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For multivariate data, Tukey’s half-space depth is one of the most popular depth functions available in
the literature. It is conceptually simple and satisfies several desirable properties of depth functions. The
Tukey median, the multivariate median associated with the half-space depth, is also a well-known measure
of center for multivariate data with several interesting properties. In this article, we derive and investigate
some interesting properties of half-space depth and its associated multivariate median. These properties,
some of which are counterintuitive, have important statistical consequences in multivariate analysis. We
also investigate a natural extension of Tukey’s half-space depth and the related median for probability
distributions on any Banach space (which may be finite- or infinite-dimensional) and prove some results
that demonstrate anomalous behavior of half-space depth in infinite-dimensional spaces.
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1. Introduction

Over the last three decades, data depth has emerged as a powerful concept leading to the gen-
eralization of many univariate statistical methods to the multivariate setup. A depth function
measures the centrality of a point x with respect to a data set or a probability distribution and
thus helps to define an ordering and a version of ranks for multivariate data. There are sev-
eral notions of data depth available in the literature (see, e.g., [13–16,21,22]). Tukey’s half-
space depth (see [20]) is one of the most popular depth functions used by many researchers.
The construction of central regions based on trimming (see, e.g., [17]), robust estimation of
multivariate location (see, e.g., [6]), tests of multivariate statistical hypotheses (see, e.g., [2])
and supervised classification (see, e.g., [7]) are some examples of its widespread applica-
tion.

Like other popular depth functions, half-space depth has some nice theoretical properties. In
fact, it satisfies all four of the desirable properties of depth functions first mentioned in [12] and
subsequently investigated in [22], namely, affine invariance, maximality at the center, monotonic-
ity with respect to the deepest point and vanishing at infinity. Moreover, if the underlying
population distribution F has a spherically symmetric density f , that is, f (x) = ψ(‖x‖2) for
some ψ : R+ → R+, the half-space depth turns out to be a decreasing function of ‖x‖2 =
(|x1|2 + · · · + |xd |2)1/2. Consequently, when ψ is monotonically decreasing (i.e., f is uni-
modal), the half-space depth becomes an increasing function of f and vice versa. Therefore,
in such cases, the half-space depth contours coincide with the contours of the density function.
Because of this property of the half-space depth, classification rules based on the ordering of the
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half-space depth functions coincide with the optimal Bayes classifier for discriminating among
spherically symmetric unimodal populations differing in their centers of symmetry (see, e.g.,
[8]). Similarly, the use of the half-space depth functions to order and trim multivariate data sets
(see, e.g., [6,17]) leading to the determination of central and outlying observations has a nat-
ural justification when the density contours coincide with the half-space depth contours. Also,
due to this relation between half-space depth and spherical symmetry, half-space depth has been
used to construct diagnostic tools for checking spherical symmetry of a data cloud (see, e.g.,
[13], pages 809–811). Another well-known feature of half-space depth is its characterization
property. Koshevoy [10] proved that if the half-space depth functions of two atomic measures
with finite support are identical, then the measures are also identical. Cuesta-Albertosa and
Nieto-Reyes [4] proved this characterization property of Tukey depth for discrete distributions.
Under some regularity conditions, Koshevoy [11] proved this characterization property for ab-
solutely continuous probability distributions with compact support in finite-dimensional spaces.
Hassairi and Regaieg [9] generalized it to absolutely continuous distributions with connected
supports.

However, the half-space depth function has several limitations. The half-space median de-
rived from half-space depth has a lower breakdown point and relative efficiency compared to the
median based on projection depth (see [23]). Dang and Serfling [5] pointed out that the outlier
identifier based on the half-space depth has a “severe” and “unacceptable” trade-off between
“masking breakdown point” and “false positive rate”. Moreover, if the half-space depth contours
fail to match the density contours, then the classifiers based on half-space depth may lead to
misclassification rates higher than the Bayes risk. The diagnostic tool developed in [13], pages
809–811 for detecting deviations from spherical symmetry using half-space depth also relies
heavily on the fact that under l2-symmetry, the depth contours are concentric spheres with half-
space median at the center. So, in the absence of this property of the half-space depth contours,
such a diagnostic tool may not lead to useful results. Now, a natural question that arises from
this discussion is whether this property of half-space depth contours holds for other symmetric
distributions, for example, in the case of lp-symmetric distributions, when f (x) = ψ(‖x‖p) for
some p �= 2 and ψ is monotonically decreasing. Here, for any p > 0 and x = (x1, . . . , xd) ∈ R

d ,
we define ‖x‖p = (|x1|p + · · · + |xd |p)1/p . In Section 2, we carry out an investigation to answer
this question.

For any continuous univariate distribution, it is straightforward to see that the median is the
point with half-space depth 0.5. In Section 3, we investigate to what extent this property of
half-space median holds for multivariate continuous distributions and derive a characterization
of the multivariate distribution for which the half-space depth of Tukey median will achieve its
maximum value, namely 0.5. We propose a statistical test for angular symmetry of continuous
multivariate distributions based on this characterization and briefly study the performance of
the proposed test. In this section, we also consider natural extensions of half-space depth and
half-space median for probability distributions in arbitrary Banach spaces using the concept of
linear functionals on such spaces. Some anomalous behaviors of half-space depth for probability
distributions on infinite-dimensional spaces and their implications are discussed in Section 4.
Proofs of theorems and lemmas (along with their statements) are deferred to the Appendix.
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2. Half-space depth contours for lp-symmetric density functions

In this section, we study the behavior of the half-space depth contours for a wide class of symmet-
ric distributions. As was mentioned in the Introduction, the half-space depth contours coincide
with the density contours if the p.d.f. f is such that f (x) = ψ(‖x‖2) for some monotonically
decreasing ψ : R+ → R+, and this is an important feature of half-space depth with many useful
statistical applications. Here, we will investigate the situation when ‖ · ‖2 is replaced by ‖ · ‖p ,
where p is positive and p �= 2.

2.1. Depth contours for p = ∞
For p = ∞, the p.d.f. f (x) = f (x1, x2, . . . , xd) = ψ(max{|x1|, |x2|, . . . , |xd |}) for some
monotonically decreasing function ψ . Clearly, the density contours here are concentric d-
dimensional hypercubes with the origin at the center. We now check whether or not all points on
the surface of a hypercube with origin at the center have the same depth. First, consider the point
A = (1,0, . . . ,0) on the surface of the unit hypercube {x :‖x‖∞ = 1} (see Figure 1 for a diagram
in the case d = 2). It can be shown that the hyperplane x1 = 1 determines the half-space depth
of this point, and this depth is P(X1 ≥ 1), where X = (X1,X2, . . . ,Xd) has the p.d.f. f (x) (see
Lemma 1 in the Appendix).

Note that the line x1 = 1 also passes through the point B = (1,1,0, . . . ,0) (see the right-
hand diagram in Figure 1 when d = 2). So, A and B will have the same depth if and only
if there exists no other hyperplane that passes though B in such a way that the probability of
one of its half-spaces is smaller than P(X1 ≥ 1). However, the hyperplane x1 + x2 = 2 passes
through the point B , and we can show that P(X1 + X2 ≥ 2) < P (X1 ≥ 1) (see Lemma 2 in the

Figure 1. l∞ contour and the line defining the half-space depth of (1,0) and (1,1).
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Appendix). This implies that if the p.d.f. f is of the form f (x) = ψ(‖x‖∞) with a monotonically
decreasing ψ , then the half-space depth contours cannot coincide with the corresponding density
contours.

2.2. Depth contours for 1 ≤ p < ∞
Next, consider the case where 1 ≤ p < ∞. Clearly, A = (21/pc,0,0, . . . ,0) and B = (c, c,

0, . . . ,0) are two points on the same lp contour (see Figure 2 for the case d = 2). First, we
check whether or not the half-space depths of these two points are equal. In view of Lemma 1,
the depth of A is given by P(X1 ≥ 21/pc) when c > 0. We can also prove that the hyperplane
x1 + x2 = 2c determines the half-space depth of B and that this depth is P(X1 + X2 ≥ 2c) (see
Lemma 3 in the Appendix).

It follows from the discussion in the preceding paragraph that the two points A and B will
have the same depth only if P(X1 ≥ 21/pc) = P(X1 +X2 ≥ 2c). Note that here we can choose c

arbitrarily. Therefore, the depth and the density contours can coincide only if P(X1 ≥ 21/pc) =
P(X1 +X2 ≥ 2c) for all values of c, that is, only if X1 and 2α(X1 +X2) are identically distributed
for α = (1 − p)/p. Now, if we assume the existence of the second order moments of the Xi ’s,
then the equality of the variances of X1 and 2α(X1 + X2) and the fact that X1 and X2 are
uncorrelated (in view of the lp-symmetry of the density f ) imply that α = −1/2 or p = 2.
Even if we do not assume any moment condition, the above result holds (see Lemma 4 in the
Appendix). Also, it is interesting to note that for p < 2, we can always choose a c such that the
depth of B is more than that of A. On the other hand, for p > 2, it is always possible to choose
a c such that A has larger depth than B .

Figure 2. lp contour and the lines defining the half-space depth of (c, c) for p = 5.
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Figure 3. lp contour for the case p = 1/2.

2.3. Depth contours for p < 1

Finally, we investigate the case p < 1. Note that in this case, the regions bounded by lp
contours are no longer convex sets (see Figure 3 for the case d = 2). Consider three points
A = (1,0, . . . ,0), B = (0,1,0, . . . ,0) and C = (α,β,0, . . . ,0) on the same lp contour, where
α,β > 0 and |α|p + |β|p = 1. Consider any hyperplane passing through C. It will split R

d into
two half-spaces, one of which will contain the origin. Since p < 1, at least one of the two points
A and B will lie in the half-space that does not contain the origin. Without loss of generality, we
can assume that the hyperplane that determines the half-space depth of C puts B and the origin
in two different half-spaces (see the bold line in Figure 3 for the case d = 2). We can now make
a parallel shift of that hyperplane away from the origin until it hits the point B (see the dotted line
in Figure 3 for the case d = 2). Clearly, the half-space created by this new hyperplane that has
smaller probability measure will have smaller probability than that of each of the two half-spaces
created by the older hyperplane. Therefore, the half-space depth of B has to be smaller than that
of C and hence the depth contours cannot coincide with the density contours.

Summarizing our discussion in this section, we now have the following theorem.

Theorem 1. Consider a probability distribution on R
d with the p.d.f. f such that f (x) =

ψ(‖x‖p) for some monotonically decreasing function ψ . The half-space depth contours asso-
ciated with f will then coincide with the density contours if and only if p = 2.

Figure 4 presents the empirical half-space depth contours (indicated using connected lines)
computed using 500 observations from bivariate lp-symmetric distributions with different val-
ues of p (i.e., p = 1/2,1,2,5). In each case, we consider the density to be of the form
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Figure 4. Density contours and their corresponding half-space depth contours.

f (x) = (2�(1/p))2

p2 exp(−{|x1|p + |x2|p}) and the corresponding density contours are also plotted
(indicated using dotted lines) in Figure 4. From this figure, it is quite evident that the half-space
depth contours and the density contours are markedly different when p �= 2. So, unlike what was
done by [13], pages 809–811, we cannot develop a diagnostic tool for checking lp-symmetry
using half-space depth when p �= 2.

It is also of interest to note that along with p = 2, for p = 1 and 5, the half-space depth
contours are nearly circular. Since the diagnostic tool for spherical symmetry proposed in [13],
pages 809–811, relies heavily on the sphericity of the depth contours, it may fail to detect the
deviation from spherical symmetry in the cases p = 1 and 5. But for p = 1/2, since the depth
contours are far from being circular, we can expect to detect this deviation using their diagnostic
tool. This is what we observed when we performed the following experiment. Following [13],
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Figure 5. Diagnostic tool for checking spherical symmetry.

pages 809–811, for different values of q (0 < q < 1), we found the smallest sphere Sq containing
the qth central hull and computed the fraction of the data r(q) lying in Sq . This fraction r(q) is
plotted against q for four different lp-symmetric distributions with p = 1/2,1,2 and 5, and these
plots are presented in Figure 5. Note that if the underlying distribution is spherically symmetric
(i.e., l2-symmetric), the resulting curve should lie near the diagonal line joining the points (0,0)
and (1,1). The area between the curve and the diagonal line gives an indication of the deviation
from spherical symmetry. As expected, for p = 1,2 and 5, these curves were close to the diagonal
line, but in the case p = 1/2, the curve had a significant deviation from the diagonal line (see
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Figure 5). So, the diagnostic tool could detect the deviation from spherical symmetry only in the
case of l1/2-symmetry.

We have seen that the half-space depth contours do not match the density contours for any
lp-symmetric distribution with p �= 2, and this leads to several limitations on statistical tools
based on half-space depth, as was already discussed in the Introduction and the present section.
However, it will be appropriate to note here that in such cases, the depth function may provide
some useful information which may not be contained in the density function. While density
is only a local measure, which measures the local probability mass, depth is a global measure,
which gives useful information about global features like the central and outlying points of a data
cloud or probability distribution. For instance, in the case of multivariate uniform distributions,
the density function, being constant, fails to give any idea about the central and the peripheral
points of the distribution; however, the half-space depth function provides a meaningful measure
of central tendency, for example, by identifying the point with the maximum depth (see [18]).

3. Half-space median and its depth

As we have already pointed out in the Introduction, for continuous univariate distributions, the
median is the point with half-space depth 0.5. In a sense, this is a very desirable and natural
property for a measure of the center of a distribution, and we would also like this property to
hold in a multivariate setup. If this property holds for a multivariate distribution, any hyperplane
passing through the median will lead to two half-spaces having equal probability measures. Un-
fortunately, as we will gradually see in this section, this may not always be true for multivariate
distributions, even if the distribution is absolutely continuous with respect to the Lebesgue mea-
sure on a Euclidean space.

Note that for any lp-symmetric density function f (x) = ψ(‖x‖p) with 0 < p ≤ ∞, the origin
turns out to be the half-space median with the half-space depth 0.5. In fact, this is true whenever
X and −X have the same distribution (i.e., the distribution is centrally symmetric), or even under
a slightly weaker condition that any real-valued linear projection has median zero. We should
also note that in all these cases, the half-space median coincides with the coordinatewise median,
and the depth of the half-space median, namely the origin, is 0.5. However, this only holds for
a special class of multivariate distributions. For instance, for a bivariate uniform distribution on
a right-angled isosceles triangle, we can easily show that the half-space depth of any point is
smaller than 0.5. We can consider another interesting example of a continuous bivariate distri-
bution, where the p.d.f. f has support on {(x1, x2) :x1 + x2 ≥ 0, x1x2 ≤ 0}. In this case, if f

is symmetric about the x1 = x2 line, we can easily verify that the half-space median will have
depth smaller than 0.5, and the coordinatewise median will have zero half-space depth. We have
already indicated some sufficient conditions for the depth of the half-space median to be 0.5, and
in view of the two preceding examples, we would like to know some necessary and sufficient
conditions for this. We now state a theorem, the proof of which is given in the Appendix.

Theorem 2. Suppose that X is a d-dimensional random vector with a probability distribution
which has its half-space median at μ ∈ R

d . Then, the half-space depth of μ will be 0.5 if and
only if (X − μ)/‖X − μ‖2 and (μ − X)/‖X − μ‖2 are identically distributed.
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This theorem implies that the half-space median will have depth 0.5 if and only if the underly-
ing distribution is angularly symmetric. Liu et al. [13], pages 811–814, stated the sufficient part
of this result and used it to develop a diagnostic tool for verification of angular symmetry of a
distribution. This necessary and sufficient condition can also be used to develop a statistical test
for the angular symmetry of a distribution. As discussed in [19], Ajne’s test (see [1]), which is
a distribution-free test for bivariate data, can be used for testing angular symmetry of a bivariate
distribution about a specified point (say, μ0). However, the test that we propose here is applica-
ble to multivariate data in any dimension and does not require any specification of the center of
symmetry, which is estimated from the data. Given a random sample x1,x2, . . . ,xn of size n,
let m̃n be the half-space median and �n denote the half-space depth of m̃n in that sample. For
testing the null hypothesis of angular symmetry, an ideal procedure would be to reject the null
hypothesis if �n < cn, where cn is an appropriate percentile (that depends on the specified level
of the test) of the distribution of �n under the null hypothesis. However, it is not possible to de-
termine an exact value of cn in practice because the distribution of �n depends on the underlying
angularly symmetric distribution of the data, which is usually not specified in practice.

In practice, we propose that for a random sample x1,x2, . . . ,xn, we first compute yi = xi −m̃n

for i = 1,2, . . . , n, generate i.i.d. observations z1, z2, . . . , zn such that P(zi = 1) = P(zi =
−1) = 1/2 and then compute x∗

i = ziyi + m̃n for i = 1,2, . . . , n. This procedure is motivated
by the well-known idea of bootstrapping. These x∗

i ’s can be viewed like a “bootstrap sample”
generated from the original sample under the null hypothesis of symmetry, and we can calculate
the depth �∗

n of the half-space median m̃∗
n based on that “bootstrap sample”. We can repeat this

“bootstrap procedure” M times depending on our computing resources and denote by �∗
n,m the

half-space depth of the half-space median in the mth “bootstrap sample” (m = 1,2, . . . ,M). The
critical value cn mentioned earlier can then be estimated from the “bootstrap empirical distri-
bution” of �∗

n. In other words, for a specified level 0 < α < 1, the null hypothesis of angular
symmetry is to be rejected if

∑M
m=1 I {�∗

m,n ≤ �n}/M < α.
To evaluate the performance of our proposed test, we carried out a thorough simulation study

with six examples using the software package R. In each case, we generated samples of size 50
and 100, implemented our test using M = 1000 “bootstrap samples” and, in order to estimate the
probability of rejection of H0 by the test, repeatedly applied it on 1000 Monte Carlo replications
in dimensions d = 2, 3 and 4. The first five examples were motivated by five bivariate examples
in [13], page 814, which include three examples with angularly symmetric distributions, namely
D1, D2 and D3, and two examples, namely D4 and D5, where the underlying distributions were
not angularly symmetric ([13], page 814, for a detailed description of these examples). Here, we
consider the natural multivariate version of these five examples. In the last example, D6, which is
also not angularly symmetric, when d = 2, we generated observations from a bivariate uniform
distribution on the right-angled isosceles triangle formed by the points (0,0), (1,0) and (0,1).
For an extension of D6 in dimensions d > 2, we have considered the simplex formed by the
origin, the coordinate axes and the hyperplane x1 + · · · + xd = 1 in R

d in place of the triangle.
Table 1 reports the proportion of cases, out of 1000 Monte Carlo replications, where the null
hypothesis was rejected for two nominal values of α, namely, 0.05 and 0.01. This table clearly
shows good level as well as power properties of the proposed test procedure.

Note that the condition that (X − μ)/‖X − μ‖2 and (μ − X)/‖μ − X‖2 are identically dis-
tributed is sufficient for the half-space median to have half-space depth 0.5, even when X lies
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Table 1. Probability of rejection of H0 by the proposed test

d ↓ Data sets → D1 D2 D3 D4 D5 D6
Nominal → 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%
level (α)

2 n = 50 0.012 0.052 0.012 0.054 0.010 0.044 0.170 0.318 0.406 0.663 0.247 0.418
n = 100 0.014 0.054 0.014 0.053 0.010 0.058 0.486 0.728 0.870 0.960 0.641 0.846

3 n = 50 0.011 0.044 0.003 0.035 0.015 0.057 0.294 0.554 0.751 0.869 0.403 0.662
n = 100 0.009 0.051 0.006 0.040 0.012 0.046 0.822 0.949 0.996 1.000 0.929 0.982

4 n = 50 0.009 0.054 0.013 0.061 0.014 0.067 0.355 0.719 0.812 0.955 0.440 0.824
n = 100 0.008 0.043 0.009 0.046 0.012 0.050 0.946 0.987 1.000 1.000 0.984 0.997

in an arbitrary Banach space B, where ‖ · ‖ denotes the norm in B. If F is a probability dis-
tribution over B, and x is a fixed element in B, then the half-space depth of x can be defined
as HD(x,F ) = infh∈B∗ P {h(X − x) ≥ 0}, where h : B → R is a linear functional that belongs
to the dual space B∗, P stands for the probability measure on B corresponding to F , and X is
a random element in B having the distribution F . The point μ ∈ B is called a half-space median
if HD(μ,F ) = supx∈B HD(x,F ). Instead of Banach spaces, if we work with a Hilbert space H,
due to the Riesz representation theorem and the reflexive nature of a Hilbert space, the half-space
depth of an observation x ∈ H can be defined as HD(x,F ) = infh∈H P {〈h, (X − x)〉 ≥ 0}, where
〈·, ·〉 stands for the inner product defined on H.

From the above discussion, it is clear that if we have a symmetric distribution in a Hilbert or
Banach space, then the point of symmetry will achieve the maximum depth value 0.5, and it will
be the half-space median. So, in a sense, the half-space median is well defined and behaves in
a nice way, even in infinite-dimensional spaces for symmetric probability distributions. However,
in infinite-dimensional spaces, even when we deal with nice symmetric distributions, the half-
space depth function can exhibit some anomalous behavior, which we will see in the next section.

4. Anomalous behavior of half-space depth in
infinite-dimensional spaces

We know that if we have a data cloud of n observations in a d-dimensional space, then the
empirical depth of an observation lying outside the convex hull formed by the data cloud is
zero. For d > n, since the Lebesgue measure of this convex hull is zero, we have zero depth
for all points in a set of probability measure one whenever we have n i.i.d. observations from
an absolutely continuous distribution in R

d . In fact, for any probability measure on an infinite-
dimensional Banach space such that any finite-dimensional hyperplane in that space has zero
probability, the empirical half-space depth based on finitely many i.i.d. observations from that
probability distribution will be zero almost everywhere. So, the empirical version of half-space
depth does not carry any statistically useful information in such cases. Naturally, we would be
curious to know what happens to the population depth function in such situations. The following
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theorem demonstrates that it is possible to have a nice symmetric probability distribution on the l2
space for which the population depth function takes positive values only on a set of probability
measure zero. Recall that the l2 space of real sequences consists of infinite sequences (x1, x2, . . .)

such that
∑∞

i=1 x2
i < ∞.

Theorem 3. Consider an infinite sequence of independent random variables X = (X1,X2,

X3, . . .), where E(Xi) = 0 and E(X2
i ) = σ 2

i for all i ≥ 1 such that
∑∞

i=1 σ 2
i < ∞. Note that

this implies that X lies in the l2 space of real sequences with probability one. Also, assume that
the Xi ’s have finite fourth moments and that

∑∞
i=1 E(X4

i )/i2σ 4
i < ∞. For instance, all these

conditions will hold if the Xi ’s are independent Gaussian random variables. Then, for any given
x = (x1, x2, . . .) in that l2 space, the half-space depth of x with respect to the distribution of X
will be zero unless x lies in a subset having probability zero.

The proof of this theorem is given in the Appendix. This theorem clearly shows that not only
the empirical version, but also the population version of the half-space depth will exhibit anom-
alous behavior for some very common distributions in infinite dimensions. Since any separable
Hilbert space is isometrically isomorphic to the l2 space in view of the existence of a countable
orthonormal basis in such a space, similar examples can also be constructed on separable Hilbert
spaces. Clearly, the half-space depth function will not be a very useful statistical concept in such
spaces. To conclude, let us recall the property of half-space depth characterizing the underly-
ing distribution established by earlier authors that was discussed in the Introduction. From the
above discussion, it is clear that in a separable Hilbert space, there exist several probability mea-
sures, which may even have independent Gaussian marginals, with half-space depth functions
identically equal to zero except on a subset having zero probability measure. Nevertheless, such
symmetric probability measures will have a well-defined half-space median that achieves the
depth value 0.5.

Appendix

Lemma 1. Let HD(x,F ) be the half-space depth of x with respect to the distribution F , and F

have density f of the form f (x) = ψ(‖x‖p) with a monotonically decreasing function ψ and 0 <

p ≤ ∞. Then, for any x = (x,0, . . . ,0) on the coordinate axis, we have HD(x,F ) = P(X1 ≥ x)

when x > 0, and HD(x,F ) = P(X1 ≤ x) when x ≤ 0.

Proof. We will prove it for x0 = (1,0, . . . ,0). Proof for other points follows in the same way.
Consider any hyperplane α(x − x0)

′ = 0 other than x1 = 1 that passes through x0 (see the left-
hand diagram in Figure 1 for the case d = 2). Here, α = (α1, α2, . . . , αd) is a vector in R

d . Define
the regions A1 = {x :x1 < 1 and α(x − x0)

′ ≥ 0} and A2 = {x :x1 ≥ 1 and α(x − x0)
′ < 0} (see

the left-hand diagram in Figure 1 for the case d = 2). To prove the lemma, we have to show that
P(X ∈ A1) ≥ P(X ∈ A2). Define A3 = {x = (x1, x2, . . . , xd) : (x1,−x2,−x3, . . . ,−xd) ∈ A2}.
Because of the symmetry of f , it is easy to check that P(X ∈ A2) = P(X ∈ A3). Therefore, it
is enough to prove that P(X ∈ A1) ≥ P(X ∈ A3). Note that for every point z = (x1, x2, . . . , xd)

in A1, we have a point z′ = (x′
1, x2, x3, . . . , xd) in A3 such that x′

1 = 2x1 − 1. Hence, |x1| ≤
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|x′
1| and ‖z‖p ≤ ‖z′‖p with strict inequality being true for all z not lying on the hyperplane

x1 = 1. This implies that f (z) ≥ f (z′). Since the strict inequality holds over a set of positive
measure, integrating f (z) (resp. f (z′)) with respect to z (resp. z′), we actually get P(X ∈ A1) >

P (X ∈ A3). �

Lemma 2. Consider a p.d.f. f on R
d satisfying f (x) = ψ(‖x‖∞) and a random vector X with

p.d.f. f. Then, for any x > 0, we have P(X1 + X2 ≥ 2x) < P (X1 ≥ x).

Proof. Again, we will prove this only for x = 1. Let us define A1 = {x = (x1, x2, . . . , xd) : x1 <

1 and x1 + x2 ≥ 2} and A2 = {x = (x1, x2, . . . , xd) : x1 ≥ 1 and x1 + x2 < 2} (these two regions
are shown in the right-hand diagram in Figure 1 for the case d = 2). We also define the region
A3 = {x = (x1, x2, . . . , xd) : (x2, x1, x3, . . . , xd) ∈ A1}. Because of the symmetry of f (x) under
permutations of the coordinates of x, it is straightforward to see that P(X ∈ A1) = P(X ∈ A3).
Hence, it is enough to show that P(X ∈ A3) < P (X ∈ A2). Now, for any z = (z1, z2, . . . , zd) ∈
A2, we have a corresponding point z′ = (2 − z2,2 − z1, z3, . . . , zd) in A3. Also, note that for any
z = (z1, z2, . . . , zd) in A2, z1 and z2 have the respective forms z1 = 1 + b and z2 = 1 − b − a

for some a, b > 0 (see the right-hand diagram in Figure 1 for the case d = 2). Consequently,
for z′ = (z′

1, z
′
2, z3, . . . , zd), we have z′

1 = 1 + b + a and z′
2 = 1 − b. Clearly, max{|z1|, |z2|} <

max{|z′
1|, |z′

2|} = 1 + a + b, which implies that ‖z‖∞ ≤ ‖z′‖∞ and hence that f (z) > f (z′) with
strict inequality on a set of positive probability measure under f . This proves that P(X ∈ A2) >

P (X ∈ A3). �

Lemma 3. Let f (x) = ψ(‖x‖p) for 1 ≤ p < ∞ be the p.d.f. of X = (X1,X2, . . . , Xd). Consider
x0 = (c, c,0, . . . ,0) for c > 0. Its half-space depth is then given by HD(x0,F ) = P(X1 + X2 ≥
2c).

Proof. Consider the hyperplane x1 + x2 = 2c (see Figure 2 for the case d = 2). We have to show
that this hyperplane determines the half-space depth of x0. For this, we will follow the same lines
of argument as in Lemmas 1 and 2. Consider a new hyperplane α(x − x0)

′ = 0 passing through
x0 (see Figure 2 for the case d = 2). Define the regions A1 = {x = (x1, x2, . . . , xd) :x1 + x2 <

2c and α(x − x0)
′ ≥ 0} and A2 = {x = (x1, x2, . . . , xd) :x1 + x2 ≥ 2c and α(x − x0)

′ < 0} (see
Figure 2 for the case d = 2). To prove the lemma, we have to show that P(X ∈ A1) ≥ P(X ∈ A2).
Define A3 = {x = (x1, x2, . . . , xd) : (x2, x1, x3, . . . , xd) ∈ A2}. Because of the symmetry of f (x)

under any permutation of the coordinates of x, we have P(X ∈ A2) = P(X ∈ A3). Therefore, it
is enough to show that P(X ∈ A3) ≤ P(X ∈ A1).

Note that any point z ∈ A1 is of the form z = (c + a, c − a − k, x3, . . . , xd), where k > 0,
and a can be positive or negative (see Figure 2 for the case d = 2). For any z ∈ A1, we get
a corresponding point z′ ∈ A3 such that z′ = (c +a + k, c −a, x3, . . . , xd). We now need to show
that ‖z‖p ≤ ‖z′‖p and for that, we will consider the two cases a > 0 and a < 0 separately.

When a > 0 (see the left-hand diagram in Figure 2 for the case d = 2), we have 0 < |c − a| <
|c + a|. Now, for p ≥ 1 and t, k > 0, it is easy to check that the function h(t) = (t + k)p − tp

is non-decreasing in t . So, for 0 < t1 < t2, we have 0 < h(t1) ≤ h(t2). Taking t1 = |c − a| and
t2 = |c + a|, we get (|c − a| + k)p − |c − a|p ≤ (|c + a| + k)p − |c + a|p . Now, using the facts
that |c +a|+ k = |c + a + k| and |c − a − k| ≤ |c − a|+ k, we arrive at |c − a − k|p −|c − a|p ≤
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|c + a + k|p − |c + a|p . This implies that |c − a − k|p + |c + a|p ≤ |c + a + k|p + |c − a|p ,
which in turn implies that ‖z‖p ≤ ‖z′‖p . Note that the strict inequality holds on a set of positive
probability measure under f .

For a < 0 (see the right-hand diagram in Figure 2 in the case d = 2), first note that a + k > 0
and that the coordinates of z and z′ are of the respective forms z = (c − α, c − β,x3, . . . , xd) and
z′ = (c + α, c + β,x3, . . . , xd), where α = −a > 0 and β = a + k > 0. Now, |c − α| < |c + α|
and |c − β| < |c + β| imply that ‖z‖p < ‖z′‖p . �

Lemma 4. Assume that we have a p.d.f. f that satisfies f (x) = ψ(‖x‖p) for some p > 0 and
monotonically decreasing ψ . Let X = (X1,X2, . . . ,Xd) be a random vector with p.d.f. f. If X1

and 2(1−p)/p(X1 + X2) are identically distributed, then we must have p = 2.

Proof. First, note that if f (x) = ψ(‖x‖p), then the joint p.d.f. of X1 and X2 is of the form
f1(x1, x2) = ψ1(|x1|p + |x2|p) for some ψ1 : R+ → R+. We can show that the p.d.f.’s of X1 and
Y = 2α(X1 +X2), where α = (1−p)/p, are given by fX1(x) = ∫

ψ1((|x|p +|x2|p)1/p)dx2 and
fY (x) = 2−α

∫
ψ1((|2−αx − x2|p + |x2|p)1/p)dx2, respectively.

Since both of these p.d.f.’s are continuous functions, and X1 and Y are identically distributed,
we can equate their values at x = 0. We then get

∫
ψ1(|x2|)dx2 = 2−α

∫
ψ1(21/p|x2|)dx2 =

2−(α+1/p)
∫

ψ1(|x2|)dx2. Hence, we must have α = −1/p, which implies p = 2. �

Proof of Theorem 2. Note that the “if” part is trivial in view of our discussion preceding the
statement of the theorem. We shall now prove the “only if” part.

First, we shall prove it for the bivariate case, that is, d = 2. Without loss of generality, we
assume that μ = 0. Let Z be the angle between the positive side of the x1-axis and the random
vector X (measured counterclockwise from the x1-axis). Now, consider a straight line which
passes through the origin and makes an angle θ with the x1-axis. Since μ = 0, the two half-
spaces generated by that straight line will have the same probability measure. Now, rotate the line
in a counterclockwise direction by an angle δ to bring it to a new position. Clearly, the two half-
spaces generated by the straight line in the new position will also have the same probability 0.5.
This implies that P(θ < Z < θ + δ) = P(π + θ < Z < π + θ + δ). Since this equality holds
for all θ and δ, it implies that Z and Z + π have the same probability distribution. The result
now follows from the fact that (X − μ)/‖X − μ‖2 = (CosZ,SinZ) and (μ − X)/‖X − μ‖2 =
(Cos(Z + π),Sin(Z + π)).

For d > 2, we need to consider d − 1 random angles Z1,Z2, . . . ,Zd−1. Note that here
the direction vector (X − μ)/‖X − μ‖2 can be expressed as (X − μ)/‖X − μ‖2= (CosZ1,

SinZ1 CosZ2, . . . ,SinZ1 · · ·SinZd−2 CosZd−1,SinZ1 · · ·SinZd−2 SinZd−1). Now, consider
a hyperplane H which makes angles θ1, θ2, . . . , θd−1 with the coordinate axes and then rotate
it to H1 such that the new angles are θ1 + δ, θ2, . . . , θd−1. The result now follows from the same
argument that is used in the bivariate case. �

Lemma 5. For any two sequences σ = (σ1, . . .) and x = (x1, x2, . . .) in the l2 space of
real sequences, we have supα∈l2

{(∑∞
i=1 α2

i σ
2
i )−1/2(

∑∞
i=1 αixi)} < ∞ if and only if

∑∞
i=1 x2

i /

σ 2
i < ∞.
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Proof. (The “if” part). For any α ∈ l2,
∑∞

i=1 αixi ≤ (
∑∞

i=1 α2
i σ

2
i )1/2(

∑∞
i=1 x2

i /σ 2
i )1/2 (i.e., the

Cauchy–Schwarz inequality) implies that
∑∞

i=1 αixi/(
∑∞

i=1 α2
i σ

2
i )1/2 ≤ ∑∞

i=1 x2
i /σ 2

i . Now, the
right-hand side of the inequality does not depend on α. So,

∑∞
i=1 x2

i /σ 2
i < ∞ implies the finite-

ness of supα∈l2
{∑∞

i=1 αixi/(
∑∞

i=1 α2
i σ

2
i )1/2} ≤ ∑∞

i=1 x2
i /σ 2

i .
(The “only if” part). Next, consider the case where

∑∞
i=1 x2

i /σ 2
i = ∞. Choose a sequence

{αn} of real sequences, where αn = (αn1, αn2, . . .) has non-zero values only at first n coordi-
nates (i.e., αni = 0 for all i > n) and αni = xi/σ

2
i for i = 1,2, . . . , n. Clearly, αn ∈ l2 for all

n ≥ 1, and for each n, it is easy to check that
∑n

i=1 αnixi/(
∑n

i=1 α2
niσ

2
i )1/2 = (

∑n
i=1 x2

i /σ 2
i )1/2.

So, we get supn≥1{
∑n

i=1 αnixi/(
∑n

i=1 α2
niσ

2
i )1/2} = ∞. This clearly implies that we have

supα∈l2
{∑∞

i=1 αixi/(
∑∞

i=1 α2
i σ

2
i )1/2} = ∞. �

Proof of Theorem 3. Consider any x in the l2 space with x �= 0. For any α in the l2
space, the random variable Z = 〈α,X〉 has a probability distribution with E(Z) = 0 and
V (Z) = ∑∞

i=1 α2
i σ

2
i . Using Chebyshev’s inequality, we get P(〈α, (X − x)〉 ≥ 0) = P(Z ≥

〈α,x〉) ≤ ∑∞
i=1 α2

i σ
2
i /(

∑∞
i=1 αixi)

2. So, the depth of x is bounded above by infα∈l2{
∑∞

i=1 α2
i σ

2
i /

(
∑∞

i=1 αixi)
2}. From Lemma 5, it follows that this upper bound is zero when

∑∞
i=1 x2

i /σ 2
i = ∞.

Therefore, x will have positive depth only if
∑∞

i=1 x2
i /σ 2

i < ∞.
Next, consider Yi = X2

i /σ
2
i for i ≥ 1. The Yi ’s are then independent random variables with

a common mean 1 and
∑∞

i=1 E(Y 2
i )/i2 < ∞. So, using the strong law of large numbers (see

Theorem 1 in [3], page 124), we have n−1 ∑n
i=1 Yi

a.s.−→ 1 as n → ∞. Consequently,
∑∞

i=1 Yi =∑∞
i=1 Xi/σ

2
i = ∞ with probability one. �
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