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Functional limit theorems for sums of
independent geometric Lévy processes
ZAKHAR KABLUCHKO
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Let ξi , i ∈ N, be independent copies of a Lévy process {ξ(t), t ≥ 0}. Motivated by the results obtained
previously in the context of the random energy model, we prove functional limit theorems for the process

ZN(t) =
N∑

i=1

eξi (sN+t)

as N → ∞, where sN is a non-negative sequence converging to +∞. The limiting process depends heavily
on the growth rate of the sequence sN . If sN grows slowly in the sense that lim infN→∞ logN/sN > λ2
for some critical value λ2 > 0, then the limit is an Ornstein–Uhlenbeck process. However, if λ :=
limN→∞ logN/sN ∈ (0, λ2), then the limit is a certain completely asymmetric α-stable process Yα;ξ .

Keywords: α-stable processes; functional limit theorem; geometric Brownian motion; random energy
model

1. Introduction and statement of main results

1.1. Introduction

One of the simplest models in the physics of disordered systems is the random energy model
(REM). The partition function of the random energy model at an inverse temperature β > 0 is a
random variable Sn(β) given by

Sn(β) =
2n∑
i=1

eβ
√

nζi , (1)

where ζi , i ∈ N, are i.i.d. standard Gaussian random variables. Bovier et al. [7] studied the limit
laws of Sn(β) as n → ∞ in dependence on the parameter β . They showed that for β <

√
log 2/2,

the random variable Sn(β) obeys a central limit theorem with a Gaussian limit law, whereas for
β >

√
log 2/2, the limit distribution is a completely asymmetric α-stable law. The results of [7]

have been extended by Ben Arous et al. [3] to the case when the random variables ζi are non-
Gaussian; see also [5,6,12]. Extending [7] in a different direction, Cranston and Molchanov [8]
considered sums of the form

Rn(β) =
N(n)∑
i=1

eβ
∑n

j=1 ζi,j , (2)

1350-7265 © 2011 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/10-BEJ299


Sums of independent geometric Lévy processes 943

where ζi,j , (i, j) ∈ N
2, is a two-dimensional array of i.i.d. random variables, N(n) is a certain

exponentially growing function of n, β > 0, and n → ∞. The sum Rn(β) reduces to Sn(β) if
the random variables ζi,j are standard Gaussian and N(n) = 2n. Cranston and Molchanov [8]
have shown that the behavior of the sum Rn(β) is rather similar to that of the sum Sn(β), with
Gaussian and completely asymmetric α-stable limit laws. Unaware of [8], the author proved
essentially the same result in [14].

The aim of the present paper is to obtain functional limit theorems corresponding to the re-
sults of [7,8,14]. That is, we will consider sums of exponentials of stochastic processes (Lévy
processes or random walks) rather than sums of exponentials of random variables. We prefer to
work with Lévy processes, but it should be stressed that all our results have straightforward ana-
logues for random walks. Let ξi , i ∈ N, be independent copies of a Lévy process {ξ(t), t ≥ 0},
and let {sN }N∈N be a non-negative sequence. We are interested in the limiting properties, as
N → ∞, of the stochastic process ZN defined by

ZN(t) =
N∑

i=1

eξi (sN+t). (3)

Since the random variable ZN(0) reduces essentially to RsN (β), we will recover the results
of [7,8,14] by restricting our processes to t = 0. If sN = β2n, N = 2n, and ξ is a standard
Brownian motion, then ZN(0) has the same distribution as the partition function of the random
energy model Sn(β) given in (1). The results of [7,8,14] suggest that the limiting process for
ZN as N → ∞ should be either Gaussian or completely asymmetric α-stable depending on
the rate of growth of the sequence sN . We will show that this is indeed the case, obtaining in
the limit an Ornstein–Uhlenbeck process in the “slow growth regime”, and a certain completely
asymmetric α-stable process Yα;ξ in the “fast growth regime”. The family of processes Yα;ξ has
not been studied in the literature so far, although a similar class of max-stable processes has been
considered in [23].

To give a motivation for studying the process ZN , consider the following problem. Suppose
that we are given a portfolio consisting of a large number N of financial assets whose prices
are modeled by independent geometric Brownian motions (or, somewhat more generally, by
independent geometric Lévy processes). Then, the price of the whole portfolio after sN units of
time have passed is given by the process ZN . It will be shown below that if sN , as a function
of N , grows slowly (i.e., if we are looking at the price in the near future), then the price of the
portfolio is approximated by an Ornstein–Uhlenbeck process, whereas if sN grows rapidly (i.e.,
if we are interested in the remote future), then the price is approximated by the α-stable process
Yα;ξ . For example, if we are summing standard geometric Brownian motions, then the boundary
between the near future and the remote future lies at sN ∼ 1

2 logN .

1.2. Notation

Before we can state our results, we need to recall some facts related to Cramér’s large devia-
tions theorem; see, for instance, [9], Chapter 2.2. A Lévy process is a process with stationary,
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independent increments and cadlag sample paths. Let {ξ(t), t ≥ 0} be a Lévy process such that

ψ(u) := log Eeuξ(1) is finite for all u ∈ R. (4)

We always assume that ξ(1) is not a.s. constant. The function ψ is infinitely differentiable and
strictly convex with ψ(0) = 0. It follows that ψ ′ : [0,∞) → [β0, β∞) is a monotone increasing
bijection, where

β0 = ψ ′(0) = Eξ(1), β∞ = lim
u→+∞ψ ′(u). (5)

Let I : [β0, β∞) → [0,+∞) be the Legendre–Fenchel transform of ψ defined by

I (ψ ′(u)) = uψ ′(u) − ψ(u), u ≥ 0. (6)

The function I is strictly increasing, strictly convex, infinitely differentiable with I (β0) = 0. As
in [8,14], it will turn out that the limiting properties of the process ZN undergo phase transitions
at the “critical points” λ1, λ2 given by

λ1 = I (ψ ′(1)) = ψ ′(1) − ψ(1), λ2 = I (ψ ′(2)) = 2ψ ′(2) − ψ(2). (7)

For example, if ξ is a standard Brownian motion, then ψ(u) = I (u) = u2/2 and the critical points
are given by λ1 = 1/2, λ2 = 2.

1.3. Statement of main results

Our first result deals with the case sN = 0 (but covers automatically also the case sN = const).
It is a consequence of the central limit theorem in the Skorokhod space, and is stated merely for
completeness.

Theorem 1.1. If sN = 0 and condition (4) holds, then for every T > 0, we have the following
weak convergence of stochastic processes on the Skorokhod space D[0, T ]:

ZN(·) − EZN(·)√
N

w→ G(·), N → ∞, (8)

where {G(t), t ≥ 0} is a zero-mean Gaussian process with covariance function

Cov(G(t1),G(t2)) = eψ(2)t1+ψ(1)(t2−t1) − eψ(1)(t1+t2), 0 ≤ t1 ≤ t2. (9)

Our next theorem deals with the case in which sN grows slowly as a function of N . We will
assume that the following slow growth condition is satisfied:

lim
N→∞ sN = ∞, lim inf

N→∞
logN

sN
> λ2. (10)
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Theorem 1.2. If conditions (4) and (10) hold, then for every T > 0, we have the following weak
convergence of stochastic processes on the Skorokhod space D[−T ,T ]:

ZN(·) − EZN(·)√
VarZN(·)

w→ X(·), N → ∞, (11)

where {X(t), t ∈ R} is a zero-mean Gaussian process with covariance function

Cov(X(t1),X(t2)) = e(ψ(1)−ψ(2)/2)|t2−t1|, t1, t2 ∈ R. (12)

Note that X is an Ornstein–Uhlenbeck process and that the process on the left-hand side of
(11) is well defined on [−T ,T ] if N is sufficiently large. In the next theorem, which deals with
the “critical case”, we still obtain an Ornstein–Uhlenbeck process in the limit, but an additional
factor appears. We will assume that the following critical growth condition holds: For some
ϑ ∈ R,

logN = λ2sN + 2ϑ
√

ψ ′′(2)sN + o
(√

sN
)
, N → ∞. (13)

Theorem 1.3. If conditions (4) and (13) are satisfied, then we have the following convergence of
stochastic processes:

ZN(·) − EZN(·)√
VarZN(·)

f.d.d.→ √
	(ϑ)X(·), N → ∞, (14)

where 	 is the standard normal distribution function, X is as in Theorem 1.2, and
f.d.d.→ denotes

the weak convergence of finite-dimensional distributions.

Let us stress that even when restricted to t = 0, the above theorem gives a more “smooth”
picture of the critical regime than the corresponding results of [7,8,14] where only the case ϑ = 0
has been considered.

The next theorem shows that in the fast growth case, a non-Gaussian process Yα;ξ appears in
the limit. We need the following fast growth condition:

λ := lim
N→∞

logN

sN
∈ (0, λ2). (15)

Recall also that a random variable is called lattice if its values are of the form an + b, n ∈ Z, for
some a, b ∈ R, and non-lattice if no such a and b exist.

Theorem 1.4. Suppose that (4) and (15) hold, and assume that the distribution of ξ(1) is non-
lattice. Define α ∈ (0,2) as the unique solution of the equation I (ψ ′(α)) = λ and let

AN(t) =
⎧⎨
⎩

0, if λ ∈ (0, λ1),
eψ(1)tNE

[
eξ(sN )1ξ(sN )≤logBN(0)

] + l(t)BN(t), if λ = λ1,
eψ(1)t

EZN(0), if λ ∈ (λ1, λ2),
(16)
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where l(t) = (ψ ′(0) − ψ ′(1))t1t<0, and

BN(t) = e(ψ(α)/α)t exp

{
sNI−1

(
logN − log(α

√
2πψ ′′(α)sN)

sN

)}
. (17)

Then, for every T > 0, we have the following convergence of stochastic processes on the Sko-
rokhod space D[−T ,T ]:

ZN(·) − AN(·)
BN(·)

w→ Yα;ξ (·), N → ∞. (18)

Here, Yα;ξ is a completely asymmetric α-stable process that will be defined below.

Remark 1.1. Our results have straightforward discrete-time analogues with geometric Lévy pro-
cesses replaced by exponentials of independent random walks. If ξ is the standard Brownian
motion, then in all our results the weak convergence in the Skorokhod space can be replaced
by the weak convergence in the space of continuous functions. The non-lattice assumption in
Theorem 1.4 cannot be dropped; see [15].

1.4. Definition of the process Yα;ξ
We now define the α-stable process Yα;ξ which appeared in Theorem 1.4. Our main reference
on α-stable distributions and processes is [22]. First of all, fix some α ∈ (0,2), and let ξi , i ∈ N,
be independent copies of a Lévy process {ξ(t), t ≥ 0} satisfying condition (4). Independently,
let {
i, i ∈ N} be the arrivals of a unit intensity Poisson process on the positive half-line. In
other words, 
k = ∑k

i=1 εi , where εi , i ∈ N, are i.i.d. exponential random variables with mean 1.

Define Ui = 

−1/α
i , i ∈ N, and note that {Ui, i ∈ N} are the points of a Poisson process on (0,∞)

with intensity αu−(α+1) du, arranged in the descending order. The restriction of the process Yα;ξ
to the positive half-line is then defined as follows: For t ≥ 0, we set

Yα;ξ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈N

Uie
ξi (t)−(ψ(α)/α)t , 0 < α < 1,

lim
τ↓0

( ∑
i∈N

Ui>τ

Uie
ξi (t)−ψ(1)t − log

1

τ

)
, α = 1,

lim
τ↓0

( ∑
i∈N

Ui>τ

Uie
ξi (t)−(ψ(α)/α)t − ατ 1−α

α − 1
e(ψ(1)−ψ(α)/α)t

)
, 1 < α < 2.

(19)

For the definition of the process Yα;ξ on the negative half-line we refer to [13]. The Poisson
representation of α-stable random vectors – see [22], Theorem 3.12.2 – implies that for every t ≥
0, the expression defining Yα;ξ (t) converges with probability 1. Further, the finite-dimensional
distributions of the process Yα;ξ are α-stable with skewness parameter β = 1. If α ∈ (0,1), then
the process Yα;ξ takes only positive values; otherwise, it takes any real values. For the proof of
the next proposition we refer to [13].
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Proposition 1.1. The expression on the right-hand side of (19) defining Yα;ξ converges uni-
formly on compact sets with probability 1.

As a consequence, the process Yα;ξ has cadlag sample paths. Moreover, if ξ is a Brownian
motion, then the sample paths of Yα;ξ are even continuous. The process Yα;ξ is stationary for
α �= 1; see the preprint version of this paper [13] for this and other properties of Yα;ξ . The rest
of the paper is devoted to proofs.

2. Large deviations and truncated exponential moments

The next proposition on the asymptotic behavior of truncated exponential moments will play a
crucial role in the sequel. Parts of it are scattered over [8,14], but we will give a simple unified
proof below.

Proposition 2.1. Let {ξ(t), t ≥ 0} be a Lévy process satisfying (4) and suppose that the distribu-
tion of ξ(1) is non-lattice. Let κ ≥ 0, and let bN → ∞ and xN → ∞ be two sequences. Let I be
the large deviation function of ξ(1), as defined in (6).

(1) If for some ϑ ∈ R, bN = ψ ′(κ)xN + ϑ
√

ψ ′′(κ)xN + o(
√

xN) as N → ∞, then

lim
N→∞ e−ψ(κ)xN E

[
eκξ(xN )1ξ(xN )≤bN

] = 	(ϑ), (20)

where 	 is the standard Gaussian distribution function.
(2) If lim infN→∞ bN/xN > ψ ′(κ), then

lim
N→∞ e−ψ(κ)xN E

[
eκξ(xN )1ξ(xN )>bN

] = 0. (21)

If, moreover, limN→∞ bN/xN = ψ ′(α) for some α > κ , then

E
[
eκξ(xN )1ξ(xN )>bN

] ∼ eκbN

(α − κ)
√

2πψ ′′(α)xN

e−I (bN/xN )xN , N → ∞. (22)

(3) If lim supN→∞ bN/xN < ψ ′(κ), then

lim
N→∞ e−ψ(κ)xN E

[
eκξ(xN )1ξ(xN )≤bN

] = 0. (23)

If, moreover, limN→∞ bN/xN = ψ ′(α) for some α ∈ (0, κ), then

E
[
eκξ(xN )1ξ(xN )≤bN

] ∼ eκbN

(κ − α)
√

2πψ ′′(α)xN

e−I (bN/xN )xN , N → ∞. (24)

The following precise form of Cramér’s large deviations theorem was stated and proved in
[2,18] for sums of i.i.d. random variables, but applies equally well to Lévy processes.
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Theorem 2.1. Let {ξ(t), t ≥ 0} be a Lévy process satisfying (4) and suppose that the distribution
of ξ(1) is non-lattice. Let β = ψ ′(α), where α > 0. Then,

P[ξ(T ) ≥ βT ] ∼ 1

α
√

2πψ ′′(α)T
e−I (β)T , T → ∞. (25)

The statement holds uniformly in β ∈ K for any compact set K ⊂ (β0, β∞).

Proof of Proposition 2.1. We will use an exponential change of measure argument. Denote by
Ft the distribution function of ξ(t). There exists a Lévy process {ξ̃ (t), t ≥ 0} (an exponential
twist of ξ ) such that F̃t , the distribution function of ξ̃ (t), is given by

F̃t (dx)

Ft (dx)
= eκx−ψ(κ)t , x ∈ R. (26)

Recall from (4) that ψ(u) = logEeuξ(1) and let ψ̃(u) = log Eeuξ̃(1). By (26), we have

ψ̃(u) = log
∫

R

eux dF̃1(x) = log
∫

R

euxeκx−ψ(κ) dF1(x) = ψ(u + κ) − ψ(κ). (27)

Hence,

Eξ̃ (T ) = ψ̃ ′(0)T = ψ ′(κ)T , Var ξ̃ (T ) = ψ̃ ′′(0)T = ψ ′′(κ)T . (28)

The study of the truncated exponential moment

MN := e−ψ(κ)xN E
[
eκξ(xN )1ξ(xN )≤bN

]
(29)

can be reduced to the study of the probability P[ξ̃ (xN) ≤ bN ] as follows:

MN =
∫ bN

−∞
eκx−ψ(κ)xN dFxN

(x) =
∫ bN

−∞
dF̃xN

(x) = P[ξ̃ (xN) ≤ bN ]. (30)

Having the central limit theorem in mind, we write

P[ξ̃ (xN) ≤ bN ] = P

[
ξ̃ (xN) − ψ ′(κ)xN√

ψ ′′(κ)xN

≤ rN

]
, where rN = bN − ψ ′(κ)xN√

ψ ′′(κ)xN

. (31)

Let us prove part 1 of the proposition. By the assumption of part 1, we have limN→∞ rN = ϑ .
Then, it follows from (30) and the central limit theorem that

lim
N→∞MN = lim

N→∞ P[ξ̃ (xN) ≤ bN ] = 	(ϑ),

which proves (20).
Let us prove part 2 of the proposition. If lim infN→∞ bN/xN > ψ ′(κ), then limN→∞ rN =

+∞, and the central limit theorem implies that

lim
N→∞MN = lim

N→∞ P[ξ̃ (xN) ≤ bN ] = 1,
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which proves (21). To prove (22), we will apply Theorem 2.1 to the process ξ̃ . The large deviation
function of the process ξ̃ is defined by Ĩ (ψ̃ ′(u)) = uψ̃ ′(u)− ψ̃(u). Hence, setting β = ψ̃ ′(u) and
taking into account (27), we obtain

Ĩ (β) = Ĩ (ψ̃ ′(u)) = uψ̃ ′(u) − ψ̃(u) = uψ ′(u + κ) − ψ(u + κ) + ψ(κ).

Note that β = ψ ′(u+κ) by (27). It follows that we have the following formula for the function Ĩ :

Ĩ (β) = I (β) + ψ(κ) − κβ. (32)

If limN→∞ bN/xN = ψ ′(α) = ψ̃ ′(α − κ), then we apply Theorem 2.1 to obtain that

P[ξ̃ (xN) > bN ] ∼ 1

(α − κ)
√

2πψ ′′(α)xN

e−Ĩ (bN /xN )xN , N → ∞.

A straightforward calculation using (32) leads to (22). The proof of part 3 of the proposition is
analogous to the proof of part 2. �

We will need the following lemmas; see [14], Lemma 3, and [13], Lemma 8.1, for their proofs.

Lemma 2.1. For every u > 0, I ′(ψ ′(u)) = u.

Lemma 2.2. Let ξ be a Lévy process satisfying (4). Let p ∈ [1,2] and fix some T > 0. Then,
there is C > 0 such that for all t ∈ [0, T ],

E
∣∣eξ(t) − 1

∣∣p ≤ Ctp/2, E
∣∣e2ξ(t) − eξ(t)

∣∣p ≤ Ctp/2. (33)

3. Proof of Theorem 1.1

The proof is a standard application of the central limit theorem in the Skorokhod space. First let
us compute the covariance function of the process eξ . We have, for 0 ≤ t1 ≤ t2,

E
[
eξ(t1)eξ(t2)

] = Ee2ξ(t1) · Eeξ(t2)−ξ(t1) = eψ(2)t1+ψ(1)(t2−t1).

Since Eeξ(t) = eψ(1)t , we have

Cov
(
eξ(t1), eξ(t2)

) = eψ(2)t1+ψ(1)(t2−t1) − eψ(1)(t1+t2).

An application of the multidimensional central limit theorem proves that (8) holds in the sense
of the weak convergence of finite-dimensional distributions. To prove the weak convergence in
the space D[0, T ], we will verify the conditions of [10], Theorem 2. For every 0 ≤ t1 ≤ t2 ≤ T ,
we have

E
(
eξ(t2) − eξ(t1)

)2 = Ee2ξ(t1) · E
(
eξ(t2)−ξ(t1) − 1

)2
< C(t2 − t1),
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where the last inequality follows from Lemma 2.2. This verifies the first condition of [10], The-
orem 2. The second condition can be proved in a similar way: for every 0 ≤ t1 ≤ t2 ≤ t3 ≤ T , we
have

E
[(

eξ(t2) − eξ(t1)
)2(eξ(t3) − eξ(t2)

)2]
= Ee2ξ(t1) · E

(
e2(ξ(t2)−ξ(t1)) − eξ(t2)−ξ(t1)

)2 · E
(
eξ(t3)−ξ(t2) − 1

)2

= Ee2ξ(t1) · E
(
e2ξ(t2−t1) − eξ(t2−t1)

)2 · E
(
eξ(t3−t2) − 1

)2

≤ C(t3 − t1)
2,

where the last inequality follows from Lemma 2.2. This completes the proof.

4. Proof of Theorem 1.2

4.1. Weak convergence of finite-dimensional distributions

The first step in establishing Theorem 1.2 is to prove the weak convergence of finite-dimensional
distributions in (11). It will be convenient to define a positive-valued stochastic process WN

by

WN(t) = N−1/2eξ(sN+t)−(ψ(2)/2)(sN+t). (34)

Let t1 ≤ · · · ≤ td be fixed, and define a d-dimensional random vector WN = (WN(t1), . . . ,

WN(td)). If W1,N , . . . ,WN,N are independent copies of WN , then our aim is to prove
that

N∑
i=1

(Wi,N − EWi,N )
w→ (X(tk))

d
k=1, N → ∞. (35)

To see that this implies the weak convergence of finite-dimensional distributions in Theo-
rem 1.2, it suffices to show that VarZN(t) ∼ Neψ(2)(sN+t) as N → ∞. This can be done as
follows:

VarZN(t) = N
(
Ee2ξ(sN+t) − (

Eeξ(sN+t)
)2)

= N
(
eψ(2)(sN+t) − e2ψ(1)(sN+t)

)
(36)

∼ Neψ(2)(sN+t), N → ∞,

where we have used that limN→∞ sN = ∞ by (10) and that ψ(2) > 2ψ(1) by the strict convexity
of ψ .

We start proving (35). First of all, let us compute the covariance matrix of the random vector
WN . Using (34) and (4), as well as the fact that ξ is a Lévy process, we obtain that for every
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1 ≤ k ≤ l ≤ d ,

E[WN(tk)WN(tl)] = N−1e−ψ(2)sN e−(ψ(2)/2)(tk+tl )Eeξ(sN+tk)+ξ(sN+tl )

= N−1e−ψ(2)sN e−(ψ(2)/2)(tk+tl )Ee2ξ(sN+tk) · Eeξ(sN+tl )−ξ(sN+tk)

(37)
= N−1e−ψ(2)sN e−(ψ(2)/2)(tk+tl )eψ(2)(sN+tk)eψ(1)(tl−tk)

= N−1e(ψ(1)−ψ(2)/2)(tl−tk).

Since ψ(2) > 2ψ(1) by the strict convexity of ψ , and limN→∞ sN = ∞ by (10), we have for
every k = 1, . . . , d ,

√
NEWN(tk) = eψ(1)(sN+tk)e−(ψ(2)/2)(sN+tk) → 0, N → ∞. (38)

It follows from (37) and (38) that

lim
N→∞N Cov(WN(tk),WN(tl)) = e(ψ(1)−ψ(2)/2)(tl−tk) = Cov(X(tk),X(tl)). (39)

In order to establish (35), we will verify the Lindeberg condition, that is, we will show that for
every ε > 0,

lim
N→∞NE

[‖WN − EWN‖21‖WN−EWN‖>ε

] = 0, (40)

where ‖ · ‖ is the Euclidean norm on R
d . The multivariate form of the Lindeberg condition we

are using can be found, for example, in [1], Example 4 on page 41. Since limN→∞
√

NEWN = 0
by (38), we have ‖EWN‖ < ε/2 for N large enough. Thus, for N large enough,

E
[‖WN − EWN‖21‖WN−EWN‖>ε

] ≤ E
[‖WN − EWN‖21‖WN‖>ε/2

]
. (41)

Applying the inequality ‖w1 + w2‖2 ≤ 2‖w1‖2 + 2‖w2‖2 to the right-hand side of (41), we get

NE
[‖WN − EWN‖21‖WN−EWN‖>ε

] ≤ 2NE
[‖WN‖21‖WN‖>ε/2

] + 2N‖EWN‖2.

Note that the second term on the right-hand side converges to 0 by (38). Hence, in order to prove
(40), it suffices to show that for every ε > 0,

lim
N→∞NE

[‖WN‖21‖WN‖>ε

] = 0. (42)

Let AN,k , k = 1, . . . , d , be the random event {WN(tk) ≥ WN(tl), l = 1, . . . , d}. On AN,k , we
have ‖WN‖2 ≤ dW 2

N(tk). Hence,

E
[‖WN‖21‖WN‖>ε

] ≤
d∑

k=1

E
[‖WN‖21‖WN‖>ε1AN,k

]

≤ d

d∑
k=1

E
[
W 2

N(tk)1WN(tk)>ε/
√

d

]
.
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Thus, in order to prove (40), it suffices to show that for every t ∈ R and every ε > 0,

lim
N→∞NE

[
W 2

N(t)1WN(t)>ε

] = 0. (43)

Recalling (34) and setting xN = sN + t and bN = 1
2 (logN + ψ(2)xN) + log ε, we may write

NE
[
W 2

N(t)1WN(t)>ε

] = e−ψ(2)xN E
[
e2ξ(xN )1ξ(xN )>bN

]
. (44)

Note that by the slow growth condition (10),

lim inf
N→∞

bN

xN

>
1

2

(
λ2 + ψ(2)

) = ψ ′(2).

Applying part 2 of Proposition 2.1 with κ = 2 to the right-hand side of (44) we obtain (43). This
verifies the Lindeberg condition (40) and, together with (39), completes the proof of the weak
convergence of finite-dimensional distributions in Theorem 1.2.

4.2. Tightness

In the rest of the section we complete the proof of Theorem 1.2 by showing that the sequence{
ZN(t) − EZN(t)√

VarZN(t)
, t ∈ [−T ,T ]

}
N∈N

(45)

is a tight sequence of stochastic processes in the Skorokhod space D[−T ,T ], where T > 0 is
fixed. Since the sequence (45) does not change if we replace the Lévy process ξ by the Lévy
process ξ̃ (t) := ξ(t) − ψ(1)t , we may and will assume that

Eeξ(t) = 1, t ≥ 0. (46)

Further, since by (36), VarZN(t) ∼ Neψ(2)(sN+t) as N → ∞, showing the tightness of (45) is
equivalent to showing the tightness of the sequence {Z′

N(t), t ∈ [−T ,T ]}N∈N, where Z′
N is a

process defined by

Z′
N(t) = ZN(t) − N

N1/2eψ(2)sN /2
. (47)

By a standard tightness criterion in the Skorokhod space given in [4], page 128, it suffices to
show that there are p > 1 and C > 0 such that for all sufficiently large N ∈ N and all t1, t2, t3 ∈
[−T ,T ] with t1 < t2 < t3,

E[|Z′
N(t2) − Z′

N(t1)|p|Z′
N(t3) − Z′

N(t2)|p] ≤ C|t3 − t1|p. (48)

It will be convenient to define random variables X1, . . . ,XN and Y1, . . . , YN (which depend on
N, t1, t2, t3) by

Xi = eξi (sN+t2) − eξi (sN+t1), Yi = eξi (sN+t3) − eξi (sN+t2).
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Then, we may rewrite (48) as follows:

E

∣∣∣∣∣
N∑

i=1

N∑
j=1

XiYj

∣∣∣∣∣
p

≤ CNpepψ(2)sN |t3 − t1|p. (49)

First of all, we would like to treat the terms of the form XiYi on the left-hand side of (49)
separately. Applying Jensen’s inequality |∑k

i=1 xi |p ≤ kp−1 ∑k
i=1 |xi |p , xi ∈ R, we obtain

E

∣∣∣∣∣
N∑

i=1

N∑
j=1

XiYj

∣∣∣∣∣
p

= E

∣∣∣∣ ∑
1≤i<j≤N

XiYj +
∑

1≤j<i≤N

XiYj +
N∑

i=1

XiYi

∣∣∣∣
p

(50)

≤ 2 · 3p−1
E

∣∣∣∣ ∑
1≤i<j≤N

XiYj

∣∣∣∣
p

+ 3p−1
E

∣∣∣∣∣
N∑

i=1

XiYi

∣∣∣∣∣
p

.

In the rest of the proof we estimate the terms on the right-hand side. We start by showing that

E

∣∣∣∣∣
N∑

i=1

XiYi

∣∣∣∣∣
p

≤ CNpepψ(2)sN |t3 − t1|p. (51)

By an inequality of Rosenthal [20], Lemma 1 (or see [11]),

E

∣∣∣∣∣
N∑

i=1

XiYi

∣∣∣∣∣
p

≤ C max

{
N∑

i=1

E|XiYi |p,

(
N∑

i=1

E|XiYi |
)p}

. (52)

Thus, to establish (51), it suffices to show that

E|XiYi |p ≤ CNp−1epψ(2)sN |t3 − t1|p, (53)

E|XiYi | ≤ Ceψ(2)sN |t3 − t1|. (54)

Since ξ is a process with stationary and independent increments, we have

E|XiYi |p = E
∣∣(eξ(sN+t2) − eξ(sN+t1)

)(
eξ(sN+t3) − eξ(sN+t2)

)∣∣p
(55)

= E
[
e2pξ(sN+t1)

] · E
∣∣eξ(t3−t2) − 1

∣∣p · E
∣∣e2ξ(t2−t1) − eξ(t2−t1)

∣∣p.

The first factor on the right-hand side of (55) equals eψ(2p)(sN+t1). Applying Lemma 2.2 to the
last two factors on the right-hand side of (55), we get

E|XiYi |p ≤ Ceψ(2p)sN |t3 − t1|p.

To complete the proof of (53), we need to show that for some p > 1,

e(ψ(2p)−pψ(2))sN ≤ Np−1. (56)
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This is done as follows. Write for a moment p = 1 + δ, where δ > 0. By Assumption (10), there
is ε > 0 such that for sufficiently large N we have Np−1 > e(λ2+ε)δsN . On the other hand, by
Taylor’s expansion,

ψ(2p) − pψ(2) = δ
(
2ψ ′(2) − ψ(2)

) + o(δ) = λ2δ + o(δ), δ → 0,

which is smaller than (λ2 + ε)δ if δ is sufficiently small. Taking δ small enough, we obtain (56).
This completes the proof of (53).

Let us prove (54). Arguing as in (55), we obtain

E|XiYi | = E
[
e2ξ(sN+t1)

] · E
∣∣eξ(t3−t2) − 1

∣∣ · E
∣∣e2ξ(t2−t1) − eξ(t2−t1)

∣∣. (57)

The first factor on the right-hand side of (57) equals eψ(2)(sN+t1). An application of Lemma 2.2
to the last two factors on the right-hand side of (57) yields (54).

We will now estimate the first term on the right-hand side of (50). We will show that

E

∣∣∣∣ ∑
1≤i<j≤N

XiYj

∣∣∣∣
p

≤ CNpepψ(2)sN |t3 − t1|p. (58)

For k = 1, . . . ,N , denote by Fk the σ -algebra generated by the random variables X1, . . . ,Xk

and Y1, . . . , Yk . Let S1 = 0 and

Sk =
∑

1≤i<j≤k

XiYj , k = 2, . . . ,N. (59)

We introduce also the sequence of differences �1 = 0 and

�k = Sk − Sk−1 = Yk(X1 + · · · + Xk−1), k = 2, . . . ,N. (60)

We claim that the sequence {Sk}Nk=1 is a martingale with respect to the filtration {Fk}Nk=1. Indeed,
the random variable Sk is by definition Fk-measurable, and we have

E[Sk|Fk−1] = Sk−1 + E[�k|Fk−1] = Sk−1 + (X1 + · · · + Xk−1)EYk = Sk−1,

where the last equality follows from (46). Having shown that {Sk}Nk=1 is a martingale, we apply
Burkholder’s inequality to obtain that for some constant C = C(p),

E|SN |p ≤ CE

(
N∑

i=1

�2
i

)p/2

. (61)

The function x → xp/2, x > 0, is concave since we choose p to be close to 1. By Jensen’s
inequality applied to the right-hand side of (61),

E|SN |p ≤ C

(
N∑

i=1

E�2
i

)p/2

. (62)
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The random variables Yk and X1 + · · · + Xk−1 are independent, and EXk = 0, k = 1, . . . ,N , by
(46). Hence, by (60), E�2

k = (k − 1)EY 2
1 EX2

1. It follows from (62) that

E|SN |p ≤ C(N2
EY 2

1 EX2
1)

p/2. (63)

We have, by Lemma 2.2,

EX2
1 = E

[
e2ξ(sN+t1)

] · E
(
eξ(t2−t1) − 1

)2 ≤ Ceψ(2)sN (t2 − t1).

Similarly, EY 2
1 ≤ Ceψ(2)sN (t3 − t2). Inserting this into (63), we obtain

E|SN |p ≤ CNpepψ(2)sN |t3 − t1|p.

This proves (58) and completes the proof of tightness in Theorem 1.2.

5. Proof of Theorem 1.3

Let WN be a positive-valued stochastic process defined as in (34), that is,

WN(t) = N−1/2eξ(sN+t)−(ψ(2)/2)(sN+t). (64)

Fix t1 ≤ · · · ≤ td and let W1,N , . . . ,WN,N be independent copies of the d-dimensional random
vector WN = (WN(t1), . . . ,WN(td)). Our aim is to show that we have the following weak con-
vergence of random vectors:

N∑
i=1

(Wi,N − EWi,N )
w→ (√

	(ϑ)X(tk)
)d

k=1, N → ∞. (65)

In the one-dimensional case, the papers [3,8,14] use the classical summation theory of triangular
arrays of random variables. We will use a multidimensional version of this theory established in
[21]; see [17] for a monograph treatment. According to [17], Theorem 3.2.2 on page 53, we have
to verify that the following three conditions hold:

(1) For every ε > 0,

lim
N→∞NP[‖WN‖∞ > ε] = 0. (66)

(2) For every ε > 0 and for every v = (v1, . . . , vd) ∈ R
d ,

lim
N→∞N Var

[〈WN,v〉1‖WN‖∞≤ε

] = 	(ϑ)

d∑
k,l=1

e(ψ(1)−ψ(2)/2)|tl−tk |vkvl. (67)

(3) For every ε > 0,

lim
N→∞NE

[
WN 1‖WN‖∞>ε

] = 0. (68)
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Here, 	 is the standard normal distribution function and ‖ · ‖∞ denotes the maximum norm on
R

d .

5.1. Proof of (66) and (68)

Let us first show that for every t ∈ R and every ε > 0, we have

lim
N→∞NE

[
WN(t)1WN(t)>ε

] = 0. (69)

With xN = sN + t and bN = 1
2 (logN + ψ(2)xN) + log ε, we may write

NE
[
WN(t)1WN(t)>ε

] = N1/2e−(ψ(2)/2)xN E
[
eξ(xN )1ξ(xN )>bN

]
. (70)

Noting that by the critical growth condition (13), limN→∞ bN/xN = ψ ′(2) and applying part 2
of Proposition 2.1 with κ = 1 to the right-hand side of (70), we obtain

NE
[
WN(t)1WN(t)>ε

] ≤ CN1/2e−(ψ(2)/2)xN ebN x
−1/2
N e−I (bN/xN )xN

(71)
≤ CNx

−1/2
N e−I (bN/xN )xN .

Using the convexity of the function I , as well as the fact that I (ψ ′(2)) = λ2 (see (7)) and
I ′(ψ ′(2)) = 2 (see Lemma 2.1), we obtain

I

(
bN

xN

)
= I

(
ψ ′(2) + 1

2

(
logN + 2 log ε

xN

− λ2

))

≥ I (ψ ′(2)) + I ′(ψ ′(2)) · 1

2

(
logN + 2 logε

xN

− λ2

)
(72)

= logN + 2 log ε

xN

.

It follows from (71) and (72) that

NE
[
WN(t)1WN(t)>ε

] ≤ CNx
−1/2
N e− logN−2 log ε → 0, N → ∞.

This proves (69). To prove (66), note that

NP[‖WN‖∞ > ε] ≤ N

d∑
k=1

P[WN(tk) > ε] ≤ ε−1N

d∑
k=1

E
[
WN(tk)1WN(tk)>ε

]
.

By (69), the right-hand side converges to 0 as N → ∞. This proves (66).
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We proceed to the proof of (68). Let AN,m, m = 1, . . . , d , be the random event {WN(tm) ≥
WN(tl), l = 1, . . . , d}. Then, for every k = 1, . . . , d , we have

E
[
WN(tk)1‖WN‖∞>ε

] ≤
d∑

m=1

E
[
WN(tk)1‖WN‖∞>ε1AN,m

]

≤
d∑

m=1

E
[
WN(tm)1WN(tm)>ε

]
.

An application of (69) to the right-hand side yields (68).

5.2. Proof of (67)

It suffices to show that for every 1 ≤ k ≤ l ≤ d and every ε > 0,

lim
N→∞NE

[
WN(tk)WN(tl)1‖WN‖∞≤ε

] = 	(ϑ)e(ψ(1)−ψ(2)/2)(tl−tk). (73)

Let us start by computing a closely related limit. We will show that

lim
N→∞NE

[
WN(tk)WN(tl)1WN(t1)≤ε

] = 	(ϑ)e(ψ(1)−ψ(2)/2)(tl−tk). (74)

It follows from (64) that

E
[
WN(tk)WN(tl)1WN(t1)≤ε

] = E[eξ(sN+tk)+ξ(sN+tl )1WN(t1)≤ε]
Neψ(2)sN e(ψ(2)/2)(tk+tl )

. (75)

Using the fact that ξ is a Lévy process, we obtain

E
[
eξ(sN+tk)+ξ(sN+tl )1WN(t1)≤ε

]
= E

[
e2ξ(sN+t1)1WN(t1)≤ε

] · Eeξ(sN+tk)+ξ(sN+tl )−2ξ(sN+t1)

(76)
= E

[
e2ξ(sN+t1)1WN(t1)≤ε

] · Eeξ(tk−t1)+ξ(tl−t1)

= E
[
e2ξ(xN )1ξ(xN )≤bN

] · Eeξ(tk−t1)+ξ(tl−t1),

where we have used the notation

xN = sN + t1, bN = 1
2

(
logN + ψ(2)xN

) + log ε. (77)

The critical growth condition (13) implies that

bN = ψ ′(2)xN + ϑ
√

ψ ′′(2)xN + o
(√

xN

)
, N → ∞. (78)

Applying part 1 of Proposition 2.1 with κ = 2, we obtain

E
[
e2ξ(xN )1ξ(xN )≤bN

] ∼ 	(ϑ)eψ(2)(sN+t1), N → ∞. (79)
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Recalling that ξ is a Lévy process and taking into account that tk ≤ tl , we obtain

Eeξ(tk−t1)+ξ(tl−t1) = eψ(2)(tk−t1)eψ(1)(tl−tk). (80)

Bringing equations (75), (76), (79) and (80) together, we obtain (74). Trivially, it follows from
(74) that

lim sup
N→∞

NE
[
WN(tk)WN(tl)1‖WN‖∞≤ε

] ≤ 	(ϑ)e(ψ(1)−ψ(2)/2)(tl−tk). (81)

We are going to prove the converse inequality:

lim inf
N→∞ NE

[
WN(tk)WN(tl)1‖WN‖∞≤ε

] ≥ 	(ϑ)e(ψ(1)−ψ(2)/2)(tl−tk). (82)

Note that for every (small) η > 0, the following inclusion of random events holds:

{‖WN‖∞ ≤ ε} ⊃ {WN(t1) ≤ ηε}
∖ d⋃

m=1

AN,m,

where AN,m is the random event {ξ(sN + tm) − ξ(sN + t1) > − logη}. Thus,

E
[
WN(tk)WN(tl)1‖WN‖∞≤ε

]
≥ E

[
WN(tk)WN(tl)1WN(t1)≤ηε

] −
d∑

m=1

E[WN(tk)WN(tl)1AN,m
].

Since the asymptotic behavior of the first term on the right-hand side was computed in (74), we
need to show that for every m = 1, . . . , d , and every 1 ≤ k ≤ l ≤ d ,

lim
η↓0

lim sup
N→∞

NE[WN(tk)WN(tl)1AN,m
] = 0. (83)

By (64), we have

E[WN(tk)WN(tl)1AN,m
]

≤ CN−1e−ψ(2)sN E
[
eξ(sN+tk)+ξ(sN+tl )1AN,m

]
(84)

= CN−1e−ψ(2)sN E
[
e2ξ(sN+t1)eξ(sN+tk)+ξ(sN+tl )−2ξ(sN+t1)1AN,m

]
≤ CN−1

E
[
eξ(tk−t1)+ξ(tl−t1)1ξ(tm−t1)>− logη

]
.

Note that by (4), Eeξ(tk−t1)+ξ(tl−t1) < ∞. Hence, by the dominated convergence theorem,

lim
η↓0

E
[
eξ(tk−t1)+ξ(tl−t1)1ξ(tm−t1)>− logη

] = 0. (85)

To complete the proof of (83), combine (84) and (85).
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6. Proof of Theorem 1.4

6.1. Notation and preliminaries

We will concentrate on proving the convergence in the Skorokhod space D[0, T ]. For the proof
of the two-sided convergence on D[−T ,T ] we refer to [13].

We start by introducing some notation. Let W1,N , . . . ,WN,N be independent copies of a
positive-valued random process {WN(t), t ≥ 0} defined by

WN(t) = eξ(sN+t)−bN (t), (86)

where bN(t) is given by

bN(t) = logBN(t) = ψ(α)

α
t + sNI−1

(
logN − log(α

√
2πψ ′′(α)sN)

sN

)
. (87)

Define a process YN by

YN(t) = ZN(t) − AN(t)

BN(t)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

Wi,N(t), 0 < α < 1,

N∑
i=1

Wi,N(t) − NE
[
WN(t)1WN(0)≤1

]
, α = 1,

N∑
i=1

Wi,N(t) − NEWN(t), 1 < α < 2.

(88)

Our aim is to show that we have the following weak convergence of stochastic processes on the
Skorokhod space D[0, T ]:

YN(·) w→ Yα;ξ (·), N → ∞. (89)

We will use an approach based on considering the extremal order statistics. This method goes
back to LePage et al. [16] and was used in the context of the random energy model by Bovier
et al. [7] (note that the papers [3,8,14] use a different method). To describe the method of our
proof of (89), let us consider the case α ∈ (0,1) only. The first step is to prove that the upper
order statistics of the sequence W1,N (0), . . . ,WN,N(0) can be approximated, as N → ∞, by the
Poisson process {Ui, i ∈ N} defined as in Section 1.4. In the second step we write, for t ≥ 0,

N∑
i=1

Wi,N(t) =
N∑

i=1

Wi,N(0)eηi,N (t), (90)

where {ηi,N (t), t ≥ 0}, i = 1, . . . ,N , are processes defined by

ηi,N (t) = ξi(sN + t) − ξi(sN ) − ψ(α)

α
t. (91)
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Note that the processes η1,N , . . . , ηN,N are independent of each other, independent of W1,N (0),

. . . ,WN,N(0), and have the same law as the process η defined by η(t) = ξ(t) − ψ(α)
α

t . Bringing
everything together, we may write

N∑
i=1

Wi,N(t) →
∞∑
i=1

Uie
ξi (t)−(ψ(α)/α)t = Yα;ξ (t), N → ∞. (92)

The rest of the section is devoted to the justification of the above argument.

6.2. Asymptotics for truncated moments

The following corollary of Proposition 2.1 will play a crucial role in the sequel.

Proposition 6.1. Let the assumptions of Theorem 1.4 be satisfied. Let WN be a process defined
by (86). The following three statements hold true.

(1) Let 0 ≤ κ < α. Then, for every τ > 0,

lim
N→∞NE

[
Wκ

N(0)1WN(0)>τ

] = α

α − κ
τκ−α. (93)

(2) Let κ > α. Then, for every τ > 0,

lim
N→∞NE

[
Wκ

N(0)1WN(0)≤τ

] = α

κ − α
τκ−α. (94)

(3) Let κ = α. Then, for every 0 < τ1 ≤ τ2,

lim
N→∞NE

[
Wκ

N(0)1WN(0)∈(τ1,τ2)

] = κ(log τ2 − log τ1). (95)

Proof. We prove part 1 of the proposition. Recall from (87) that

bN(0) = sNI−1(cN), where cN = logN − log(α
√

2πψ ′′(α)sN)

sN
. (96)

We have limN→∞ I−1(cN) = ψ ′(α) by the fast growth condition (15). By part 2 of Proposi-
tion 2.1, we have as N → ∞,

E
[
Wκ

N(0)1WN(0)>τ

] = e−κbN (0)
E

[
eκξ(sN )1ξ(sN )>bN (0)+log τ

]
(97)

∼ τκ

(α − κ)
√

2πψ ′′(α)sN
e−I ((bN (0)+log τ)/sN )sN .

To compute the asymptotic behavior of the right-hand side of (97), we will prove that

sNI

(
bN(0) + log τ

sN

)
= sNcN + α log τ + o(1), N → ∞. (98)
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We have limN→∞ I−1(cN) = ψ ′(α), hence limN→∞ I ′(I−1(cN)) = α by Lemma 2.1. Using
Taylor’s expansion of I around the point I−1(cN), we obtain

I

(
bN(0) + log τ

sN

)
= I

(
I−1(cN) + log τ

sN

)
= cN + α log τ + o(1)

sN
, N → ∞.

This proves (98). Inserting (98) into (97), we obtain part 1 of the proposition. Part 2 can be proved
in a similar way.

Let us prove part 3 of the proposition. We write FN(τ) = P[WN(0) ≤ τ ] for the distribution
function of WN(0), and F̄N (τ ) = 1 − FN(τ) for its tail. Taking κ = 0 in (93), we obtain

lim
N→∞NF̄N(τ) = τ−α. (99)

Note that this holds uniformly in τ ∈ (τ1, τ2), cf. Theorem 2.1. Trivially, we have

NE
[
Wκ

N(0)1WN(0)∈(τ1,τ2)

] = N

∫ τ2

τ1

wκ dFN(w) = −N

∫ τ2

τ1

wκ dF̄N (w).

Integrating by parts, we obtain

NE
[
Wκ

N(0)1WN(0)∈(τ1,τ2)

] = −wκNF̄N(w)|τ2
τ1

+ κ

∫ τ2

τ1

wκ−1NF̄N(w)dw.

Applying (99) to the right-hand side and recalling that κ = α, we obtain

lim
N→∞NE

[
Wκ

N(0)1WN(0)∈(τ1,τ2)

] = κ

∫ τ2

τ1

w−1 dw = κ(log τ2 − log τ1),

which completes the proof of part 3. �

6.3. Convergence of the upper order statistics

For τ > 0, we define a process Y
(τ,∞)
α;ξ , which is a “truncated version” of the process Yα;ξ , by

Y
(τ,∞)
α;ξ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈N

Ui>τ

Uie
ξi (t)−(ψ(α)/α)t , 0 < α < 1,

∑
i∈N

Ui>τ

Uie
ξi (t)−ψ(1)t − log

1

τ
, α = 1,

∑
i∈N

Ui>τ

Uie
ξi (t)−(ψ(α)/α)t − ατ 1−α

α − 1
e(ψ(1)−(ψ(α)/α))t , 1 < α < 2.

(100)
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Similarly, we define Y
(τ,∞)
N , a truncated version of the process YN given by (88), by

Y
(τ,∞)
N (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
1≤i≤N

Wi,N (0)>τ

Wi,N (t), 0 < α < 1,

∑
1≤i≤N

Wi,N (0)>τ

Wi,N (t) − NE
[
WN(t)1WN(0)∈(τ,1)

]
, α = 1,

∑
1≤i≤N

Wi,N (0)>τ

Wi,N (t) − NE
[
WN(t)1WN(0)>τ

]
, 1 < α < 2.

(101)

The next lemma is the main result of this subsection.

Lemma 6.1. For every τ > 0, we have the following weak convergence of stochastic processes
on the Skorokhod space D[0, T ]:

Y
(τ,∞)
N (·) w→ Y

(τ,∞)
α;ξ (·), N → ∞.

First, we establish the convergence of regularizing terms in (101) to those in (100). If α ∈
(1,2), then writing WN(t) = WN(0)eηN (t) with ηN(t) = ξ(sN + t)−ξ(sN)− ψ(α)

α
t (see equations

(90) and (91)) and applying part 1 of Proposition 6.1, we obtain

lim
N→∞NE

[
WN(t)1WN(0)>τ

] = e(ψ(1)−ψ(α)/α)t lim
N→∞NE

[
WN(0)1WN(0)>τ

]

= ατ 1−α

α − 1
e(ψ(1)−ψ(α)/α)t .

If α = 1, then part 3 of Proposition 6.1 yields

lim
N→∞NE

[
WN(t)1WN(0)∈(τ,1)

] = lim
N→∞NE

[
WN(0)1WN(0)∈(τ,1)

] = log
1

τ
.

Thus, in proving Lemma 6.1, we may drop the regularizing terms in (100) and (101). More
precisely, we define stochastic processes Ỹ

(τ,∞)
α;ξ and Ỹ

(τ,∞)
N by

Ỹ
(τ,∞)
α;ξ (t) =

∑
i∈N

Ui>τ

Uie
ξi (t)−(ψ(α)/α)t , (102)

Ỹ
(τ,∞)
N (t) =

∑
1≤i≤N

Wi,N (0)>τ

Wi,N (t) =
∑

1≤i≤N

Wi,N (0)>τ

Wi,N (0)eηi,N (t); (103)

see (90) and (91) for the last equality. With this notation, we may restate Lemma 6.1 as follows.
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Lemma 6.2. For every τ > 0, we have the following weak convergence of stochastic processes
on the Skorokhod space D[0, T ]:

Ỹ
(τ,∞)
N (·) w→ Ỹ

(τ,∞)
α;ξ (·), N → ∞. (104)

We start by considering the upper order statistics of the summands on the right-hand side
of (103) at t = 0. More precisely, let {Wi:N(0)}Ni=1 be the rearrangement of the numbers
{Wi,N(0)}Ni=1 in the descending order, and set also Wi:N(0) = 0 for i > N . Let S be the space of
all sequences w = (wi)

∞
i=1 with w1 ≥ w2 ≥ · · · ≥ 0. Then, S is a closed subset of R

∞ endowed
with the product topology.

Lemma 6.3. Let {Ui, i ∈ N} be the points of a Poisson process on (0,∞) with intensity
αu−(α+1) du, arranged in the descending order. Then, we have the following weak convergence
of random elements in S:

{Wi:N(0)}∞i=1
w→ {Ui}∞i=1, N → ∞. (105)

Proof. By part 1 of Proposition 6.1 with κ = 0, we have for every u > 0,

lim
N→∞NP[WN(0) > u] = u−α. (106)

To complete the proof, use [19], Proposition 3.21 on page 154. �

Proof of Lemma 6.2. Let f :D[0, T ] → R be a continuous bounded function. To prove (104),
we need to verify that

lim
N→∞ Ef

(
Ỹ

(τ,∞)
N

) = Ef
(
Ỹ

(τ,∞)
α;ξ

)
. (107)

Let Sτ ⊂ S be the set of all sequences (wi)i∈N ∈ S with limi→∞ wi = 0 and such that wi �= τ for
all i ∈ N. Define a function f̄ : Sτ → R by

f̄ (w) = Ef

( ∑
i∈N

wi>τ

wie
ξi (·)−ψ(α)/α·

)
, w = (wi)i∈N ∈ Sτ .

Note that f̄ is bounded and continuous on Sτ , and Sτ has full measure with respect to the law of
(Ui)

∞
i=1. By Fubini’s theorem,

Ef
(
Ỹ

(τ,∞)
N

) = Ef̄ ((Wi:N(0))∞i=1), Ef
(
Ỹ

(τ,∞)
α;ξ

) = Ef̄ ((Ui)
∞
i=1). (108)

It follows from Lemma 6.3 and the properties of the weak convergence that

lim
N→∞ Ef̄ ((Wi:N(0))∞i=1) = Ef̄ ((Ui)

∞
i=1). (109)

Putting (108) and (109) together, we obtain (107). This completes the proof of the lemma. �
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6.4. Estimating the lower order statistics

In this section we estimate the difference between the processes Yα;ξ and YN and their truncated

versions Y
(τ,∞)
α;ξ and Y

(τ,∞)
N . Define a process Y

(0,τ )
α;ξ by

Y
(0,τ )
α;ξ (t) = Yα;ξ (t) − Y

(τ,∞)
α;ξ (t). (110)

Lemma 6.4. For every ε > 0, we have

lim
τ↓0

P

[
sup

t∈[0,T ]

∣∣Y(0,τ )
α;ξ (t)

∣∣ > ε
]

= 0. (111)

Proof. The proof follows immediately from Proposition 1.1. �

Next we define a process Y
(0,τ )
N representing the sum of the lower order statistics in (88) by

Y
(0,τ )
N (t) = YN(t) − Y

(τ,∞)
N (t). Equivalently,

Y
(0,τ )
N (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
1≤i≤N

Wi,N (0)≤τ

Wi,N (t), α ∈ (0,1),

∑
1≤i≤N

Wi,N (0)≤τ

Wi,N (t) − NE
[
WN(t)1WN(0)≤τ

]
, α ∈ [1,2).

(112)

Lemma 6.5. For every ε > 0, we have

lim
τ↓0

lim sup
N→∞

P

[
sup

t∈[0,T ]
∣∣Y (0,τ )

N (t)
∣∣ > ε

]
= 0. (113)

The proof will be carried out in the rest of the subsection. First we consider the regularizing
term in (112). If α ∈ (0,1), then applying part 2 of Proposition 6.1 with κ = 1, we obtain

lim
τ↓0

lim sup
N→∞

NE
[
WN(t)1WN(0)≤τ

] = 0. (114)

Define a process Ỹ
(0,τ )
N coinciding with Y

(0,τ )
N for α ∈ [1,2) and containing an additional term

for α ∈ (0,1) by

Ỹ
(0,τ )
N (t) =

∑
1≤i≤N

Wi,N (0)≤τ

Wi,N (t) − NE
[
WN(t)1WN(0)≤τ

]
. (115)

In view of (114), we may restate Lemma 6.5 as follows.
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Lemma 6.6. For every ε > 0, we have

lim
τ↓0

lim sup
N→∞

P

[
sup

t∈[0,T ]

∣∣Ỹ (0,τ )
N (t)

∣∣ > ε
]

= 0. (116)

Proof. For a function f : [0, T ] → R we write ‖f ‖∞ = supt∈[0,T ] |f (t)|. We have

Ỹ
(0,τ )
N (t) =

N∑
i=1

(
Wi,N(0)1Wi,N (0)≤τ − E

[
WN(0)1WN(0)≤τ

])
eηi,N (t)

(117)

+ E
[
WN(0)1WN(0)≤τ

] N∑
i=1

(
eηi,N (t) − Eeηi,N (t)

)
.

It follows from (117) that ‖Ỹ (0,τ )
N ‖∞ ≤ M ′

N,τ + M ′′
N,τ , where M ′

N,τ and M ′′
N,τ are random vari-

ables defined by

M ′
N,τ =

N∑
i=1

‖eηi,N ‖∞
∣∣Wi,N(0)1Wi,N (0)≤τ − E

[
WN(0)1WN(0)≤τ

]∣∣,

M ′′
N,τ = E

[
WN(0)1WN(0)≤τ

] ·
∥∥∥∥∥

N∑
i=1

(eηi,N − Eeηi,N )

∥∥∥∥∥∞
.

Thus, to prove the lemma, it suffices to show that

lim
τ↓0

lim sup
N→∞

P[M ′
N,τ > ε/2] = 0, (118)

lim
τ↓0

lim sup
N→∞

P[M ′′
N,τ > ε/2] = 0. (119)

Let us prove (118). Note that the process {eαη(t), t ≥ 0} is a martingale. By Doob’s maximal
Lp-inequality, E‖e2η‖∞ ≤ CEe2η(T ) < ∞. Thus, E‖eηi,N ‖2∞ is finite and

lim sup
N→∞

EM ′2
N,τ ≤ C lim

N→∞NE
[
W 2

N(0)1WN(0)≤τ

] = Cα

2 − α
τ 2−α,

where the last step follows from part 2 of Proposition 6.1 with κ = 2. The right-hand side goes
to 0 as τ ↓ 0. By Chebyshev’s inequality, this proves (118).

Let us prove (119). By Theorem 1.1, the random variable N−1/2‖∑N
i=1(e

ηi,N − Eeηi,N )‖∞
converges as N → ∞ to some limiting (a.s. finite) random variable. Thus, we need to prove that

lim
τ↓0

lim sup
N→∞

√
NE

[
WN(0)1WN(0)≤τ

] = 0. (120)

We have, by part 2 of Proposition 6.1 with κ = 2,

lim sup
N→∞

NE
[
WN(0)1WN(0)≤τ

]2 ≤ lim
N→∞NE

[
W 2

N(0)1WN(0)≤τ

] = α

2 − α
τ 2−α.
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This proves (120) and completes the proof of the lemma. �

6.5. Completing the proof of the one-sided convergence

In this section we complete the proof of the one-sided version of Theorem 1.4. We will need to
introduce some notation. Let d be the Skorokhod metric on D[0, T ]. Given a process X with
sample paths in D[0, T ], we denote by L(X) the law of X considered as a probability measure
on D[0, T ]. Let further π be the Lévy–Prokhorov distance on the space of probability measures
on D[0, T ]. That is, given two probability measures μ1 and μ2 on D[0, T ], we define

π(μ1,μ2) = inf{ε > 0 :μ1(B) ≤ μ2(B
ε) + ε for all Borel B ⊂ D[0, T ]},

where Bε = {b ∈ D[0, T ] :d(b,B) ≤ ε} is the ε-neighborhood of the set B . The next lemma is
standard.

Lemma 6.7. Let {X(t), t ∈ [0, T ]} and {Y(t), t ∈ [0, T ]} be two (generally, dependent) stochas-
tic processes with sample paths in D[0, T ], and suppose that for some ε > 0,

P

[
sup

t∈[0,T ]
|Y(t)| > ε

]
≤ ε.

Then, π(L(X), L(X + Y)) ≤ ε.

Proof. By the definition of the Skorokhod metric, d(X,X + Y) ≤ supt∈[0,T ] |Y(t)|. By assump-
tion, it follows that P[d(X,X + Y) > ε] ≤ ε. For every Borel set B ⊂ D[0, T ], we have

P[X + Y ∈ B] ≤ P[X ∈ Bε] + P[d(X,X + Y) > ε] ≤ P[X ∈ Bε] + ε,

whence the statement of the lemma. �

We are now in position to complete the proof of the one-sided version of Theorem 1.4, as
restated in (89). Let ε > 0 be fixed. Our aim is to show that for sufficiently large N , we have

π(L(YN), L(Yα;ξ )) ≤ 3ε. (121)

By Lemma 6.4, we can find a δ > 0 such that P[supt∈[0,T ] |Y(0,τ )
α;ξ (t)| > ε] ≤ ε for all τ < δ. By

Lemma 6.7 and (110), this implies that for all τ < δ,

π
(

L
(
Y

(τ,∞)
α;ξ

)
, L(Yα;ξ )

) ≤ ε. (122)

By Lemma 6.5, we can find τ < δ and N1 ∈ N such that P[supt∈[0,T ] |Y (0,τ )
N (t)| > ε] ≤ ε for

N > N1. By Lemma 6.7, this implies that for all N > N1,

π
(

L
(
Y

(τ,∞)
N

)
, L(YN)

) ≤ ε. (123)
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By Lemma 6.1, we can find N1 ∈ N such that for all N > N1,

π
(

L
(
Y

(τ,∞)
N

)
, L

(
Y

(τ,∞)
α;ξ

)) ≤ ε. (124)

To complete the proof of (121), combine equations (122)–(124).
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