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The study of non-stationary processes whose local form has controlled properties is a fruitful and important
area of research, both in theory and applications. In (J. Theoret. Probab. 22 (2009) 375-401), a particular
way of constructing such processes was investigated, leading in particular to multifractional multistable
processes, which were built using sums over Poisson processes. We present here a different construction of
these processes, based on the Ferguson—Klass—LePage series representation of stable processes. We con-
sider various particular cases of interest, including multistable Lévy motion, multistable reverse Ornstein—
Uhlenbeck process, log-fractional multistable motion and linear multistable multifractional motion. We
also show that the processes defined here have the same finite dimensional distributions as the correspond-
ing processes built in (J. Theoret. Probab. 22 (2009) 375-401). Finally, we display numerical experiments
showing graphs of synthesized paths of such processes.

Keywords: Ferguson—Klass—LePage series representation; localisable processes; multifractional processes;
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1. Introduction

This work deals with a general method for building stochastic processes for which certain aspects
of the local form are prescribed. We will mainly be interested here in local Holder regularity and
local intensity of jumps, but our construction allows in principle to control other properties that
could be of interest. Our approach is in the same spirit as the one proposed in [8], but it uses
different methods. In particular, in [8], multistable processes, that is localisable processes which
are locally «-stable, but where the index of stability « varies with time, were constructed using
sums over Poisson processes. We present here an alternative construction of such processes,
based on the Ferguson—Klass—LePage series representation of stable stochastic processes [9,13,
14]. This representation is a powerful tool for the study of various aspects of stable processes,
see, for instance [3,19]. A comprehensive reference for the properties of this representation that
will be needed here is [20].

Stochastic processes where the local Holder regularity varies with a parameter ¢ are interest-
ing both from a theoretical and practical point of view. A well-known example is multifractional
Brownian motion (m.B.m.), where the Hurst index / of fractional Brownian motion (f B.m.) [11,
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16] is replaced by a functional parameter A (t), permitting the Holder exponent to vary in a pre-
scribed manner [1,2,10,17]. This allows in addition local regularity and long range dependence
to be decoupled to give sample paths that are both highly irregular and highly correlated, a useful
feature for instance in terrain or TCP traffic modeling.

However, local regularity, as measured by the Holder exponent, is not the only local feature
that is useful in theory and applications. Jump characteristics also need to be accounted for,
for example, for studying processes with paths in D(R) (the space of cadlag functions, that is,
functions which are continuous on the right and have left limits at all ¢ € T'). This has applications
for instance in the modeling of financial or medical data. Stable non-Gaussian processes yield
relevant models in this case, with the stability index « controlling the distribution of jumps.

Just for the same reason why it is interesting to consider stochastic processes whose local
Holder exponent changes in a controlled manner, tractable models where the “jump intensity” o
is allowed to vary in time are needed, for instance to obtain a more accurate description of some
aspects of the local structure of functions in D(R).

The approach described in this work allows in particular to construct processes where 4 and
o evolve in time in a prescribed way. Having two functional parameters allows to finely tune
the local properties of these processes. This may prove useful to model two distinct aspects of
financial risk, textured images where both Holder regularity and the distribution of discontinuities
vary or to describe epileptic episodes in EEG where at time there may be only small jumps and at
other very large ones. That the processes defined below have a varying jump intensity just means
that they are tangent, in a sense to be described shortly, to a stable process with prescribed «. The
varying local Holder regularity is studied in [12], where an upper bound is given under general
conditions, and an exact value is provided in the case of the multistable Lévy motion.

Let us now recall the definition of a localisable process [5,6]: Y = {Y(¢): t € R} is h-
localisable at u if there exists an 4 € R and a nontrivial limiting process Y, such that

C Yu+rt)—Y)
lim ——
r—0 r

— Y/ (0). (L1)

(Note Y, will in general vary with u.) When the limit exists, ¥, = {Y, (¢): t € R} is termed the
local form or tangent process of Y at u (see [2,17] for similar notions). The limit (1.1) may be
taken in several ways. In this work, we will only deal with the case where convergence occurs
in finite dimensional distributions. When convergence takes place in distribution, the process is

called strongly localisable (equality in distribution is denoted i).
As mentioned above, a now classical example is m.B.m. ¥ which “looks like” index-%(u)
f.B.m. close to time u but where /(1) varies, that is
C Yu+rt)—Y)
lim = Biw 0. (1.2)
where By, is index-h f.B.m. A generalization of m.B.m., where the Gaussian measure is replaced
by an «-stable one, leads to multifractional stable processes [21].

The h-local form Y, at u, if it exists, must be A-self-similar, that is Y, (r7) 4y Y, () for
r > 0. In addition, as shown in [5,6], under quite general conditions, Y,; must also have stationary
increments at almost all (a.a.) u at which there is strong localisability. Thus, typical local forms
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are self-similar with stationary increments (s.s.s.i.), that is, r=*(Y/ (u + rt) — Y/ () 4 Y ()
for all u and r > 0. Conversely, all s.s.s.i. processes are localisable. Classes of known s.s.s.i.
processes include f.B.m., linear fractional stable motion and «-stable Lévy motion, see [20].

Similarly to [8], our method for constructing localisable processes is to make use of stochastic
fields {X (¢, v), (t,v) € R2}, where the process ¢ — X (¢, v) is localisable for all v. This field will
allow to control the local form of a ‘diagonal’ process Y = {X (¢, ¢): t € R}. For instance, in the
case of m.B.m., X will be a field of fractional Brownian motions, that is, X (¢, v) = By(y)(?),
where /4 is a smooth function of v ranging in [a, b] C (0, 1). This is the approach that was used
originally in [1] for studying m.B.m. From a heuristic point of view, taking the diagonal of such
a stochastic field constructs a new process with local form depending on ¢ by piecing together
known localisable processes. In other words, we shall use random fields {X (¢, v): (¢,v) € Rz}
such that for each v the local form X/ (-, v) of X (-, v) at v is the desired local form Y, of Y at v.
An easy situation is when, for each v, the process {X (¢, v): t € R} is s.s.s.i. It is clear that, in
this approach, the structure of X (-, v) for v in a neighbourhood of u is crucial to determine the
local behaviour of Y near u. A simple way to control this structure is to define the random field
as an integral or sum of functions that depend on ¢ and v with respect to a single underlying
random measure so as to provide the necessary correlations. General criteria that guarantee the
transference of localisability from the X (-, v) to Y = {X (¢, ): t € R} were obtained in [8]. We
will use the following theorem.

Theorem 1.1. Let U be an interval with u an interior point. Suppose that for some 0 < h < n
the process {X (t,u),t € U} is h-localisable at u € U with local form X (-, u) and

P(IX(,v) — X(w,u)| = |v—ul|") -0 (1.3)
asv—>u.Then Y ={X(t,1): t € U} is h-localisable at u with Y}, (-) = X/, (-, u).

In the sequel, we consider certain random fields and use Theorem 1.1 to build localisable
processes with interesting properties. As a particular case, we study multifractional multistable
processes, where both the local regularity and intensity of jumps evolve in a controlled way.

The remaining of this article is organized as follows: we first collect some notations in Sec-
tion 2. We then build localisable processes using a series representation that yields the necessary
flexibility required for our purpose. We need to distinguish between the situations where the
underlying space is finite (Section 3), or merely o-finite (Section 4). In each case, we define
a random field depending on a “kernel” f, and give conditions on f ensuring localisability of
the diagonal process. We then consider in Section 5 some examples: multistable Lévy motion,
multistable reverse Ornstein—Uhlenbeck process, log-fractional multistable motion and linear
multistable multifractional motion. Section 6 is devoted to computing the finite dimensional dis-
tributions of our processes, and proving that they are the same as the ones of the corresponding
processes constructed in [8]. Even though the processes constructed here and the ones from [§]
coincide in law, they provide different representations of multistable processes, just as, in the
stable case, both the Poisson series representation and the classical Ferguson—Klass—LePage rep-
resentation have their own interest. It is also worthwhile to note that the conditions required on
the kernel defining the process are different here and in [8]: we provide a specific example in
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Section 5 where localisability can be proved using the Ferguson—Klass—LePage representation
but not using the Poisson one. Finally, Section 7 displays graphs of certain localisable processes
of interest. Before we proceed, we note that constructing localisable processes using a stochastic
field composed of s.s.s.i. processes is obviously not the only approach that one can think of. See
[7] for an example.

2. Notations

We refer the reader to the first chapters of [20] for basic notions on stable random variables and
processes. In particular, recall that a process {X(¢): t € T}, where T is generally a subinterval
of R, is called a-stable (0 < o < 2) if all its finite-dimensional distributions are «-stable. Many
stable processes admit a stochastic integral representation as follows. Write S, (o, 8, ) for the
«-stable distribution with scale parameter o, skewness 8 and shift-parameter u; we will assume
throughout that 8 =0 and u = 0. Let (E, £, m) be a sigma-finite measure space, m = 0. Taking
m as the control measure, this defines an «-stable random measure M on E such that for A € £
we have M(A) ~ Sy (m(A)V/%,0,0). It is termed symmetric a-stable, or SaS. Let

Fo=Fu(E,E,m)={f: f is measurable and || f ||, < o0},

where || - ||, is the quasinorm (or norm if 1 < o < 2) given by
1/a

I flle = </E If(X)Iam(dX)> . 2.1

The stochastic integral of f € F, (E, £, m) with respect to M then exists [20], Chapter 3:
1) = [ F@IM@) ~ S, 10.0.0) 22)

E
In particular,
P

e = le@plfll  ©O<p<a), -
()] {oo (p> ), (2.3)

where c(«, p) < 00, see [20], Property 1.2.17. As said above, we will consider in this work only
the case of symmetric «-stable measures. We believe most results should have a counterpart
in the non-symmetric case, although the proofs would probably have to be significantly more
involved. We use the following notations throughout the paper:

e (I';)i>1 is a sequence of arrival times of a Poisson process with unit arrival time.

e (V;)i>1 is a sequence of i.i.d. random variables with distribution /% on a measure space
(E,m). When m(E) < oo, we always choose m = m/m(E). Otherwise, m is specified and
is equivalent to the measure m in each case.

e (¥i)i>11s asequence of i.i.d. random variables with distribution P(y; =1) = P(y; = —1) =
1/2.

The three sequences (I';);>1, (Vi)i>1, and (y;);>1 are always assumed to be independent.
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3. A Ferguson-Klass—-LePage series representation of
localisable processes in the finite measure space case

A well-known representation of stable random variables is the Ferguson—Klass—LePage series
one [3,9,13,14,19]. It is well adapted for our purpose since it will allows for easy generalization
to the case of varying «. In this work, we will use the following version of the theorem.

Theorem 3.1 ([20], Theorem 3.10.1). Let (E, £, m) be a finite measure space where m % 0,
and M be a symmetric «-stable random measure with a € (0, 2) and finite control measure m.
Then, for any f € Fo(E,E,m),

/Eﬂx)M(dx) £ (Cam(EN* Sy £ Vi), (3.1)

i=1

where C,, = (fooo x~®sin(x)dx)~! (Theorem 3.10.1 in [20] is more general, as it extends to
non-symmetric stable processes, that are not considered here). As mentioned above, a relevant
feature of this representation for us is that the distributions of all random variables appearing
in the sum are independent of «. We will use (3.1) to construct processes with varying o as
described in the following theorem.

Theorem 3.2. Let (E, £, m) be a finite measure space where m # 0. Let o be a C' function
defined on R and ranging in (0,2). Let b be a C" function defined on R. Let f(t,u, -) be a family
of functions such that, for all (t,u) € R2?, ft u,-)eFow(E,E,m). Consider:

o0
X (t, 1) = b)(m(EN O @ Ny VY f (1w, vi). (3.2)
i=1

Assume X (-, u) is localisable at u with exponent h € (0, 1) and local form X|,(-, u) and that there
exists € > 0 such that:

(Cl) v— f(t,v,x) is differentiable on B(u, €) for any t € B(u, €) and almost all x € E (the
derivatives of f with respect to v are denoted by f}),

(C2)
sup / sup [1£ (¢, w, x)log| £ (t, w,x)|[*™ J(dx) < oo, 3.3)
teB(u,e) J E weB(u,s)
(C3)
sup/ sup  (|£;(t, w, x)[*™)s(dx) < oo. (3.4)
teB(u,e) Y E weB(u,e)

Then Y (t) = X (¢, t) is localisable at u with exponent h and local form Y, (t) = X, (¢, u).

Proof. First, note that the condition (C2) implies the following condition:
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(C4) There exists € > 0 such that:

sup/ sup  (1.f(t, w, x)|*)m(dx) < co. (3.5)
E

teB(u,e) weB(u,e)

Indeed, forall t € B(u, &), w € B(u,&) and x € E,

[ftw, ) =[fEw, ) r@wal<tze 1 FE W, ) 7¢w00)>e
+ 1@ w, )1 r¢,w,x0)lell /e el
<2[f@, w,x)||log|f(t, w,x)|| +e.

Condition (C4) is then a consequence of the inequality |a + b|® < max(1,2°"1)(la|® + |b|%),
valid for all real numbers a, b and all positive §.

i{igw) is C! since a(w) ranges in (0,2). We shall denote a(w) =

b(w)(m(E))l/"‘(w)Ciﬁgw). The function « is thus also C!. We want to apply Theorem 1.1. With
that in view, we estimate, for v € B(u, &) (the ball centered at u with radius ¢),

The function w +— C

o]

X, 0) = X(v,u)=: Y yi(®i(v) = D) + Y yi (Wi (v) — Wi (w)),

i=1 i=1
where
@ (w) := ®; (v, w) :=a)i~*" fv,w, Vi),
W; (w) = Wi (v, w) := a(w)(T; /4™ — i =V W) o w, V).

The reason for introducing the ®; and the W; is that the random variables I'; are not independent,
which complicates their study. We shall decompose the sum involving the ®; into series of
independent random variables which will be dealt with using the three series theorem. The sum
involving the W; will be studied by taking advantage of the fact that, for large enough i, each I';
is “close” to i in some sense.

Let ¢ = infyepu.e) @ (v), d = sup,cp ¢ @(V). If infyepu.e) (V) = sup,cp(, - @ (v), we let
instead ¢ = inf,cp(u,¢) ¢ (v), d = c + §, for some § > 0. Note that, in both cases, by decreasing ¢
and §, d — ¢ may be made arbitrarily small.

Thanks to the assumptions on a and f, ®; and W; are differentiable almost surely (a.s.):

L (w) = a' (w)i W) f v, w, Vi) +a(w)i TV £ (v, w, Vi)

o (w) log(i)i =1/ £ (v, w, V;),
a(w)?

+ a(w)

W (w) = a' (w) (077 =iV ) o, w, Vi) +aq) (074 =iV £, w, V)
o' (w)

a(w)?

(log(T)T; /™ _log(i)i =1 /*™) £ (v, w, V;).

+ a(w)
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Notice that the functions @/ and W/ depend on v. Consider now the function /; :x — ®;(x) —
D; (u) — W(x — u) with v # u. Note that /; is a random process a.s. C! on B(u, ¢). Set

w; = min K;, where K; = {x € [u, v]: h;(x) = 0}. The mean value theorem yields that K; is a
nonempty closed set of R.

Considering the function &; : x — W;(x) — ¥;(u) — W(x —u),and the set F; ={x €
[u, v]: k!(x) = 0}, we define also x; = min F;.

Then there exists a sequence of independent measurable random numbers w; € [u, v] (or
[v, u]) and a sequence of measurable random numbers x; € [u, v] (or [v, u]) such that:

o o0
X)) =X 0)=—v)Y (Z+Z +Z) +w—v) Y ¥ + Y2 +7)),
i=1 i=1

where
z} = yid ()i~ f (v, w;, Vi),
2 _ ., N~ a(w;) pr A7
Zl _yla(wl)l fu(vswla ‘/l)a
o (w;)

2w log(i)i =1/ f (v, wi, Vi),
1

Z,~3 = y;a(w;)

1 : L .
Y = yia () (0 V000 — 710D 3, Vi),

1

—1 i L .
Yi2 = ‘)/[a(-xi)(r' foli) —1 l/a(xl))fu/(va Xi, Vl)’

o' (x;)

Y3 = yalx)——2
i Vta(xt)a(xi)z

(log(T)T; /¥ _1og(i)i =1 /%) £ (v, x;, V7).

i

Note that each w; depends on a, f, «, u, v, V;, but not on y;. This remark will be useful in the
sequel. We establish now a lemma in order to control the series Y ;o P( |Z,.1| > A).

Lemma 3.1. There exists a positive constant K such that for all A > 0,

00 KE[su v, w, V)|e®)]
Y Pz} > ) < Pucsiue |/ ]
min(2¢, A9)

i=1

Proof. Fix A > 0. We may assume without loss of generality that a’ # 0, otherwise there is
nothing to prove. One has:

) min(A¢, A9
P(IZ,-ll>A)SP(|f(v,w,~,%)I“(w’)>i ( ) )

SupweB(u,s)[la/(w)|a(w)]
Note that, since a’ is bounded on the compact interval [u, v],

K := sup [|a’(w)|°‘(w)] < 400,

weB(u,¢)
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P(|z}|>,\)5P<K sup |f(v,w,V1)|°‘(w)>imin(AC,Ad)>.

weB(u,¢)
Thus,

+00 +00
ZP(|Z}|>A)SZP(K sup |f(v,w,V1)|“(w)>imin(kc,kd))
i=1

i=1 weB(u,¢e)

sup | (v, w, V"],

K
< -7[1'5[
min(A¢, A%) L epu.e) -

Now we come back to the proof of Theorem 3.2. The remainder of the proof is divided into four
steps. The first step will apply the three-series theorem to show that each series Y .-, Zl.j ,Jj=
1,2, 3, converges a.s. In the second step, we will prove that ) .2, Yij also converges a.s. for
j =1, 2, 3. Inthe third step, we will prove that condition (1.3) is verified by Z?il Zij, j=1,2,3.
Finally, step four will prove the same thing for > o, Yij ,j=1,2,3.

First step: almost sure convergence of Y -0, Zij ,j=1,2,3.

Consider Z! = Yz ll Fix A > 0. We shall deal successively with the three series involved
the three-series theorem.

First series: S| = Z;’il P(|Zl.1| > A). From Lemma 3.1 and (C4), one gets S; < +o0.

Second series: S§ =Y ' E(Z]1{|Z}| < A}). One computes

E(Z}1(1Z} < 1)) = E(yia’ ()i ™0 £ o, wy, VL {|a! (wp)i =@ £ (v, wi, Vi)| < 1))
= E()E(a (wi)i =) £ (v, wi, V)L {|a (wi)i ~* @D f (v, wy, Vi)| < 1})
=0,

where we have used that y; is independent of (w;, V;) and E(y;) = 0. Thus, lim,,_, 1 S5 =0.
Third series: The final series we need to consider is S3 = Zfil E[(Ziljl{|Zl.1| < A})?]. Choose
A =1". Let  be such that d < n < 2.

(Zzh(zl <1p? <1zl gzl < 1y,
El(zl1{z! < 1pH < ENz}"{1z} | < 1))

+00
= / P(Z!"1{|Z}| <1} > x) dx
0

1
5/ P(Z!" > x)dx.
0

IRecall that, in the three series theorem, for the series Zi:l X; to converge a.s., it is necessary that, for all A > 0, the
three series Y o0, P(1X;] > 4), Y72 E(X;1(1X;| < X)), and Y72, Var(X;1(|X;| < A)) converge, and it is sufficient
that they converge for one A > 0, see, for example, [18], Theorem 6.1.
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Now from Lemma 3.1 and (C4), there exists a positive finite constant K € (0, o) such that

G <K ! dx K/1 v
e — — < T0OQ.
3= 0 min(xc/ﬂyxd/rl) 0 xd/n

The case of the Z2 = Zloil Zl.2 is treated similarly, since the conditions required on (a’, f) in the
proof above are also satisfied by (a, f)).

Consider finally 73 = Zfil Z?. Since the series Z;’il ¥i (®; (v) — D; (1)) converges a.s. (see,
e.g., [15], page 132), the convergence of Z! and Z? imply the convergence of Z>.

We have thus shown that the series Z', Z? and Z3 are a.s. convergent.

Second step: almost sure convergence of > 70, Y/, j =1,2,3.

To show that the series Y o Yl.j , J = 1,2 converge a.s., we will first prove that it is enough to
show that Y2, ¥/1

{l/2§I‘,-/i§2}ﬂ{|Yl:j\§l} converges a.s. for j = 1, 2. Indeed, we prove now that

> P({% < % <2}U {|Yl.j| > 1}) < oo for j = 1,2, where T denotes the complementary set
of the set 7', and conclude with the Borel Cantelli lemma. The case of ZIJ;OIO Y i3 is then treated as
was the case of Z%O Z3 we know that the series Zl 1Yi (Wi (v) — W;(u)) converges a.s. (see
[15], page 132); the convergence of +°° Y ! and Z+ 1 Y 2 will then entail the one of l+=°f Yl.3.

Now:
({727 =2foon )
P —5— U{lYy;| > 1}
2 i

—p([3 =S <o nnfl = <o)

(r<3) (1= 00 {37 =2})
P( I; +P[ =20 +P({IY/|>11n]=-<-"L<2}).
2 27 i

I';, as a sum of independent and identically distributed exponential random variables with
mean 1, satisfy a Large Deviation Principle with rate function A*(x) =x — 1 —log(x) for x > 0
and infinity for x < 0 (see [4], page 35), thus ) ;.| P(T; < %) <+4ooand ) ;. P > 2i) <
+00. )

Consider now Zizl P({|Yi]| > 1}N {% < % <2}, for j=1,2.

PL{Y, |>1}N{-<—<2
2 [
o\~ et
= P({ |a’ ()i =MD f (v, x, %-)!'(l%) —1|> 1} N B,»)

P({ (240D — 1)|a’ (xp)i =D f (v, x;, V)| > 1} N B;)

IA

IA

<P( sup £, w, VP > Ki),

weB(u,¢e)
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where K is a positive constant. Thus Zizl P({|Yl.]| > 11N {% < % <2}) < 4o0.

Case j = 2: Since the conditions needed on (a’, f) in the proof above are satisfied by (a, f;,),
> i1 PAIY? > 13N B;) < +oc. _

It remains to prove the a.s. convergence of Y o, Yl.]1{1/251,[/52}0{‘1/’:,'51}, j =1,2. In that
view, we use the following well-known lemma.

Lemma 3.2. Let { X, k > 1} be a sequence of random variables such that Z 1 EIXn| < 400,
then anl X, converges a.s.

Let us show that 3°°  E[|Y/[1 ] < +o0.

{1/2<T/i<2)n{|Y! |<1)
J = J L
E[1Y; |1{1/2§Fi/i§2}ﬁ{|Yij|§1}]: A PlUIzIY I>x}N{5=— <2 )dx

1
2~
! j 1 T

<[ PlUY/|>x}n{-<—<2¢)dr
0 27 i

Let B; = {2
Case j =1:
Using the finite-increments formula applied to y — y

Li <o)

l

—1/a®xi) op [%, 2], one shows that

= x21+l/c} n Bi)

> Kcix"‘("")} n B,-)

——1

P{IY! > x}NB;) < P<{|a ()i V20D f (v, x, V)|

a(x;)

L1

< P<{|f<v,xl-, V)|

)*®)] > 0 by assumptions on a’, @ (we may assume again

C
> Kcixd>.
Cased > 1:

Fix ¢ € (d, 1+ 5) (since « is continuous and d < 2, by decreasing if necessary &, one may
ensure that d < 1 4 ¢/2). By Markov and Holder inequalities, and the independence of Vi, I';,

Wlth Kc = infwgB(u,g)[(m
that a’ # 0, otherwise there is nothing to prove). Thus, for x € (0, 1),

1

r
P({IYi1|>x}ﬂB,-)§P< sup | f (v, w, Vi)[e@ | =L _

weB(u,e)

o/t
i 1‘ - Kg/fil/;xd/c>
l

! =008y <p([ s 1w @]

weB(u,e)

1 T
< —|E|l—
= (Keix)/e | 7| i
- K 1
= xd/¢ j1/¢+c/2¢°

—12?2{( sup E( sup |f(v,w,V1)|"‘(w>))l/{

veEB(u,&) weB(u,¢)
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where we have used that the variance of I'; is equal to i, and K does not depend on v thanks to
1 K 1
(C4). Thus, E[|Y; |1{1/25F,-/i§2}m{|Y,.]\51}] < s Where ¢+ ﬁ > 1.

Cased < 1:
1 a(w) ri ‘
PAIY! > x}N B) = ——E( sup |f@w, VI"™)E|= —1
X cl weB(u,¢) l
(gl 126/2<K 11
=Txd i \"li = T ilte/2 xd”

1 K :
thus E[|Y; |1{1/25F,-/i§2}m{|Y,.]\51}] < e with 1+ 5 > 1.
The case of ) ;. E[|Yl.2|1{ B.n{y2|<1y] 18 treated similarly, since the conditions required on

(@, f) in the proof above are satisfied by (a, f,). For j = 3, we have also Dis1 E[|Yl.3| X
1{ B.N{Y3| <1}] < 400, because there exists a positive finite constant K € (0, co) such that for

1 ~d/n 1 d
x € (0,1), PAIYP| > x} N By) < K- L80 L for d > 1 and P({|YP| > x} N B;) < £ 820 for
d<1.

Thus, for j =1,2,3, l+=°f Yi/ converges almost surely. We now move to the last two steps

of the proof: to verify h-localisability, we need to check that for some 7 such that h <n < 1,
PUYR, Z/ 1= v —ul"™") and P52, ¥/| > [v — u|"™") tend to 0 when v tends to u, for
j=1,23.

Third step: verification of (1.3) for Zfil Zl.j, j=1,2,3.

We need to estimate P(| Z;’i] Zl.j| >v—ul"").Letne(0,1)anda € (0,1 —n).

o0
P( ZZlJ > |v— u|"1)
i=1
o0 .
J .
= P( 22N g
i=1
+p(

o0 .

J .
Zzi 1|Zi]|>\v7u|_“
i=1

v —ulm!
>
2
v —ul"~!
> — |,
2

Since y; is independent from vy, i # k and IZl.j | is independent of y;, Markov inequality yields

p('

e .

i1 .
Zzi 1|Zij\§|v—u|*”
i=1

- |U_u|n71 < 4 §OO E[|ZJ|21 . ]
2 T v —uPmh VAT
i=

Let y € (d,?2). For any M > 1, we get:

Jj2
1Z; |
M?

1
Ji2 a2 ) 2 J 1
E[1Z]| 1|Zi,~|§M]_M E[ 1|Zi,§M} <M /O P(1Z/| > Mx"/7)dx.
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For j =1, we use again Lemma 3.1: there exists a positive constant K such that, for any M > 1

00 1
dx
129 2
Z e[z llZ{\sM] =M K/O min(M<x</v, Mdxd/v)

i=1

e ! dx
<MK _
o min(x</v, xd/v)

Thus, there exists a positive constant K such that

ZE[lZ}lzl‘Z]‘SM] <KM* .

i=1

The same conclusion holds for j =2: 322, E[|Z7[*1, 2] < KM>~€.
For j =3, fix A > 0.

, , i
P(Z}| > 1) < P(If(v, w;, V)2 > K/’k“<w’)7(logi)a(wi)),

2
where K" :=inf,epu,g)[( ‘a(a(w) )¢ > 0 by assumptions on a, o and o’ (we may assume

w)e' (w)]
without loss of generality that aa’ # 0, otherwise there is nothing to prove). In the sequel, K will
always denote a finite positive constant, that may however change from line to line.

Let gi(x) = W for x > 1 and i € N*. For x large enough and for all i, g; is strictly
increasing and limy_, 4 gi (x) = +o00. For z large enough (independently of i),

27(log 27)%Wi)
gi(2z(log z)“(wi)) = z(log2z) .
(log(2z) + a(w;) loglog(2z))«(w)

Let A€ R, A > e be such that Vz > A,Vi € N*,gfl(z) < 2z(logz)*™) . A depends only
ona. Let U; = | f(v, w;, Vi)|*®i) and i* € N, i* > 3 depending only on « such that Vi > i*,

(IOgilW > A. Then:

Vi >i*,

P(Z}| > )
U .
P LI (3.6)
K”)»“(w’) (logl)“(wl)

. KU; 1 U; o(wi)
L= K/ pewi) 0g K/ e wi)

. Ui|log U; |*™) Ui | log A|*0*0)
i<K i
Aa(wi) Aa(wi) Aa(wi)

IA

IA
-

IA

P

IA
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fP( sup [|f<v,w,v1>log|f<v,w,von“‘“”]zKimin(xC,xd>)

weB(u,¢)

+P< sup If(v,w,Vl)I"‘(w)zKimin(AC,kd))

weB(u,¢)

A ¢ L \¢
+P( sup |f(v,w,V1)|“(w)zKimin<( )( ))) (3.7)
weB(u,¢) [log Al [log A

Finally, with (C4) and (C2), for M > e,

o0 1
Z/ P(1Z}| > Mx'/7)dx
0

i=i*

1
1
<K
- ,/omin(M”x”/V,ded/V)
! 1
K d
" fo min((Mx177)/[Tog Mx 77 )¢, (Mx1/7) /| log Mx /7 d)
d
_ g ogan?
= e
We get then
(0.¢]

Z E[|z§|21|2?‘SM] < K|log(M)|*M*~¢.

i=i*
Let M = |v — u|™®. Using previously obtained inequalities, since Zf:l E[|Z:'3|21|Z.3|<M] <
i*M?, we get, for j =1,2,3:

p('

& .

J .
Zzi 1|Z{\§|v—u|*ﬂ 2
i=1

-1
v—ul"
, o oul™ ) < K|v—u?1=1-9

and

o0

i1 .
Zzi 1|Z;.’|§\v—u|’“
i=1

lim P(
v—>u N

We consider now the second term P(| Y2, Z/1

v — u|"—1>

—1 -
oty Leti=inf{n > 1: i >

j —al
|Z; |>|v—u|~¢

n, |Zij| <|v —u|™%}. Since Zizl P(|Z;/| > |v —u|™%) < 400, the Borel-Cantelli lemma yields
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|v—u|"—1)
S lv—uf™
2

=1
%}ﬁ{f:n})
|v_u|'7_1 <
>————(Nli=n)

P(zT = 4-00) = 0. As a consequence,

[e'e)
P(
i=1

Zzt'jlu,fbw—ura
(|5
2

a

PG =n).

\Z]|>|v ul=¢

]
ZZ \Z |>|v u|=a

IA

MS i P”ﬂg I}

||
IS}

n

Forn>2,P(i=n) <P(Z)_,|>|v—ul"%.
For j=1,P(i =n) < P(supy,epu.e |f (v, w, VD% > |y — u| 9K (n — 1)), and thus

o0
> PE=m = Klv—ulE( sup |f(,w, V)I"™)

n=2 weB(u,e)

<Klv—u sup E( sup |f(t,w,V1)|“(w)>.

teB(u,¢e) weB(u,¢e)
For j =2,
ZP(; —n)<Klv—ul sup E( sup [ £t w, V1)|“<W>),
=2 teB(u,e) weB(u,¢e)
and for j =3,

i*—1

D Pli=n) <Y PUZ)|> v —ul"+ D P(UZ}| > v —ul™).

i=1 i=i*

The first term on the right-hand side is a finite sum and it is bounded from above by K |v — u|%°,
because there exists a positive constant K such that

Ki
PUZ} > lv—ul™) <P sup [f(v,w, V)I*™ > lv—u|7% ).
(logi)

weB(u,¢)

The second term, using previous inequalities estimating P(|Z l.3| > A) for i > i*, is bounded from
above by K [v — u|%|log |v — u||%. Finally,
—yn-1
. Q) ~o
2

o0
lim P<
v—>Uu

i=1

i1 .
Zzi l\z,.f|>|u—ura
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Fourth step: verification of (1.3) for Zf’il Yl.j ,j=1,2,3.

We consider now P(| Y72, Yij| > v —u|" ).

Note that, with B; = {3 < Lt <2}, we have 3", P({|]¥}| > 1} N B;) < +00. Indeed, for
j=3andi>1,

P{IY?| > 1} N B)

logT'; —1/a(xi)
; —1|>1;NB;).
logi \ i

< 2}, thus there exists K > 0 such that, for

= P({ ‘a(xoz(f;l log(D)i =% f (v, xi,

(llofgl:l( i)~1/e@i) — 1)1y is bounded on {§ <

i>3,

l

plarii>nnlt < <o) <p(ir@ o vpen - KLY,
! 270 - (log i)

Following the computations done after equation (3.6), we conclude that

Ki
S P( 1 ox, VI > ——— ) < 400
, (log i)t
i>1
and then ) ;- P({|Y?| > 1} N B;) < +o0.

Letip=inf{n > 1: i > n, |Y |<1and <L + <2}

Since Zizl P({|Yij| > 1} Ul < 2} U {l; > 2i}) < 400, the Borel-Cantelli lemma yields
P(ip = +00) = 0. As a consequence,

> |v—u|'7_l} ﬂ{i():n}).

o (0.¢]
j —1
P( > o —ul” ):ZP({
i=1 n>1 =

pRG

i=1
Letb,(v) =P({| X2, Y/ > [v—u|""'}N{ig = n}). Our strategy is the following: we show that,
for each fixed n, b, (v) tends to O when v tends to u. Then we prove that there exists a summable
sequence (cy), such that, for all n and all v, b,(v) < c¢,. We conclude using the dominated
convergence theorem that Zn>1 b, (v) tends to O when v tends to u. Forall n > 1,

XEY’ S ULl DS J v—ul™
L =T A

by (v) SP(
i=1

. _ 1 —_y|n—1
For n > 2, consider P(| Z,”:f Y| > %).

|v—u|" A= —u|"*‘

i=l1 i=l1

[e.]

J
ZY 1{|Yf|<1}m{1/2<r /i<2}

i=n
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Let p € (0, 3). With K a positive constant depending on n but not on v, we have, for j = 1:

(= 55
Mz S

§P<( sup | (v, w, VI

weB(u,¢e)

pa(xi)
> K|v— u|f’f<'7—‘>>.

F 1/o(x)
(7) -
l

We use the following chain of inequalities:

Fl _l/a(xi) pa(xi) Fl —1/11(.)6,') PW(X:‘) Fl —1/0{(.Xi) [)o{(xi)
0 -1 =\ -1 11“[31' +| = -1 11",'<i
1 i i
r /e por(x;)
51+‘(%> —1|  Ina
i
-\ Ve pe -\ Ve pd
51+‘<4> ~1 +'(%> —1|
l 1
and obtain
lv—u"!
PlIY > ——
2n—1)
r K
= P<< sup | f (v, w, Vi)l"‘(“’)) > —|v— u|"’c("—1)>
weB(u,¢) 3
1—~ 1/c pc K
+P<< sup |f(v,w, V)|0¢(W)> ‘( : ) -1 Z_|v_u|pc(n—1)>
weB(u,e) 1 3

pd
> K- M|p0(n1))‘
i

T; 1/c
(7) -
1

Since p < § < 1, E(|(%)_1/C— 117¢) < 400 and E(|(%)_I/C— 1179) < 400 (just compute these
expectations using the density of I';). By independence of V; and I'; and Markov inequality,

|U— |17—1 | p
(| |_2(7)5K|v—u|f’c< E(( s If@ow vre))

1) weB(u,¢e)

+P(< sup |f (v, w, V)|°‘<w>)

weB(u,¢)

< Ko —ulP=",

and

. lv—ul?!
lim P 1Y) > =) =0.
v—>u 2(n—1)
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Since the conditions required on (a’, f) are also satisfied by (a, f;),

_ -1
im p(1v2 = 2= Zo,
v—>u 2(n—1)

We consider now the case j = 3. Wheni = 1:

3 v —u|"!
PLIYT =z 57—
2(n—1)

2
= P<|10g(rl)rl_1/a()ﬂ)f(v,)Cl, V1)||a(xl)a/(xl)| . a(-xl) |U _ u|n_1)

“2n—-1)

d\p
SK|U_M|PC(1n)E<<|]0g(F1)|c;‘|10g(rl)| ) )
1

c d
(K depends on 7 but not on v). Since p < 1, E((w)l’) < 400, and

. 3, lv—u”!
lim P{ |Y{|> ———— ) =0.
v—u 2(n—1)

Fori > 2,
lv—ul"!
P('Y’S'— 2n—1)
log(Fi) I; —1/a(xi) , a(xi)zil/d(xi)|v_u|77—l
=P — —1 , .’V. . | >
( Tog () (l. ) Lf (v, xi, Via(xipa (xi)] log(1)2(1 — 1)
One has:
IOg(Fl) & —l/a(xi)_la(xi)[’
log(i) \ i
_|logn (Li\ TV [ Jlog(Ty) (T )TV
| log(i) \ i log(i) \ i
log(Ty) (T \ ™/ _ |7 [log(i) (T \ ™4 |
log(i) \ i log(i) \ i

Since p € (0, %), the four terms in the right-hand side of the above inequality have finite expec-
tation (use again the density of I';). Reasoning as in the case of Y3, one gets:

. 3 Jv—u”!
lim P13 > =) =o.
v—>u 2(n—1)
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Finally, we have, for j € {1, 2, 3},

lim P(
vV—>u

Let us now consider, forn > 1, P(| Y72, Yl.jl

{

<2v-— u|1”E|:

n—1

R

i=1

lv—u7!
> — =0.
lo—ul" !y,

v/ 1<unia<ryisyl 2 2 )

v — u|"~!
> =
- 2

Oo .
J .
ZYi 1{|n’|sl}m{1/2sri/is2}
(I <1)n(1/2<r; i<z 40 mOt de-

i=n
pend on v). Thus b, (v) — 0 when v — u for each n. In view of using the dominated convergence
theorem, we compute (recall that B; = {% < % <2}

0 .
J )
ZYi 1{\Y,~]|§1}ﬂ{1/2§l“f/i§2}

1=n

<Klv—u|'""

(recall that the constants K used in bounding the series E(|Yl.j 11

by (v) < P(lig=n}) <PUIY/_,| > 1}UB,_)

j | R 1 anl
<PUY,_j|> 1N By +P( 2 < 2 ) +P( - >2).

For j=1andd > 1,
P> 1N Bu < o (sup B sup 1w vpe))
(n = DVEHREN ey NweBu.e)
andifd < 1,
PIY,_,|>1}NB,_1) < M%( sup E( sup | f(t, w, Vl)|a(w)>>_

teB(u,¢) weB(u,¢e)

The same conclusion holds for j = 2. The case j = 3 is treated in a similar way (with an addi-
tional “log” term). (]

4. A Ferguson—Klass—-LePage representation of localisable
processes in the o -finite measure space case

When the space E has infinite measure, one cannot use the representation above. This is a draw-
back, because many applications deal with processes defined on the real line, that is, E = R and
m is Lebesgue measure. In the o -finite case, one may perform a change of measure that allows
to reduce to the finite case (see [20], Proposition 3.11.3). Section 5 contains specific examples
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of changes of measure. In terms of localisability, this translates into adding a natural condition
involving the kernel and the change of measure.

Theorem 4.1. Let (E, E, m) be a o -finite measure space. Let r: E — R be such that m(dx) =

—L_m(dx) is a probability measure. Let o be a C' function defined on R and ranging in (0, 2).

r(x)

Let b be a C' function defined on R. Let f(t,u,-) be a family of functions such that, for all
(t,u) € RZ, ft u,-) e Fow(E, E,m). Consider the following random field:

o
X(t,1) = b@)Copa™ 3 iU ¥ (V) Vo (2w, V7). @1

a(u)
i=1

Assume X (-, u) is localisable at u with exponent h € (0,1) and local form X|/(t,u) and that
there exists € > 0 such that:

(Csl) v— f(t,v,x) is differentiable on B(u, ¢) for any t € B(u, ¢) and almost all x € E (the
derivatives of f with respect to v are denoted by f)),

(Cs2)
sup f sup [If(t,w,x)log|f(t, w, 0)[|*™]mdx) <o0,  (4.2)
teB(u,e) J E weB(u,e)
(Cs3)
sup/ sup (£, (t, w, x)[*™)m(dx) < o0, (4.3)
teB(u,e) J E weB(u,s)
(Cs4)
sup f sup  [1£(t, w, x)log(r(x))|*™ |m(dx) < co. (4.4)
teB(u,e) J E weB(u,s)

Then Y (t) = X (¢, t) is localisable at u with exponent h and local form Y (t) = X, (¢, u).

Remark: from (4.1), it may seem as though the process Y depends on the particular change of
measure used, for example, the choice of r. However, this is not case: see Proposition 6.1.

Proof of Theorem 4.1. We apply Theorem 3.2 with g(¢, w,x) = r()Ye £t w, x) on
(E, &, m).

e By (Csl), the family of functions v — f(z, v, x) is differentiable V(v, ¢) in a neighbourhood
of u and a.a. x in E thus v — g(t, v, x) is differentiable and (C1) holds.
e Choose € > 0 such that (Cs2) and (Cs4) hold.

/ sup [lg(t, w, x)log|g(t, w, x)||*™] sir(dx)
R

weB(u,¢e)

=/ sup [‘f(t, w,x)log}r(x)l/“(w)f(t, w,x)Ha(w)]m(dx).
R

weB(u,¢)
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Expanding the logarithm above and using the inequality |a + b|® < max(1,2°~1)(|a|® +
|b|5), valid for all real numbers a, b and all positive §, one sees that (C2) holds.
e Choose ¢ > 0 such that (Cs3) and (Cs4) hold.

o (w)
gt w, x) =r(x)/e® <fu’(t, w, x) — ———log(r(x)) f (¢, w, x)>
o~ (w)
and
/ sup  (1g), (¢, w, x)[*™)ri(dx)
R weB(u,¢)
a/(w) (x(w)
:/ sup |: fu(t, w, x) — ——=1log(r(x)) f (t, w, x) m(dx).
R weB(u,e) a=(w)
The inequality |a + b|® <max(1, 251 (lal® + |b|®) shows that (C3) holds. O

5. Examples of localisable processes

In this section, we apply the results above and obtain some localisable processes of interest, in
particular “multistable versions” of several classical processes. Similar multistable extensions
were considered in [8], to which the interested reader might refer for comparison. We first recall
some definitions. In the sequel, M will denote a symmetric «-stable (0 < o < 2) random measure
on R with control measure the Lebesgue measure £. We write

t
Ly () :=/ M(dz)
0

for a-stable Lévy motion. The log-fractional stable motion is defined as
o0
Aa(1) :/ (log(r — x) — log(|x[)) M (dx) (reR).
—00

This process is well defined only for « € (1, 2] (the integrand does not belong to F for o < 1).
Both Lévy motion and log-fractional stable motion are 1/a-self-similar with stationary incre-
ments. The following process is called linear fractional o-stable motion:

e ¢]
L(X,H,h+,b_(t):/ fO(,H(bJrab_’t’-x)M(dx)’
—00

wherer e R, H e (0,1),b",b~ €R, and

H—1/a

fun bt b7 1, x) = (0 —0) TV — 0T b (@ -0V — (),
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Lo m.p+ p- is an s.s.s.i. process. If b = b~ = 1, this process is called well-balanced linear
fractional «t-stable motion, denoted L, . The reverse Ornstein—Uhlenbeck process is:

Y(t) = /Ooexp(—x(x —0)M(dx) (1 €R,1>0).
t

The localisability of Lévy motion, log-fractional stable motion and linear fractional «-stable mo-
tion stems from the fact that they are s.s.s.i. The localisability of the reverse Ornstein—Uhlenbeck
process is proved in [7]. We now define multistable versions of these processes.

Theorem 5.1 (Symmetric multistable Lévy motion, compact case). Let «:[0,T] — (1,2)
and b:[0, T] — (0, +00) be continuously differentiable. Let m(dx) be the uniform distribution
on [0, T]. Define

+00
Y(0) = b Co TV Oy r ¥ O10 4(Vi) (0, T)). (5.1)

i=1
Then Y is 1/a(u)-localisable at any u € (0, T), with local form Y,, = b(u) Lo ).
The proof is a simple application of Theorem 3.2, and is omitted.

Theorem 5.2 (Symmetric multistable Lévy motion, noncompact case). Let a:R — (1,2)
and b:R — (0, +00) be continuously differentiable. Let m(dx) = Zj‘;xf 271, j(x)dx on
R. Define

+00 400
1 -1 i
Y (1) =b@Cue O3 Sy OO0 i (V) G eRy). (5.2)
i=1 j=1

Then Y is 1/a(u)-localisable at any u € Ry, with local form Y|, = b(u) Lo ).

Again, the proof is a straightforward application of Theorem 4.1 with m(dx) = dx, r(x) =
Z?il 2]1[./'_1’1'[()(), ft,u,x)= 1[0,;]()6), and is omitted.

Theorem 5.3 (Log-fractional multistable motion). Lera:R — (1,2) and b:R — (0, +00) be
continuously differentiable. Let m(dx) = % 7:0? j_21[_j,_j+1[u[j_1,j[(x) dx on R. Define

+00 00
1 -1
Y(6) =b0)Capn 33 il V¥ (tog |t — Vil —log Vi)
i=1 j=1
et (5.3)
2 /a(t)

X 3T/

1 -1,V (t eR).

Then Y is 1/a(u)-localisable at any u € R, with Y = b(u) Ag(u)-
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Proof. We apply Theorem 4.1 with m(dx) = dx, r(x) = %22?021 jzl[,j‘,H][u[j,],j[(x),
f(t,u,x)=1log(|t —x|) —log(|x|) and the random field

1 -1
X (t,1) = b(u)Capr” Z vl /*“ og |t — V;| — log| Vi )
i,j=1
2/01(14)
.2
31/a<u)f 1O -1t (Vi)

X (-,u) is the symmetrical o (u)-Log-fractional motion. It is %u)-localisable with local form
X, (- ou) = b(u) Ay [20]. The remaining of the proof is easy and is left to the reader. O

Theorem 5.4 (Linear multistable multifractional motion). Ler b:R — (0, 400), « : R —
0,2) and h:R — (0, 1) be continuously differentiable.
Letn%(dx):% i 1[ ji—j+1[urj—1,;1(x) dx on R. Define for t € R

+o00
1 -1 _ _
Y(t) = b(t)ca{;y)(t) Z ¥l /a<t)(|t _ Vi|h(t) La(t) _ |Vi|h(t) l/oz(t))

i,j=1

(5.4)
3'[2].2 1/a(t)
x <—> - =1, i1 (Vo).

3

The process Y is h(u)-localisable at allu € R, with Y, = b(u) Lo(uy,h(u) (the well balanced linear
fractional stable motion).

Proof. We apply Theorem 4.1 with m(dx) = dx, r(x) = 3 ZJ 1] —j —j+1ur—1, (%),
ft u,x) =t —x|"W=1/e@ _xh)=1/a@W) and the random field

2 2 1/a()
i n’j
X(t, 1) = ba)Cfay” (—3 )

~1 - -
« Z yl /a(u) — y;h=1/aw _ . ha Ua(u))1[—j,—j+l[u[j—l,j[(vi)-
i,j=1

X (-, u) is the (a(u), h(u))-well balanced linear fractional stable motion and it is _ locahsable
with local form X/, (-, u) = b(u) Lo, hw) [8]. (Csl) is easy.

e (Cs3) First, we note (Cs5) the following condition:
There exists &£ > 0 such that:

sup/ sup  (1f(t, w, x)|[*™)m(dx) < oco. (5.5)
E

teB(u,¢) weB(u,¢)
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In [8], it is shown that, given u € R, one may choose ¢ > 0 small enough and numbers
a,b,h_,hy withO<a <a(w) <b<2,0<h_ <h(w) <hy <1 and%—%<h_ <
hy <1-— (L - %) such that, for all f and w in U := (u — &, u + ¢&):

|f w0l f(t, w0l <ki(t,x)  (x €R), (5.6)

where

crmax{1, |t — x|i-—1/a 4 |x|h-=1/a} (|x|51+2maUx|t|),
te

ki(t,x) = 5.7

el 1701 (w1>1 +2ma5<|r|)
te

for appropriately chosen constants ¢; and c¢;. The conditions on a, b, h_, hi entail that
sup, ey llk1(t, )lla,p < 00, where

1/a 1/b
||k1<r,.>||a,b=</R |k1(r,x)|“dx) +(/R |k1<r,x>|”dx) , (5.8)

and (Cs5) holds for k1. (Cs3) is obtained with (5.6).
e (Cs2) One computes:

|f (2, w, x)log(| f (¢, w, x)[)]*™
<1f @ w, )™ 4 | w, ) og( £ (¢ w, )DL pirwry>e)
+ £ @ w, x)log (£ (8w, )DL (w01 <1/6)-
Since | f(t, w, x)| < ki (t, x), one gets
[ f(t, w, x)log(] f(t, w, )DIL{ r,wx)>e) < ki(t, x)1oglky (¢, X)L £(1,w,x)|>e)
< lki(z, x)log(ki (z, x))/,
| £t w, x)log(| £ (t, w, )DI* Ly £y < lk1 (2, x) log(ky (2, x))[*™).

Fixn>0suchthat1<n<a+%—ah+ andk>0suchthat%<A<1.Then:

|t w, x) log(|f (6, w, X)DI* P £wnyi<1/e) < K1 w, x) W) < K kg (2, x) 24O

and thus, since |k;|* satisfies (Cs5) and k; satisfies (Cs2), (Cs2) holds for f.
e (Cs4) For j large enough (j > j*),

|f (£, w, x)log(r () |* ™ < Ky lky (2, x)|* ™

400
+ K> Z £t w, )" Aog (N X — japurj—1. (%)
j=J*
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Also
(w0 -1 () < K ety i1 151 )

Thus,
|f(t, w, ) log(r (x)|*™ < Kk (r X))

(log())!
+ Ky Z |x|a(+1/b— h+)1[* =AU, ()-

To conclude, note that

(log(j))* J (7 dx
/RWI[ J—i+1uri—1,j1(x) dx = 2(log(j)) m

(10g(j))d
jaU+1/b=hy) |

Theorem 5.5 (Multistable reverse Ornstein—Uhlenbeck process). Let A > 0, « : R — (1,2)
and b:R — (0, +00) be connnuously differentiable.
Letr?z(dx) Z+OO 27~ j,_j+1[u[j_1,j[(x)dx on R. Define

+00 +00
Y(1) = b()CYED 33y, e O/
i=1 j=1 (5 9)

—A(Vi—t

xe M oon(—ji—jrhutj—1.n (Vi) (t €R).

Then Y is 1/a(u)-localisable at any u € R, with local form Y|, = b(u) Ly ().

The proof is similar to previous ones and is omitted.

We provide now an example of a process whose kernel f does not satisfy the criteria of
Theorem 5.2 in [8] for localisability. Thus, it is not possible to prove that the process associated
to f through the Poisson sum representation is localisable. Indeed, as is readily verified, f is such
that, for all open set U C (0, 1/e), all ¢ € U and all increasing function «, || f (¢, u, -)||c.a = +00
(recall (5.8)) where ¢ = inf,cy a(v), d = sup,y; @(v). However, it is possible to prove that
the process defined by f in the Ferguson—Klass—LePage representation is localisable thanks to
Theorem 3.2.

Theorem 5.6. Ler U = (0, %), a:U — R, a(t) =1+t. Let m(dx) be the uniform distribution
on U. Define

+oo
1/a(r) 1 —1/a(t) 1
Y1) =Coly " 7y 2T 1 Log(V) — (tel).  (5.10)
a(t) (2e) Ja(t) P i Vz /a(t)Iani|4/°‘([)

Then Y is 1/a(u)-localisable at any u € U, with local form Y|, = WLQW).
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Proof. Apply Theorem 4.1 with m(dx) =dx, f(t,u,x) = 1j0,11(x) and

1
xl/a(u)“nxlét/a(u)

_ e Ve 1 :
X(t,u)= Ca(u) (ze)l/a(u) Z l/a(u) | IV |4/Ot(u) 1[0,1](‘/1).
l' 1

The computation of the characteristic function of X (-, u) (as in Section 6) allows to verify that
X(,u)is 5oy locallsable with local form X/, (-, u) = WLQ(,,). O

6. Finite dimensional distributions

In this section, we compute the finite dimensional distributions of the family of processes defined
in Theorem 4.1, and compare the results with the ones in [8].

Proposition 6.1. With notations as above, let {X(t,u),t,u € R} be as in (4.1) and Y (t) =
X (t,t). The finite dimensional distributions of the process Y are equal to

1/a(t))

E(el St 070 [ o;b Catty) .
(e )_exp - A Z ;) l/a([)f(tl,t/,x) ym(dx)

formeN,0=(0,...,0m) eR" t=(t1,...,1n) € R™.

Proof. Let m € N and write ¢,(0) = E(ei 2Go16;Y )). We proceed as in [20], Theorem 1.4.2.
Let {U;}ien be an i.i.d. sequence of uniform random variables on (0, 1), independent of the

sequences {y;} and {V;}, and g(t, u, x) = bu)C/*™r(x)1/2® £ (¢, u, x). For all n € N,

a(u)

m n
_ . —1 i
S0 VN U g1, V)

j=1 k=1
m
d pit
300"
J=1

The right-hand side of (6.1) converges a.s. to ZT:] 0;Y (¢j) when n tends to infinity and thus

6.1)

1/a(t; “1/a())
) ol e Vi),
k=1

. —1/a(t;) —1/altj)
¢(0) = lim E(GIZ?’:l@/n M S, ’g(lj,f/’Vk))'
n——+o00

S —l/a(t;) xn “leG) ) ) )
Set ¢} (6) =E(e' Lji O Y e 8(j:1-Vi)) This function may be written as:

n “altj) ,,~ 1))
¢ (O) = E(l_[ ek X 0P U T gy, Vk))
k=1
. —1/altj)
= (E(e Zhmi im0 g vy

’
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since all the sequences {yx}, {Ux}, {Vk} are i.i.d. We compute now the expectation using condi-
tioning and independence of the sequences {yx}, {Ux} and {Vy}.

. m o —la;),, /et —Valt;),,~1/at))
E(elyl > i=10jn J U g(tj tj, Vl)) (E 1}’1 Yii0jn 17U, A IGRIR V1)|U Vl

— ( (ZQ ety 1/a(; )g(tj t,,V1)>)

( cos(Z@ y~1/et)) g(tj, t],V1)> J’)
_1—;/ E(sm (Z J _1/0‘0 )g(t t],V1)>>d
0 pa

The function sin? is positive and thus, when n tends to +o0,

" 2N~ —1/a
1/ate:
/ sin Z 2 ¥e(t,t;, V)| | dy

Jj=1

m
—>/ E(sm (Z 1/"’(tf)g(tj,tj,V1)>>dy
0

To conclude, note that

m m
0; 0;
E(Sin2<2 Lyl g a1, vo)) = / sin’ (Z E’y—“a“ﬂgm,w))m(dx)- .

j=1 Jj=1

Comparing with Proposition 8.2, Theorems 9.3, 9.4, 9.5 and 9.6 in [8], it is easy to prove the
following corollary.

Corollary 6.1. The linear multistable multifractional motion, multistable Lévy motion, log-
fractional multistable motion and multistable reverse Ornstein—Uhlenbeck process defined in
Section 5 have the same finite dimensional distributions as the corresponding processes of [8].

7. Numerical experiments

We display in this section graphs of synthesized paths of some of the processes defined above.
The idea is to picture how multistability translates on the behaviour of trajectories, and, in the
case of linear multistable multifractional motion, to visualize the effect of both a varying H and
a varying o, these two parameters corresponding to two different notions of irregularity. The syn-
thesis method is described in [7], pages 17—18. Theoretical results concerning the convergence of
this method will be presented elsewhere. The graphs on the first line of Figure 1 ((a) and (b)) dis-
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a: Lévy multistable motion b: Lévy multistable motion
05 0.5
0 0
0.5 -0.5
0.5 1 1.5 2 0.5 1 1.5 2
x 10* x 10*
c: alpha function of the process in (a),(e) d: alpha function of the process in (b)
2 2
15 /\/ 12
1 1
0 0.5 1 1.5 2 0 0.5 1 1.5 2
x 10* x 10*
e: OrnsteinUhlenbeck multistable process f: linear multistable multifractional motion
1000 20
0 0
-1000
-2000 -20
0.5 1 1.5 2 0.5 1 1.5 2
x 10* x 10*

g: linear multistable multifractional motion zoom on the second half of the process in (f)

4 1
2
3 0
g
8 -1
0 0.5 1 1.5 2 1.2 1.4 1.6 1.8 2
x 10* x 10*
alpha and H functions of the process in (g) alpha and H functions of the process in (f)
2 2
; alpha ; alpha
Ho _——— H
0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
x 10* x 10*

Figure 1. Paths of multistable processes. First line: Levy multistable motions with sine (a) and linear (b)
o function. Second line: (¢) o function for the process in (a), (d) @ function for the process in (b). Third
line: (e) multistable Ornstein—Uhlenbeck process with « function displayed in (c), and (f) linear multistable
multifractional motion with increasing & and H functions. Fourth line: (g) linear multistable multifractional
motion with increasing o function and decreasing H function, and zoom on the second part of the process
in (f). Last line: « and H functions for the process in (g) (left), and in (f) (right).
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play multistable Lévy motions, with respectively « increasing linearly from 1.02 to 1.98 (shown
in (c)) and « a sine function ranging in the same interval (shown in (d)). The graph (e) displays
an Ornstein—Uhlenbeck multistable process with same sine « function. A linear multistable mul-
tifractional motion with linearly increasing « and H functions is shown in (f). H increases from
0.2 t0 0.8 and « from 1.41 to 1.98 (these functions are displayed on the right part of the bottom
line). The graph in (g) is a linear multistable multifractional motion with linearly increasing o
and linearly decreasing H. H decreases from 0.8 to 0.2 and « increases from 1.41 to 1.98 (these
functions are displayed on the left part of the bottom line). Finally, a zoom on the second half
of the process in (f) is shown, that allows to appreciate how the graph becomes smoother as H
increases. In all the graphs, one sees how the variations of « translate in terms of the “intensity”
of jumps. Additionally, in the case of linear multistable multifractional motions, the interplay
between the smoothness governed by H and the jumps tuned by « indicate that such processes
may prove useful in applications.
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