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There is a wide literature on change point tests, but the case of variables with infinite variances is essentially
unexplored. In this paper we address this problem by studying the asymptotic behavior of trimmed CUSUM
statistics. We show that in a location model with i.i.d. errors in the domain of attraction of a stable law
of parameter 0 < α < 2, the appropriately trimmed CUSUM process converges weakly to a Brownian
bridge. Thus, after moderate trimming, the classical method for detecting change points remains valid also
for populations with infinite variance. We note that according to the classical theory, the partial sums of
trimmed variables are generally not asymptotically normal and using random centering in the test statistics
is crucial in the infinite variance case. We also show that the partial sums of truncated and trimmed random
variables have different asymptotic behavior. Finally, we discuss resampling procedures which enable one
to determine critical values in the case of small and moderate sample sizes.
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1. Introduction

In this paper we are interested in detecting a possible change in the location of independent
observations. We observe X1, . . . ,Xn and want to test the no change null hypothesis

H0 :X1,X2, . . . ,Xn are independent, identically distributed random variables

against the r changes alternative

HA :Xj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ej , 1 ≤ j ≤ n1,
ej + c1, n1 < j ≤ n2,
ej + c2, n2 < j ≤ n3,
...

ej + cr , nr < j ≤ n.

It is assumed that

e1, . . . , en are independent, identically distributed random variables, (1.1)

that c0 = 0, ci �= ci+1, i = 0, . . . , r − 1, and that 1 ≤ n1 < n2 < · · · < nr < n are unknown. In
our model, the changes are at time nj , 1 ≤ j ≤ r . Testing H0 against HA has been considered by
several authors. For surveys, we refer to Brodsky and Darkhovsky [7], Chen and Gupta [8] and
Csörgő and Hórvath [9]. If the observations have finite expected value, then the model is referred
to as changes in the mean.
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Several of the most popular methods are based on the functionals of the CUSUM process (tied
down partial sums)

Mn(t) =
�nt�∑
j=1

Xj − �nt�
n

n∑
j=1

Xj .

If H0 holds and 0 < σ 2 = varX1 < ∞, then

1√
n
Mn(t)

D[0,1]−→ σB(t), (1.2)

where {B(t),0 ≤ t ≤ 1} is a Brownian bridge. If σ̂n is a weakly consistent estimator for σ , that
is, σ̂n → σ in probability, then

1

σ̂n

√
n
Mn(t)

D[0,1]−→ B(t). (1.3)

Functionals of (1.3) can be used to find asymptotically distribution-free procedures to test H0
against HA. The limit results in (1.2) and (1.3) have been extended in several directions. Due
to applications in economics, finance, meteorology, environmental sciences and quality control,
several authors have studied the properties of Mn(t) and especially (1.3) for dependent observa-
tions. For relevant references, we refer to Horváth and Steinebach [20]. The case of vector-valued
dependent observations is considered in Horváth, Kokoszka and Steinebach [19]. We note that in
the case of dependent observations, σ 2 = limn→∞ var(n−1/2 ∑n

j=1 Xj), so the estimation of σ

is considerably harder than in the i.i.d. case (see Bartlett [3], Grenander and Rosenblatt [13] and
Parzen [30]). The rate of convergence in (1.3) may be slow, so the asymptotic critical values
might be misleading; hence, resampling methods have been advocated in Hušková [21]. With
very few exceptions, it has been assumed that at least EX2

j is finite. In this paper we are inter-

ested in testing H0 against HA when EX2
j = ∞.

We assume that

X1,X2, . . . belong to the domain of attraction of a stable random variable ξα

with parameter 0 < α < 2
(1.4)

and

Xj is symmetric when α = 1. (1.5)

This means that (
n∑

j=1

Xj − an

)/
bn

D−→ ξα (1.6)

for some numerical sequences an and bn. The necessary and sufficient conditions for (1.6) are

lim
t→∞

P {X1 > t}
L(t)t−α

= p and lim
t→∞

P {X1 ≤ −t}
L(t)t−α

= q (1.7)

for some numbers p ≥ 0, q ≥ 0 with p + q = 1 and where L is a slowly varying function at ∞.



1346 I. Berkes, L. Horváth and J. Schauer

Aue et al. [2] studied the properties of Mn(t) under conditions H0, (1.4) and (1.5). They used
max1≤j≤n |Xj | as the normalization of Mn(t) and showed that

1

γn

Mn(t)
D[0,1]−→ 1

Z Bα(t), γn = max
1≤j≤n

|Xj |. (1.8)

Here, Bα(t) = Wα(t) − tWα(1) is an α-stable bridge, Wα(t) is an α-stable process (see also
Kasahara and Watanabe [22], Section 9) and Z is a random norming factor whose joint distri-
bution with Wα(t) is described in [2] explicitly. Nothing is known about the distribution of the
functionals of Bα(t)/Z and therefore it is nearly impossible to determine critical values needed
to construct asymptotic test procedures. Hence, resampling methods (bootstrap and permuta-
tion) have been tried. However, it was proven that the conditional distribution of the resampled
Mn(t)/γn, given X1, . . . ,Xn, converges in distribution to a non-degenerate random process de-
pending also on the trajectory (X1,X2, . . .). So, resampling cannot be recommended to obtain
asymptotic critical values. This result was obtained by Aue et al. [2] for permutation resampling
and by Athreya [1], Hall [18] and Berkes et al. [4] for the bootstrap. No efficient procedure has
been found to test H0 against HA when EX2

j = ∞.
The reason for the ‘bad’ behavior of the CUSUM statistics described above is the influence of

the large elements of the sample. It is known that for i.i.d. random variables X1,X2, . . . in the
domain of attraction of a non-normal stable law, the j th largest element of |X1|, . . . , |Xn| has,
for any fixed j , the same order of magnitude as the sum Sn = X1 + · · · + Xn as n → ∞. Thus,
the influence of the large elements in the CUSUM functional does not become negligible as
n → ∞ and, consequently, the limiting behavior of the CUSUM statistics along different trajec-
tories (X1,X2, . . .) is different, rendering this statistics impractical for statistical inference. The
natural remedy for this trouble is trimming, that is, removing the d(n) elements with the largest
absolute values from the sample, where d(n) is a suitable number with d(n) → ∞, d(n)/n → 0.

This type of trimming is usually called modulus trimming in the literature. In another type of
trimming, some of the largest and smallest order statistics are removed from the sample (see,
e.g., Csörgő et al. [11,12]). Under suitable conditions, trimming indeed leads to a better asymp-
totic behavior of partial sums (see, e.g., Mori [27–29], Maller [25,26], Csörgő et al. [10–12],
Griffin and Pruitt [14,15] and Haeusler and Mason [16,17]). Note, however, that the asymptotic
properties of trimmed random variables depend strongly on the type of trimming used. In this
paper, trimming means modulus trimming, as introduced above. Griffin and Pruitt [14] showed
that even in the case where the Xj belong to the domain of attraction of a symmetric stable law
with parameter 0 < α < 2, the modulus trimmed partial sums need not be asymptotically normal.
Theorem 1.5 reveals the reason for this surprising fact: for non-symmetric distributions F , the
center of the sample remains, even after modulus trimming, a non-degenerate random variable,
and no non-random centering can lead to a central limit theorem. In contrast, a suitable random
centering will always work and since the CUSUM functional is not affected by centering factors,
even in the case of ‘bad’ partial sum behavior, the trimmed CUSUM functional converges to a
Brownian bridge, resulting in a simple and useful change point test.

To formulate our results, consider the trimmed CUSUM process

Tn(t) =
�nt�∑
j=1

XjI {|Xj | ≤ ηn,d} − �nt�
n

n∑
j=1

XjI {|Xj | ≤ ηn,d}, 0 ≤ t ≤ 1,
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where ηn,d is the d th largest value among |X1|, . . . , |Xn|.
Let

F(t) = P {X1 ≤ t} and H(t) = P {|X1| > t}.
The (generalized) inverse (or quantile) of H is denoted H−1(t). We assume that

lim
n→∞d(n)/n = 0 (1.9)

and

lim
n→∞d(n)/(logn)7+ε = ∞ with some ε > 0. (1.10)

For the sake of simplicity (see Mori [27]), we also require that

F is continuous. (1.11)

Let

A2
n = α

2 − α

(
H−1(d/n)

)2
d. (1.12)

Our first result states the weak convergence of Tn(t)/An.

Theorem 1.1. If H0, (1.4), (1.5) and (1.9)–(1.11) hold, then

1

An

Tn(t)
D[0,1]−→ B(t), (1.13)

where {B(t),0 ≤ t ≤ 1} is a Brownian bridge.

Since An is unknown, we need to estimate it from the sample. We will use

Â2
n =

n∑
j=1

(Xj I {|Xj | ≤ ηn,d} − X̄n,d)2 and σ̂ 2
n = 1

n
Â2

n,

where

X̄n,d = 1

n

n∑
j=1

XjI {|Xj | ≤ ηn,d}.

We note that Ân/An → 1 almost surely (see Lemma 4.7).

Theorem 1.2. If the conditions of Theorem 1.1 are satisfied, then

1

σ̂n

√
n
Tn(t)

D[0,1]−→ B(t). (1.14)
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In the case of independence and 0 < σ 2 = varXj < ∞, we estimate σ 2 by the sample vari-
ance. So, the comparison of (1.3) and (1.14) reveals that in case of EX2

j = ∞, we still use the
classical CUSUM procedure; only the extremes are removed from the sample. The finite-sample
properties of tests for H0 against HA based on (1.14) are investigated in Section 3.

In the case of a given sample, it is difficult to decide if EX2
j is finite or infinite. Thus, for

applications, it is important to establish Theorem 1.2 when EX2
j < ∞.

Theorem 1.3. If H0, (1.9), (1.10) and EX2
j < ∞ are satisfied, then (1.14) holds.

Combining Theorems 1.2 and 1.3, we see that the CUSUM-based procedures can always be
used if the observations with the largest absolute values are removed from the sample.

We now outline the basic idea of the proofs of Theorems 1.1 and 1.2. It was proven by
Kiefer [23] (see Shorack and Wellner [33]) that ηn,d is close to H−1(d/n) and thus it is nat-
ural to consider the process obtained from Tn(t) by replacing ηn,d with H−1(d/n). Let

Vn(t) =
�nt�∑
j=1

(
XjI {|Xj | ≤ H−1(d/n)} − E

(
XjI {|Xj | ≤ H−1(d/n)}))

and

V ∗
n (t) =

�nt�∑
j=1

(
XjI {|Xj | ≤ ηn,d} − E(XjI {|Xj | ≤ ηn,d})).

Since Vn(t) is a sum of i.i.d. random variables, the classical functional central limit theorem for
triangular arrays easily yields the following result.

Theorem 1.4. If the conditions of Theorem 1.1 are satisfied, then

1

An

Vn(t)
D[0,1]−→ W(t),

where {W(t),0 ≤ t ≤ 1} is a standard Brownian motion (Wiener process).

In view of the closeness of ηn,d and H−1(d/n), one would expect the asymptotic behavior of
Vn(t)/An and V ∗

n (t)/An to be the same. Surprisingly, this is not the case. Let

m(t) = E[X1I {|X1| ≤ t} − X1I {|X1| ≤ H−1(d/n)}], t ≥ 0.

Theorem 1.5. If the conditions of Theorem 1.1 are satisfied, then

1

An

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

[
Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ H−1(d/n)}) − m(ηn,d)

]∣∣∣∣∣ = oP (1).
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By Theorem 1.5, the asymptotic properties of the partial sums of trimmed and truncated vari-
ables would be the same if n|m(ηn,d)| = oP (An) were true. However, this is not always the case,
as the following example shows.

Example 1.1. Assume that X1 is concentrated on (0,+∞) and has a continuous density f which
is regularly varying at ∞ with exponent −(α + 1) for some 0 < α < 2. Then,

nm(ηn,d)

Bn

D−→ N(0,1),

where

Bn = αd3/2

nH ′(H−1(d/n))
.

We conjecture that the centering factor nm(ηn,d)/An and the partial sum process

�nt�∑
j=1

(
XjI {|Xj | ≤ H−1(d/n)} − E

(
XjI {|Xj | ≤ H−1(d/n)})), 0 ≤ t ≤ 1,

are asymptotically independent under the conditions of Example 1.1. Hence, by Theorem 1.5 we
would have

1

An

�nt�∑
j=1

(Xj I {|Xj | ≤ ηn,d} − cn)
D[0,1]−→ W(t) + t

(
2 − α

α

)1/2

ξ,

where {W(t),0 ≤ t ≤ 1} and ξ are independent, W(t) is a standard Wiener process, ξ is a stan-
dard normal random variable and cn = EX1I {|X1| ≤ H−1(d/n)}.

In view of Theorem 1.5, the normed partial sum processes of XjI {|Xj | ≤ ηn,d} − m(ηn,d)

and XjI {|Xj | ≤ H−1(d/n)} have the same asymptotic behavior and thus the same holds for
the corresponding CUSUM processes. By Theorem 1.4, the CUSUM process of XjI {|Xj | ≤
H−1(d/n)} converges weakly to the Brownian bridge and the CUSUM process of XjI {|Xj | ≤
ηn,d} − m(ηn,d) clearly remains the same if we drop the term m(ηn,d). Formally,

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

XjI {|Xj | ≤ ηn,d} − k

n

n∑
j=1

XjI {|Xj | ≤ ηn,d}

−
(

k∑
j=1

XjI {|Xj | ≤ H−1(d/n)} − k

n

n∑
j=1

XjI {|Xj | ≤ H−1(d/n)}
)∣∣∣∣∣ (1.15)

≤ 2 max
1≤k≤n

∣∣∣∣∣
k∑

j=1

[
Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ H−1(d/n)}) − m(ηn,d)

]∣∣∣∣∣.
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Thus, even though the partial sums of trimmed and truncated variables are asymptotically dif-
ferent due to the presence of the random centering m(ηn,d), the asymptotic distributions of the
CUSUM processes of the trimmed and truncated variables are the same.

The proofs of the asymptotic results for
∑n

j=1 XjI {|Xj | ≤ ηn,d} in Griffin and Pruitt [14,15],
Maller [25,26], Mori [27–29] are based on classical probability theory. Csörgő et al. [10–12] and
Haeusler and Mason [16] use the weighted approximation of quantile processes to establish the
normality of a class of trimmed partial sums. The method of our paper is completely different.
We show in Theorem 1.5 that after a suitable random centering, trimmed partial sums can be
replaced with truncated ones, reducing the problem to sums of i.i.d. random variables.

2. Resampling methods

Since the convergence in Theorem 1.1 can be slow, critical values in the change point test de-
termined on the basis of the limit distribution may not be appropriate for small sample sizes. To
resolve this difficulty, resampling methods can be used to simulate critical values. Let

xj = XjI {|Xj | ≤ ηn,d} − X̄n,d , 1 ≤ j ≤ n,

be the trimmed and centered observations. We select m elements from the set {x1, x2, . . . , xn}
randomly (with or without replacement), resulting in the sample y1, . . . , ym. If we select with
replacement, the procedure is the bootstrap; if we select without replacement and m = n, this is
the permutation method (see Hušková [21]). We now define the resampled CUSUM process

Tm,n(t) =
�mt�∑
j=1

yj − �mt�
m

m∑
j=1

yj .

We note that, conditionally on X1,X2, . . . ,Xn, the mean of yj is 0 and its variance is σ̂ 2
n .

Theorem 2.1. Assume that the conditions of Theorem 1.1 are satisfied and draw m = m(n)

elements y1, . . . , ym from the set {x1, . . . , xn} with or without replacement, where

m = m(n) → ∞ as n → ∞ (2.1)

and m(n) ≤ n in case of selection without replacement. Then, for almost all realizations of
X1,X2, . . . , we have

1

σ̂n

√
m

Tm,n(t)
D[0,1]−→ B(t),

where {B(t),0 ≤ t ≤ 1} is a Brownian bridge.

By the results of Aue et al. [2] and Berkes et al. [4], if we sample from the original (untrimmed)
observations, then the CUSUM process converges weakly to a non-Gaussian process containing
random parameters and thus the resampling procedure is statistically useless.
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If we use resampling to determine critical values in the CUSUM test, we need to study the
limit also under the the alternative since in a practical situation we do not know which of H0 or
HA is valid. As before, we assume that the error terms {ej } are in the domain of attraction of a
stable law, that is,

lim
t→∞

P {e1 > t}
L(t)t−α

= p and lim
t→∞

P {e1 ≤ −t}
L(t)t−α

= q, (2.2)

where p ≥ 0, q ≥ 0, p + q = 1 and L is a slowly varying function at ∞.

Theorem 2.2. If HA, (1.1), (1.9)–(1.11), (2.1) and (2.2) hold, then for almost all realizations of
X1,X2, . . . , we have that

1

σ̂n

√
m

Tm,n(t)
D[0,1]−→ B(t),

where {B(t),0 ≤ t ≤ 1} is a Brownian bridge.

In other words, the limiting distribution of the trimmed CUSUM process is the same under H0
and HA, and thus the critical values determined by resampling will always work. On the other
hand, under HA, the test statistic sup0<t<1 |Tn(t)|/An goes to infinity, so using the critical values
determined by resampling, we get a consistent test.

We note that Theorems 2.1 and 2.2 remain true if (1.6) is replaced with EX2
j < ∞. The proofs

are similar to that of Theorem 2.1 but much simpler, so no details are given.

3. Simulation study

Consider the model under H0 with i.i.d. random variables Xj , j = 1, . . . , n, having distribution
function

F(t) =
{

q(1 − t)−1.5 for t ≤ 0,

1 − p(1 + t)−1.5 for t > 0,

where p ≥ 0, q ≥ 0 and p+q = 1. We trim the samples using d(n) = �n0.3�. To simulate the crit-
ical values, we generate N = 105 Monte Carlo simulations for each n ∈ {100,200,400,800} ac-
cording to the model under the no change hypothesis and calculate the values of sup0<t<1 |Tn(t)|/
(σ̂n

√
n), where Tn(t) and σ̂n are defined in Section 1. The computation of the empirical quan-

tiles yields the estimated critical values. Table 1 summarizes the results for p = q = 1/2 and
1 − α = 0.95.

Table 1. Simulated critical values of sup0<t<1 |Tn(t)|/(σ̂n
√

n)

for 1 − α = 0.95

n = 100 n = 200 n = 400 n = 800 n = ∞
1.244 1.272 1.299 1.312 1.358
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Figure 1. Empirical power curves with α = 0.05, n = 100 (solid), n = 200 (dashed) and n = 400 (dotted).

Figure 1 shows the empirical power of the test of H0 against HA based on the statis-
tic sup0<t<1 |Tn(t)|/(σ̂n

√
n) for a single change at time k = n1 ∈ {n/4, n/2} and each c1 ∈

{−3,−2.9, . . . ,2.9,3} for the same trimming as above (d(n) = �n0.3�) and a significance level
of 1 −α = 0.95, where the number of repetitions is N = 104. Note that depending on the sample
size, we used different simulated quantiles (see Table 1). The power behaves best for a change
point in the middle of the observation period (k = n/2). Due to the differences between the sim-
ulated and asymptotic critical values in Table 1, especially for small n, the test based on the
asymptotic critical values tends to be conservative.

4. Proofs

Throughout this section we assume that H0 holds. Clearly,

H(x) = 1 − F(x) + F(−x), x ≥ 0,

and by (1.7), we have that

H−1(t) = t−1/αK(t), if t ≤ t0, (4.1)

where K(t) is a slowly varying function at 0. We also use

d = d(n) → ∞. (4.2)

Lemma 4.1. If H0, (1.4), (1.5), (1.9) and (4.2) hold, then

lim
n→∞

1

A2
n

varVn(1) = 1 (4.3)
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and

lim
n→∞

n∑
j=1

E
[
XjI {|Xj | ≤ H−1(d/n)} − E[XjI {|Xj | ≤ H−1(d/n)}]]4

(4.4)

× 1

d(H−1(d/n))4
= α

4 − α
.

Proof. If 1 < α < 2, then

lim
n→∞EX1I {|X1| ≤ H−1(d/n)} = EX1.

If α = 1, then by the assumed symmetry, EX1I {|X1| ≤ H−1(d/n)} = 0. In the case 0 < α < 1,

we write

E|X1|I {|X1| ≤ H−1(d/n)} =
∫ H−1(d/n)

−H−1(d/n)

|x|dF(x)

= −
∫ H−1(d/n)

0
x dH(x)

= −xH(x)|H−1(d/n) +
∫ H−1(d/n)

0
H(x)dx.

By Bingham et al. [6], page 26,

lim
y→∞

∫ y

0 H(x)dx

(1/(1 − α))y1−αL(y)
= 1

and therefore

lim
n→∞

E|X1|I {|X1| ≤ H−1(d/n)}
(α/(1 − α))H−1(d/n)d/n

= 1.

Similarly,

EX2
1I {|X1| ≤ H−1(d/n)}

=
∫ H−1(d/n)

−H−1(d/n)

x2 dF(x)

= −
∫ H−1(d/n)

0
x2 dH(x) = −x2H(x)|H−1(d/n) + 2

∫ H−1(d/n)

0
xH(x)dx.

Again using [6], page 26, we conclude that

lim
n→∞

EX2
1I {|X1| ≤ H−1(d/n)}
(H−1(d/n))2d/n

= α

2 − α
.
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Hence, (4.3) is established.
Arguing as above, we get

EX4
1I {|X1| ≤ H−1(d/n)} = −

∫ H−1(d/n)

0
x4 dH(x)

= −x4H(x)|H−1(d/n) + 4
∫ H−1(d/n)

0
x3H(x)dx

and therefore

lim
n→∞

EX4
1I {|X1| ≤ H−1(d/n)}
(H−1(d/n))4d/n

= α

4 − α
.

Similarly,

lim
n→∞

E|X1|3I {|X1| ≤ H−1(d/n)}
(H−1(d/n))3d/n

= α

3 − α
,

completing the proof of (4.4). �

Proof of Theorem 1.4. Clearly, for each n, XjI {|Xj | ≤ H−1(d/n)}, 1 ≤ j ≤ n, are independent
and identically distributed random variables. By Lemma 4.1, we have

lim
n→∞

∑n
j=1 E[XjI {|Xj | ≤ H−1(d/n)} − E[XjI {|Xj | ≤ H−1(d/n)}]]4(∑n

j=1 var(Xj I {|Xj | ≤ H−1(d/n)}))2
= 0,

so the Lyapunov condition is satisfied. Hence, the result follows immediately from Sko-
rokhod [34]. �

A series of lemmas is needed to establish Theorem 1.5. Let ηn,1 ≥ ηn,2 ≥ · · · ≥ ηn,n denote
the order statistics of |X1|, . . . , |Xn|, starting with the largest value.

Lemma 4.2. If H0 and (1.11) hold, then

{H(ηn,k),1 ≤ k ≤ n} D= {Sk/Sn+1,1 ≤ k ≤ n},
where

Sk = e1 + · · · + ek, 1 ≤ k ≤ n,

and e1, e2, . . . , en+1 are independent, identically distributed exponential random variables with
Eej = 1.

Proof. The representation in Lemma 4.2 is well known (see, e.g., Shorack and Wellner [33],
page 335). �

Let ηn,d(j) denote the d th largest among |X1|, . . . , |Xj−1|, |Xj+1|, . . . , |Xn|.
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Lemma 4.3. If H0, (1.4), (1.5), (1.9), (1.11) and (2.1) hold, then

n∑
j=1

∣∣Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ ηn,d(j)})∣∣ = oP (An).

Proof. First, we note that ηn,d(j) = ηn,d or ηn,d(j) = ηn,d+1. Hence,

H(ηn,d)

H(ηn,d(j))
≥ H(ηn,d)

H(ηn,d+1)
.

By Lemma 4.2 and the law of large numbers, we have

H(ηn,d)

H(ηn,d+1)

D= Sd

Sd+1
= Sd

Sd + ed+1
= 1

1 + ed+1/Sd

= 1 + OP (d−1).

Furthermore, by the central limit theorem, we conclude that

Sr = r
(
1 + OP (r−1/2)

)
and thus

H(ηn,d) = d

n

(
1 + OP (d−1/2)

)
.

Hence, for every ε > 0, there is a constant C = C(ε) and an event A = A(ε) such that P(A) ≥
1 − ε, and on A,

H(ηn,d)

H(ηn,d+1)
≥ 1 − C

d
(4.5)

and

H(ηn,d) ≥ d

n

(
1 − C√

d

)
. (4.6)

We note that H(|Xj |) is uniformly distributed on [0,1] and is independent of ηn,d(j). So, using
(4.5) and (4.6), we obtain that

E
[∣∣Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ ηn,d(j)})∣∣I {A}]

= E[|Xj |I {ηn,d(j) ≤ |Xj | ≤ ηn,d}I {A}]

≤ H−1
(

d

n

(
1 − C√

d

))
E[I {H(ηn,d) ≤ H(|Xj |) ≤ H(ηn,d(j))}I {A}]

≤ H−1
(

d

n

(
1 − C√

d

))
EI

{
H(ηn,d(j))

(
1 − C

d

)
≤ H(|Xj |) ≤ H(ηn,d(j))

}

≤ H−1
(

d

n

(
1 − C√

d

))
EH(ηn,d(j))

C

d
≤ H−1

(
d

n

(
1 − C√

d

))
d + 1

n + 1

C

d
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since H(ηn,d(j)) ≤ H(ηn,d+1) and, by Lemma 4.2, we have EH(ηn,d+1) = (d + 1)/(n + 1).
The slow variation and monotonicity of H−1 yield

lim
n→∞

H−1((d/n)(1 − C/
√

d))

H−1(d/n)
= 1

and thus we get that

lim
n→∞

1

An

n∑
j=1

E
∣∣Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ ηn,d(j)})∣∣I {A} = 0.

Since we can choose ε > 0 as small as we wish, Lemma 4.3 is proved. �

Lemma 4.4. If the conditions of Lemma 4.3 are satisfied, then

1

An

n∑
j=1

|m(ηn,d) − m(ηn,d(j))| = oP (1).

Proof. This can be proven along the lines of the proof of Lemma 4.3. �

Let

ξj = Xj

(
I {|Xj | ≤ ηn,d(j)} − I {|Xj | ≤ H−1(n/d)}) − m(ηn,d(j)).

Lemma 4.5. If the conditions of Theorem 1.1 are satisfied, then there is an a > 0 such that for
all τ > 1/α and 0 < ε < 1/2,

Eξj = 0, (4.7)

Eξ2
j = Eξ2

1 = O
((

H−1(d/n)
)2

(d1/2+ε/n) + n2τ exp(−ad2ε)
)
, (4.8)

Eξiξj = Eξ1ξ2 = O
((

H−1(d/n)
)2

(d1/2+3ε/n2) + n2τ exp(−ad2ε)
)

(4.9)

for 1 ≤ j ≤ n and 1 ≤ i < j ≤ n, respectively.

Proof. It follows from the independence of Xj and ηn,d(j) that

Eξj = E(E(ξj |ηn,d(j))) = E
(
m(ηn,d(j)) − m(ηn,d(j))

) = 0,

so (4.7) is proved.
The first relation in (4.8) is clear. For the second part, we note that

Eξ2
1 ≤ 2EX2

1

(
I {|X1| ≤ ηn,d(1)} − I {|X1| ≤ H−1(d/n)})2 + 2Em2(ηn,d(1))



Asymptotics of trimmed CUSUM statistics 1357

and

EX2
1

(
I {|X1| ≤ ηn,d(1)} − I {|X1| ≤ H−1(d/n)})2

≤ EX2
1I {ηn,d(1) ≤ |X1| ≤ H−1(d/n)} + EX2

1I {H−1(d/n) ≤ |X1| ≤ ηn,d(1)}
≤ (

H−1(d/n)
)2

P {ηn,d(1) ≤ |X1| ≤ H−1(d/n)}
+ E

(
(ηn,d(1))2I {H(ηn,d(1)) ≤ H(|X1|) ≤ d/n}).

There are constants c1 and c2 such that

P
{|Sd − d| ≥ x

√
d
} ≤ exp(−c1x

2) if 0 ≤ x ≤ c2d. (4.10)

Let 0 < ε < 1/2. Using Lemma 4.2 and (4.10), there is a constant c3 such that

P(A) ≥ 1 − c3 exp(−c1d
2ε), (4.11)

where

A =
{
ω :

d

n

(
1 − 1

d1/2−ε

)
≤ H(ηn,d(1)) ≤ d

n

(
1 + 1

d1/2−ε

)}
.

Let Ac denote the complement of A. By (4.11), we have

(
H−1(d/n)

)2
P {ηn,d(1) ≤ |X1| ≤ H−1(d/n)}

= (
H−1(d/n)

)2(
P(Ac) + P {ηn,d(1) ≤ |X1| ≤ H−1(d/n),A})

≤ (
H−1(d/n)

)2
(

c3 exp(−c1d
2ε) + P

{
d

n
≤ H(|X1|) ≤ d

n

(
1 + 1

d1/2−ε

)})

= O
((

H−1(d/n)
)2

(
exp(−c1d

2ε) + d1/2+ε

n

))
.

Similarly, by the independence of |X1| and ηn,d(1), we have

E
(
(ηn,d(1))2I {H(ηn,d(1)) ≤ H(|X1|) ≤ d/n})
≤ E(η2

n,d(1)I {Ac})
+ E

((
H−1(d/n(1 − dε−1/2)

))2
I {d/n(1 − dε−1/2) ≤ H(|X1|) ≤ d/n})

= E(η2
n,d(1)I {Ac}) + (

H−1(d/n(1 − dε−1/2)
))2 d

n
dε−1/2.

Since H−1(t) is a regularly varying function at 0 with index −1/α, for any τ > 1/α, there is a
constant c4 such that

H−1(t) ≤ c4t
−τ , 0 < t ≤ 1. (4.12)
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By the Cauchy–Schwarz inequality, we have

Eη2
n,d(1)I {Ac} ≤ (Eη4

n,d(1))1/2(P (Ac))1/2 ≤ (Eη4
n,d(1))1/2c

1/2
3 exp

(
−c1

2
d2ε

)
.

Next, we use (4.12) and Lemma 4.2 to conclude that

Eη4
n,d(1) ≤ Eη4

n,d ≤ c4
4E

(
Sd

Sn+1

)−4τ

= c4
4E

(
1 + Sn+1 − Sd

Sd

)4τ

(4.13)

≤ c5

(
1 + E(Sn+1 − Sd)4τE

1

S4τ
d

)
≤ c6n

4τ

since Sd has a Gamma distribution with parameter d and therefore ES−4τ
d < ∞ if d ≥ d0(τ ).

Thus, we have that

EX2
1

(
I {|X1| ≤ ηn,d(1)} − I {|X1| ≤ H−1(d/n)})2

= O
((

H−1(d/n)
)2

(dε+1/2/n) + n2τ exp

(
−c1

2
d2ε

))
.

Similar arguments give

Em2(ηn,d(1)) = O
((

H−1(d/n)
)2

(dε+1/2/n) + n2τ exp

(
−c1

2
d2ε

))
.

The proof of (4.8) is now complete.
The first relation of (4.9) is trivial. To prove the second part, we introduce ηn,d(1,2), the d th

largest among |X3|, |X4|, . . . , |Xn|. Set

ξ1,2 = X1
(
I {|X1| ≤ ηn,d(1,2)} − I {|X1| ≤ H−1(d/n)}) − m(ηn,d(1,2))

and

ξ2,1 = X2
(
I {|X2| ≤ ηn,d(1,2)} − I {|X2| ≤ H−1(d/n)}) − m(ηn,d(1,2)).

Using the independence of |X1|, |X2| and ηn,d(1,2), we get

Eξ1,2ξ2,1 = 0. (4.14)

Next, we observe that

ξ1ξ2 = X1
(
I {|X1| ≤ ηn,d(1)} − I {|X1| ≤ ηn,d(1,2)}ξ2

)
− (

m(ηn,d(1)) − m(ηn,d(1,2))
)
ξ2

+ X2
(
I {|X2| ≤ ηn,d(2)} − I {|X2| ≤ ηn,d(1,2)})ξ1,2

− (
m(ηn,d(2)) − m(ηn,d(1,2))

)
ξ1,2 + ξ1,2ξ2,1.
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So, by (4.14), we have

Eξ1ξ2 = E
(
X1I {ηn,d(1,2) < |X1| ≤ ηn,d(1)}ξ2

) + E
((

m(ηn,d(1,2)) − m(ηn,d(1))
)
ξ2

)
+ E

(
X2I {ηn,d(1,2) < |X2| ≤ ηn,d(2)}ξ1,2

) + E
((

m(ηn,d(1,2)) − m(ηn,d(2))
)
ξ1,2

)
= an,1 + · · · + an,4.

It is easy to see that

ηn,d+2 ≤ ηn,d(1,2) ≤ ηn,d(1) ≤ ηn,d

and

ηn,d+2 ≤ ηn,d(1,2) ≤ ηn,d(2) ≤ ηn,d .

Hence,

H(ηn,d(1))

H(ηn,d(1,2))
≥ H(ηn,d)

H(ηn,d+2)

D= Sd

Sd+2
= 1 − ed+1 + ed+2

Sd+2
,

according to Lemma 4.2. Using (4.10), we get, for any 0 < ε < 1/2,

P
{|Sd+2 − (d + 2)| ≥ d2ε

√
d + 2

} ≤ exp(−c1d
2ε).

The random variables ed+1 and ed+2 are exponentially distributed with parameter 1 and therefore

P {ed+1 ≥ d2ε} = P {ed+2 ≥ d2ε} ≤ exp(−d2ε).

Thus, for any 0 < ε < 1/2, we obtain

P

{
H(ηn,d(1))

H(ηn,d(1,2))
≥ 1 − c7d

2ε

d

}
≥ 1 − c8 exp(−c9d

2ε)

and similar arguments yield

P

{
H(ηn,d(2))

H(ηn,d(1,2))
≥ 1 − c7d

2ε

d

}
≥ 1 − c8 exp(−c9d

2ε)

and

P

{
d

n

(
1 − 1

d1/2−ε

)
≤ H(ηn,d) ≤ d

n

(
1 + 1

d1/2−ε

)}
≥ 1 − c8 exp(−c9d

2ε)

with some constants c7, c8 and c9. We now define the event A as the set on which

H(ηn,d(1))

H(ηn,d(1,2))
≥ 1 − c7

d1−2ε
,

H(ηn,d(2))

H(ηn,d(1,2))
≥ 1 − c7

d1−2ε

and

d

n

(
1 − 1

d1/2−ε

)
≤ H(ηn,d) ≤ d

n

(
1 + 1

d1/2−ε

)
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hold. Clearly,

P(Ac) ≤ 3c8 exp(−c9d
2ε).

Using the definition of ξ2, we get that

an,1 ≤ E
(|X1|I {ηn,d(1,2) ≤ |X1| ≤ ηn,d(1)}
× |X2|

∣∣I {|X2| ≤ ηn,d(2)} − I {|X2| ≤ H−1(n/d)}∣∣)
+ E|X1|I {ηn,d(1,2) ≤ |X1| ≤ ηn,d(1)}|m(ηn,d(2))|

≤ E|X1||X2|I {ηn,d(1,2) ≤ |X1| ≤ ηn,d(1)}I {H−1(d/n) ≤ |X2| ≤ ηn,d(2)}
+ E|X1||X2|I {ηn,d(1,2) ≤ |X1| ≤ ηn,d(1)}I {ηn,d(2) ≤ |X2| ≤ H−1(d/n)}
+ E|X1|I {ηn,d(1,2) ≤ |X1| ≤ ηn,d(1)}|m(ηn,d(2))|

= an,1,1 + an,1,2 + an,1,3.

Using the definition of A, we obtain that

an,1,1 ≤ E|X1X2|I {ηn,d(1,2) ≤ |X1| ≤ ηn,d(1)}I {H−1(d/n) ≤ |X2| ≤ ηn,d(2)}I {A}
+ E|X1X2|I {ηn,d(1,2) ≤ |X1| ≤ ηn,d(1)}I {H−1(d/n) ≤ |X2| ≤ ηn,d(2)}I {Ac}

≤ E

(
|X1X2|I

{
H(ηn,d(1,2))

(
1 − c7

d1−2ε

)
≤ H(|X1|) ≤ H(ηn,d(1,2))

}

× I {A}I {H−1(d/n) ≤ |X2| ≤ ηn,d(2)}
)

+ E(η2
n,dI {Ac})

≤
(

H−1
(

d

n

(
1 − c10

d1/2−ε

)))2

× E

(
I

{
H(ηn,d(1,2))

(
1 − c7

d1−2ε

)
≤ H(|X1|) ≤ H(ηn,d(1,2))

}

× I

{
d

n

(
1 − 1

d1/2−ε

)
≤ H(|X2|) ≤ d

n

})
+ E(η2

n,dI {Ac}).

Again using the independence of |X1|, |X2| and ηn,d(1,2), we conclude that

E

(
I

{
H(ηn,d(1,2))

(
1 − c7

d1−2ε

)
≤ H(|X1|) ≤ H(ηn,d(1,2))

}

× I

{
d

n

(
1 − 1

d1/2−ε

)
≤ H(|X2|) ≤ d

n

})

= EH(ηn,d(1,2))
c7

d1−2ε

d

n

1

d1/2−ε
≤ d

n − 1

c7

n

1

d1/2−3ε
.
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The Cauchy–Schwarz inequality yields

E(η2
n,dI {Ac}) ≤ (Eη4

n,d)1/2(P (Ac))1/2 = O
(

n2τ exp

(
−c9

2
d2ε

))

for all τ > 1/α on account of (4.13). We thus conclude

an,1,1 = O
((

H−1(d/n)
)2

(d1/2+3ε/n2) + n2τ exp

(
−c9

2
d2ε

))
.

Similar, but somewhat simpler, arguments imply that

an,1,2 + an,1,3 = O
((

H−1(d/n)
)2

(d1/2+3ε/n2) + n2τ exp

(
−c9

2
d2ε

))
,

resulting in

an,1 = O
((

H−1(d/n)
)2

(d1/2+3ε/n2) + n2τ exp

(
−c9

2
d2ε

))
. (4.15)

Following the lines of the proof of (4.15), the same rates can be obtained for an,2 and an,3. �

Lemma 4.6. If the conditions of Theorem 1.1 are satisfied, then

1

An

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣ = oP (1).

Proof. It is easy to see that for any 1 ≤ 
1 ≤ 
2 ≤ n, we have

E

(

2∑

j=
1

ξj

)2

= (
2 − 
1 + 1)Eξ2
1 + (
2 − 
1)(
2 − 
1 + 1)Eξ1ξ2

≤ (
2 − 
1 + 1)(Eξ2
1 + nEξ1ξ2).

Lemma 4.5 and (1.12) yield

Eξ2
1 ≤ c1

A2
n

n
[d−1/2+ε + n2τ+1 exp(−ad2ε)]

and

Eξ1ξ2 ≤ c2
A2

n

n2
[d−1/2+3ε + n2τ+2 exp(−ad2ε)]

for all 0 < ε < 1/6. Hence, we conclude that

E

(

2∑

j=
1

ξj

)2

≤ c3(
2 − 
1 + 1)
A2

n

n
[d−1/2+3ε + n2τ+2 exp(−ad2ε)].
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So, using an inequality of Menshov (see Billingsley [5], page 102), we get that

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣
)2

≤ c4(logn)2A2
n[d−1/2+3ε + n2τ+2 exp(−ad2ε)]

≤ c4A
2
n

[
(logn)2d−2/7 + exp

(
(2τ + 2) logn + 2 log logn − ad2ε

)]
= A2

no(1) as n → ∞,

where ε = 1/14 and d = (logn)γ with any γ > 7, resulting in

1

A2
n

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣
)2

= o(1).

Markov’s inequality now completes the proof of Lemma 4.6. �

Proof of Theorem 1.5. This follows immediately from Lemmas 4.3, 4.4 and 4.6. �

Proof of Theorem 1.1. According to (1.15), Theorems 1.4 and 1.5 imply Theorem 1.1. �

Lemma 4.7. If the conditions of Theorem 1.1 are satisfied, then

Ân

An

−→ 1 a.s.

Proof. This is an immediate consequence of Haeusler and Mason [16]. �

Proof of Theorem 1.2. From Slutsky’s lemma, it follows that Lemma 4.7 and Theorem 1.1
imply the result. �

Proof of Example 1.1. Since H ′(x) = −f (x), our assumptions imply that H ′(x) is also regu-
larly varying at ∞. By elementary results on regular variation (see, e.g., [6]), it follows that

H(x) = 1 − F(x) =
∫ ∞

x

f (t)dt ∼ 1

α
xf (x) as x → ∞.

Hence, H−1 is regularly varying at 0 and therefore the function (H−1(t))′ = 1/H ′(H−1(t)) is
also regularly varying at 0. Also,

m′(x) = d

dx

∫ x

0
tf (t)dt = xf (x) ∼ αH(x) as x → ∞

and therefore m′(H−1(t)) ∼ tα. Using Lemma 4.2, the mean value theorem gives

nm(ηn,d)

Bn

D= nm(H−1(Sd/Sn+1))

Bn

= n(
(Sd/Sn+1) − 
(d/n))

Bn

= n

Bn


′(ξn)

(
Sd

Sn+1
− d

n

)
,
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where ξn is between Sd/Sn+1 and d/n, and 
(t) = m(H−1(t)). It follows from the central limit
theorem for central order statistics that

n

d1/2

(
Sd

Sn+1
− d

n

)
D−→ N(0,1). (4.16)

The regular variation of 
′ and (4.16) yield


′(ξn)/

′(d/n) → 1 in probability.

The result now follows from (4.16) by observing that

n

Bn


′(d/n) ∼ n

d1/2
. �

The proof of Theorem 1.3 is based on analogs of Theorems 1.4, 1.5 and Lemmas 4.3–4.7 when
EX2

j < ∞.

Lemma 4.8. If the conditions of Theorem 1.3 are satisfied, then

1√
n

�nt�∑
j=1

(
XjI {|Xj | ≤ H−1(d/n)} − E[X1I {|X1| ≤ H−1(d/n)}]) D[0,1]−→ σW(t),

where σ 2 = varX1.

Proof. By EX2
1 < ∞, we have

E
[
X1I {|X1| ≤ H−1(d/n)} − E[X1I {|X1| ≤ H−1(d/n)}] − (X1 − EX1)

]2−→ 0

as n → ∞. So, using Lévy’s inequality [24], page 248, we get

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

(
XjI {|Xj | ≤ H−1(d/n)}

− E[X1I {|X1| ≤ H−1(d/n)}] − (Xj − EX1)
)∣∣∣∣∣ = oP (1).

Donsker’s theorem (see [5], page 137) now implies the result. �

Lemma 4.9. If the conditions of Theorem 1.3 are satisfied, then

1√
n

n∑
j=1

∣∣Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ ηn,d(j)})∣∣ = oP (1)
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and

1√
n

n∑
j=1

|m(ηn,d) − m(ηn,d(j))| = oP (1).

Proof. We adapt the proof of Lemma 4.3. We recall that A is an event satisfying (4.5), (4.6) and
P(A) ≥ 1 − ε, where ε > 0 is an arbitrary small positive number. We also showed that

E
(∣∣Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ ηn,d(j)})∣∣I {A})

≤ H−1
(

d

n

(
1 − C√

d

))
d + 1

n + 1

C

d

for some constant C. Assumption EX2
1 < ∞ yields

lim sup
x→0

x1/2H−1(x) < ∞

and therefore

lim
n→∞

√
nH−1

(
d

n

(
1 − C√

d

))
d + 1

n + 1

C

d
= 0

for all C > 0. Thus, for all ε > 0, we have

lim
n→∞

1√
n

n∑
j=1

E
∣∣Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ ηn,d(j)})∣∣I {A} = 0.

Since we can choose ε > 0 as small as we wish, the first result is proved. The second part of the
lemma can be established similarly. �

Lemma 4.10. If the conditions of Theorem 1.3 are satisfied, then for all 0 < ε < 1/2,

Eξj = 0, 1 ≤ j ≤ n,

Eξ2
j = Eξ2

1 = O
((

H−1(d/n)
)2

d1/2+ε/n + n exp(−ad2ε)
)
, 1 ≤ j ≤ n,

Eξiξj = Eξ1ξ2 = O
((

H−1(d/n)
)2

d1/2+3ε/n2 + n exp(−ad2ε)
)
, 1 ≤ i �= j ≤ n.

Proof. The proof of Lemma 4.5 can be repeated, only (4.12) should be replaced with

H−1(t) ≤ Ct−1/2, 0 < t ≤ 1. (4.17)

�

Lemma 4.11. If the conditions of Theorem 1.3 are satisfied, then

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣ = oP (1).
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Proof. Following the proof of Lemma 4.6, we get

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣
)2

≤ c1n(logn)2[d−1/2+3ε + n3 exp(−ad2ε)] = o(n) (4.18)

as n → ∞. Markov’s inequality completes the proof of Lemma 4.11. �

Lemma 4.12. If the conditions of Theorem 1.3 are satisfied, then

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

[
Xj

(
I {|Xj | ≤ ηn,d} − I {|Xj | ≤ H−1(d/n)}) − m(ηn,d)

]∣∣∣∣∣ = oP (1).

Proof. It follows immediately from Lemmas 4.9 and 4.11. �

Proof of Theorem 1.3. By Lemmas 4.8 and 4.12, we have that

Tn(t)

σ
√

n

D[0,1]−→ B(t).

It is easy to see that

Â2
n

n

P−→ σ 2,

which completes the proof of Theorem 1.3. �

Proof of Theorem 2.1. We show that

max1≤j≤n |xj |√∑n
j=1 x2

j

−→ 0 a.s. (4.19)

By Lemma 4.7 it is enough to prove that

max1≤j≤n |xj |
An

−→ 0 a.s.

It follows from the definition of xj that

max
1≤j≤n

|xj | ≤ ηd,n + |X̄n,d | ≤ 2ηd,n.

Using Kiefer [23] (see Shorack and Wellner [33]), we get

ηd,n

An

−→ 0 a.s.
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Since (4.19) holds for almost all realizations of X1,X2, . . . , Theorem 2.1 is implied by Rosén
[32] when we sample without replacement and by Prohorov [31] when we sample with replace-
ment (bootstrap). �

Proof of Theorem 2.2. This can be established along the lines of the proof of Theorem 2.1. �
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