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The multivariate central limit theorems (CLT) for the volumes of excursion sets of stationary quasi-
associated random fields on R

d are proved. Special attention is paid to Gaussian and shot noise fields.
Formulae for the covariance matrix of the limiting distribution are provided. A statistical version of the
CLT is considered as well. Some numerical results are also discussed.
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1. Introduction

An important research domain of modern probability theory is the investigation of geometric
characteristics of random surfaces (see, e.g., [1–3]). The origin of interest often roots not only
in pure mathematical challenges but also in various applications, including those in industry. We
mention one motivating example for our study.

The contemporary method of papermaking goes back to the Han Dynasty period. Nowadays,
the method is essentially the same, but machines in modern pulp and paper mills operate much
faster. The surface structure of the paper during the forming process determines the quality of
the production.

To model the paper surface, stationary random fields, say, shot noise (cf. [4]) or Gaussian, can
be a reasonable first choice. Comparing by eye real paper image data and simulated realizations
of such fields, one easily concludes that the similarities are striking. But it is hard to quantify how
different these two images really are. To test whether the available image data originate from a
realization of a specified stationary random field, the excursion sets can be considered.

We prove the central limit theorem (CLT) for volumes of excursion sets of a stationary field
X = {X(t), t ∈ T }, T ⊂ R

d , to characterize the surface generated by X. It is reasonable to assume
that the field X could possess a dependence structure more general than positive or negative
association used in a number of stochastic models; see, for example, [7]. Our main results yield
uni- and multivariate CLT for quasi-associated random fields. The CLT is generalized in [12],
page 80, having been obtained by other methods for volumes of excursion sets of stationary and
isotropic Gaussian random fields. We also discuss the consistent estimators for the asymptotic
covariance matrix that arises in the limiting distribution.
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Note that we do not tackle here the interesting problems concerning the study of moving levels
for excursion sets, the estimate of the convergence rate to the limit law and the analysis of the
functionals in Gaussian random fields based on the Dobrushin–Major techniques. In this regard,
we refer, to [12,15–17].

As to the problem of characterizing the paper quality taking into account the “hills” and “val-
leys” of its surface discernible with the help of microscope, it is by no means simple. In fact, we
have to specify the admissible (average) number of such hills along with their size. Moreover, the
thickness of the paper should be controlled as well (no holes or high peaks). Thus the study of
the excursion sets for random fields is the first natural step to investigate such random surfaces.
The application to paper surface image data will appear in a separate paper.

The present paper is organized as follows. Section 2 provides preliminaries on dependence
concepts related to association and excursion sets for random fields. The CLT for the volumes
of excursions of quasi-associated stationary random fields over one or finitely many levels are
formulated and proved in Section 3. The special cases of stationary shot noise and Gaussian
random fields are treated in more detail. Section 4 contains a statistical version of the limit theo-
rems mentioned above where the (unknown) limiting covariance matrix is consistently estimated.
Numerical results illustrating the limit theorem of Section 3 are given in Section 5. Finally, we
conclude with the discussion of some open problems.

2. Preliminaries

In this section, we recall some dependence concepts for systems of random variables. Various
examples can be found in [7]. After that, we introduce the excursion sets that are the main ob-
jects of this study. Then we consider the sequences of regular growing sets forming observation
windows.

2.1. Dependence concepts for random fields

Consider a family, X = {X(t), t ∈ T }, of real-valued random variables, X(t), defined on a proba-
bility space, (�, F ,P). A set, T , will be a subset of R

d or Z
d . For I ⊂ T let XI = {X(t), t ∈ I }.

Introduce the class M(n) consisting of real-valued, bounded, coordinate-wise non-decreasing
Borel functions on R

n, n ∈ N. The cardinality of a finite set, U, will be denoted by cardU .

Definition 1. A real-valued random field X = {X(t), t ∈ T } is called positively associated (we
write X ∈ PA) if, for every disjoint finite set I, J ⊂ T and any functions f ∈ M(card I ) and
g ∈ M(cardJ ), one has

cov(f (XI ), g(XJ )) ≥ 0. (1)

Here, we use any permutation of (coordinates of) the column vector (X(t1), . . . ,X(tn))
� for

XI , I = {t1, . . . , tn} ⊂ T (and the analogous notation is employed for XJ ); � stands for trans-
position. Definition 1, given for any (not necessarily disjoint) subsets I and J ⊂ T , introduces
the family of associated random variables (X ∈ A). The change of the sign of inequality (1)
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leads to the definition of negative association (one writes X ∈ NA). Clearly, X ∈ A implies
X ∈ PA. Any collection of independent random variables is automatically PA and NA. Due to
Pitt [19], a Gaussian family X = {X(t), t ∈ T } of random variables is associated if and only if
cov(X(s),X(t)) ≥ 0 for all s, t ∈ T . For such families, the concepts of A and PA coincide. A the-
orem by Joag-Dev and Proschan [13] states that a Gaussian family X = {X(t), t ∈ T } ∈ NA if
and only if cov(X(s),X(t)) ≤ 0 for s, t ∈ T , s �= t .

Let BL(n) denote the class of bounded Lipschitz functions f : Rn → R (n ∈ N) and

Lip(f ) = sup
x �=y

|f (x) − f (y)|
‖x − y‖1

< ∞, ‖x‖1 =
n∑

k=1

|xk|, x = (x1, . . . , xn)
� ∈ R

n.

Since all norms are equivalent in R
n, we sometimes use the Euclidean norm ‖x‖2 =

(
∑n

k=1 x2
k )1/2 and the supremum norm ‖x‖∞ = maxk=1,...,n |xk| of x ∈ R

n for the sake of con-
venience.

Definition 2. A random field X = {X(t), t ∈ T } consisting of random variables X(t) with
EX(t)2 < ∞ is called quasi-associated (X ∈ QA) if

| cov(f (XI ), g(XJ ))| ≤ Lip(f )Lip(g)
∑
s∈I

∑
t∈J

| cov(X(s),X(t))| (2)

for all disjoint finite sets I, J ⊂ T and any Lipschitz functions

f : Rcard I → R and g : RcardJ → R.

If X ∈ PA or X ∈ NA and EX(t)2 < ∞ for all t ∈ T , then (2) holds as was proved in [9]. Every
Gaussian random field X (with covariance function taking both positive and negative values) is
quasi-associated; see [20] and references therein.

Definition 3. A real-valued random field X = {X(t), t ∈ Z
d} is called (BL, θ)-dependent

(X ∈ (BL, θ)) if there exists a non-increasing sequence θ = (θr )r∈N, θr → 0 as r → ∞, such
that, for any finite disjoint sets I , J ⊂ Z

d with dist(I, J ) = r and any functions f ∈ BL(card I ),
g ∈ BL(cardJ ), one has

| cov(f (XI ), g(XJ ))| ≤ Lip(f )Lip(g)(card I ∧ cardJ )θr , (3)

where dist(I, J ) = min{‖s − t‖∞: s ∈ I, t ∈ J }.

If X = {X(t), t ∈ Z
d} ∈ QA, then X ∈ (BL, θ) whenever the Cox–Grimmett coefficient

ur := sup
s∈Zd

∑
t : ‖s−t‖∞≥r

| cov(Xs,Xt )| (4)

tends to zero as r → ∞. In this case, one can take θr = ur in (3).
For a random field X = {X(t), t ∈ R

d} we use (see [5]) the following extension of (3). Let
T (�) = {(j1/�, . . . , jd/�): (j1, . . . , jd) ∈ Z

d}, where � > 0.
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Definition 4. A real-valued random field X = {X(t), t ∈ R
d} is called (BL, θ)-dependent if there

exists a non-increasing function θ = (θr )r>0, θr → 0 as r → ∞, such that, for all � large enough
and any finite disjoint sets I , J ⊂ T (�) with dist(I, J ) = r , and any functions f ∈ BL(card I ),
g ∈ BL(cardJ ), one has

| cov(f (XI ), g(XJ ))| ≤ Lip(f )Lip(g)(card I ∧ cardJ )�dθr . (5)

In many cases, one can use the integral analog of (4) for θr . Thus for a (wide-sense) stationary
random field X = {X(t), t ∈ R

d} ∈ QA, having covariance function R(t), t ∈ R
d , absolutely

directly integrable in the Riemann sense (i.e., when d = 1; see, e.g., Feller [11], page 362. For
d > 1, the definition is quite similar. One takes the partition of R

d generated by partitions of
each coordinate axis and forms the corresponding upper and lower Riemann sums.), relation (5)
holds with

θr = 2
∫

‖x‖∞≥r

|R(t)|dt, r > 0; (6)

see [5]. We shall also write θ(X) = θr(X) to emphasize that θ in (3) or (5) refers to the field X.

2.2. Excursion sets

Now we recall the definition of an excursion set and illustrate it by Figure 1.
For a real-valued random field X = {X(t), t ∈ R

d}, we assume the measurability of X(·) as a
function on R

d × � endowed with the σ -algebra B(Rd) ⊗ F .

Figure 1. Realization of a stationary centered Gaussian random field X with covariance function
cov(X(0),X(t)) = exp(−‖t‖2) (left figure), bright colours indicate high values of X. The excursion set
Au(X,T ) for u = 0 is shown in black (right figure).



104 A. Bulinski, E. Spodarev and F. Timmermann

Definition 5. Let X be a measurable real-valued function on R
d and T ⊂ R

d be a (Lebesgue)
measurable subset. Then, for each u ∈ R,

Au(X,T ) = {t ∈ T : X(t) ≥ u}
is called the excursion set of X in T over the level u.

Let νd(B) be the volume (i.e., the Lebesgue measure) of a measurable set B ⊂ R
d and I{C}

denote the indicator of a set C.
Since X is measurable, the volume of the excursion set

νd(Au(X,T )) =
∫

T

I{X(t) ≥ u}dt

is a random variable for each u ∈ R and any measurable set T ⊂ R
d .

2.3. Growing sets

Denote the boundary of a set B ⊂ R
d by ∂B . The Minkowski sum of two sets, A, B ⊂ R

d , is given
by A ⊕ B = {x + y: x ∈ A,y ∈ B}. The following concept of “regular growth” for a family of
subsets in R

d will be used in the sequel.

Definition 6. A sequence, (Wn)n∈N, of bounded measurable sets, Wn ⊂ R
d , tends to infinity in

the Van Hove sense (VH-growing) if, for any ε > 0, one has

νd(Wn) → ∞ and
νd(∂Wn ⊕ Bε(0))

νd(Wn)
→ 0 (7)

as n → ∞, where Bε(0) = {x ∈ R
d : ‖x‖2 ≤ ε} is the closed ball in R

d with center at the origin
0 ∈ R

d and radius ε.

If Wn = (a(n), b(n)] = (a1(n), b1(n)]×· · ·×(ad(n), bd(n)] is a parallelepiped, then Wn → ∞
in the Van Hove sense if and only if bk(n) − ak(n) → ∞ as n → ∞ for k = 1, . . . , d .

Definition 7. A sequence of finite sets Un ⊂ Z
d tends to infinity in a regular way if

card δUn

cardUn

→ 0 as n → ∞; (8)

cf. (7). Here δUn = {j ∈ Z
d \ Un: dist(j,Un) = 1} and dist(j,Un) = mink∈Un ‖j − k‖∞.

3. Central limit theorem

Now we state and prove a CLT for the volume of excursion sets of random fields. Ivanov and
Leonenko [12] studied stationary and isotropic Gaussian random fields. In our approach, the
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isotropy of Gaussian fields is not required. Moreover, we consider a more general class of random
fields possessing the quasi-association property. To avoid long formulations, we introduce the
following two conditions for a random field X = {X(t), t ∈ R

d}.
(A) X is quasi-associated and strictly stationary such that X(0) has a bounded density. As-

sume that the covariance function of X is continuous and there exists some α > 3d such that

| cov(X(0),X(t))| = O(‖t‖−α
2 ) as ‖t‖2 → ∞. (9)

(B) X is Gaussian and stationary. Suppose that its continuous covariance function satisfies (9)
for some α > d .

Notice that continuity of the covariance function of X implies the existence of a measurable
modification of this field. We consider only such versions of X. We exclude the trivial case when
X(t) = const a.s. for all t ∈ R

d .

3.1. Quasi-associated random fields

To prove the CLT for the volume of excursion sets of a random field satisfying condition (A), we
need the following auxiliary result.

Lemma 1 ([7], Lemma 7.3.4). Let {U,V } ∈ QA, where random variables U and V are square-
integrable and have densities bounded by a > 0. Then

| cov(I{U ≥ u}, I{V ≥ v})| ≤ 3 · 22/3a2/3| cov(U,V )|1/3

for arbitrary u,v ∈ R.

Theorem 1. Let X = {X(t), t ∈ R
d} be a random field satisfying condition (A). Then, for any

sequence of VH-growing sets Wn ⊂ R
d and each u ∈ R, one has

νd(Au(X,Wn)) − νd(Wn)P(X(0) ≥ u)√
νd(Wn)

d→ Yu ∼ N (0, σ 2(u)), n → ∞. (10)

Here
d→ denotes convergence in distribution, Yu being a Gaussian random variable with mean

zero and variance

σ 2(u) =
∫

Rd

cov
(
I{X(0) ≥ u}, I{X(t) ≥ u})dt ∈ R+. (11)

Proof. Fix any u ∈ R and transform a random field X into a field Z = {Z(j), j ∈ Z
d}, setting

Z(j) =
∫

Qj

I{X(t) ≥ u}dt − P
(
X(0) ≥ u

)
, (12)
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where the unit cubes

Qj = {x = (x1, . . . , xd)� ∈ R
d : 0 < xk ≤ 1, k = 1, . . . , d} ⊕ {j}, j = (j1, . . . , jd)� ∈ Z

d .

The Fubini theorem implies EZ(j) = 0 for any j ∈ Z
d . It is easily seen that the field Z is strictly

stationary and square-integrable. Introduce

J−
n = {j ∈ Z

d : Qj ⊂ Wn}, J+
n = {j ∈ Z

d : Qj ∩ Wn �= ∅} (13)

and

W−
n =

⋃
j∈J−

n

Qj , W+
n =

⋃
j∈J+

n

Qj .

Due to (7), we conclude (see [7], Lemma 3.1.2) that

νd(W−
n ) → ∞ and νd(W−

n )/νd(W+
n ) → 1 as n → ∞. (14)

Write

νd(Au(X,Wn)) − νd(Wn)P(X(0) ≥ u)√
νd(Wn)

= νd(Au(X,W−
n )) − νd(W−

n )P(X(0) ≥ u)√
νd(Wn)

(15)

+ νd(Au(X,Wn)) − νd(Au(X,W−
n )) − (νd(Wn) − νd(W−

n ))P(X(0) ≥ u)√
νd(Wn)

.

We prove that the second term on the right-hand side in (15) tends to zero in probability. By
Chebyshev’s inequality, it suffices to show that

var
(
νd(Au(X,Wn)) − νd(Au(X,W−

n ))
)
/νd(Wn) → 0, n → ∞.

Set

Yn(j) =
∫

Qj ∩Wn

I{X(t) ≥ u}dt − νd(Qj ∩ Wn)P
(
X(0) ≥ u

)
for j ∈ Z

d , n ∈ N.

Note that Yn(j) = Z(j) for j ∈ J−
n and n ∈ N (clearly Yn(j) and Z(j) depend on u as well).

Applying the Fubini theorem and Lemma 1, we get

var
(
νd(Au(X,Wn)) − νd(Au(X,W−

n ))
)

= var

( ∑
j∈J+

n \J−
n

Yn(j)

)

≤
∑

j,m∈J+
n \J−

n

∫
Qj ×Qm

∣∣cov
(
I{X(s) ≥ u}, I{X(t) ≥ u})∣∣ds dt (16)
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≤ νd(W+
n \ W−

n )
∑
j∈Zd

∫
Q0×Qj

C1| cov(X(s),X(t))|1/3 ds dt

≤ νd(W+
n \ W−

n )

(
C2 + C3

∞∑
r=r0

∑
j∈Zd : ‖j‖∞=r

∫
Q0×Qj

‖s − t‖−α/3
2 ds dt

)

≤ νd(W+
n \ W−

n )

(
C2 + C4

∞∑
r=1

rd−1r−α/3

)
= C5νd(W+

n \ W−
n )

for some r0 > 0 and all n ∈ N. The factors Ci do not depend on n. We used the inequality
| cov(X(s),X(t))| ≤ τ 2 for all s, t ∈ R

d , which is satisfied as varX(t) = τ 2 for any t ∈ R
d . We

also took into account that

card{j ∈ Z
d : ‖j‖∞ = r} ≤ C6r

d−1

for each r ∈ N and employed the inequality (9) with α > 3d .
By (14), (16) and in view of the relation νd(W−

n ) ≤ νd(Wn) ≤ νd(W+
n ), we get

var
((

νd(Au(X,Wn)) − νd(Au(X,W−
n ))

)
/
√

νd(Wn)
) → 0, n → ∞.

Now we show that J−
n , introduced in (13), tends to infinity in a regular way as n → ∞. Indeed,

J−
n ⊂ Jn ⊂ J+

n , where Jn := Wn ∩ Z
d , n ∈ Z

d . Due to [7], Lemma 3.1.5, Jn tends to infinity in
a regular way. Thus, it suffices to mention that δJ−

n ⊂ δJn ∪ (Jn \ J−
n ) and apply the relations

card δJn/ cardJn → 0 and cardJ+
n / cardJ−

n → 1 as n → ∞. Lemma 3.1.6 of [7] implies that
W−

n = ⋃
j∈J−

n
Qj tends to infinity in the Van Hove sense as n → ∞.

So, while establishing (10), we can assume w.l.g. that Wn = W−
n , that is, Wn is a finite union

of cubes Qj (n ∈ N) and the sequence (Wn)n∈N is VH-growing.
Observe that

νd(Au(X,Wn)) − νd(Wn)P(X(0) ≥ u)√
νd(Wn)

=
∑

j∈Wn∩Zd Z(j)√
νd(Wn)

:= Sn.

As X = {X(t), t ∈ R
d} ∈ QA, it follows from (6) and (9) that X ∈ (BL, θ) with

θr(X) = O(r−α+d) as r → ∞(r > 0).

For γ > 0 (and u fixed) introduce the Lipschitz functions hγ : R → R by the formula

hγ (x) =
{0, if x ≤ u − γ ,

(x − u + γ )/γ, if u − γ < x ≤ u,
1, otherwise.

(17)
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Superposition of two Lipschitz functions is also a Lipschitz one. Thus, for n ∈ N and γ > 0, the
random field Zn,γ = {Zn,γ (j), j = (j1, . . . , jd)� ∈ Z

d} ∈ (BL, θ), where

Zn,γ (j) = 1

nd

n∑
k1,...,kd=1

hγ

(
X

(
j1 + k1

n
, . . . , jd + kd

n

))
− Ehγ (X(0)) (18)

and the terms of a sequence θ(Zn,γ ) admit the estimate

θr(Zn,γ ) ≤ C7γ
−2r−α+d , r ∈ N, (19)

with C7 depending neither on γ nor on n.
It is not difficult to verify that the finite-dimensional distributions of the fields Zn,γ weakly

converge to the corresponding ones of the field Zγ as n → ∞, where

Zγ (j) =
∫

Qj

hγ (X(t))dt − Ehγ (X(0)), j ∈ Z
d . (20)

Consequently (see [7], Lemma 1.5.16), we can claim that Zγ ∈ (BL, θ) and θr(Zγ ) is bounded
by the right-hand side of inequality (19). Theorem 3.1.12 of [7], guarantees that, for each γ > 0,

Sn(γ ) :=
∑

j∈Wn∩Zd Zγ (j)√
νd(Wn)

d→ Yu,γ ∼ N (0, σ 2(u, γ )), n → ∞, (21)

where

σ 2(u, γ ) =
∑
j∈Zd

cov(Zγ (0),Zγ (j)) =
∫

Rd

cov(hγ (X(0)), hγ (X(t)))dt ∈ R+.

Therefore, to prove (10), two steps remain. First of all, we estimate the difference of the charac-
teristic functions of the random variables Sn(γ ) and Sn and show that it tends to zero as γ → 0+.
After that, we verify that

σ 2(u, γ ) → σ 2(u) as γ → 0 + . (22)

Set h(x) = I{x ≥ u} and Hγ (x) = hγ (x) − h(x), where x ∈ R (and u ∈ R is fixed). Then, for
each λ ∈ R, one has

∣∣EeiλSn(γ ) − EeiλSn
∣∣ ≤ |λ|E|Sn(γ ) − Sn| ≤ |λ|

(
Vn(γ )

νd(Wn)

)1/2

, (23)

where i2 = −1 and

Vn(γ ) = E

( ∑
j∈Wn∩Zd

∫
Qj

(
Hγ (X(t)) − EHγ (X(t))

)
dt

)2

.
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It is easily seen that

Vn(γ ) ≤ νd(Wn)

∫
Rd

| cov(Hγ (X(0)),Hγ (X(t)))|dt. (24)

Furthermore, we have

| cov(Hγ (X(0)),Hγ (X(t)))| ≤ (E(Hγ (X(0)))2E(Hγ (X(t)))2)1/2 ≤ aγ,

where a is a constant that bounds the density of X(0). If | cov(X(0),X(t))|1/3 ≤ γ , then reason-
ing similar to that proving Lemma 1 leads to the inequality

| cov(Hγ (X(0)),Hγ (X(t)))| ≤ C(a)| cov(X(0),X(t))|1/3 (25)

with some C(a) > 0. Write α = 3(d + μ), μ > 0, and take R = cγ −1/(d+μ), where c > 0. Then,
in view of (9) and due to the appropriate choice of c, one can conclude that for all γ > 0 small
enough,

F(γ ) :=
∫

Rd

| cov(Hγ (X(0)),Hγ (X(t)))|dt

(26)

≤ aγωdRd + C8

∫
‖t‖2≥R

‖t‖−α/3
2 dt ≤ C9γ

μ/(d+μ),

where ωd = πd/2/(�(d/2 + 1)) is the volume of the unit ball in R
d with the Euclidean norm.

Consequently, inequalities (23), (24) and (26) imply that the laws of Sn(γ ) and Sn are close for
all n large enough if γ > 0 is small enough.

Next, we proceed to (22). By the arguments leading to (26) and invoking Lemma 1, we deduce
that σ 2(u) < ∞. Similar to (25), one shows that if | cov(X(s),X(t))|1/3 ≤ γ , then

| cov(h(X(s)),Hγ (X(t)))| ≤ D(a)| cov(X(s),X(t))|1/3 (27)

with D(a) > 0 depending on a only. The absolute value of σ 2(u, γ ) − σ 2(u) does not exceed
the following expression:

F(γ ) +
∫

Rd

| cov(h(X(0)),Hγ (X(t)))|dt +
∫

Rd

| cov(Hγ (X(0)), h(X(t)))|dt.

Taking into account the above upper bound and relations (26) and (27), we complete the proof
of (22). The asymptotic (finite) variances σ 2(u, γ ) are non-negative, whence one concludes that
σ 2(u) ≥ 0.

In view of (21)–(23), the proof is complete. �

Now we turn to the multidimensional CLT for random vectors,

S�u(X,Wn) = (νd(Au1(X,Wn)), . . . , νd(Aur (X,Wn)))
�, n ∈ N, (28)

where �u = (u1, . . . , ur )
� ∈ R

r .
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Theorem 2. Let X = {X(t), t ∈ R
d} be a random field satisfying condition (A). Then, for each

�u = (u1, . . . , ur )
� ∈ R

r and any VH-growing sequence (Wn)n∈N of subsets of R
d , one has

νd(Wn)
−1/2(S�u(X,Wn) − νd(Wn)P (�u)

) d→ V�u ∼ N (0,�(�u)) as n → ∞, (29)

where

P(�u) = (
P
(
X(0) ≥ u1

)
, . . . ,P

(
X(0) ≥ ur

))�

and �(�u) = (σlm(�u))rl,m=1 is an (r × r)-matrix having the elements

σlm(�u) =
∫

Rd

cov
(
I{X(0) ≥ ul}, I{X(t) ≥ um})dt. (30)

Proof. Observe that the convergence of all r2 integrals in (30) is proved in the same way as
that of the integral representing σ 2(u) in the one-dimensional case. The result follows by using
the Cramér–Wold device. We omit further details that are quite similar to those in the proof of
Theorem 1. �

The last theorem entails:

Corollary 1. Let X = {X(t), t ∈ R
d} be a random field satisfying condition (A). Assume that

�(�u) is non-degenerate for some �u ∈ R
r . Then, for this �u and any sequence (Wn)n∈N of VH-

growing subsets of R
d , one has

νd(Wn)
−1/2�(�u)−1/2(S�u(X,Wn) − νd(Wn)P (�u)

) d→ V ∼ N (0, I) as n → ∞;
here I denotes the unit (r × r)-matrix.

3.2. Shot noise random fields

We verify the conditions of Theorem 1 for shot noise random fields. These fields appear naturally
in the theory of disordered structures. Let B(Rd) (resp., B0(R

d)) be the family of all (bounded)
Borel sets in R

d . A shot noise random field X = {X(t), t ∈ R
d} is defined by the relation

X(t) =
∑
i∈N

ξiϕ(t − xi),

where {ξi} is a family of i.i.d. non-negative random variables and {xi} is a homogeneous Poisson
point process in R

d with intensity λ ∈ (0,∞), that is, {xi} is the support set of a random Poisson
counting measure {NB,B ∈ B(Rd)}, where NB = #{i: xi ∈ B} has the following properties:

(i) NB1,NB2 , . . . are independent for pairwise disjoint B1,B2, . . . ∈ B0(R
d),

(ii) NB ∼ Pois(λνd(B)) for all B ∈ B0(R
d).
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Suppose that {ξi}, N(·) are independent, Eξ2
i < ∞ and ϕ : Rd → R+ is a Borel function.

For the shot-noise field X introduced above, we impose the condition:
(C) X(0) has a bounded density and for a function ϕ bounded and uniformly continuous on

R
d,

ϕ(t) ≤ ϕ0(‖t‖2) = O(‖t‖−α
2 ) as ‖t‖2 → ∞, (31)

where α > 3d and ϕ0 : R+ → R+.

Proposition 1. The statement of Theorem 1 holds for a random field X satisfying condition (C).

Proof. By [7], Theorem 1.3.8, X is associated and hence quasi-associated. Moreover, it is strictly
stationary with covariance function given, for example, in [7], Theorem 2.3.6. The continuity of
the covariance function follows from the inequality

| cov(X(0),X(s)) − cov(X(0),X(t))| ≤ λEξ2
1 sup

y∈Rd

|ϕ(t − y) − ϕ(s − y)|
∫

Rd

|ϕ(y)|dy

and the uniform continuity of ϕ. Corollary 2.3.7 of [7] yields the desired bound for the covariance
function in condition (A). The proof is complete. �

Note that the characteristic function of X(0), provided by [7], Lemma 1.3.7, is integrable if∫
R

∣∣∣∣exp

{
λ

∫
Rd

(
ϕξ (sϕ(t)) − 1

)
dt

}∣∣∣∣ds < ∞. (32)

Thus, (32) guarantees the existence of the bounded density of X(0).
Condition (32) can be easily verified in a number of special cases; for instance, if ξ1 = const >

0 a.s. and ϕ(t) = a exp{−b‖t‖2} or ϕ(t) = a min{1,‖t‖−b
2 } with a, b > 0.

3.3. Gaussian random fields

In contrast to Lemma 1, we obtain a sharper estimate for the covariance of indicator functions
in the Gaussian case. Our result extends formula (2.7.1) of [12]. Let � and � stand for the
cumulative distribution function and the tail distribution function of a standard Gaussian random
variable, respectively.

Lemma 2. Let (U,V )� be a Gaussian random vector in R
2 such that U ∼ N (a, τ 2), V ∼

N (a, τ 2), where a ∈ R, τ > 0 and correlation coefficient corr(U,V ) = ρ. Then, for any u,v ∈ R

and ρ ∈ (−1,1), the following equality holds:

cov(I{U ≥ u}, I{V ≥ v})
(33)

= 1

2π

∫ ρ

0

1√
1 − r2

exp

{
− (u − a)2 − 2r(u − a)(v − a) + (v − a)2

2τ 2(1 − r2)

}
dr.
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In particular, for u = v, one has

cov(I{U ≥ u}, I{V ≥ u}) = 1

2π

∫ ρ

0

1√
1 − r2

exp

{
− (u − a)2

τ 2(1 + r)

}
dr.

Moreover, for any u,v ∈ R and ρ ∈ [−1,1], one has the inequality

| cov(I{U ≥ u}, I{V ≥ v})| ≤ |ρ|/4. (34)

Proof. Using the transformation x �→ (x − a)/τ , x ∈ R, we can assume w.l.g. that U ∼ N (0,1)

and V ∼ N (0,1). Let ρ ∈ (−1,1). The probability density

fU,V (x, y) = 1

2π
√

1 − ρ2
exp

{
−x2 − 2ρxy + y2

2(1 − ρ2)

}

of the bivariate Gaussian random variable (U,V )� is invariant under the transformation x �→ −x

and y �→ −y, (x, y)� ∈ R
2. Therefore,

cov(I{U ≥ u}, I{V ≥ v}) = cov(I{U ≤ −u}, I{V ≤ −v}), u, v ∈ R.

It is well known (see, e.g., [10], formulae (21.12.5) and (21.12.6)) that

fU,V (x, y) =
∞∑

k=0

�(k+1)(x)�(k+1)(y)

k! ρk, x, y ∈ R,

where �(k)(x) = dk�(x)/dxk and, for any u,v ∈ R,

∫ u

−∞

∫ v

−∞
fU,V (x, y)dx dy =

∞∑
k=0

�(k)(u)�(k)(v)

k! ρk.

Hence, for each u,v ∈ R,

EI{U ≤ −u}I{V ≤ −v} =
∫ −u

−∞

∫ −v

−∞
fU,V (x, y)dx dy =

∞∑
k=0

�(k)(−u)�(k)(−v)

k! ρk

= �(−u)�(−v) +
∞∑

k=1

�(k)(−u)�(k)(−v)

k! ρk

= �(−u)�(−v) +
∫ ρ

0

∞∑
k=0

�(k+1)(−u)�(k+1)(−v)

k! rk dr

= �(−u)�(−v) +
∫ ρ

0
fU(r),V (r)(u, v)dr,
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where (U(r),V (r))� is a centered bivariate Gaussian vector with EU(r)2 = EV (r)2 = 1 and
cov(U(r),V (r)) = r . Consequently, we get

cov(I{U ≤ −u}, I{V ≤ −v}) =
∫ ρ

0
fU(r),V (r)(u, v)dr

= 1

2π

∫ ρ

0

1√
1 − r2

e−(u2−2ruv+v2)/(2(1−r2)) dr.

Passing to random variables U and V with arbitrary mean a and variance τ 2 > 0 gives the
formula (33).

To prove inequality (34) for ρ ∈ (−1,1), write

| cov(I{U ≤ −u}, I{V ≤ −v})| ≤ 1

2π

∫ |ρ|

0

1√
1 − r2

dr ≤ 1

2π
arcsin |ρ|

and notice that arcsin |ρ| ≤ π|ρ|/2.
The case |ρ| = 1 is trivial, as |P(A ∩ B) − P(A)P(B)| ≤ 1/4 for any A,B ∈ F . �

The following result generalizes the corresponding one established in [12] (see page 80), where
the isotropy of the Gaussian random field was assumed. A central limit theorem for nonlinear
transformations of a homogeneous Gaussian random field was used there.

Theorem 3. Let X = {X(t), t ∈ R
d} be a Gaussian stationary random field satisfying condition

(B) and X(0) ∼ N (a, τ 2). Then, for each u ∈ R and any sequence of V H -growing sets Wn ⊂ R
d ,

one has

νd(Au(X,Wn)) − νd(Wn)�((u − a)/τ)√
νd(Wn)

d→ Yu ∼ N (0, σ 2(u))

as n → ∞. The variance σ 2(u) introduced in (11) can be written in the following form:

σ 2(u) = 1

2π

∫
Rd

∫ ρ(t)

0

1√
1 − r2

exp

{
− (u − a)2

τ 2(1 + r)

}
dr dt, (35)

where ρ(t) = corr(X(0),X(t)). In particular,

σ 2(a) = 1

2π

∫
Rd

arcsin(ρ(t))dt.

Proof. For the Gaussian field X, we have P(X(0) ≥ u) = �((u−a)/τ). Now we apply the upper
bound (34) to obtain | cov(X(0),X(t))| instead of | cov(X(0),X(t))|1/3 in the estimates used in
the proof of Theorem 1. This leads to the hypothesis that α > d in (9), whereas in condition (A)
we assumed α > 3d . Note that Gaussian fields are quasi-associated [20].

Finally, we express σ 2(u) (see (11)) in terms of the covariance function of X as in the proof
of Lemma 2, and this yields (35). The proof is complete. �
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Theorem 4. Let X = {X(t), t ∈ R
d} be a random field satisfying condition (B) and X(0) ∼

N (a, τ 2). Then, for each �u = (u1, . . . , ur )
� ∈ R

r and any sequence (Wn)n∈N of VH-growing
subsets of R

d , one has

νd(Wn)
−1/2(S�u(X,Wn) − νd(Wn)�(�u)

) d→ V�u ∼ N (0,�(�u)) as n → ∞. (36)

Here, �(�u) = (�((u1 − a)/τ), . . . ,�((ur − a)/τ))� and �(�u) = (σlm(�u))rl,m=1 is a matrix
having the elements

σlm(�u) = 1

2π

∫
Rd

∫ ρ(t)

0
g(r)dr dt, (37)

where

g(r) = 1√
1 − r2

exp

{
− (ul − a)2 − 2r(ul − a)(um − a) + (um − a)2

2τ 2(1 − r2)

}

and ρ(t) = corr(X(0),X(t)). If �(�u) is non-degenerate, we obtain by virtue of (36)

νd(Wn)
−1/2�(�u)−1/2(S�u(X,Wn) − νd(Wn)�(�u)

) d→ N (0, I), n → ∞,

where I is the unit (r × r)-matrix.

Proof. Employing Lemma 2, one can repeat the reasoning proving Theorem 2. Clearly,
P(X(0) ≥ ul) = �((ul − a)/τ), l = 1, . . . , r . The matrix elements σlm(�u) for l,m = 1, . . . , r

can be calculated by way of (33). �

Formulae in the isotropic case

For the isotropic case, we use the change of variables (passing from t = (t1, . . . , td )� to spherical
coordinates) in integrals (35) and (37) to obtain the following statement.

Corollary 2. Let the random field X = {X(t), t ∈ R
d} satisfying the conditions of Theorem 3 be

isotropic (d ≥ 2). Then

σ 2(u) = dωd

2π

∫ ∞

0
vd−1

∫ ρ(v)

0

1√
1 − r2

exp

{
− (u − a)2

τ 2(1 + r)

}
dr dv,

where ρ(v) = corr(X(0),X(t)) if |t | = v. For u = a, one has

σ 2(a) = dωd

2π

∫ ∞

0
vd−1 arcsin(ρ(v))dv.

In the multivariate case, (37) can be written as follows:

σlm(�u) = dωd

2π

∫ ∞

0
vd−1

∫ ρ(v)

0
g(r)dr dv

for l,m = 1, . . . , r .
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4. Statistical version of the CLT

Now we provide a statistical version of the CLT involving random self-normalization. Let r ∈ N

be the number of levels to observe.

Theorem 5. Let X = {X(t), t ∈ R
d} be a random field satisfying condition (A). Let uk ∈ R,

k = 1, . . . , r and (Wn)n∈N be a sequence of VH-growing sets. Furthermore, let Ĉn = (ĉnlm)rl,m=1
be statistical estimates for non-degenerate asymptotic covariance matrix � with elements σlm

given by (30). Assume that ĉnlm
p→ σlm as n → ∞ for any l,m = 1, . . . , r, where

p→ denotes
convergence in probability. Then

Ĉ
−1/2
n νd(Wn)

−1/2(S(Wn) − νd(Wn)P (�u)
) d→ N (0, I) as n → ∞.

Proof. It suffices to use Theorem 2 and elementary properties of the convergence in probability
and in law for random vectors. �

One feasible estimator for the asymptotic covariance matrix � that arose in the multivariate
CLT, see Theorem 2, can be called a subwindow estimator [18] and is constructed as follows. Let
(Vn)n∈N and (Wn)n∈N be sequences of VH-growing sets (not necessarily rectangles) such that
Vn ⊂ Wn, n ≥ 1. Consider N(n) subwindows Vn,1, . . . , Vn,N(n), where (N(n))n∈N is an increas-
ing sequence of integers with limn→∞ N(n) = ∞, and Vn,j = Vn ⊕ {hn,j } are subwindows that

are translated by certain vectors hn,j ∈ R
d , j = 1, . . . ,N(n). Assume that

⋃N(n)
j=1 Vn,j ⊆ Wn for

each n ∈ N and there exists some r > 0 such that

Vn,j ∩ Vn,i ⊂ ∂Vn,j ⊕ Br(0) for i, j ∈ {1, . . . ,N(n)} with i �= j.

Denote by

μ̂
(j)
nk = 1

νd(Vn)

∫
Vn,j

I{X(t) ≥ uk}dt, j = 1, . . . ,N(n),

the estimator of μk = P(X(0) ≥ uk) based on observations within Vn,j , and by

μ̄nk = 1

N(n)

N(n)∑
j=1

μ̂
(j)
nk , n ∈ N, k = 1, . . . , r,

the average of these estimators. After all, we define the estimator �̂n = (σ̂nlm)rl,m=1 for the co-
variance matrix �. Set

σ̂nlm = νd(Vn)

N(n) − 1

N(n)∑
j=1

(
μ̂

(j)
nl − μ̄nl

)(
μ̂

(j)
nm − μ̄nm

)
. (38)

We recall the following result.



116 A. Bulinski, E. Spodarev and F. Timmermann

Theorem 6 ([18], Theorem 3). Let X = {X(t), t ∈ R
d} be a strictly stationary random field

such that ∫
R3d

∣∣c(2,2)
lm (x, y, z)

∣∣dx dy dz < ∞, l,m = 1, . . . , r, (39)

where the fourth-order cumulant function

c
(2,2)
lm (x, y, z) = E

([Zl(0) − μl][Zm(x) − μm][Zl(y) − μl][Zm(z) − μm])
− covlm(x) covlm(z − y) − covll(y) covmm(x − z) − covlm(z) covml(x − y)

and covlm(t) = cov(I{X(0) ≥ ul}, I{X(t) ≥ um}), l,m = 1, . . . , r . Then �̂ introduced in (38) is
mean-square consistent.

Relation (39) holds for a random field X with finite dependence range. In this case, the estima-
tor �̂n is mean-square consistent. Among other estimators for the asymptotic covariance matrix,
there are two worth mentioning. One estimator that, under certain assumptions, meets the con-
ditions of Theorem 5 is introduced in [6,8] and involves local averaging. A major disadvantage
is tedious calculation in the case of a large observation window. The same problem arises for an
estimator based on the covariance function estimation for the underlying random field; see [18]
(cf. [12], Chapter 4).

5. Discussion

A very important issue for applications of the estimator �̂n is the choice of an appropriate size
of the (e.g., rectangular) subwindow Vn. The subwindow size is related to both the covariance
structure of the considered random field and the size of the observation window. We will dis-
cuss these problems while considering a simple example. The data used consist of 100 mutually
independent realizations of stationary and centered Gaussian random field X with covariance
function

cov(X(0),X(t)) =
(

1 − 3‖t‖2

2a
+ ‖t‖3

2

2a3

)
I{‖t‖2 ∈ [0, a]}, t ∈ R

2,

for some a > 0 according to the spherical covariance model (see [21], page 244), which is often
applied in geostatistics. The correlation range a in our simulation study has to be small enough in
comparison with the size of the observation window to make the CLT argument work. Here, we
take, for example, a = 10. The fields are simulated in the observation window W = [0,2000) ×
[0,2000) on the grid with mesh size one. That means every realization provides 4 million data
points. To generate level sets, we consider the thresholds u1 = −1.0, u2 = 0.0 and u3 = 1.0.
Then

� =
(4.6432

5.9938 10.5564
2.7962 5.9938 4.6432

)
.
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An appropriate subwindow size can be found focusing only on the threshold u2 = 0.0, since
for other threshold values the obtained results differ from this one only slightly. The estimator
provides the best result for � as the edge length of the rectangular subwindow equals 15. In
general, the optimal choice of this length is an open non-trivial problem. After this preliminary
step, we are able to apply the subwindow estimator to the simulated data. The following two
matrices show averaged estimation results for � by means of �̂. On the left-hand side, the
averaged value of each estimated matrix element is computed out of 100 samples. On the right-
hand side, the mean error to the theoretical value is provided.

1

100

100∑
k=1

�̂k =
(4.6556

5.9710 10.5524
2.8156 5.9934 4.6762

)
, ME =

( 0.27%
−0.38% −0.04%
0.69% ≈ 0.00% 0.71%

)
.

It would be interesting to propose a statistical hypothesis test based on the established statistical
version of the CLT in order to apply it to data concerning the paper production. We will deal with
this topic in a separate paper.

6. Open problems

The research area of limit theorems for level sets of random surfaces still offers an abundance of
open problems. Let us mention just a few. It would be desirable to prove limit theorems for joint
distributions of various surface characteristics of different classes of random fields. For instance,
one could consider stable fields. Further on, one can study random fields possessing more strong
dependence structure; for example, satisfying condition (A) with α ≤ d . In this case, the nor-
malizing factors have to be changed and the limiting distributions can be non-Gaussian. Certain
results for problems of this type can be found in [12,15]. One could also prove a functional limit
theorem for an innumerable set of thresholds. As our main result could also be called the CLT
for the first Minkowski functional, it might be of interest to prove limit theorems involving other
Minkowski functionals for level sets such as the boundary length or the Euler characteristics. It
is worth mentioning that, for a stationary two-dimensional Gaussian field, this has already been
done for the second Minkowski functional in [14].
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