X2
ik

∣∣∣∣∣ + np

)

→ 0 a.s.

Similarly, (6), Hölder’s inequality and the strong law of large numbers yield

A2 ≤ 1

2
√

np
· 2|EX̂11|

σ 2
sup

‖z‖=1

∣∣∣∣∣
p∑

j=1

zj

∣∣∣∣∣
∣∣∣∣∣

p∑
i=1

zi

n∑
k=1

X̂ik

∣∣∣∣∣
≤ 1

2
√

np
· C

σ 2(np)3/4
· √p ·

(
p∑

i=1

(
n∑

k=1

X̂ik

)2)1/2

≤ 1

2
√

np
· C

σ 2(np)3/4
· √p ·

(
n

p∑
i=1

n∑
k=1

X̂2
ik

)1/2

≤ C

σ 2(np)1/4

∣∣∣∣∣ 1

np

p∑
i=1

n∑
k=1

X̂2
ik

∣∣∣∣∣
1/2

≤ C

σ 2(np)1/4

∣∣∣∣∣ 1

np

p∑
i=1

n∑
k=1

X2
ik

∣∣∣∣∣
1/2

→ 0 a.s.
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It is straightforward to conclude from (6) and (7) that

A3 → 0 a.s., A4 → 0 a.s.

Thus, we have λmax(Âp)−λmax(Ãp) → 0 a.s. By the above results, to prove (2), it is sufficient
to show that lim supp→∞ λmax(Ãp) ≤ 1 a.s. To this end, we note that the matrix Ãp satisfies all
the assumptions in Theorem 2. Therefore, we obtain (2) by Theorem 2 (whose argument is given
in the next section). Together with (1), we finishes the proof of Theorem 1.

3. Proof of Theorem 2

Suppose that z = (z1, . . . , zp) is a unit vector. By the Rayleigh–Ritz theorem, we then have

λmax(Ap) = max
‖z‖=1

(∑
i,j

zizjAij

)

= max
‖z‖=1

(∑
i �=j

zizjAij +
p∑

i=1

z2
i Aii

)

≤ λmax(Bp) + max
i≤p

|Aii |,

where Bp = (Bij )p×p with

Bij =

⎧⎪⎨
⎪⎩

0, if i = j,

1

2
√

np

n∑
k=1

XikXjk, if i �= j.

To prove Theorem 2, it is sufficient to prove, for any ε > 0, � > 0

P
(
λmax(Bp) > 1 + ε

) = o(p−l) (8)

and

P

(
max
i≤p

1√
np

∣∣∣∣∣
n∑

j=1

(X2
ij − 1)

∣∣∣∣∣ > ε

)
= o(p−l ). (9)

We first prove (9). To simplify notation, let Yj = X2
1j − 1 and C1 = E|Y1|2. Then EYj = 0.

Choose an appropriate sequence h = hp such that it satisfies, as p → ∞
⎧⎪⎪⎨
⎪⎪⎩

h/ logp → ∞,

δ2h/ logp → 0,

δ4p

C1
≥ √

p.

(10)
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We then have

P

(
max
i≤p

1√
np

∣∣∣∣∣
n∑

j=1

(X2
ij − 1)

∣∣∣∣∣ > ε

)

≤ p · P
(∣∣∣∣∣

n∑
j=1

(X2
1j − 1)

∣∣∣∣∣ > ε
√

np

)

≤ ε−hp
(√

np
)−h

E

∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣
h

≤ ε−hp
(√

np
)−h

h/2∑
m=1

∑
1≤j1<j2<jm≤n

∑
i1+i2+···+im=h

i1≥2,...,i1≥2

h!
i1!i2! · · · im!E|Yj1 |i1E|Yj2 |i2 · · ·E|Yjm |im

≤ ε−hp
(√

np
)−h

h/2∑
m=1

∑
i1+i2+···+im=h

i1≥2,...,i1≥2

n!
m!(n − m)!

h!
i1!i2! · · · im!E|Y1|i1E|Y1|i2 · · ·E|Y1|im

≤ ε−hp
(√

np
)−h

h/2∑
m=1

∑
i1+i2+···+im=h

i1≥2,...,i1≥2

nm h!
i1!i2! · · · im!C

m
1

(
δ2√np

)h−2m

≤ ε−hp

h/2∑
m=1

mh

(
δ4p

C1

)−m

δ2h ≤ ε−hp
h

2
·
(

δ2h

log (δ4p/C1)

)h

≤
((

ph

2

)1/h

· 2δ2h

logp
· ε−1

)h

≤
(

ξ

ε

)h

= o(p−�),

where ξ is a constant satisfying 0 < ξ < ε. Below are some interpretations of the above inequal-
ities:

(a) The fifth inequality is because, n!
m!(n−m)! < nm, |Y1| < δ2√np.

(b) We use the fact
∑

i1+i2+···+im=hi1≥2,...,i1≥2
h!

i1!i2!···im! < mh in the sixth inequality.
(c) The seventh inequality uses the elementary inequality

a−t tb ≤
(

b

loga

)b

for all a > 1, b > 0, t ≥ 1 and
b

loga
> 1.

(d) The last two inequalities are due to (10).
(e) With the facts that ξ

ε
< 1, h/ logp → ∞, the last equality is true.

Thus, (9) follows.
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Next, consider (8). For any ς > 0, we have

P
(
λmax(Bp) ≥ 1 + ς

) ≤ Eλk
max(Bp)

(1 + ς)k
≤ Etr(Bk

p)

(1 + ς)k

≤ 1

(1 + ς)k
· 1

(2
√

np)k

∑
E(Xi1j1Xi2j1Xi2j2Xi3j2 · · ·Xikjk

Xi1jk
),

where k = kp satisfies, as p → ∞ ⎧⎪⎪⎨
⎪⎪⎩

k/ logp → ∞,

δ1/3k/ logp → 0,

δ2 4
√

p

k3
≥ 1,

and the summation is taken with respect to j1, j2, . . . , jk running over all integers in {1,2, . . . , n}
and i1, i2, . . . , ik running over all integers in {1,2, . . . , p} subject to the condition that i1 �=
i2, i2 �= i3, . . . , ik �= i1.

In order to get an up bound for |∑EXi1j1Xi2j1 · · ·Xikjk
Xi1jk

|, we need to construct a graph
for given i1, . . . , ik and j1, . . . , jk , as in [7,11] and [3]. We follow the presentation in [3] and [11]
to introduce some fundamental concepts associated with the graph.

For the sequence (i1, i2, . . . , ik) from {1,2, . . . , p} and the sequence (j1, j2, . . . , jk) from
{1,2, . . . , n}, we define a directed graph as follows. Plot two parallel real lines, referred to
as I-line and J-line, respectively. Draw {i1, i2, . . . , ik} on the I-line, called I-vertices and draw
{j1, j2, . . . , jk} on the J-line, known as J-vertices. The vertices of the graph consist of the I-
vertices and J-vertices. The edges of the graph are {e1, e2, . . . , e2k}, where for a = 1, . . . , k,
e2a−1 = iaja are called the column edges and e2a = jaia+1 are called row edges with the con-
vention that i2k+1 = i1. For each column edge e2a−1, the vertices ia and ja are called the ends
of the edge iaja and moreover ia and ja are, respectively, the initial and the terminal of the edge
iaja . Each row edge e2a starts from the vertex jb and ends with the vertex ib+1.

Two vertices are said to coincide if they are both in the I-line or both in the J-line and they are
identical. That is ia = ib or ja = jb . Readers are also reminded that the vertices ia and jb are not
coincident even if they have the same value because they are in different lines. We say that two
edges are coincident if two edges have the same set of ends.

The graph constructed above is said to be a W-graph if each edge in the graph coincides with
at least one other edge. See Figure 1 for an example of a W-graph.

Two graphs are said to be isomorphic if one becomes another by an appropriate permu-
tation on {1,2, . . . , p} of I-vertices and an appropriate permutation on {1,2, . . . , n} of J-
vertices. A W-graph is called a canonical graph if ia ≤ max{i1, i2, . . . , ia−1} + 1 and ja ≤
max{j1, j2, . . . , ja−1} + 1 with i1 = j1 = 1, where a = 1,2, . . . , k.

In the canonical graph, if ia+1 = max{i1, i2, . . . , ia} + 1, then the edge jaia+1 is called a row
innovation and if ja = max{j1, j2, . . . , ja−1} + 1, then the edge iaja is called a column innova-
tion. Apparently, a row innovation and a column innovation, respectively, lead to a new I-vertex
and a new J-vertex except the first column innovation i1j1 leading to a new I-vertex i1 and a new
J-vertex j1.
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Figure 1. An example of W-graph.

We now classify all edges into three types, T1, T3 and T4. Let T1 denote the set of all in-
novations including row innovations and column innovations. We further distinguish the column
innovations as follows. An edge iaja is called a T11 edge if it is a column innovation and the edge
jaia+1 is a row innovation; An edge ibjb is referred to as a T12 edge if it is a column innovation
but jbib+1 is not a row innovation. An edge ej is said to be a T3 edge if there is an innovation
edge ei, i < j so that ej is the first one to coincide with ei . An edge is called a T4 edge if it does
not belong to a T1 edge or T3 edge. The first appearance of a T4 edge is referred to as a T2 edge.
There are two kinds of T2 edges: (a) the first appearance of an edge that coincides with a T3 edge,
denoted by T21 edge; (b) the first appearance of an edge that is not an innovation, denoted by T22

edge.
We say that an edge ei is single up to the edge ej , j ≥ i, if it does not coincide with any other

edges among e1, . . . , ej except itself. A T3 edge ei is said to be regular if there are more than one
innovations with a vertex equal to the initial vertex of ei and single up to ei−1, among the edges
{e1, . . . , ei−1}. All other T3 edges are called irregular T3 edges.

Corresponding to the above classification of the edges, we introduce the following notation
and list some useful facts.

1. Denote by l the total number of innovations.
2. Let r be the number of the row innovations. Moreover, let c denote the column innovations.

We then have r + c = l.
3. Define r1 to be the number of the T11 edges. Then r1 ≤ r by the definition of a T11 edge.

Also, the number of the T12 edges is l − r − r1.
4. Let t be the number of the T2 edges. Note that the number of the T3 edges is the same as

the number of the innovations and there are a total of 2k edges in the graph. It follows that
the number of the T4 edges is 2k − 2l. On the other hand, each T2 edge is also a T4 edge.
Therefore, t ≤ 2k − 2l.

5. Define μ to be the number of T21 edges. Obviously, μ ≤ t . The number of T22 edge is then
t −μ. Since each T21 edge coincides with one innovation, we let ni, i = 1,2, . . . ,μ, denote
the number of T4 edges which coincide with the ith such innovation, ni ≥ 0.

6. Let μ1 be the number of T21 edges which do not coincide with the other T4 edges. That is
μ1 = #{i: ni = 1, i = 1,2, . . . ,μ}, where #{·} denotes the cardinality of the set {·}.

7. Let mj , j = 1,2, . . . , t −μ, denote the number of T4 edges which coincide with and include
the j th T22 edge. Note that mj ≥ 2.
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We now claim that

Etr(Bk
p) ≤ (

2
√

np
)−k

∑
E(Xi1j1Xi2j1 · · ·Xikjk

Xi1jk
)

= (
2
√

np
)−k

∑ ′ ∑ ′′ ∑ ′′′ ∑
∗

E(Xi1j1Xi2j1 · · ·Xikjk
Xi1jk

)

(11)

≤ (
2
√

np
)−k

k∑
l=1

l∑
r=1

r∑
r1=0

2k−2l∑
t=0

t∑
μ=0

μ∑
μ1=0

∑
∗

(
k

r

)(
r

r1

)(
k − r1

l − r − r1

)(
2k − l

l

)

× k3t (t + 1)6k−6l
(
δ 4
√

np
)2k−2l−2t+μ1pr+1nl−r ,

where the summation
∑ ′ is with respect to different arrangements of three types of edges at the

2k different positions, the summation
∑ ′′ over different canonical graphs with a given arrange-

ment of the three types of edges for 2k positions, the third summation
∑ ′′′ with respect to all

isomorphic graphs for a given canonical graph and the last notation
∑

∗ denotes the constraint
that i1 �= i2, i2 �= i3, . . . , ik �= i1.

Now, we explain why the above estimate is true:

(i) The factor (2
√

np)−k is obvious.
(ii) If the graph is not a W-graph, which means there is a single edge in the graph, then the

mean of the product of Xij corresponding to this graph is zero (since EX11 = 0). Thus,
we have l ≤ k. Moreover, the facts that r ≤ l, r1 ≤ r , t ≤ 2k − 2l, μ ≤ t and μ1 ≤ μ are
easily obtained from the fact 1 to the fact 7 listed before.

(iii) There are at most
(
k
r

)
ways to choose r edges out of the k row edges to be the r row

innovations. Subsequently, we consider how to select the column innovations. Observe
that the definition of T11 edges, there are

(
r
r1

)
ways to select r1 row innovations out of

the total r row innovations so that the edge before each such r1 row innovations is a T11
edge, column innovation. Moreover, there are at most

(
k−r1

l−r−r1

)
ways to choose l − r − r1

edges out of the remaining k − r1 column edges to be the l − r − r1 T12 edges, the
remaining column innovations.

(iv) Given the position of the l innovations, there are at most
(2k−l

l

)
ways to select l edges out

of the 2k − l edges to be T3 edges. And the rest positions are for the T4 edges. Therefore,
the first summation

∑ ′ is bounded by
∑k

l=1
∑l

r=1
∑r

r1=0

(
k
r

)(
r
r1

)(
k−r1

l−r−r1

)(2k−l
l

)
.

(v) By definition, each innovation (or each irregular T3 edges) is uniquely determined by the
subgraph prior to the innovation (or the irregular T3). Moreover, by Lemma 3.2 in [11]
for each regular T3 edge, there are at most t + 1 innovations so that the regular T3 edge
coincides with one of them and by Lemma 3.3 in [11] there are at most 2t regular T3
edges. Therefore, there are at most (t + 1)2t ≤ (t + 1)2(2k−2l) ways to draw the regular
T3 edges.

(vi) Once the positions of the innovations and the T3 edges are fixed there are at most(
(r+1)c

t

) ≤ (
k2

t

) ≤ k2t ways to arrange the t T2 edges, as there are r + 1 I-vertices and c

J-vertices. After t positions of T2 edges are determined there are at most t2k−2l ways to
distribute 2k − 2l T4 edges among the t positions. So there are at most k2t · t2k−2l ways
to arrange T4 edges. It follows that

∑ ′′ is bounded by
∑2k−2l

t=0 (t + 1)2(2k−2l)k2t · t2k−2l .
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(vii) The third summation
∑ ′′′ is bounded by ncpr+1 because the number of graphs in the

isomorphic class for a given graph is p(p − 1) · · · (p − r)n(n − 1) · · · (n − c + 1).
(viii) Recalling the definitions of l, r, t,μ,μ1, ni,mi , we have

EXi1j1Xi2j1 · · ·Xikjk
Xi1jk

= (EX2
11)

l−μ

(
μ∏

i=1

EX
ni+2
11

)(
t−μ∏
i=1

EX
mi

11

)
, (12)

where
∑μ

i=1 ni +∑t−μ
i=1 mi = 2k−2l. Without loss of generality, we suppose n1 = n2 =

· · · = nμ1 = 1 and nμ1+1, . . . , nμ ≥ 2 for convenience. It is easy to check that

E|Xs
11| ≤

{
M

(
δ 4
√

np
)s−4

, if s ≥ 4,M = max{EX4
11, |EX3

11|},(
δ 4
√

np
)s−2

, if s ≥ 2.

Thus, (12) becomes

|EXi1j1Xi2j1 · · ·Xikjk
Xi1jk

|

≤
t∑

μ=0

μ∑
μ1=0

|EX3
11|μ1 |EX4

11|t−μ1
(
δ 4
√

np
)∑μ

i=μ1+1 ni−2(μ−μ1)
(
δ 4
√

np
)∑t−μ

i=1 mi−2(t−μ)

(13)

≤
t∑

μ=0

μ∑
μ1=0

Mt
(
δ 4
√

np
)2k−2l−2t+μ1

≤
t∑

μ=0

μ∑
μ1=0

kt
(
δ 4
√

np
)2k−2l−2t+μ1 , when k is large enough.

The above points regarding the T2 edges are discussed for t > 0, but they are still valid when
t = 0 with the convention that 00 = 1 in the term t2k−2l , because in this case there are only T1

edges and T3 edges in the graph and thus l = k.
Consider the constraint

∑
∗ now. Note that for each T12 edge, say iaja , it is a column inno-

vation, but the next row edge jaia+1 is not a row innovation. Since ia+1 �= ia , the edge jaia+1

cannot coincide with the edge iaja . Moreover, it also doesn’t coincide with any edges before the
edge iaja since ja is a new vertex. So jaia+1 must be a T22 edge. Thus, the number of the T12

edges cannot exceed the number of the T22 edges. This implies l − r − r1 ≤ t − μ. Moreover,
note that μ1 ≤ μ. We then have

n−k/2p−k/2nl−rpr+1(np)k/2−l/2−t/2+μ1/4

= (n/p)l/2 · n−r−t/2+μ1/4pr+1−t/2+μ1/4 (14)

≤
(√

p

n

)r−r1

· p−t/2p.
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We thus conclude from (11) and (14) that

Etr(Bk
p) ≤ 2−k

k∑
l=1

l∑
r=1

r∑
r1=0

2k−2l∑
t=0

t∑
μ=0

μ∑
μ1=0

(
k

r

)(
r

r1

)(
k − r1

l − r − r1

)(
2k − l

l

)
(15)

×
(√

p

n

)r−r1

p−t/2pk3t (t + 1)6k−6lδ2k−2l−2t+μ1 .

Moreover, we claim that

p

[
2−k

(
k

r

)][(
r

r1

)(√
p

n

)r−r1
][(

k − r1
l − r − r1

)
δl−r−r1

]

×
[(

2k − l

l

)(√
pδ3

k3

)−t

(t + 1)6k−6lδ2k−2l

]
δ−(l−r−r1)+3t−(2k−2l) · δ2k−2l−2t+μ1 (16)

≤ p2

(
1 +

√
p

n

)k

(1 + δ)k
(

1 + 243k3δ

log3 p

)2k

.

Indeed, the above claim is based on the following five facts.

(1) 2−k
(
k
r

) ≤ 2−k
∑k

r=0

(
k
r

) = 1.

(2)
(

r
r1

)
(

√
p
n
)r−r1 = (

r
r−r1

)
(

√
p
n
)r−r1 ≤ ∑r

s=0

(
r
s

)
(

√
p
n
)s = (1 +

√
p
n
)r ≤ (1 +

√
p
n
)k .

(3)
(

k−r1
l−r−r1

)
δl−r−r1 ≤ ∑k−r1

s=0

(
k−r1

s

)
δs = (1 + δ)k−r1 ≤ (1 + δ)k .

(4) By the fact that
(2k−l

l

) ≤ (2k
2l

)
, and the inequality a−t (t + 1)b ≤ a( b

loga
)b , for a > 1, b > 0,

t > 0 and
δ2√p

k3 ≥ 4
√

p, we have

(
2k − l

l

)(√
pδ3

k3

)−t

(t + 1)6k−6lδ2k−2l ≤
(

2k

2l

) √
pδ3

k3

(
6k − 6l

log (
√

pδ3/k3)

)6k−6l

δ2k−2l

≤ p

(
2k

2l

)(
24k

logp

)6k−6l

δ2k−2l

≤ p

(
2k

2l

)(
243k3δ

log3 p

)2k−2l

≤ p

2k∑
s=0

(
2k

s

)(
243k3δ

log3 p

)2k−s

= p

(
1 + 243k3δ

log3 p

)2k

.
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(5) When p is large enough, δ−(l−r−r1)+3t−(2k−2l) ·δ2k−2l−2t+μ1 = δt−(l−r−r1) ·δμ1 ≤ 1, since
δ → 0 and l − r − r1 ≤ t − μ.

Summarizing (15) and (16), we obtain that

Etr(Bk
p) ≤

k∑
l=1

l∑
r=1

r∑
r1=0

2k−2l∑
t=0

t∑
μ=0

μ∑
μ1=0

p2

(
1 +

√
p

n

)k

(1 + δ)k
(

1 + 243l3δ

log3 p

)2k

≤ 8k6p2

(
1 +

√
p

n

)k

(1 + δ)k
(

1 + 243l3δ

log3 p

)2k

=
(

(8k6)1/kp2/k

(
1 +

√
p

n

)
(1 + δ)

(
1 + 243k3δ

log3 p

)2
)k

≤ ηk,

where η is a constant satisfying 1 < η < 1 + ε. Here the last inequality uses the facts below:

(i) (p2)1/k → 1, because k/ logp → ∞,
(ii) (8k6)1/k → 1, because k → ∞,

(iii) (1 +
√

p
n
) → 1, because p/n → 0,

(iv) (1 + δ) → 1, because δ → 0,
(v) 243·k3δ

log3 p
→ 0, because δ1/3k

logp
→ 0.

It follows that

P
(
λmax(Bp) > 1 + ε

) ≤
(

η

1 + ε

)k

= o(p−�)

since k/ logp → ∞ and η
1+ε

< 1. The proof is complete.

4. Proof of Theorem 3

Note that

S1 = S − s̄s̄′. (17)

By the Fan inequality [6],

sup
x

|F Ap1(x) − F Ap (x)| ≤ 1

p
.

Thus from theorem in [2], we see that

F Ap1(x)
a.s.−→ F(x),
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specified in the introduction. It follows that

lim inf
p→∞ λmax(Ap1) ≥ 1.

Let z be a unit vector. In view of (17), we obtain

z′Ap1z = z′Apz − 1

2

√
n

p
z′s̄s̄′z ≤ z′Apz,

which implies that

λmax(Ap1) ≤ λmax(Ap).

This, together with Theorem 1, finishes the proof of Theorem 3.

5. Proof of Theorem 4

Theorem 4 follows from Theorem 3 and the fact that

‖S2 − �‖ = ‖�1/2(S1 − Ip)�1/2‖ ≤ ‖S1 − Ip‖‖�‖.
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