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A bivariate distribution with continuous margins can be uniquely decomposed via a copula and its marginal
distributions. We consider the problem of estimating the copula function and adopt a Bayesian approach.
On the space of copula functions, we construct a finite-dimensional approximation subspace that is
parametrized by a doubly stochastic matrix. A major problem here is the selection of a prior distribution
on the space of doubly stochastic matrices also known as the Birkhoff polytope. The main contributions of
this paper are the derivation of a simple formula for the Jeffreys prior and showing that it is proper. It is
known in the literature that for a complex problem like the one treated here, the above results are difficult
to obtain. The Bayes estimator resulting from the Jeffreys prior is then evaluated numerically via Markov
chain Monte Carlo methodology. A rather extensive simulation experiment is carried out. In many cases,
the results favour the Bayes estimator over frequentist estimators such as the standard kernel estimator and
Deheuvels’ estimator in terms of mean integrated squared error.

Keywords: Birkhoff polytope; copula; doubly stochastic matrices; finite mixtures; Jeffreys prior; Markov
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1. Introduction

Copulas have received considerable attention recently because of their increasing use in mul-
tiple fields such as environmental studies, genetics and data networks. They are also currently
very popular in quantitative finance and insurance; see Genest et al. [10]. Since it is precisely
the copula that describes the dependence structure among various random quantities, estimating
a copula is part of many techniques employed in these fields. For instance, in risk measurement,
the value at risk (VaR) is computed by simulating asset log returns from a fitted joint distribution,
for which the dependence structure between the assets is modelled by a copula. Further finan-
cial examples in which copulas are estimated are provided in Embrechts et al. [7] and the books
written by Cherubini et al. [4], McNeil et al. [19] and Trivedi and Zimmer [29]. In this paper, we
provide new generic methodology for estimating copulas within a Bayesian framework.

Let us first recall that a bivariate copula C is a cumulative distribution function on S = [0,1]×
[0,1] with uniform margins. In this paper, we denote the space of all copulas by C . Every C ∈ C
is Lipschitz continuous, with a common Lipschitz constant equal to one:

|C(u1, v1) − C(u2, v2)| ≤ |u1 − u2| + |v1 − v2| for all (ui, vi) ∈ S, i ∈ {1,2}. (1)
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The space C is bounded above and below by the so-called Fréchet–Hoeffding copulas, that is,
for every C ∈ C ,

max(0, u + v − 1) ≤ C(u, v) ≤ min(u, v) for all (u, v) ∈ S.

Sklar’s theorem states that a bivariate cumulative distribution function F is completely character-
ized by its marginal cumulative distribution functions FX,FY and its copula C. More precisely,
we have the representation

F(x, y) = C(FX(x),FY (y)) for all (x, y) ∈ R
2, (2)

where C is well defined on Ran(FX) × Ran(FY ); see Nelsen [22]. In particular, the copula is
unique if FX and FY are continuous and, in this case, we have the following expression for the
copula:

C(u, v) = F(F−1
X (u),F−1

Y (v)) for all (u, v) ∈ S. (3)

Let {(xi, yi), i = 1, . . . , n} be a sample where every (xi, yi) is a realization of the random cou-
ple (Xi, Yi), i = 1, . . . , n, with joint cumulative distribution function F , and continuous marginal
cumulative distribution functions FX and FY . We consider the problem of estimating the un-
known copula C of F by a copula Ĉ, where Ĉ depends on the sample. In this problem, the
individual marginal distributions are treated as nuisance parameters. The literature presents three
generic approaches for estimating C, namely the fully parametric, the semi-parametric and the
nonparametric approaches. Below, we briefly describe each approach and focus on two nonpara-
metric estimators, since we will subsequently compare our estimator with these.

The fully parametric approach. In this framework, parametric models are assumed for both
the marginal distribution functions FX and FY and for the copula C. See Joe [15]; Cherubini et
al. [4], Joe [16], and, in a Bayesian setup, Silva and Lopes [27].

The semi-parametric approach. Here, a parametric model is assumed only for the copula func-
tion C, not for the margins. In this setup, Genest et al. [11] have proposed the use of rescaled
empirical distribution functions, such as the estimates F̂X and F̂Y and a pseudo-likelihood es-
timator for C. The authors show that the resulting estimator is consistent and asymptotically
normal. In Kim et al. [17], comparisons are made between the fully parametric approach and the
semi-parametric approach proposed by Genest et al. [11]. More recently, in a Bayesian setup,
Hoff [14] proposes a general estimation procedure, via a likelihood based on ranks, that does
not depend on any parameters describing the marginal distributions. The latter methodology can
accommodate both continuous and discrete data.

The nonparametric approach. This approach exploits equation (3). Here, we describe De-
heuvels’ estimator and the kernel estimator. Let F̂ be the empirical cumulative distribution func-
tion, and let F̂−1

X and F̂−1
Y be the generalized inverses of its marginal cumulative distribution

functions. Any copula Ĉ ∈ C is said to satisfy the Deheuvels constraint associated with F̂ pro-
vided that for all i, j = 1, . . . , n,

Ĉ(i/n, j/n) = F̂
(
F̂−1

X (i/n), F̂−1
Y (j/n)

)
= (1/n)

n∑
k=1

1
(
rank(xk) ≤ i, rank(yk) ≤ j

)
(Deheuvels’ constraint).
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In Deheuvels [5], the asymptotic behaviour of the class of copulas C
F̂

⊂ C satisfying the De-

heuvels constraint associated with F̂ is described. Note that, in the literature, the so-called em-
pirical copula Ĉemp(u, v) = F̂ (F̂−1

X (u), F̂−1
Y (v)), for all (u, v) ∈ S, is a function that satisfies

the Deheuvels constraint and is often used as an estimator for C even though it is not a gen-
uine copula. In Lemma 3, we propose an estimator ĈDEH that satisfies Deheuvels’ constraint
and which, unlike Ĉemp, is itself a copula so that ĈDEH ∈ C

F̂
. This estimator, which we call De-

heuvels’ estimator henceforth, is based on ranks. One nice property of rank-based estimators is
their invariance under strictly increasing transformations of the margins. Therefore, if ϕ and ψ

are two strictly increasing functions, then the Deheuvels estimator based on the original sample
and the one based on the sample {(ϕ(xi),ψ(yi)): i = 1, . . . , n} are identical. This is a desirable
property for a copula estimator since it is inherent to copulas themselves.

Moreover, if F̂ is a smooth kernel estimator of F (F̂X and F̂Y are continuous say), then

Ĉ(u, v) = F̂ (F̂−1
X (u), F̂−1

Y (v)) for all (u, v) ∈ S, (4)

is called a kernel estimator for C, and we have Ĉ ∈ C . Asymptotic properties of such estimators
are discussed in Fermanian and Scaillet [8], and the reader is referred to Charpentier et al. [3] for
a recent review. In particular, the so-called Gaussian kernel estimator is given by (4) using

F̂ (x, y) = (1/n)

n∑
i=1

�

(
x − xi

h

)
�

(
y − yi

h

)
for all x, y,

where � denotes the standard univariate Gaussian cumulative distribution function and h > 0 is
the value of the bandwidth.

Both of the nonparametric estimators discussed above have good asymptotic properties. On the
other hand, they may not be optimal for small sample sizes. This could be an inconvenience when
working with small samples, and we think practitioners should be aware of this. We illustrate
some of these situations by a simulation study in Section 5.

Our aim is to develop a Bayesian alternative for the estimation of C that circumvents this
problem. Following Genest et al. [11], when the marginal distributions are unknown, we use
rescaled empirical distribution functions as their estimates. In view of this, our methodology can
be called empirical Bayes. When the marginal distributions are known, the sample {(xi, yi), i =
1, . . . , n} is replaced by {(FX(xi),FY (yi)), i = 1, . . . , n}, which is a sample from the uniform
distribution U (0,1). In this case, our procedure is purely Bayesian. In both cases, our estimator
has the property of being invariant under monotone transformations of the margins, just like
Deheuvels’ estimator.

Our model is obtained as follows. First, in Section 2 we construct an approximation subspace
C ∗ ⊂ C . This is achieved by considering the sup-norm ‖·‖∞ and setting a precision ε > 0 so that
for every copula C ∈ C there exists a copula C∗ ∈ C ∗ such that ‖C∗ − C‖∞ ≤ ε. Moreover, C ∗
is finite dimensional; it is parametrized by a doubly stochastic matrix P . Then, our estimator Ĉ

is obtained by concentrating a prior on C ∗ and computing the posterior mean, that is, the Bayes
estimator under squared error loss. Now two problems arise, the first one is the prior selection on
C ∗ and the second one concerns the numerical evaluation of the Bayes estimator. These are the
topics of Sections 3 and 4, respectively. While the problem of evaluating the Bayes estimator is
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solved using a Metropolis-within-Gibbs algorithm, the choice of the prior distribution is a much
more delicate problem. A copula from our model can be written as a finite mixture of cumulative
distribution functions. The mixing weights form a matrix W that is proportional to a doubly
stochastic matrix. Therefore, specifying a prior on C ∗ boils down to specifying a prior for the
mixing weights. We assume that we do not have any information that we could use for the
construction of a subjective prior. It is not our intention to obtain a Bayes estimator better than
some other given estimator. For these reasons we shall rely on an objective prior, and a natural
candidate is the Jeffreys prior. The main contributions of our paper are the derivation of a simple
expression for the Jeffreys prior and showing that it is proper. The fact that these results are
generally difficult to come up with, for finite mixture problems, has been raised before in the
literature; see Titterington et al. [28] and Bernardo and Girón [2]. Moreover, here we face the
additional difficulty that the mixing weights are further constrained, since their sum is fixed along
the rows and the columns of W . To the best of our knowledge, nothing has yet been published
on this problem. In Section 5, we report the results of an extensive simulation study in which
we compare our estimator with Deheuvels’ estimator and the Gaussian kernel estimator. Finally,
a discussion is provided in Section 6 to conclude the paper.

2. The model for the copula function

For every m > 1, we construct a finite-dimensional approximation subspace Cm ⊂ C . The con-
struction of Cm uses a basis that forms a partition of unity. A partition of unity is a set of non-
negative functions g = {gi}mi=1, such that mgi is a probability density function on [0,1] for all
i = 1, . . . ,m, and

m∑
i=1

gi(u) = 1 for all u ∈ [0,1].

Particular examples are given by indicator functions

{
g1 = 1[0,1/m],
gi = 1((i−1)/m,i/m], i = 2, . . . ,m,

(5)

and Bernstein polynomials

gi = Bm−1
i−1 , i = 1, . . . ,m, (6)

where

Bm
i (u) =

(
m

i

)
ui(1 − u)m−i for all u ∈ [0,1].

See Li et al. [18] for more examples of partitions of unity. In the following, let G =
(G1, . . . ,Gm)�, where Gi(u) = ∫ u

0 gi(t)dt , for all u ∈ [0,1], i = 1, . . . ,m, and let

C∗
P (u, v) = mG(u)�PG(v) for all (u, v) ∈ S, (7)

where P is an m × m doubly stochastic matrix. The following lemma is straightforward to prove.
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Lemma 1. For every doubly stochastic matrix P , C∗
P is an absolutely continuous copula.

For a fixed partition of unity, we now define the approximation space as

Cm = {C∗
P :P is an m × m doubly stochastic matrix}.

The approximation order of Cm is now discussed. It depends on the choice of the basis G. Let
Gm = {(i/m, j/m): i, j = 1, . . . ,m} be a uniformly spaced grid on the unit square S. For a given
copula C, let RC = (C(i/m, j/m))mi,j=1 be the restriction of C on Gm. Let

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
−1 1 0 0 · · · 0
0 −1 1 0 · · · 0

0 0 −1 1 · · · ...
...

...
...

...
. . . 0

0 0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then PC = mDRCD� is a doubly stochastic matrix. Upper bounds for ‖C∗
PC

− C‖∞ are given
in the following lemma.

Lemma 2. Let C be a copula and let C∗ = C∗
PC

∈ Cm, where C∗
PC

is obtained by (7).

(a) For a model using indicator functions basis (5), we have RC∗ = RC and ‖C∗ − C‖∞ ≤
2/m.

(b) For a model using the Bernstein basis (6), we have ‖C∗ − C‖∞ ≤ 1/
√

m.

Proof. (a) A direct evaluation shows that RC∗ = RC . From the Lipschitz condition (1), if two
copulas C1 and C2 satisfy the constraint RC1 = RC2 , then ‖C1 − C2‖∞ ≤ 2/m.

(b) First, it is well known that mG�D = (Bm
1 , . . . ,Bm

m). For any (u, v) ∈ S, consider two
independent random variables, X and Y , where X follows a Binomial(m,u) distribution and Y

follows a Binomial(m,v) distribution. We have

C∗(u, v) = Eu,v[C(X/m,Y/m)].
Therefore,

sup
(u,v)∈S

|C∗(u, v) − C(u, v)| = sup
(u,v)∈S

|Eu,v[C(X/m,Y/m) − C(u, v)]|

≤ sup
(u,v)∈S

Eu,v[|C(X/m,Y/m) − C(u, v)|]

≤ sup
(u,v)∈S

Eu,v[|X/m − u| + |Y/m − v|]

= (2/m) sup
u∈[0,1]

Eu[|X − mu|].
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In Lemma 6 of the Appendix, we give the exact value of supu∈[0,1] Eu[|X − mu|]. However,
a simple expression for an upper bound is given by Hölder’s inequality

sup
u∈[0,1]

2Eu[|X − mu|]/m ≤ sup
u∈[0,1]

2
√

Varu[X]/m

= 1/
√

m. �

Bernstein copulas have appeared in the past literature and their properties have been exten-
sively studied in Sancetta and Satchell [24] and Sancetta and Satchell [25]. However, in view of
Lemma 2 and of the simplicity of indicator functions, we subsequently use the indicator func-
tions basis given in (5) for G in our model C∗

P given by equation (7), and Cm is the family of
copulas generated by this model. Since PC∗

P
= P for any doubly stochastic matrix P , our model

is rich in the sense that we have {PC : C ∈ C } = {PC∗ : C∗ ∈ Cm}, which is the set of doubly
stochastic matrices.

Notice that in a data reduction perspective, if {(uk, vk), k = 1, . . . , n} is a sample from
our model C∗

P , and if g = (g1, . . . , gm)� represents the indicator functions in (5), then
{g(uk)g(vk)

�, k = 1, . . . , n} is a sample from the multinomial(1,m−1P) distribution. As in
a multinomial experiment with probabilities given by m−1P , the vector (nij ) of cell count statis-
tics nij =∑n

k=1 gi(uk)gj (vk), i, j = 1, . . . ,m, follows a multinomial(n,m−1P) distribution and
is sufficient for P .

The following lemma is used to define what we call Deheuvels’ estimator. The estimator cor-
responds to the so-called bilinear extension of the empirical copula and has been considered
by Deheuvels [6], Nelsen [22], Lemma 2.3.5, Genest and Nešlehová [12] and Nešlehová [23],
Section 5.

Lemma 3. Let {(xi, yi): i = 1, . . . , n} be a sample, and let R = (rij ) be the n × n matrix given
by

rij = (1/n)

n∑
k=1

1
(
rank(xk) ≤ i, rank(yk) ≤ j

)
for i, j = 1, . . . , n.

If we use the indicator basis (5) with m = n for G, then the copula

ĈDEH = n2G�DRD�G (Deheuvels’ estimator)

satisfies Deheuvels’ constraint.

3. The prior distribution

The choice of a prior concentrated on the approximation space is delicate. The prior distribution
is specified on B, the set of doubly stochastic matrices of order m, m > 1. Here, we adopt an
objective point of view and derive the Jeffreys prior. We also discuss two representations of
doubly stochastic matrices that can be useful for the specification of other prior distributions
on B.
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The set B is a convex polytope of dimension (m − 1)2. It is known in the literature as the
Birkhoff polytope and has been the object of much research. For instance, computing the exact
value of its volume is an outstanding problem in mathematics; it is known only for m ≤ 10 (see
Beck and Pixton [1]).

The Fisher information matrix is obtained as follows. For m > 1, let P ∈ B, and let W =
(1/m)B. The copula (7) is a mixture of m2 bivariate distribution functions

C∗
P (u, v) = mG(u)�PG(v)

= H(u)�WH(v)

=
m∑

i=1

m∑
j=1

wijHi(u)Hj (v),

where W = (1/m)P ∈ W , and Hi(u) = ∫ u

0 hi(t)dt , for all u ∈ [0,1], with hi(·) = mgi(·), i =
1, . . . ,m. The probability density function c∗

P of the copula is thus

c∗
P (u, v) =

m∑
i=1

m∑
j=1

wijhi(u)hj (v)

= 1 +
m∑

i=1

m∑
j=1

(wij − 1/m2)hi(u)hj (v)

= 1 +
m−1∑
i=1

m−1∑
j=1

(wij − 1/m2)
(
hi(u) − hm(u)

)(
hj (v) − hm(v)

)
.

The last equality expresses the fact that there are (m − 1)2 free parameters in the model. Recall
that we are considering the indicator functions basis (5) in our model. It follows that for all
i1, j1, i2, j2 = 1, . . . ,m − 1,

E

[−∂2 log c∗
P (u, v)

∂wi1j1 ∂wi2j2

]
=
∫ 1

0

∫ 1

0

(hi1(u)hi2(u) + h2
m(u))(hj1(v)hj2(v) + h2

m(v))

c∗
P (u, v)

dudv

=

⎧⎪⎨⎪⎩
1/wi1j1 + 1/wi1m + 1/wmj1 + 1/wmm, if i1 = i2, j1 = j2,
1/wi1m + 1/wmm, if i1 = i2, j1 
= j2,
1/wmj1 + 1/wmm, if i1 
= i2, j1 = j2,
1/wmm, if i1 
= i2, j1 
= j2.

Although the information matrix is of order (m−1)2 × (m−1)2, the following result shows how
to reduce the computation of its determinant to that of a matrix of order (m − 1) × (m − 1). The
important reduction provided by (8) is greatly appreciated when running an MCMC algorithm,
which computes the determinant at every iteration. Most important, this expression enables us to
derive the main result of this paper, that is, Theorem 1. The proofs of these two results are quite
technical, so we have put them in the Appendix.
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Lemma 4. The Fisher information for W = (wij )i,j=1,...,m ∈ W is given by

I (W) = det((1/m)I − mV �V )

mm det (D0)det (D1)
, (8)

where

V = (wij )i=1,...,m;j=1,...,m−1,

D0 = diag
(
w11, . . . ,w1(m−1), . . . ,w(m−1)1, . . . ,w(m−1)(m−1)

)
and

D1 = diag
(
wmm,w1m, . . . ,w(m−1)m,wm1, . . . ,wm(m−1)

)
.

Theorem 1. The Jeffreys prior π ∝ I 1/2 is proper.

Now, in order to specify different priors, we can consider the two following representations.
The Hilbert space representation. Let B0 = {P − (1/m)11�: P ∈ B} and V = Span (B0).

Consider the Frobenius inner product 〈V1,V2〉 = tr(V1V
�
2 ) on V . Thus, V is an (m − 1)2-

dimensional Hilbert space and an orthonormal basis is given by {viv
�
j }i,j=1,...,m−1, with

vi = 1√
i(i + 1)

(1, . . . ,1︸ ︷︷ ︸
i

,−i,0, . . . ,0)�, i = 1, . . . ,m − 1.

For every P ∈ B, there exists a unique (m − 1) × (m − 1) matrix A such that

P = m−111� + GAG�, (9)

where G is the m × (m − 1) matrix given by G = (v1, v2, . . . , vm−1). In this representation
A = G�PG. Therefore, if we let B′ = G�BG, then we have a bijection between B and B′.
The set B′ is a bounded convex subset of R

(m−1)2
with positive Lebesgue measure. From this,

priors on B can be induced by priors on B′, and later on, we shall refer to the uniform prior on
the polytope B as the uniform distribution on B′. The above representation is also particularly
useful to construct a Gibbs sampler for distributions on the polytope.

The Birkhoff–von Neumann representation. Another decomposition is obtained by making
use of the Birkhoff–von Neumann theorem. Doubly stochastic matrices can be decomposed via
convex combinations of permutation matrices. In fact, B is the convex hull of the permuta-
tion matrices and these are precisely the extreme points (or vertices) of B. Furthermore, every
m × m doubly stochastic matrix P is a convex combination of, at most, k = (m − 1)2 + 1 per-
mutation matrices; see Mirsky [21]. In other words, if {σi}m!

i=1 is the set of permutation matrices

and if P ∈ B, then there exists 1 ≤ i1 < · · · < ik ≤ m! such that P = ∑k
j=1 λij σij , for some

weight vector (λi1, . . . , λik ) lying in the (k − 1)-dimensional simplex 
k = {(λ1, . . . , λk): 0 ≤
λj , for all j and

∑k
j=1 λj = 1}. A prior distribution over the polytope can be selected using

a discrete distribution over the set {1 ≤ i1 < · · · < ik ≤ m!} and a continuous distribution over the
simplex 
k , such as a Dirichlet distribution. See Melilli and Petris [20] for work in this direction.
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4. The MCMC algorithm

Let {(xi, yi), i = 1, . . . , n} be a sample, where each (xi, yi) is a realization of the random
couple (Xi, Yi), i = 1, . . . , n, with dependence structure given by a copula C, and with con-
tinuous marginal distributions FX and FY . If the marginal distributions are known, then the
transformed observations x̃i = FX(xi) and ỹi = FY (yi), i = 1, . . . , n, are both samples from
a uniform distribution on (0,1). If the marginal distributions are unknown, then we follow
Genest et al. [11] and consider the pseudo-observations x̃i = (n/(n + 1))F̂X(xi) and ỹi =
(n/(n + 1))F̂Y (yi), i = 1, . . . , n, where F̂X and F̂Y are the empirical distributions. The algo-
rithm below describes the transition kernel for the Markov chain used to numerically evaluate
the Bayesian estimator Ĉ associated to the Jeffreys prior π . The type of algorithm is called
Metropolis-within-Gibbs; see Gamerman and Lopes [9]. An individual estimate is approximated
by the sampling mean of the chain.

Let T ≥ 1 be the length of the chain, and at each iteration t , 1 ≤ t ≤ T , let Pt be the current doubly
stochastic matrix. From representation (9) in the previous section with A = (akl)k,l=1,...,m−1,

Pt − (1/m)11� =
m−1∑
k=1

m−1∑
l=1

aklvkv
�
l .

Repeat for i, j = 1, . . . ,m − 1:

1. Select direction viv
�
j and compute the interval Iij ⊂ R as follows:

1.1 For every p,q = 1, . . . ,m, find the largest interval I
(p,q)
ij such that

εij v
(p)
i v

(q)
j ≥ −1/m −

m−1∑
k=1

m−1∑
l=1

aklv
(p)
k v

(q)
l for all εij ∈ I

(p,q)
ij .

1.2 Take �ij =⋂
p,q �

(p,q)
ij .

2. Draw εij from the uniform distribution on Iij , and set a′
ij = aij + εij and a′

kl = akl , for every
k 
= i, l 
= j . The proposed doubly stochastic matrix is given by

P
prop
t = (1/m)11� +

m−1∑
k=1

m−1∑
l=1

a′
klvkv

�
l .

3. Accept Pt+1 = P
prop
t with probability

α(Pt ,P
prop
t ) = min

{
1,

π(P
prop
t )L(P

prop
t | x̃, ỹ)

π(Pt )L(Pt | x̃, ỹ)

}
, (10)

where L(· | x̃, ỹ) is the likelihood derived from expression (7).
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Note that the above algorithm could also be used with any prior specified via the Hilbert space
representation described in the previous section, including the uniform prior on the polytope
B described in the previous section. In particular, it could be adapted to draw random doubly
stochastic matrices according to such priors by replacing the acceptance probability (10) with

α(Pt ,P
prop
t ) = min

{
1,

π(P
prop
t )

π(Pt )

}
.

In order to further describe the Jeffreys prior, we use the algorithm to approximate the probability
of the largest ball contained in B with respect to the Euclidean distance on B. This distance may
be computed using the Frobenius inner product described in the previous section. The largest
ball has radius 1/(m− 1), where m > 1 is the size of the doubly stochastic matrix. Although this
probability can be obtained exactly for the uniform distribution, we nevertheless approximate it
using our algorithm, meanwhile providing some validation of the MCMC algorithm. Figure 1
shows the results we get for m = 4.

Notice that this probability is much smaller for the Jeffreys prior, because it distributes more
mass towards the extremities of the polytope than the uniform prior does. This may also be
observed by plotting the density estimates of the radius of the doubly stochastic matrix, that is,
the Euclidean distance of the doubly stochastic matrix from the center of the polytope B. These
are shown in Figure 2.

(a) (b)

Figure 1. Convergence of 1000 parallel MCMC runs for the probability of the largest ball contained in
the polytope B with m = 4. Shaded region represents the range of the entire set of approximations at each
iteration. Figure (a) is the convergence for the probability in the case of the uniform distribution. The flat
line, in this case, corresponds to the true probability p ≈ 0.0027. Figure (b) is the same for the Jeffreys
prior.
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(a) (b)

(c) (d)

Figure 2. Plots of samples and density estimates of the radius (Euclidean distance of the doubly stochastic
matrix from the center of the polytope B), on the interval [0, q95], where q95 is the 95th quantile of its
distribution. Figures (a) and (b) are results when sampling from the uniform prior and figures (c) and (d)
are those of the Jeffreys prior. Here m = 4.

5. Simulation experiments

The goal of the experiment is to study the performance of our estimator on artificial data sets gen-
erated from various bivariate distributions. We provide evidence that the estimators derived from
our model give good results in general, and most important, that the Jeffreys prior is a reasonable
choice.

Six parametric families of copulas are considered:

1. Clayton family: Cθ(u, v) = {max(0, u−θ + v−θ − 1)}−1/θ , θ ≥ −1, θ 
= 0,

2. Gumbel family: Cθ(u, v) = exp[−{(− logu)θ + (− logv)θ }1/θ ], θ ≥ 1,
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3. Frank family: Cθ(u, v) = − 1
θ

log{1 + (e−θu−1)(e−θv−1)

e−θ−1
}, θ 
= 0,

4. Gaussian family: Cθ(u, v) = �θ(�
−1(u),�−1(v)), |θ | ≤ 1, where �θ is the standard

bivariate Gaussian cumulative distribution function with correlation coefficient θ , and �−1 is the
inverse of the univariate standard normal cumulative distribution function.

5. Gaussian cross family: C×
θ (u, v) = 1/2(Cθ (u, v)−Cθ(u,1 − v)+u), |θ | ≤ 1, where Cθ

belongs to the Gaussian family.
6. Gaussian diamond family:

C�
θ (u, v) =

{
C×

θ (u + 1/2, v) − C×
θ (1/2, v), if u ≤ 1/2,

C×
θ (u − 1/2, v) + v − C×

θ (1/2, v), if u > 1/2,

where |θ | ≤ 1 and C×
θ belongs to the Gaussian cross family.

For the Clayton, Frank and Gaussian families, values of the parameter away from 0 indicate
departure from independence, while a parameter away from 1 indicates departure from indepen-
dence for the Gumbel family. These four families are among the popular ones in the literature,
but the last two families are not, and so we now describe them in more detail. The Gaussian
cross family is obtained by the following: Let (U,V ) be a random vector with uniform margins
and with the Gaussian copula Cθ as its joint distribution. Let W be an independent uniformly
distributed random variable, and consider the random vector

(U×
θ ,V ×

θ ) = (U,V )1(W ≤ 1/2) + (U,1 − V )1(W > 1/2).

The distribution of (U×
θ ,V ×

θ ) is given by the Gaussian cross copula. Here, the superscript × is
to highlight the “cross-like” dependence structure; see Figure 3(a) for a plot of its density when

(a) (b)

Figure 3. Densities of the Gaussian cross copula and the Gaussian diamond copula with θ = 0.5.
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θ = 0.5. The Gaussian diamond family corresponds to the distributions of the random vectors

(U�
θ ,V �

θ ) = (
U×

θ + 1/2(mod 1),V ×
θ

)
for each |θ | ≤ 1.

See Figure 3(b) for an illustration of its density when θ = 0.5.
An extensive simulation experiment is carried out in two parts. In the first part, we consider

the case of known marginal distributions and use bivariate data sampled from the copula families
above. For each family, we consider 11 models corresponding to equally spaced parameter values
in some interval. For the first four families, the interval is determined so that the Kendall’s τ

values associated to the particular models range between 0 and 2/3; see the simulation in Silva
and Lopes [27]. Kendall’s τ associated with a copula C is the dependence measure defined by

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1.

The values of Kendall’s τ for the first four families are respectively given by τ = θ/(θ + 2),
τ = 1−1/θ , τ = 1−(4/θ)[1−D1(θ)], where D1 is the Debye function and τ = (2/π) arcsin(θ).
For families 5 and 6, we consider the models corresponding to 11 values of θ ranging between
0 and 1. In the second part of the experiment, we simulate an unknown margins situation. We
focus on families 4, 5 and 6 and consider 11 equally spaced values of θ ranging between 0 and
1 for the copula models. Here, a Student t with seven degrees of freedom and a chi-square with
four degrees of freedom are considered as the first and second margins, respectively.

In the experiment, 1000 samples of both sizes n = 30 and n = 100 are generated from each
model. For every data set, the copula function is estimated using five estimators. The first two
are the Bayes estimators associated to the Jeffreys and the uniform priors, respectively. For the
uniform prior, we mean the uniform distribution on B′ defined in Section 3, we use the bijection
B = m−111� +GB′G� given by expression (9). The third estimator is the maximum likelihood
estimator (MLE) from our model C∗

P̂
, where P̂ maximizes the likelihood derived from expres-

sion (7). This estimator is evaluated numerically. For the above three estimators, we take m = 6
as the order of the doubly stochastic matrix in our model. Finally, we consider the two frequentist
estimators, that is, Deheuvels’ estimator given in Theorem 3 and the Gaussian kernel estimator
described in the Introduction. Values of the bandwidth for the latter estimator are based on the
commonly used rule of thumb: h = sin

−1/5, where si , i = 1,2, is the sample standard deviation
of the ith margin; see Fermanian and Scaillet [8] and Sheather [26]. Figures 4, 5 and 6 report the
values of the mean integrated squared errors,

MISE(Ĉ) = E

[∫ 1

0

∫ 1

0

(
Ĉ(u, v) − C(u, v)

)2 dudv

]
,

for the five estimators as a function of the parameter θ .
As the results indicate, the Bayesian approach outperforms Deheuvels’ estimator and the ker-

nel estimator near independence for the Clayton, Gumbel, Frank and Gaussian families. Unfor-
tunately, this is not necessarily the case when the value of the parameter increases, that is, when
the true copula approaches the Fréchet–Hoeffding upper bound, also called the comonotone cop-
ula, corresponding to (almost sure) perfect positive linear dependence. For families 5 and 6, the
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(a) Family 1 (b) Family 2

(c) Family 3 (d) Family 4

(e) Family 5 (f) Family 6

Figure 4. Plots of MISE against θ in the known margins case. The MISE is approximated using 1000
samples of size n = 30. Thick solid line is the MISE of the Bayes estimator using the Jeffreys prior, dashed
line is that of the Bayes estimator using the uniform prior, dashed–dotted line is the MISE of the MLE,
while dotted and thin solid line is the MISE of Deheuvels’ and the Gaussian kernel estimators, respectively.
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(a) Family 1 (b) Family 2

(c) Family 3 (d) Family 4

(e) Family 5 (f) Family 6

Figure 5. Plots of MISE against θ in the known margins case. The MISE is approximated using 1000
samples of size n = 100. Thick solid line is the MISE of the Bayes estimator using the Jeffreys prior, dashed
line is that of the Bayes estimator using the uniform prior, dashed–dotted line is the MISE of the MLE, while
dotted and thin solid line is the MISE of Deheuvels’ and the Gaussian kernel estimator, respectively.
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(a) Model 4, n = 30 (b) Model 4, n = 100

(c) Model 5, n = 30 (d) Model 5, n = 100

(e) Model 6, n = 30 (f) Model 6, n = 100

Figure 6. Plots of MISE against θ in the unknown margins case. The MISE is approximated using 1000
samples each of sizes n = 30 and n = 100. Thick solid line is the MISE of the Bayes estimator using the
Jeffreys prior, dashed line is that of the Bayes estimator using the uniform prior, dashed–dotted line is the
MISE of the MLE, while dotted and thin solid line is the MISE of Deheuvels’ and the Gaussian kernel
estimators, respectively.
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Bayes estimators outperform both frequentist estimators when the sample size is small (n = 30).
One remarkable feature that appears when comparing the results obtained in the known margins
case with the results obtained in the unknown margins case is the decrease in performance of the
kernel estimator. Recall that the latter estimator is the only one for which the invariance property
mentioned in the Introduction does not hold. The other estimators seem to behave similarly when
comparing their resulting MISE in the known margins case with their MISE in the unknown mar-
gins case. Notice the resemblance in shape of the MISE for Deheuvels’ estimator and the kernel
estimator in the unknown margins cases. Finally, the performance of the MLE is worth mention-
ing, since in many cases it has the smallest MISE, especially for large values of θ . This is because
the MLE will go on the boundary of the parameter space easily, while the Bayes estimator will
always stay away from the boundary with the types of priors that we have selected. However, if
such an extreme case is to happen in a real life problem, it is probable that the practitioner has
some insight on the phenomenon beforehand, and may choose to work with a more appropriate
(subjective) prior.

6. Discussion

Two points need to be further discussed. First, our methodology is purely Bayesian only when
the marginal distributions are known. When these are unknown, our methodology is empirical
Bayes. In fact, in this case we propose a two-step procedure by first estimating the margins via
the empirical marginal distributions and then plugging them in as the true distributions thereafter.
We have chosen to do this because it is common practice to do so (see Genest et al. [11]), it is
simple to implement, it is robust against outliers and our estimator is consequently invariant under
increasing transformations of the margins. One way to propose a purely Bayesian estimator by
using our model for the copula is to use finite mixtures for the margins. This way, if the densities
used in the latter mixtures have disjoint supports, then the Jeffreys prior for the mixing weights
has a simple form and is proper; see Bernardo and Girón [2]. Now by selecting independent
Jeffreys priors for the margins and for the copula, the resulting prior is proper as well.

Finally, our models given by the approximation spaces Cm, m > 1, are called sieves by some
authors; see Grenander [13]. In the present paper, we have chosen to work with a fixed sieve,
so this makes our model finite dimensional. In this case, the methodology falls in the semi-
parametric approach described in the Introduction. Here, the rather subjective choice of the
sieve to work with can be viewed as a weakness of the proposed methodology. On the other
hand, by using the entire set of sieves, we can construct a nonparametric model for the copula
that can, in some sense, respect the infinite-dimensional nature of the copula functions. In fact,
if we take C =⋃

m>1 Cm, then C is dense in the space of copulas. Our Bayesian methodology
can be easily adapted here. This can be achieved by selecting an infinite support prior for the
model index m and using our methodology inside each model. The Bayesian estimator becomes
an infinite mixture of the estimators proposed in this paper (one for each model m), where the
mixing weights are given by the posterior probabilities of the models.
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Appendix

Proof of Lemma 4. Here we show how to compute I (W) = det(E[−∂2 log c∗
P (u,v)

∂W 2 ]) efficiently.

First, notice that A = E[−∂2 log c∗
P (u,v)

∂W 2 ] can be written as A = D−1
0 + CD−1

1 C�, where

D0 = diag
(
w11, . . . ,w1(m−1), . . . ,w(m−1)1, . . . ,w(m−1)(m−1)

)
,

D1 = diag
(
wmm,w1m, . . . ,w(m−1)m,wm1, . . . ,wm(m−1)

)
and

C(m−1)2×(2m−1) =

⎛⎜⎜⎜⎜⎝
1m−1 1m−1 01m−1 · · · Im−1
1m−1 01m−1 1m−1 · · · Im−1
1m−1 01m−1 01m−1 · · · Im−1

...
...

...
...

...

1m−1 01m−1 01m−1 · · · Im−1

⎞⎟⎟⎟⎟⎠ .

Thus, detA = det(D1 + C�D0C)/(detD0 detD1). If we let B = (wij )i,j=1,...,m−1, then since∑m
i=1 wij = 1/m, for all j = 1, . . . ,m, and

∑m
j=1 wij = 1/m for all i = 1, . . . ,m,

D1 + C�D0C =
(1 − 2(1/m − wmm) 1�B� 1�B

B1 (1/m)I B

B�1 B� (1/m)I

)
.

By elementary row and column operations, we get

det(D1 + C�D0C) = det

( 1 (1/m)1� (1/m)1�
(1/m)1 (1/m)I B

(1/m)1 B� (1/m)I

)
,

so that

det(D1 + C�D0C)

= det

((
(1/m)I B

B� (1/m)I

)
− (1/m2)12(m−1)1�

2(m−1)

)
= det

(
(1/m)

(
I − (1/m)11�) B − (1/m2)11�

B� − (1/m2)11� (1/m)
(
I − (1/m)11�))

= det
(
(1/m)

(
I − (1/m)11�))det

([
(1/m)

(
I − (1/m)11�)]

− [B� − (1/m2)11�][(1/m)
(
I − (1/m)11�)]−1[B − (1/m2)11�]).

Finally, det((1/m)(I − (1/m)11�)) = (1/m)m and [(1/m)(I − (1/m)11�)]−1 = m(I + 11�),
thus

det(D1 + C�D0C) = (1/m)m det
(
(1/m)I − mV �V

)
,
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where V = (wij )i=1,...,m;j=1,...,m−1. �

Proof of Theorem 1. We prove that the Jeffreys prior is proper. Consider the following partition
of V , V = (V1V2 · · ·Vm−1), where each Vj is a vector, j = 1, . . . ,m − 1. The matrix (1/m)I −
mV �V is symmetric, non-negative and semi-definite, so that by Hadamard’s inequality, we have

det
(
(1/m)I − mV �V

) ≤
m−1∏
j=1

(1/m − m‖Vj‖2)

=
m−1∏
j=1

(
2m

∑
1≤i<k≤m

wijwkj

)

= (2m)m−1
∑

1≤im−1<km−1≤m

· · ·
∑

1≤i1<k1≤m

m−1∏
j=1

wij jwkj j .

For any W ∈ W , we have

√
I (W) =

√
det
(
(1/m)I − mV �V

)/√√√√mm

m∏
i,j=1

wij

≤
√

2m−1/m

{ ∑
1≤im−1<km−1≤m

· · ·
∑

1≤i1<k1≤m

m−1∏
j=1

wij jwkj j

}1/2/√√√√ m∏
i,j=1

wij

≤
√

2m−1/m
∑

1≤im−1<km−1≤m

· · ·
∑

1≤i1<k1≤m

{
m−1∏
j=1

wij jwkj j

}1/2/√√√√ m∏
i,j=1

wij

=
√

2m−1/m
∑
α∈A

m∏
i,j=1

w
αij −1
ij ,

where A = {αij ∈ {1/2,1}: i, j = 1, . . . ,m,α+j = m/2+1, j = 1, . . . ,m−1 and α+m = m/2},
with α+j =∑m

i=1 αij , for all j = 1, . . . ,m. We need to show that the integral of
∏m

i,j=1 w
αij −1
ij

is finite for all α ∈ A . The integration is made with respect to wij , i ∨ j < m, the free vari-
ables. For any permutation matrices P1 and P2, the transformation W �→ P1WP2 is a one-to-one
transformation from W onto W , and the Jacobian, in absolute value, is equal to one. There-

fore, it is sufficient to verify that the integral of
∏m

i,j=1 w
αij −1
ij is finite for all α ∈ A0, where

A0 = {α ∈ A : αm−1m = αmm = 1}. The idea is to decompose the multiple integral into m − 2
iterated integrals over the sections given by

Wk = {wij ≥ 0: i ∧ j = k, i ∨ j ≤ m,wk+ = w+k = 1/m}, k = 1, . . . ,m − 2,
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and

Wm−1 = {wij ≥ 0: i, j = m − 1,m,wm−1+ = w+m−1 = wm+ = w+m = 1/m}.
Here, the set W1 is fixed, the sets Wk are parameterized by {wij ≥ 0: i ∧ j < k, i ∨ j = k},
k = 2, . . . ,m − 2, and Wm−1 is parameterized by {wij ≥ 0: i ∧ j < m − 1, i ∨ j = m − 1,m}.
By Fubini’s theorem, for any non-negative function f , we can write∫

W
f (W)

m−1∏
i,j=1

dwij =
∫

W

{
· · ·
∫

W−
{f (W)dwm−1m−1} · · ·

} ∏
i∧j=1,i∨j<m

dwij .

The next step consists in finding finite functions ck , k = 1, . . . ,m − 1, on A0, such that∫
W

∏
i∧j=k,i∨j≤m

w
αij −1
ij

∏
i∧j=k,i∨j<m

dwij ≤ ck(α),

for all α ∈ A0, uniformly on {wij ≥ 0: i ∧ j < k, i ∨ j = k}, for k = 1, . . . ,m− 2, and uniformly
on {wij ≥ 0: i ∧ j < m − 1, i ∨ j = m − 1,m}, for k = m − 1. This will give us that

∫
W

∏
i,j≤m

w
αij −1
ij

∏
i,j<m

dwij ≤
m−1∏
k=1

ck(α),

for all α ∈ A0.
Let a = 0 ∨ {∑�<m−1(w�m − wm−1�)} ∨ {∑�<m−1(wm� − w�m−1)} and b = 1/m −

{(∑�<m−1 w�m−1) ∨ (
∑

�<m−1 wm−1�)}. If a > b, the set Wm−1 is empty. Suppose that Wm−1 is
not empty and α ∈ A0. Let b0 = 1/m −∑

�<m−1 w�m−1. We have∫
W−

∏
i,j=m−1,m

w
αij −1
ij dwm−1m−1 =

∫ b

a

uαm−1m−1−1(b0 − u)αmm−1−1 du

≤
∫ b0

0
uαm−1m−1−1(b0 − u)αmm−1−1 du

= b
αm−1m−1+αmm−1−1
0 B(αm−1m−1, αmm−1)

≤ B(αm−1m−1, αmm−1)

= cm−1(α).

For k = 1, . . . ,m − 2 and α ∈ A0 we can take

ck(α) =
(

B

(
αkk,

m∑
i=k+1

αik

)
+ B

(
αkk,

m∑
j=k+1

αkj

))∏
i>k �(αik)

∏
j>k �(αkj )

�(
∑

i>k αik)�(
∑

j>k αkj )
.

The justification is given by Lemma 5. �
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Lemma 5. If 0 < a,b ≤ 1,m ≥ 3, α > 0,

βj > 0, j = 1, . . . ,m − 1, with β =
m−1∑
j=1

βj ≥ 1,

γi > 0, i = 1, . . . ,m − 1, with γ =
m−1∑
i=1

γi ≥ 1

and

C =
{

wij ≥ 0: i ∧ j = 1, i ∨ j ≤ m,

m∑
j=1

w1j = a,

m∑
i=1

wi1 = b

}
,

then ∫
C

wα−1
11

m∏
j=2

w
βj−1−1
1j

m∏
i=2

w
γi−1−1
i1 dw11

m−1∏
j=2

dw1j

m−1∏
i=2

dwi1

≤ (
B(α,β) + B(α,γ )

)∏m−1
j=1 �(βj )

∏m−1
i=1 �(γi)

�(β)�(γ )
.

Proof. Let

K(a,b,α,β, γ ) =
∫ a∧b

0
wα−1(a − w)β−1(b − w)γ−1 dw.

If a < b, then

K(a,b,α,β, γ ) =
∫ a

0
wα−1(a − w)β−1(b − w)γ−1 dw

≤ bγ−1
∫ a

0
wα−1(a − w)β−1 dw

= aα+β−1bγ−1B(α,β) ≤ B(α,β).

In the same way, if b < a, then K(a,b,α,β, γ ) ≤ B(α,γ ), so that

K(a,b,α,β, γ ) ≤ B(α,β) + B(α,γ ). (11)

Now, let W11 be a random variable on (0, a ∧ b) with density

1

K(a,b,α,β, γ )
wα−1

11 (a − w11)
β−1(b − w11)

γ−1,

let (U12, . . . ,U1m) be a random vector distributed according to a Dirichlet(β1, . . . , βm−1),
let (U21, . . . ,Um1) be distributed according to a Dirichlet(γ1, . . . , γm−1) and further assume
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independence between W11, (U12, . . . ,U1m) and (U21, . . . ,Um1). Let W1j = (a − W11)U1j ,

j = 2, . . . ,m, and Wi1 = (b −W11)Ui1, i = 2, . . . ,m. From this construction, given W11 = w11,
we have that (W12, . . . ,W1m) and (W21, . . . ,Wm1) are conditionally independent with condi-
tional densities given, respectively, by

1

(a − w11)β−1

�(β)∏m−1
i=1 �(βi)

w
β1−1
12 · · ·wβm−1−1

1m ,

with w1j ≥ 0, j = 2, . . . ,m,
∑

2≤j≤m w1j = a − w11 and

1

(b − w11)γ−1

�(γ )∏m−1
i=1 �(γi)

w
γ1−1
21 · · ·wγm−1−1

m1 ,

with wi1 ≥ 0, i = 2, . . . ,m,
∑

2≤i≤m wi1 = b − w11. This construction, together with inequality
(11), implies the result, namely

∫
C

wα−1
11

m∏
j=2

w
βj−1−1
1j

m∏
i=2

w
γi−1−1
i1 dw11

m−1∏
j=2

dw1j

m−1∏
i=2

dwi1

≤ (
B(α,β) + B(α,γ )

)∏m−1
j=1 �(βj )

∏m−1
i=1 �(γi)

�(β)�(γ )
. �

Lemma 6. Consider X, a Binomial(n,p) random variable. We have

sup
0≤p≤1

Ep[|X − np|] =
{

1/B
(
1/2, (n + 1)/2

)
, if n is odd,(

1 − (n + 1)−2
)n/2(

1 + (n + 1)−2
)
1/B(1/2, n/2), if n is even.

Proof. Let μn(p) = Ep[|X − np|]. We have

μn(p) = 2n!
(�np�)!(n − 1 − �np�)!p

�np�+1(1 − p)n−�np� for all n ≥ 1,p ∈ [0,1],

where �x� = max{n: n ≤ x,n is an integer} for all x. Therefore,

sup
0≤p≤1

μn(p) = max
0≤k≤n−1

sup
{p: �np�=k}

μn(p)

= max
0≤k≤n−1

μn

(
k + 1

n + 1

)
,

and, in particular, sup0≤p≤1 μ1(p) = μ1(1/2) = 1/2 = 1/B(1/2,1). Now assume that n > 1.
Let

νn(k) = μn

(
k + 2

n + 1

)/
μn

(
k + 1

n + 1

)
,
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for k = 0, . . . , n − 2. We have

νn(k) = (1 + (k + 1)−1)k+2

(1 + (n − k − 1)−1)n−k
and νn(k) = 1

νn(n − 2 − k)
for k = 0, . . . , n − 2.

However,

d

dt
log

(
1 + 1

t

)t+1

= log

(
1 + 1

t

)
− 1

t
< 0 for all t > 1.

This implies that νn decreases on {0, . . . , n − 2}. Therefore,

μn

(
1

n + 1

)
< · · · < μn

(
(n + 1)/2

n + 1

)
> · · · > μn

(
n

n + 1

)
if n is odd,

μn

(
1

n + 1

)
< · · · < μn

(
n/2

n + 1

)
= μn

(
n/2 + 1

n + 1

)
> · · · > μn

(
n

n + 1

)
if n is even.

The final expression is obtained using the following identity:

n! = 2n�

(
n

2
+ 1

)
�

(
n + 1

2

)/
�

(
1

2

)
for all n ≥ 0. �
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