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On the inclusion probabilities in some
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replacement
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Comparison results are obtained for the inclusion probabilities in some unequal probability sampling plans
without replacement. For either successive sampling or Hájek’s rejective sampling, the larger the sample
size, the more uniform the inclusion probabilities in the sense of majorization. In particular, the inclusion
probabilities are more uniform than the drawing probabilities. For the same sample size, and given the same
set of drawing probabilities, the inclusion probabilities are more uniform for rejective sampling than for
successive sampling. This last result confirms a conjecture of Hájek (Sampling from a Finite Population
(1981) Dekker). Results are also presented in terms of the Kullback–Leibler divergence, showing that the
inclusion probabilities for successive sampling are more proportional to the drawing probabilities.

Keywords: conditional Poisson sampling; entropy; Hájek’s conjecture; sampling without replacement;
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1. Introduction and main results

Consider a finite population indexed by U = {1, . . . ,N}. Let α = (α1, . . . , αN),
∑N

i=1 αi = 1,

denote a set of drawing probabilities. In Hájek’s [5,6] rejective sampling, independent draws are
made with probabilities according to the same α until a sample of size n is obtained; whenever a
duplicate appears, all draws are rejected and the process restarts. Successive sampling, a closely
related scheme, makes the same independent draws except that whenever a duplicate appears,
only the current draw is rejected and needs to be redrawn. Mathematically, rejective sampling is
equivalent to conditional Poisson sampling, that is, independent sampling for each unit condi-
tional on the sample size being n. Conditional Poisson sampling possesses a maximum entropy
property, among other desirable properties, and has received considerable attention; see Chen,
Dempster and Liu [3], Berger [2], Traat, Bondesson and Meister [23], Arratia, Goldstein and
Langholz [1], and Qualité [15]. It also has interesting applications to modeling how players se-
lect lottery tickets [22]. Successive sampling, on the other hand, has connections to areas such as
software reliability [11].

Unequal probability sampling may achieve considerable variance reduction if the first-order
inclusion probabilities are made proportional to a suitable auxiliary variable. For either rejective
sampling or successive sampling, however, the inclusion probabilities are rather complicated
and generally not proportional to the drawing probabilities α. Thus relationships between the
inclusion probabilities and α, either approximate or exact, are of interest. This work considers
exact qualitative comparisons. See Hájek [5] and Rosén [18–20] for asymptotic results.

1350-7265 © 2012 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/10-BEJ337
mailto:yamingy@uci.edu


280 Y. Yu

Denote the inclusion probabilities for rejective sampling by πR = (πR
1 , . . . , πR

N) and those
for successive sampling by πS = (πS

1 , . . . , πS
N). Hájek [6], page 97, conjectures the following

inequalities based on asymptotic considerations and numerical experience:

maxαi

minαi

≥ maxπS
i

minπS
i

≥ maxπR
i

minπR
i

.

Milbrodt [14] proposes a strengthened conjecture,

nmaxαi ≥ maxπS
i ≥ maxπR

i , (1)

nminαi ≤ minπS
i ≤ minπR

i , (2)

and partially resolves it by showing

nmaxαi ≥ maxπS
i , nminαi ≤ minπS

i , (3)

nmaxαi ≥ maxπR
i , nminαi ≤ minπR

i .

The inequalities (3) are also obtained by Rao, Sengupta and Sinha [16]. The inequalities
maxπS

i ≥ maxπR
i and minπS

i ≤ minπR
i have remained open; see Milbrodt [14] for numeri-

cal illustrations. Roughly speaking, both Hájek’s conjecture and Milbrodt’s strengthened version
say that the drawing probabilities are more variable than the inclusion probabilities for succes-
sive sampling, which are themselves more variable than the inclusion probabilities for rejective
sampling.

Concerning successive sampling, Kochar and Korwar [12] obtain some comparison results
using the notion of majorization. A real vector b = (b1, . . . , bN) is said to majorize a =
(a1, . . . , aN), written as a ≺ b, if

• ∑N
i=1 ai = ∑N

i=1 bi , and
• ∑N

i=k a(i) ≤ ∑N
i=k b(i), k = 2, . . . ,N, where a(1) ≤ · · · ≤ a(N) and b(1) ≤ · · · ≤ b(N) are

(a1, . . . , aN) and (b1, . . . , bN) arranged in increasing order, respectively.

Kochar and Korwar [12] show that

n−1πS ≺ α, (4)

which strengthens (3). In general, majorization is a strong form of variability ordering. For ex-
ample, a ≺ b implies that

∑
i φ(ai) ≤ ∑

i φ(bi) for any convex function φ. See Marshall and
Olkin [13] for further properties and various applications of majorization.

This note presents some majorization results that refine previous work. As a consequence,
we prove Milbrodt’s strengthening of Hájek’s conjecture. Our main results are summarized as
follows.

Theorem 1. Given the drawing probabilities α, let πR(n) (resp., πS(n)) denote the first-order in-
clusion probabilities for rejective sampling (resp., successive sampling) with sample size n ≤ N .
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Define the “inclusion probabilities per draw” as pR(n) ≡ n−1πR(n) and pS(n) ≡ n−1πS(n).
Then we have

(N−1, . . . ,N−1) ≡ pR(N) ≺ · · · ≺ pR(n) ≺ · · · ≺ pR(1) ≡ α, (5)

(N−1, . . . ,N−1) ≡ pS(N) ≺ · · · ≺ pS(n) ≺ · · · ≺ pS(1) ≡ α. (6)

Moreover,

πR(n) ≺ πS(n). (7)

The ordering chains (5) and (6) are intuitively appealing. Given a set of drawing probabilities,
larger sample sizes lead to inclusion probabilities that are more uniform for either rejective sam-
pling or successive sampling. Moreover, (7) says that with the same sample size, the inclusion
probabilities are more uniform for rejective sampling than for successive sampling. It is easy to
see that (5)–(7) together imply Milbrodt’s [14] conjecture, that is, (1) and (2).

We prove (5) and (7) in Section 2 using a combination of analytic and probabilistic techniques.
A key tool in resolving (7) is the likelihood ratio order between multivariate densities [9]. A proof
of (6), which slightly extends that of (4), is included for completeness.

The Shannon entropy is sometimes used to measure how uniform a distribution is. It is de-
fined as H(p) = −∑N

i=1 pi logpi for a probability vector p = (p1, . . . , pN). By convention
0 log 0 = 0. It is well known that p ≺ q implies H(q) ≤ H(p). See Cover and Thomas [4],
Chapter 2, for further properties of this fundamental quantity. We note the following direct con-
sequence of Theorem 1.

Corollary 1. In the setting of Theorem 1,

logN ≡ H(pR(N)) ≥ · · · ≥ H(pR(n)) ≥ · · · ≥ H(pR(1)) ≡ H(α),

logN ≡ H(pS(N)) ≥ · · · ≥ H(pS(n)) ≥ · · · ≥ H(pS(1)) ≡ H(α),

H(pR(n)) ≥ H(pS(n)).

Inequalities are also obtained in terms of the Kullback–Leibler divergence, which is defined as

D(p‖q) =
N∑

i=1

pi log
pi

qi

for two probability vectors p = (p1, . . . , pN) and q = (q1, . . . , qN). By convention x log(x/0) =
∞ for x > 0 and 0 log(0/x) = 0 for x ≥ 0. A basic property is D(p‖q) > 0 unless p = q . We
shall use D(p‖q) purely as a discrepancy measure between probability vectors without referring
to its information-theoretic significance.

Theorem 2. In the setting of Theorem 1, let 1 ≤ l < m < n ≤ N . Then we have

D(pR(l)‖pR(n)) ≥ D(pR(l)‖pR(m)) + D(pR(m)‖pR(n)), (8)
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D(pR(n)‖pR(l)) ≥ D(pR(m)‖pR(l)) + D(pR(n)‖pR(m)), (9)

D(pS(n)‖α) ≥ D(pS(n)‖pS(m)) + D(pS(m)‖α), (10)

D(pR(n)‖α) ≥ D(pR(n)‖pS(n)) + D(pS(n)‖α). (11)

A number of results can be deduced from these (reverse) triangle inequalities. For exam-
ple, from (8) and (9) we obtain D(pR(m + 1)‖α) ≥ D(pR(m)‖α) and D(α‖pR(m + 1)) ≥
D(α‖pR(m)), showing that, for rejective sampling, the larger the sample size, the more dis-
torted the inclusion probabilities become as compared with the drawing probabilities. Similarly,
from (10) we obtain D(pS(m + 1)‖α) ≥ D(pS(m)‖α). From (11) we obtain

D(pR(n)‖α) ≥ D(pS(n)‖α). (12)

That is, for fixed n, the inclusion probabilities for successive sampling (rather than for rejective
sampling) are more proportional to the drawing probabilities. The inequality (12) may be used
to compute an upper bound on D(pS(n)‖α) because, while pR(n) can be calculated from α

efficiently using a recursive formula (see [3]), numerical calculation of pS(n) is considerably
more difficult.

The inequalities in Theorem 2 resemble the reverse triangle inequalities of Yu [27]. Our results
here concern the majorization ordering and may be regarded as first-order results; those in Yu [27]
use relative log-concavity and are second order. For related entropy and divergence comparison
results, see Karlin and Rinott [10], Johnson [8] and Yu [24–26].

The proof of Theorem 2 builds on Theorem 1 and is presented in Section 3.

2. Proof of Theorem 1

Let ek(·) denote the kth elementary symmetric function, that is,

ek(β) =
∑

1≤j1<···<jk≤m

βj1 · · ·βjk
, β ≡ (β1, . . . , βm).

By convention, e0(β) ≡ 1 and ek(β) = 0 if k < 0 or k > m. For a rejective sample of size n, the
probability that unit i is included can be expressed as

πR
i (n) = αien−1(α−i )

en(α)
, (13)

where

α−i ≡ (α1, . . . , αi−1, αi+1, . . . , αN).

The notation α−i,−j (leave-two-out) is defined similarly. It is immediate that αi ≤ αj implies
πR

i (n) ≤ πR
j (n). Henceforth, we assume α1 ≥ · · · ≥ αN > 0 without loss of generality.

The following Lemma 1 is needed in the proof of (5).
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Lemma 1. Suppose probability vectors p = (p1, . . . , pN) and q = (q1, . . . , qN) satisfy

p1 ≥ · · · ≥ pN > 0,
q1

p1
≥ · · · ≥ qN

pN

.

Then p ≺ q.

Proof. For 1 ≤ k < N we have

∑k
i=1 qi∑k
i=1 pi

≥ qk

pk

≥ qk+1

pk+1
,

which yields ∑k
i=1 qi∑k
i=1 pi

≥
∑k+1

i=1 qi∑k+1
i=1 pi

≥ · · · ≥
∑N

i=1 qi∑N
i=1 pi

= 1.

Hence p ≺ q by definition (the conditions imply q1 ≥ · · · ≥ qN ). �

Proof of (5). Let p ≡ pR(n + 1) and q ≡ pR(n). Note that
∑N

i=1 pi = ∑N
i=1 qi = 1. Since α1 ≥

· · · ≥ αN , we have p1 ≥ · · · ≥ pN . The desired relation p ≺ q would follow from Lemma 1, if we
can show that q1/p1 ≥ · · · ≥ qN/pN , or, equivalently, πR

k (n)/πR
k (n+1) ≥ πR

k+1(n)/πR
k+1(n+1)

for 1 ≤ k < N . The case N = 2 is trivial. Otherwise we have

πR
k (n) = αken−1(α−k)

en(α)
= αk

αk+1en−2(α̃) + en−1(α̃)

en(α)
, α̃ ≡ α−k,−(k+1).

Thus

πR
k (n)

πR
k (n + 1)

= en+1(α)

en(α)
f (αk+1), (14)

where

f (x) = xen−2(α̃) + en−1(α̃)

xen−1(α̃) + en(α̃)
.

Similarly

πR
k+1(n)

πR
k+1(n + 1)

= en+1(α)

en(α)
f (αk). (15)

We have

f ′(x) = en−2(α̃)en(α̃) − e2
n−1(α̃)

[xen−1(α̃) + en(α̃)]2
< 0,
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where the inequality follows from Newton’s inequalities [7], page 52. That is, f (x) decreases
in x. Because αk+1 ≤ αk , we deduce the inequality

πR
k (n)

πR
k (n + 1)

≥ πR
k+1(n)

πR
k+1(n + 1)

from (14) and (15). �

The proof of (6) slightly extends and simplifies the arguments of Kochar and Korwar [12].

Proof of (6). Let S1, S2, . . . ∈ {1, . . . ,N} be a sequence of draws retained in successive sam-
pling. It is well known that the inclusion probabilities and the drawing probabilities are ordered
in the same way, that is,

pS
1 (n) ≥ · · · ≥ pS

N(n), 1 ≤ n ≤ N (16)

(see [14]). For 1 ≤ k ≤ N we have

Pr(Sn ≤ k) − Pr(Sn+1 ≤ k)

= Pr(Sn ≤ k,Sn+1 > k) − Pr(Sn > k,Sn+1 ≤ k)

=
∑

k1≤k,k2>k

E[Pr(Sn = k1, Sn+1 = k2|S1, . . . , Sn−1)

− Pr(Sn = k2, Sn+1 = k1|S1, . . . , Sn−1)],
where the expectation is with respect to S1, . . . , Sn−1. Because αi decreases in i, it is easy to
show that k1 < k2 implies

Pr(Sn = k1, Sn+1 = k2|S1, . . . , Sn−1) ≥ Pr(Sn = k2, Sn+1 = k1|S1, . . . , Sn−1).

Hence Pr(Sn ≤ k) ≥ Pr(Sn+1 ≤ k) for all 1 ≤ n < N . This is proved by Kochar and Korwar [12]
(see their Lemma 3.2) using a slightly more complicated argument. It follows that

k∑
i=1

pS
i (n) = n−1

n∑
j=1

Pr(Sj ≤ k)

≥ (n + 1)−1
n+1∑
j=1

Pr(Sj ≤ k)

=
k∑

i=1

pS
i (n + 1),

which proves (6) in view of (16). �
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To prove (7), we recall the multivariate likelihood ratio order, also known as the total positivity
order (Karlin and Rinott [9], Rinott and Scarsini [17], Shaked and Shanthikumar [21], Chapter 6).
Consider the product space X = {1, . . . ,N}n. For x = (x1, . . . , xn) ∈ X and y = (y1, . . . , yn) ∈
X , write

x ∨ y = (max{x1, y1}, . . . ,max{xn, yn}), x ∧ y = (min{x1, y1}, . . . ,min{xn, yn}).

Let f and g be density functions on X . Then f is said to be no smaller than g in the (multivariate)
likelihood ratio order, written as f ≥lr g, if

f (x)g(y) ≤ f (x ∨ y)g(x ∧ y), x, y ∈ X .

This generalizes the univariate likelihood ratio order, which requires that the ratio of two univari-
ate densities is a monotone function.

A useful property of the likelihood ratio order is that it implies the usual stochastic order. That
is, if X and Y are random vectors taking values in X , and X ≥lr Y (we use the notation ≥lr with
the random variables as well as their densities), then Eφ(X) ≥ Eφ(Y ) for any coordinatewise
increasing function φ. In particular, each coordinate of X is no smaller than the corresponding
coordinate of Y in the usual stochastic order. Further properties of ≥lr include closure under
marginalization; see Karlin and Rinott [9] and Shaked and Shanthikumar [21], Chapter 6.

Proof of (7). Recall that πR
1 (n) ≥ · · · ≥ πR

N(n). By definition, (7) is proved if we can show

k∑
i=1

πS
i (n) ≥

k∑
i=1

πR
i (n), k = 1, . . . ,N − 1. (17)

Let X ≡ (X1, . . . ,Xn) (resp., Y ≡ (Y1, . . . , Yn)) denote the unit indices arranged in increasing
order of a sample of size n obtained by rejective sampling (resp., successive sampling). That is,
X and Y take values in � ≡ {(x1, . . . , xn) ∈ X : 1 ≤ x1 < · · · < xn ≤ N}. Then an unnormalized
density of X is

f (x) = αx1 . . . αxn, x = (x1, . . . , xn) ∈ �,

and the density of Y can be written as

g(y) =
∑

σ∈Perm(y)

ασ1

ασ2

1 − ασ1

ασ3

1 − ασ1 − ασ2

· · · ασn

1 − ∑n−1
j=1 ασj

=
∑

σ∈Perm(y)

αy1 · · ·αyn

(1 − ασ1)(1 − ασ1 − ασ2) · · · (1 − ∑n−1
j=1 ασj

)
, y = (y1, . . . , yn) ∈ �,

where σ = (σ1, . . . , σn) and Perm(y) denotes the set of vectors obtained by permuting the
coordinates of y. Note that, for x, y ∈ � we have x ∨ y ∈ � and x ∧ y ∈ �. Moreover, for
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x, y ∈ �,

f (x)g(y) =
∑

σ∈Perm(y)

αx1 · · ·αxnαy1 · · ·αyn

(1 − ασ1)(1 − ασ1 − ασ2) · · · (1 − ∑n−1
j=1 ασj

)

≤
∑

σ∈Perm(x∧y)

αx1 · · ·αxnαy1 · · ·αyn

(1 − ασ1)(1 − ασ1 − ασ2) · · · (1 − ∑n−1
j=1 ασj

)

= f (x ∨ y)g(x ∧ y),

where the inequality holds because αi decreases in i and, under an obvious bijection, each ele-
ment in Perm(y) is at least as large as its counterpart in Perm(x ∧ y). Thus X ≥lr Y . It follows
that

Pr(Xj ≤ k) ≤ Pr(Yj ≤ k), j = 1, . . . , n, k = 1, . . . ,N.

That is, Xj is no smaller than Yj in the usual stochastic order. We have, for 1 ≤ k ≤
N ,

k∑
i=1

πR
i (n) =

k∑
i=1

n∑
j=1

Pr(Xj = i)

=
n∑

j=1

Pr(Xj ≤ k)

≤
n∑

j=1

Pr(Yj ≤ k)

=
k∑

i=1

n∑
j=1

Pr(Yj = i)

=
k∑

i=1

πS
i (n).

Thus (17) holds, and the proof is complete. �

3. Proof of Theorem 2

The following Lemma 2 is key to the proof of Theorem 2.

Lemma 2. Let p = (p1, . . . , pN), q = (q1, . . . , qN) and r = (r1, . . . , rN ) be probability vectors
with all positive coordinates. If either (a) q ≺ p,p1 ≥ · · · ≥ pN , and q1/r1 ≥ · · · ≥ qN/rN , or
(b) p ≺ q, q1 ≥ · · · ≥ qN , and q1/r1 ≤ · · · ≤ qN/rN , then

D(p‖r) ≥ D(p‖q) + D(q‖r).
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Proof. Let us assume (a). Case (b) is similar. We have

D(p‖r) − D(p‖q) − D(q‖r) =
N∑

i=1

(pi − qi) log
qi

ri

=
N−1∑
i=1

(
i∑

j=1

pj −
i∑

j=1

qj

)(
log

qi

ri
− log

qi+1

ri+1

)
(18)

≥ 0,

where the first equality follows from the definition of the Kullback–Leibler divergence, the sec-
ond equality holds by summation by parts, and the inequality holds because qi/ri decreases in i

and q ≺ p, and hence both parentheses in (18) are non-negative. �

As in Section 2, in the proofs of (8)–(11) we assume α1 ≥ · · · ≥ αN > 0.

Proof of (8) and (9). Let p ≡ pR(l), q ≡ pR(m), r ≡ pR(n). Then p1 ≥ · · · ≥ pN . Since l < m

we have q ≺ p by (5). From the proof of (5) we know that q1/r1 ≥ · · · ≥ qN/rN . Thus (8) follows
from Lemma 2, Case (a). The proof of (9) is similar. �

To prove (10) and (11) we need the following result.

Proposition 1. The ratio pS
i (n)/αi, i = 1, . . . ,N, increases in i for each n ≤ N .

Proof. Let πi,k denote the probability that the kth distinct draw in successive sampling is unit i.
Then pS

i (n) = n−1 ∑n−1
k=0 πi,k+1. It suffices to show that πi,k+1/αi increases in i for each k. Let

us assume k ≥ 1 and define the index set

�(i) = {(j1, . . . , jk): 1 ≤ jl ≤ N,jl �= i,1 ≤ l ≤ k, and jl are distinct}.
Then we have

πi,k+1

αi

=
∑

(j1,...,jk)∈�(i)

αj1

αj2

1 − αj1

· · · αjk

1 − ∑k−1
l=1 αjl

(
1

1 − ∑k
l=1 αjl

)
. (19)

The summand is a decreasing function in (j1, . . . , jk), since αj decreases in j . Consider a map-
ping �(i) → �(i + 1) that sends (j1, . . . , jk) ∈ �(i) to (j∗

1 , . . . , j∗
k ) ∈ �(i + 1) as follows. For

l = 1, . . . , k, if jl �= i + 1, let j∗
l = jl ; otherwise let j∗

l = i. It is easy to see that this mapping is
well defined and is a bijection. Note that j∗

l ≤ jl . Hence the right-hand side of (19) increases if we
replace the summation index �(i) by �(i + 1). That is, πi,k+1/αi increases in i, as required. �

Proof of (10) and (11). Let p ≡ pR(n), q ≡ pS(n) and r ≡ α. By Proposition 1, q1/r1 ≤ · · · ≤
qN/rN . By (7) we have p ≺ q . Thus (11) follows from Lemma 2, Case (b). The proof of (10) is
similar. �
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