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The question of existence and properties of stationary solutions to Langevin equations driven by noise pro-
cesses with stationary increments is discussed, with particular focus on noise processes of pseudo-moving-
average type. On account of the Wold–Karhunen decomposition theorem, such solutions are, in principle,
representable as a moving average (plus a drift-like term) but the kernel in the moving average is generally
not available in explicit form. A class of cases is determined where an explicit expression of the kernel can
be given, and this is used to obtain information on the asymptotic behavior of the associated autocorrelation
functions, both for small and large lags. Applications to Gaussian- and Lévy-driven fractional Ornstein–
Uhlenbeck processes are presented. A Fubini theorem for Lévy bases is established as an element in the
derivations.
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1. Introduction

This paper studies the existence and properties of stationary solutions to Langevin equations
driven by a noise process N with, in general, stationary dependent increments. We shall refer
to such solutions as quasi Ornstein–Uhlenbeck (QOU) processes. Of particular interest are the
cases where the noise process is of the pseudo-moving-average (PMA) type. In wide general-
ity, the stationary solutions can, in principle, be written in the form of a Wold–Karhunen-type
representation, but it is relatively rare that an explicit expression for the kernel of such a repre-
sentation can be given. When this is possible it often provides a more direct and simpler access to
the character and properties of the process; for instance, concerning the autocovariance function.

This will be demonstrated in applications to the case where the noise process N is of the
pseudo-moving-average kind, including fractional Brownian motion and, more generally, frac-
tional Lévy motions. Of some particular interest for turbulence theory is the large and small lags
limit behavior of the autocovariance function of the Ornstein–Uhlenbeck-type process driven
by fractional Brownian motion, which has been proposed as a representation of homogeneous
Eulerian turbulent velocities; see Shao [37].

The fractional Brownian and Lévy motions are not of the semimartingale type. Another non-
semimartingale case covered is Nt = ∫

X B
(x)
t m(dx), where the processes B

(x)· are Brownian
motions in different filtrations and m is a measure on some space X .

In recent applications of stochastics, particularly in finance and in turbulence, modifications of
classic noise processes by time change or by volatility modifications are of central importance;
see Barndorff-Nielsen and Shephard [4] and Barndorff-Nielsen and Shiryaev [5] and references
given therein. Prominent examples of such processes are dNt = σt dBt , where B is Brownian
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motion and σ > 0 is a predictable stationary process – for instance, the square root of a superpo-
sition of inverse Gaussian Ornstein–Uhlenbeck processes (cf. Barndorff-Nielsen and Shephard
[3] and Barndorff-Nielsen and Stelzer [6]) – and Nt = LTt , where L is a Lévy process and T is a
time change process with stationary increments (cf. Carr et al. [13]). The theory discussed in the
present paper applies also to processes of this type.

The structure of the paper is as follows. Section 2 defines the concept of QOU processes
and provides conditions for existence and uniqueness of stationary solutions to the Langevin
equation. The form of the autocovariance function of the solutions is given and its asymptotic
behavior for t → ∞ is discussed. As an intermediate step, a Fubini theorem for Lévy bases is es-
tablished in Section 3. In Section 4 explicit forms of Wold–Karhunen representations are derived
and used to analyze the asymptotics, under more specialized assumptions, of the autocovariance
functions, both for t → ∞ and for t → 0. The Appendix establishes an auxiliary continuity result
of a technical nature.

2. Langevin equations and QOU processes

Let N = (Nt )t∈R be a measurable process with stationary increments and let λ > 0 be a positive
number. By a QOU process X driven by N and with parameter λ, we mean a stationary solution
to the Langevin equation dXt = −λXt dt + dNt , that is, X = (Xt )t∈R is a stationary process that
satisfies

Xt = X0 − λ

∫ t

0
Xs ds + Nt, t ∈ R, (2.1)

where the integral is a pathwise Lebesgue integral. For all a < b we use the notation
∫ a

b
:= − ∫ b

a
.

Recall that a process Z = (Zt )t∈R is measurable if (t,ω) �→ Zt(ω) is (B(R) ⊗ F , B(R))-
measurable, and that Z has stationary increments if, for all s ∈ R, (Zt − Z0)t∈R has the
same finite distributions as (Zt+s − Zs)t∈R. For p > 0 we will say that a process Z has fi-
nite p moments if E[|Zt |p] < ∞ for all t ∈ R. Moreover, for t → 0 or ∞, we will write
f (t) ∼ g(t), f (t) = o(g(t)) or f (t) = O(g(t)), provided that f (t)/g(t) → 1, f (t)/g(t) → 0
or lim supt |f (t)/g(t)| < ∞, respectively. For each process Z with finite second moments, let
VZ(t) = Var(Zt ) denote its variance function. When Z, in addition, is stationary, let RZ(t) =
Cov(Zt ,Z0) denote its autocovariance function and R̄X(t) = RX(0) − RX(t) = 1

2 E[(Xt − X0)
2]

its complementary autocovariance function.
Before discussing the general setting further, we recall some well-known cases. The stationary

solution X to (2.1) when Nt = μt +σBt (with B the Brownian motion) is the Gaussian Ornstein–
Uhlenbeck process, μ/λ is the mean level, λ is the speed of reversion and σ is the volatility. When
N is a Lévy process, the corresponding QOU process, X, exists if and only if E[log+ |N1|] < ∞
or, equivalently, if and only if

∫
{|x|>1} log |x|ν(dx) < ∞, where ν is the Lévy measure of N ;

see Sato and Yamazato [36] or Wolfe [39]. In this case X is called an Ornstein–Uhlenbeck-type
process; for applications of such processes in financial economics, see Barndorff-Nielsen and
Shephard [3,4].
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2.1. Existence and uniqueness of QOU processes

The first result below shows the existence and uniqueness for the stationary solution X to the
Langevin equation dXt = −λXt dt + dNt in the case where the noise N is integrable. That is,
we show existence and uniqueness of QOU processes X. Moreover, we provide an explicit form
of the solution that is used to calculate the mean and variance of X.

Theorem 2.1. Let N be a measurable process with stationary increments and finite first mo-
ments, and let λ > 0 be a positive real number. Then, X = (Xt )t∈R, given by

Xt = Nt − λe−λt

∫ t

−∞
eλsNs ds, t ∈ R, (2.2)

is a QOU process driven by N with parameter λ (the integral is a pathwise Lebesgue integral).
Furthermore, any other QOU process driven by N and with parameter λ equals X in law. Finally,
if N has finite p moments, p ≥ 1, then X also has finite p moments and is continuous in Lp .

Remark 2.2. It is an open problem to relax the integrability of N in Theorem 2.1; that is, is it
enough that N has finite log moments? Recall that when N is a Lévy process, finite log mo-
ments is a necessary and sufficient condition for the existence of the corresponding Ornstein–
Uhlenbeck-type process.

Proof of Theorem 2.1. Existence: Let p ≥ 1 and assume that N has finite p moments. Choose
α,β > 0, according to Corollary A.3, such that ‖Nt‖p ≤ α + β|t | for all t ∈ R. By Jensen’s
inequality,

E

[(∫ t

−∞
eλs |Ns |ds

)p]
≤ (eλt /λ)p−1

∫ t

−∞
eλsE[|Ns |p]ds

≤ (eλt /λ)p−1
∫ t

−∞
eλs(α + β|s|)p ds < ∞,

which shows that the integral in (2.2) exists almost surely as a Lebesgue integral and that Xt ,
given by (2.2), is p-integrable. Using substitution we obtain from (2.2),

Xt = λ

∫ 0

−∞
eλu(Nt − Nt+u)du, t ∈ R. (2.3)

By Corollary A.3, N is Lp-continuous and, therefore, it follows that the right-hand side of (2.3)
exists as a limit of Riemann sums in Lp . Hence the stationarity of the increments of N implies
that X is stationary. Moreover, using integration by parts on t �→ ∫ t

−∞ eλsNs(ω)ds, we get

∫ t

0
Xs ds = e−λt

∫ t

−∞
eλsNs ds −

∫ 0

−∞
eλsNs ds,

which shows that X satisfies (2.1), and hence X is a QOU process driven by N with parameter λ.
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Since X is a measurable process with stationary increments and finite p moments, Proposi-
tion A.3 shows that it is continuous in Lp .

To show uniqueness in law, let Y be a QOU process driven by N with parameter λ > 0, that
is, Y is a stationary process that satisfies (2.1). For all t0 ∈ R we have, with Zt = Nt − Nt0 + Yt0 ,
that

Yt = Zt − λ

∫ t

t0

Ys ds, t ≥ t0. (2.4)

Solving (2.4) pathwise, it follows that for all t ≥ t0,

Yt = Zt − λe−λt

∫ t

t0

eλsZs ds

= Nt − λe−λt

∫ t

t0

eλsNs ds + (Yt0 − Nt0)e
−λ(t−t0).

Note that limt→∞(Yt0 − Nt0)e
−λ(t−t0) = 0 a.s., thus for all n ≥ 1 and t0 < t1 < · · · < tn, the

stationarity of Y implies that for k → ∞, (Yti+k)
n
i=1 ⇒ (Yti )

n
i=1 (for all random vectors, ⇒

denotes convergence in distribution). Therefore, as k → ∞,

(
Nti+k − λe−λ(ti+k)

∫ ti+k

t0

eλsNs ds

)n

i=1
⇒ (Yti )

n
i=1.

This shows that the distribution of Y only depends on N and λ, and completes the proof. �

Proposition 2.1 in Surgailis et al. [38] and Proposition 2.1 in Maejima and Yamamoto [23]
provide existence results for stationary solutions to Langevin equations. However, these results
do not cover Theorem 2.1. The first result considers only Bochner-type integrals and the second
result requires, in particular, that the sample paths of N are Riemann integrable.

Let B = (Bt )t∈R denote an F -Brownian motion indexed by R and σ = (σt )t∈R be a pre-
dictable process; that is, σ is measurable with respect to

P = σ
(
(s, t] × A: s, t ∈ R, s < t,A ∈ Fs

)
.

Assume that, for all u ∈ R, (σt ,Bt )t∈R has the same finite-dimensional distributions as
(σt+u,Bt+u − Bu)t∈R and that σ0 ∈ L2. Then N , given by

Nt =
∫ t

0
σs dBs, t ∈ R, (2.5)

is a well-defined continuous process with stationary increments and finite second moments. (Re-
call that for t < 0,

∫ t

0 := − ∫ 0
t

.)
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Corollary 2.3. Let N be given by (2.5). Then, there exists a unique-in-law QOU process X

driven by N with parameter λ > 0, and X is given by

Xt =
∫ t

−∞
e−λ(t−s)σs dBs, t ∈ R. (2.6)

Proof. Since N is a measurable process with finite second moments, it follows by Theorem 2.1
that there exists a unique-in-law QOU process X, and it is given by

Xt = Nt − λe−λt

∫ t

−∞
eλsNs ds = λ

∫ 0

−∞
eλs(Nt − Nt+s)ds

(2.7)

= λ

∫ 0

−∞

(∫
R

1(t+s,t](u)eλsσu dBu

)
ds.

By an extension of Protter [29], Chapter IV, Theorem 65, from finite intervals to infinite intervals
we may switch the order of integration in (2.7) and hence we obtain (2.6). �

Let us conclude this section with formulas for the mean and variance of a QOU process X.
In the rest of this section, let N be a measurable process with stationary increments and finite
first moments and let X be a QOU process driven by N with parameter λ > 0 (which exists
by Theorem 2.1). Since X is unique in law, it makes sense to consider the mean and variance
function of X. Let us assume for simplicity that N0 = 0 a.s. The following proposition gives the
mean and variance of X.

Proposition 2.4. Let N and X be given as above. Then,

E[X0] = E[N1]
λ

and Var(X0) = λ

2

∫ ∞

0
e−λsVN(s)ds.

In the part concerning the variance of X0, we assume that N has finite second moments.

Note that Proposition 2.4 shows that the variance of X0 is λ/2 times the Laplace transform of
VN . In particular, if Nt = μt + σBH

t , where BH is a fractional Brownian motion (fBm) of index
H ∈ (0,1) (see [11] or [27] for properties of the fBm), then E[N1] = μ and VN(s) = σ 2|s|2H

and hence, by Proposition 2.4, we have that

E[X0] = μ

λ
and Var(X0) = σ 2�(1 + 2H)

2λ2H
. (2.8)

For H = 1/2, (2.8) is well known, and in this case Var(X0) = σ 2/(2λ).
Before proving Proposition 2.4, let us note that E[Nt ] = E[N1]t for all t ∈ R. Indeed, this

follows by the continuity of t �→ E[Nt ] (see Corollary A.3) and the stationarity of the increments
of N .
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Proof of Proposition 2.4. Recall that, by Corollary A.3, we have that E[|Nt |] ≤ α + β|t | for
some α,β > 0. Hence, by (2.2) and Fubini’s theorem, we have that

E[X0] = E

[
−λ

∫ 0

−∞
eλsNs ds

]
= −λ

∫ 0

−∞
eλsE[Ns]ds

= −λE[N1]
∫ 0

−∞
eλss ds = E[N1]/λ.

This shows the part concerning the mean of X0.
To show the last part, assume that N has finite second moments. By using E[X0] = E[N1]/λ,

(2.2) shows that, with Ñt := Nt − E[N1]t , we have

Var(X0) = E
[
(X0 − E[X0])2] = E

[(
λ

∫ 0

−∞
eλsÑs ds

)2]
.

Since ‖Ñt‖2 ≤ α + β|t | for some α,β > 0 by Corollary A.3, Fubini’s theorem shows

Var(X0) = λ2
∫ 0

−∞

∫ 0

−∞
(eλseλuE[ÑsÑu])ds du,

and since E[ÑsÑu] = 1
2 [VN(s) + VN(u) − VN(s − u)], we have

Var(X0) = λ2

2

∫ 0

−∞

∫ 0

−∞
(
eλseλu

(
VN(s) + VN(u) − VN(s − u)

))
ds du

(2.9)

= λ

∫ 0

−∞
eλsVN(s)ds − λ2

2

∫ 0

−∞
eλu

(∫ −u

−∞
eλ(s+u)VN(s)ds

)
du.

Moreover,

λ2

2

∫ 0

−∞
eλu

(∫ −u

−∞
eλ(s+u)VN(s)ds

)
du

= λ2

2

∫
R

VN(s)eλs

(∫ (−s)∧0

−∞
e2λu du

)
ds

= λ2

2

(∫ 0

−∞
VN(s)eλs

(∫ 0

−∞
e2λu du

)
ds +

∫ ∞

0
VN(s)eλs

(∫ −s

−∞
e2λu du

)
ds

)

= λ

4

(∫ 0

−∞
VN(s)eλs ds +

∫ ∞

0
VN(s)eλs(e−2λs)ds

)

= λ

2

∫ ∞

0
e−λsVN(s)ds,

which, by (2.9), gives the expression for the variance of X0. �
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2.2. Asymptotic behavior of the autocovariance function

The next result shows that the autocovariance function of a QOU process X driven by N with
parameter λ has the same asymptotic behavior at infinity as the second derivative of the variance
function of N divided by 2λ2.

Proposition 2.5. Let N be a measurable process with stationary increments, N0 = 0 a.s., and
finite second moments. Let X be a QOU process driven by N with parameter λ > 0.

(i) Assume that VN is three times continuous differentiable in a neighborhood of ∞, and for
t → ∞ we have that V′′

N(t) = O(e(λ/2)t ), e−λt = o(V′′
N(t)) and V′′′

N(t) = o(V′′
N(t)). Then, for

t → ∞, we have RX(t) ∼ ( 1
2λ2 )V′′

N(t).

(ii) Assume for t → 0 that t2 = o(VN(t)), then, for t → 0, we have R̄X(t) ∼ 1
2 VN(t). More

generally, let p ≥ 1 and assume that N has finite p moments and t = o(‖Nt‖p) as t → 0. Then,
for t → 0, we have ‖Xt − X0‖p ∼ ‖Nt‖p .

Note that by Proposition 2.5(ii) the short-term asymptotic behavior of R̄X is not influenced
by λ.

Proof of Proposition 2.5. (i) Let β > 0 and assume that VN is three times continuous differen-
tiable on (β,∞); that is, VN ∈ C3((β,∞);R). Let t0 = β + 1, and let us show that for t ≥ t0 and
t → ∞,

RX(t) = e−λt

4λ

∫ t

t0

eλuV′′
N(u)du + eλt

4λ

∫ ∞

t

e−λuV′′
N(u)du + O(e−λt ). (2.10)

If we have shown (2.10), then, by using that e−λt = o(V′′
N(t)), V′′′

N(t) = o(V′′
N(t)) and l’Hôpital’s

rule, (i) follows.
Similar to the proof of Proposition 2.4, let Ñt = Nt − E[N1]t . To show (2.10), recall that

by Corollary A.3 we have ‖Ñt‖2 ≤ α + β|t | for some α,β > 0. Hence, by (2.2) and Fubini’s
theorem, we find that

RX(t) = E
[
(Xt − E[Xt ])(X0 − E[X0])

] = g(t) − λe−λt

∫ t

−∞
eλsg(s)ds, (2.11)

where

g(t) = −λ

∫ 0

−∞
eλsE[ÑsÑt ]ds, t ∈ R.

Since E[ÑsÑt ] = 1
2 [VN(t) + VN(s) − VN(s − t)], we have that

g(t) = −λ

2

∫ 0

−∞
eλs[VN(t) + VN(s) − VN(t − s)]ds

(2.12)

= −1

2

(
VN(t) − λeλt

∫ ∞

t

e−λsVN(s)ds

)
− λ

2

∫ 0

−∞
eλsVN(s)ds.
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From (2.12) it follows that g ∈ C1((β,∞);R) and hence, using partial integration on (2.11), we
have for t ≥ t0,

RX(t) = e−λt

∫ t

t0

eλsg′(s)ds + e−λt

(
eλt0g(t0) − λ

∫ t0

−∞
eλsg(s)ds

)
. (2.13)

Moreover, from (2.12) and for t ≥ t0, we find

g′(t) = −1

2

(
V′

N(t) − λ2eλt

∫ ∞

t

e−λsVN(s)ds + λVN(t)

)
. (2.14)

For t → ∞ we have, by assumption, that V′′
N(t) = O(e(λ/2)t ), and hence V′

N(t) = O(e(λ/2)t ).
Thus, from (2.14) and a double use of partial integration, we obtain that

g′(t) = eλt

2

∫ ∞

t

e−λsV′′
N(s)ds, t ≥ t0. (2.15)

Using (2.15), Fubini’s theorem and that V′′
N(t) = O(e(λ/2)t ), we have for t ≥ t0,

e−λt

∫ t

t0

eλsg′(s)ds

= e−λt

∫ t

t0

eλs

(
eλs

2

∫ ∞

s

e−λuV′′
N(u)du

)
ds

= e−λt

∫ ∞

t0

e−λuV′′
N(u)

(∫ t∧u

t0

1

2
e2λs ds

)
du

= e−λt

∫ ∞

t0

e−λuV′′
N(u)

(
1

4λ

(
e2λ(t∧u) − e2λt0

))
du

= e−λt

4λ

∫ t

t0

eλuV′′
N(u)du + eλt

4λ

∫ ∞

t

e−λuV′′
N(u)du − e−λt

(
e2λt0

4λ

∫ ∞

t0

e−λuV′′
N(u)du

)
.

Combining this with (2.13) we obtain (2.10), and the proof of (i) is complete.
(ii) Using (2.1) we have for all t > 0 that

‖Xt − X0‖p ≤ ‖Nt‖p + λ

∫ t

0
‖Xs‖p ds = ‖Nt‖p + λt‖X0‖p.

On the other hand,

‖Xt − X0‖p ≥ ‖Nt‖p − λ

∫ t

0
‖Xs‖p ds = ‖Nt‖p − λt‖X0‖p,

which shows that

1 − λ‖X0‖p

t

‖Nt‖p

≤ ‖Xt − X0‖p

‖Nt‖p

≤ 1 + λ‖X0‖p

t

‖Nt‖p

.
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A similar inequality is available when t < 0, and hence for t → 0 we have that ‖Xt − X0‖p ∼
‖Nt‖p if limt→0(t/‖Nt‖p) = 0. �

When N is an fBm of index H ∈ (0,1), then VN(t) = |t |2H , and hence

V′′
N(t) = 2H(2H − 1)t2H−2, t > 0.

The conditions in Proposition 2.5 are clearly fulfilled and thus we have the following corollary.

Corollary 2.6. Let N be an fBm of index H ∈ (0,1), and let X be a QOU process driven by N

with parameter λ > 0. For H ∈ (0,1)\{ 1
2 } and t → ∞, we have RX(t) ∼ (H(2H −1)/λ2)t2H−2.

For H ∈ (0,1) and t → 0, we have R̄X(t) ∼ 1
2 |t |2H .

The above result concerning the behavior of RX for t → ∞ when N is an fBm has been
obtained previously via a different approach by Cheridito et al. [14], Theorem 2.3.

A square-integrable stationary process Y = (Yt )t∈R is said to have long-range dependence of
order α ∈ (0,1) if RY is regularly varying at ∞ of index −α. Recall that a function f : R → R

is regularly varying at ∞ of index β ∈ R if, for t → ∞, f (t) ∼ tβ l(t), where l is slowly vary-
ing, which means that for all a > 0, limt→∞ l(at)/ l(t) = 1. Many empirical observations have
shown evidence for long-range dependence in various fields, such as finance, telecommunication
and hydrology; see Doukhan et al. [18]. Let X be a QOU process driven by N ; then Propo-
sition 2.5(i) shows that X has long-range dependence of order α ∈ (0,1) if and only if V′′

N is
regularly varying at ∞ of order −α. Furthermore, Proposition 4.9(i) below shows how to con-
struct QOUs with long-range dependence. More precisely, if X is a QOU driven by N, where N

is given by (4.9), and for some α ∈ (0,1) and t → ∞, f ′(t) ∼ ct(α−1)/2, then X has long-range
dependence of order α. The example f (t) = (δ ∨ t)H−1/2, with δ ≥ 0 and H ∈ ( 1

2 ,1) is con-
sidered in Corollary 4.10 and it follows that the QOU process X has long-range dependence of
order 2 − 2H . Here X is a fractional Ornstein–Uhlenbeck process if δ = 0, and a semimartingale
if and only if δ > 0. A quite different type of semimartingale with long-range dependence is ob-
tained for N = σ • B with σ and B independent and σ 2 being a supOU process with long-range
dependence, cf. Barndorff-Nielsen [1], Barndorff-Nielsen and Stelzer [6] and Barndorff-Nielsen
and Shephard [4]. Hence, by considering more general processes than the fractional type, we
can easily construct stationary processes with long-range dependence within the semimartingale
framework.

3. A Fubini theorem for Lévy bases

Let 
 = {
(A): A ∈ S} denote a centered Lévy basis on a non-empty space S equipped with
a δ-ring S , see Rajput and Rosiński [30]. (A Lévy basis is an infinitely divisible, independently
scattered random measure. Recall also that a δ-ring on S is a family of subsets of S that is closed
under union, countable intersection and set difference). As usual, we assume that S is σ -finite,
meaning that there exists (Sn)n≥1 ⊆ S such that

⋃
n≥1 Sn = S. All integrals

∫
S
f (s)
(ds) will be

defined in the sense of Rajput and Rosiński [30]. We can now find a measurable parametrization
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of Lévy measures ν(du, s) on R, a σ -finite measure m on S and a positive measurable function
σ 2 :S → R+, such that for all A ∈ S ,

E
[
eiy
(A)

] = exp

(∫
A

[
−σ 2(s)y2/2 +

∫
R

(eiyu − 1 − iyu)ν(du, s)

]
m(ds)

)
, y ∈ R, (3.1)

see [30]. Let φ : R × S �→ R be given by

φ(y, s) = y2σ 2(s) +
∫

R

[
(uy)21{|uy|≤1} + (2|uy| − 1)1{|uy|>1}

]
ν(du, s),

and for all measurable functions g :S → R define

‖g‖φ = inf

{
c > 0:

∫
S

φ(c−1g(s), s)m(ds) ≤ 1

}
∈ [0,∞].

Moreover, let Lφ = Lφ(S,σ (S),m) denote the Musielak–Orlicz space of measurable functions
g with ∫

S

[
g(s)2σ 2(s) +

∫
R

(|ug(s)|2 ∧ |ug(s)|)ν(du, s)

]
m(ds) < ∞,

equipped with the Luxemburg norm ‖g‖φ . Note that g ∈ Lφ if and only if ‖g‖φ < ∞, since
φ(2x, s) ≤ Cφ(x, s) for some C > 0 and all s ∈ S,x ∈ R. We refer to Musielak [26] for the
basic properties of Musielak–Orlicz spaces. When σ 2 ≡ 0 and g ∈ Lφ , Theorem 2.1 in Marcus
and Rosiński [24] shows that

∫
S
g(s)
(ds) is well defined, integrable and centered and

c1‖g‖φ ≤ E

[∣∣∣∣
∫

S

g(s)
(ds)

∣∣∣∣
]

≤ c2‖g‖φ,

and we may choose c1 = 1/8 and c2 = 17/8. Hence for general σ 2 it is easily seen that for all
g ∈ Lφ ,

∫
S
g(s)
(ds) is well defined, integrable and centered and

E

[∣∣∣∣
∫

S

g(s)
(ds)

∣∣∣∣
]

≤ 2c2‖g‖φ. (3.2)

Let T denote a complete separable metric space, and Y = (Yt )t∈T be given by

Yt =
∫

S

f (t, s)
(ds), t ∈ T ,

for some measurable function f (·, ·) for which the integrals are well defined. Then we can choose
a measurable modification of Y . Indeed, the existence of a measurable modification of Y is
equivalent to measurability of (t ∈ T ) �→ (Yt ∈ L0) according to Theorem 3 and the remark in
Cohn [15]. Hence, since f is measurable, the maps (t ∈ T ) �→ (‖f (t, ·) − g(·)‖φ ∈ R) for all
g ∈ Lφ are measurable. This shows that (t ∈ R) �→ (f (t, ·) ∈ Lφ) is measurable since Lφ is
a separable Banach space. Hence by continuity of (f (t, ·) ∈ Lφ) �→ (Yt ∈ L0), see Rajput and
Rosiński [30], it follows that (t ∈ T ) �→ (Yt ∈ L0) is measurable.
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Assume that μ is a σ -finite measure on a complete and separable metric space T . Then we
have the following stochastic Fubini result extending Rosiński [33], Lemma 7.1; Pérez-Abreu
and Rocha-Arteaga [28], Lemma 5; and Basse and Pedersen [9], Lemma 4.9. Stochastic Fubini-
type results for semimartingales can be founded in Protter [29] and Ikeda and Watanabe [19];
however, the assumptions in these results are too strong for our purpose.

Theorem 3.1 (Fubini). Let f :T × S �→ R be an B(T ) ⊗ σ(S)-measurable function such that

fx = f (x, ·) ∈ Lφ for x ∈ T and
∫

E

‖fx‖φμ(dx) < ∞. (3.3)

Then f (·, s) ∈ L1(μ) for m-a.a. s ∈ S and s �→ ∫
T

f (x, s)μ(dx) belongs to Lφ , all of the below
integrals exist and

∫
T

(∫
S

f (x, s)
(ds)

)
μ(dx) =

∫
S

(∫
T

f (x, s)μ(dx)

)

(ds) a.s. (3.4)

Remark 3.2. If μ is a finite measure, then the last condition in (3.3) is equivalent to

∫
T

[∫
S

f (x, s)2σ 2(s) +
∫

R

(|uf (x, s)|2 ∧ |uf (x, s)|)ν(du, s)

]
m(ds)μ(dx) < ∞.

We will need Theorem 3.1 to be able to prove Proposition 4.2. That proposition yields, in
particular, examples for which the conditions of Theorem 3.1 are fulfilled. But before proving
Theorem 3.1, we will need the following observation.

Lemma 3.3. For all measurable functions f :T × S → R we have

∥∥∥∥
∫

T

|f (x, ·)|μ(dx)

∥∥∥∥
φ

≤
∫

T

‖f (x, ·)‖φμ(dx). (3.5)

Moreover, if f :T ×S → R is a measurable function such that
∫
T

‖f (x, ·)‖φμ(dx) < ∞, then for
m-a.a. s ∈ S, f (·, s) ∈ L1(μ) and s �→ ∫

T
f (x, s)μ(dx) is a well-defined function that belongs

to Lφ .

Proof. Let us sketch the proof of (3.5). For f of the form

f (x, s) =
k∑

i=1

gi(s)1Ai
(x),

where k ≥ 1, g1, . . . , gk ∈ Lφ and A1, . . . ,Ak are disjoint measurable subsets of T of finite
μ-measure, (3.5) easily follows. Hence, by a monotone class lemma argument, it is possible to
show (3.5) for all measurable f . The second statement is a consequence of (3.5). �
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Recall that if (F,‖ · ‖) is a separable Banach space, μ is a measure on T and f :T → F is
a measurable map such that

∫
T

‖f (x)‖μ(dx) < ∞, then the Bochner integral B
∫
T

f (x)μ(dx)

exists in F and ‖B
∫
T

f (x)μ(dx)‖ ≤ ∫
T

‖f (x)‖μ(dx). Even though (Lφ,‖ · ‖φ) is a Banach
space, this result does not cover Lemma 3.3.

Proof of Theorem 3.1. For f of the form

f (x, s) =
n∑

i=1

αi1Ai
(x)1Bi

(s), x ∈ T , s ∈ S, (3.6)

where n ≥ 1, A1, . . . ,An are measurable subsets of T of finite μ-measure, B1, . . . ,Bn ∈ S and
α1, . . . , αn ∈ R, the theorem is trivially true. Thus, for a general f as in the theorem, choose fn

for n ≥ 1 of the form (3.6) such that
∫
T

‖fn(x, ·) − f (x, ·)‖φμ(dx) → 0. Indeed, the existence
of such a sequence follows by an application of the monotone class lemma. Let

Xn =
∫

E

(∫
S

fn(x, s)
(ds)

)
μ(dx), X =

∫
E

(∫
S

f (x, s)
(ds)

)
μ(dx),

and let us show that X is well defined and Xn → X in L1. This follows since

E

[∫
E

∣∣∣∣
∫

S

f (x, s)
(ds)

∣∣∣∣μ(dx)

]
≤ 2c2

∫
E

‖f (x, ·)‖φμ(dx) < ∞

and

E[|Xn − X|] ≤ 2c2

∫
E

‖fn(x, ·) − f (x, ·)‖φμ(dx).

Similarly, let

Yn =
∫

S

(∫
E

fn(x, s)μ(dx)

)

(ds), Y =

∫
S

(∫
E

f (x, s)μ(dx)

)

(ds)

and let us show that Y is well defined and Yn → Y in L1. By Remark 3.3, s �→ ∫
E

f (x, s)μ(dx)

is a well-defined function that belongs to Lφ , which shows that Y is well defined. By (3.2) and
(3.5) we have

E[|Yn − Y |] ≤ 2c2

∫
E

‖fn(x, ·) − f (x, ·)‖φμ(dx),

which shows that Yn → Y in L1. We have, therefore, proved (3.4), since Yn = Xn a.s., Xn → X

and Yn → Y in L1. �

Let Z = (Zt )t∈R denote an integrable and centered Lévy process with Lévy measure ν and
Gaussian component σ 2. Then Z induces a Lévy basis 
 on S = R and S = Bb(R), the bounded
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Borel sets, which is uniquely determined by 
((a, b]) = Zb − Za for all a, b ∈ R with a < b. In
this case m is the Lebesgue measure on R and

φ(y, s) = φ(y) = σ 2 +
∫

R

(|uy|21{|uy|≤1} + (2|uy| − 1)1{|uy|>1}
)
ν(du).

We will write
∫

f (s)dZs instead of
∫

f (s)
(ds). Note that,
∫

R
f (s)dZs exists and is integrable

if and only if f ∈ Lφ , that is,

∫
R

(
f (s)2σ 2 +

∫
R

(|uf (s)|2 ∧ |uf (s)|)ν(dx)

)
ds < ∞. (3.7)

Moreover, if Z is a symmetric α-stable Lévy process, α ∈ (0,2], then Lφ = Lα(R, λ), where
Lα(R, λ) is the space of α-integrable functions with respect to the Lebesgue measure λ.

4. Moving average representations

In wide generality, if X is a continuous-time stationary process, then it is representable, in prin-
ciple, as a moving average (MA), that is,

Xt =
∫ t

−∞
ψ(t − s)d
s,

where ψ is a deterministic function and 
 has stationary and orthogonal increments, at least in
the second-order sense. (For a precise statement, see the beginning of Section 4.1.) However, an
explicit expression for φ is seldom available.

We show in Section 4.2 that an expression can be found in cases where the process X is the
stationary solution to a Langevin equation for which the driving noise process N is a PMA,
that is,

Nt =
∫

R

(
f (t − s) − f (−s)

)
dZs, t ∈ R, (4.1)

where Z = (Zt )t∈R is a suitable process specified later on and f : R → R is a deterministic
function for which the integrals exist.

In Section 4.3, continuing the discussion from Section 2.2, we use the MA representation to
study the asymptotic behavior of the associated autocovariance functions. Section 4.4 comments
on a notable cancellation effect. But first, in Section 4.1 we summarize known results concerning
Wold–Karhunen-type representations of stationary continuous-time processes.

4.1. Wold–Karhunen-type decompositions

Let X = (Xt )t∈R be a second-order stationary process of mean zero and continuous in quadratic
mean. Let FX denote the spectral measure of X, that is, FX is a finite and symmetric measure on
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R satisfying

E[XtXu] =
∫

R

ei(t−u)xFX(dx), t, u ∈ R,

and let F ′
X denote the density of the absolutely continuous part of FX . For each t ∈ R let Xt =

span{Xs : s ≤ t}, X−∞ = ⋂
t∈R

Xt and X∞ = span{Xs : s ∈ R} (span denotes the L2-closure of
the linear span). Then X is called deterministic if X−∞ = X∞ and purely non-deterministic if
X−∞ = {0}. The following result, which is due to Satz 5–6 in Karhunen [20] (cf. also Doob
[17], Chapter XII, Theorem 5.3), provides a decomposition of stationary processes as a sum of a
deterministic process and a purely non-deterministic process.

Theorem 4.1 (Karhunen). Let X and FX be given as above. If

∫
R

| logF ′
X(x)|

1 + x2
dx < ∞, (4.2)

then there exists a unique decomposition of X as

Xt =
∫ t

−∞
ψ(t − s)d
s + Vt , t ∈ R, (4.3)

where ψ : R → R is a Lebesgue square-integrable deterministic function and 
 is a process
with second-order stationary and orthogonal increments, E[|
u −
s |2] = |u− s|. Furthermore,
for all t ∈ R, Xt = span{
s − 
u: −∞ < u < s ≤ t}, and V is a deterministic second-order
stationary process.

Moreover, if FX is absolutely continuous and (4.2) is satisfied, then V ≡ 0 and hence X is a
backward MA. Finally, the integral in (4.2) is infinite if and only if X is deterministic.

The results in Karhunen [20] are formulated for complex-valued processes; however, if X is
real-valued (as it is in our case), then one can show that all the above processes and functions
are real-valued as well. Note also that if X is Gaussian, then the process 
 in (4.3) is a standard
Brownian motion. If σ is a stationary process with E[σ 2

0 ] = 1 and B is a Brownian motion, then
d
s = σsdBs is of the above type.

A generalization of the classical Wold–Karhunen result to a broad range of non-Gaussian,
infinitely divisible processes was given in Rosiński [34].

4.2. Explicit MA solutions of Langevin equations

Assume initially that Z is an integrable and centered Lévy process, and recall that Lφ is the space
of all measurable functions f : R → R satisfying (3.7). Let f : R → R be a measurable function
such that f (t − ·) − f (−·) ∈ Lφ for all t ∈ R, and let N be given by

Nt =
∫

R

(
f (t − s) − f (−s)

)
dZs, t ∈ R.
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Proposition 4.2. Let N be given as above. Then there exists a unique-in-law QOU process X

driven by N with parameter λ > 0, and X is an MA of the form

Xt =
∫

R

ψf (t − s)dZs, t ∈ R, (4.4)

where ψf : R → R belongs to Lφ and is given by

ψf (t) =
(

f (t) − λe−λt

∫ t

−∞
eλsf (s)ds

)
, t ∈ R. (4.5)

Proof. Since (t, s) �→ f (t −s)−f (−s) is measurable we may choose a measurable modification
of N – see Section 3 – and hence, by Theorem 2.1, there exists a unique-in-law QOU process X

driven by N with parameter λ. For fixed t ∈ R, we have by (2.2) and with hu(s) = f (t − s) −
f (t + u − s) for all u, s ∈ R and μ(du) = 1{u≤0}eλu du that

Xt = λ

∫ 0

−∞
eλu(Nt − Nt+u)du =

∫ 0

−∞

(∫
R

hu(s)dZs

)
μ(du).

By Theorem A.1 there exist α,β > 0 such that ‖hu‖φ ≤ α + β|t | for all u ∈ R, implying that∫
R

‖hu‖φμ(du) < ∞. By Theorem 3.1, (u �→ hu(s)) ∈ L1(μ) for Lebesgue almost all s ∈ R,
which implies that

∫ t

−∞ |f (u)|eλu du < ∞ for all t > 0, and hence ψf , defined in (4.5), is a
well-defined function. Moreover, by Theorem 3.1, ψf ∈ Lφ(R, λ) and

Xt =
∫

R

(∫ 0

−∞
h(u, s)μ(du)

)
dZs =

∫
R

ψf (t − s)dZs, t ∈ R,

which completes the proof. �

Note that for f = 1R+ , we have Nt = Zt and ψf (t) = e−λt1R+(t). Thus, in this case we
recover the well-known result that the QOU process X driven by Z with parameter λ > 0 is an
MA of the form Xt = ∫ t

−∞ e−λ(t−s) dZs .
Let us use the notation x+ := x1{x≥0}, and let cH be given by

cH =
√

2H sin(πH)�(2H)

�(H + 1/2)
.

A PMA N of the form (4.1), where Z is an α-stable Lévy process with α ∈ (0,2] and f is
given by t �→ cH t

H−1/α
+ , is called a linear fractional α-stable motion of index H ∈ (0,1); see

Samorodnitsky and Taqqu [35]. Moreover, PMAs with f (t) = tα for α ∈ (0, 1
2 ) and where Z is

a square-integrable and centered Lévy process are called fractional Lévy processes in Marquardt
[25]; these processes provide examples of f and Z for which Proposition 4.2 applies. Moreover,
[25], Theorems 6.2 and 6.3, studies MAs driven by fractional Lévy processes, which in some
cases also have a representation of the form (4.4).
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Corollary 4.3. Let α ∈ (1,2] and N be a linear fractional α-stable motion of index H ∈ (0,1).
Then there exists a unique-in-law QOU process X driven by N with parameter λ > 0, and X is
an MA of the form

Xt =
∫ t

−∞
ψα,H (t − s)dZs, t ∈ R,

where ψα,H : R+ → R is given by

ψα,H (t) = cH

(
tH−1/α − λe−λt

∫ t

0
eλuuH−1/α du

)
, t ≥ 0.

For t → ∞, we have ψα,H (t) ∼ (cH (H − 1/α)/λ)tH−1/α−1, and for t → 0, ψα,H (t) ∼
cH tH−1/α .

Remark 4.4. A QOU process driven by a linear fractional α-stable motion is called a fractional
Ornstein–Uhlenbeck process. In Maejima and Yamamoto [23], the existence of the fractional
Ornstein–Uhlenbeck process is shown in the case where α > 1 and 1/α < H < 1. (The case
H = 1/α is trivial since X = N .) The existence in the case H ∈ (0,1/α) (see Corollary 4.3)
is somewhat unexpected due to the fact that the sample paths of the linear fractional α-stable
motion are unbounded on each compact interval; cf. page 4 in Maejima and Yamamoto [23],
where non-existence is surmised. In the case α = 2 (i.e., N is a fractional Brownian motion),
Cheridito et al. [14] show the existence of the fractional Ornstein–Uhlenbeck process.

In the next lemma we will show a special property of ψf , given by (4.5); namely that∫ ∞
0 ψf (s)ds = 0 whenever this integral is well defined and f tends to zero at ∞. This prop-

erty has a great impact on the behavior of the autocovariance function of QOU processes. We
will return to this point in Section 4.4.

Lemma 4.5. Let f : R → R be a locally integrable function that is zero on (−∞,0) and
limt→∞ f (t) = 0. Then, limt→∞

∫ t

0 ψf (s)ds = 0.

Proof. For t > 0,

∫ t

0

(
λe−λs

∫ s

0
eλuf (u)du

)
ds =

∫ t

0

(∫ t

u

λe−λs ds

)
eλuf (u)du

=
∫ t

0
f (u)du − e−λt

∫ t

0
eλuf (u)du,

and hence, by using that limt→∞ f (t) = 0, we obtain that

lim
t→∞

∫ t

0
ψf (s)ds = lim

t→∞

(
e−λt

∫ t

0
eλuf (u)du

)
= 0. �
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Proposition 4.2 carries over to a much more general setting. For example, if N is of the form

Nt =
∫

R×V

[f (t − s, x) − f (−s, x)]
(ds,dx), t ∈ R,

where 
 is a centered Lévy basis on R × V (V is a non-empty space) with control measure
m(ds,dx) = dsn(dx); a(s, x), σ 2(s, x) and ν(du, (s, x)), from (3.1), do not depend on s ∈ R;
and f (t −·, ·)−f (−·, ·) ∈ Lφ for all t ∈ R, then, using Theorems A.1, 2.1 and 3.1, the arguments
from Proposition 4.2 show that there exists a unique-in-law QOU process X driven by N with
parameter λ > 0, and X is given by

Xt =
∫

R×V

ψf (t − s, x)
(ds,dx), t ∈ R,

where

ψf (s, x) = f (s, x) − λe−λs

∫ s

−∞
f (u, x)eλu du, s ∈ R, x ∈ V.

We recover Proposition 4.2 when V = {0} and n = δ0 is the Dirac delta measure at 0.

4.3. Asymptotic behavior of the autocovariance function

The representation, from the previous section, of QOU processes as MAs enables us to handle
the autocovariance function analytically. In Section 4.3.1 we discuss how the tail behavior of
the kernel ψ of a general MA process determines that of the covariance function. By use of
those results, Section 4.3.2 relates the asymptotic behavior of the kernel of the noise N to the
asymptotic behavior of the autocovariance function of the QOU process X driven by N , both for
t → 0 and t → ∞.

4.3.1. Autocovariance function of general MAs

Let ψ be a Lebesgue square-integrable function and Z be a centered process with stationary and
orthogonal increments. Assume for simplicity that Z0 = 0 a.s. and VZ(t) = t . Let X = ψ ∗ Z =
(
∫ t

−∞ ψ(t − s)dZs)t∈R be a backward MA; RX be its autocovariance function, that is

RX(t) = E[XtX0] =
∫ ∞

0
ψ(t + s)ψ(s)ds, t ∈ R;

and R̄X(t) = RX(0) − RX(t) = 1
2 E[(Xt − X0)

2]. The behavior of RX at 0 or ∞ corresponds in
large extent to the behavior of the kernel ψ at 0 or ∞, respectively.

Indeed, we have the following result, in which kα and jα are constants given by

kα = �(1 + α)�(−1 − 2α)�(−α)−1, α ∈ (−1,−1/2),

jα = (2α + 1) sin
(
π(α + 1/2)

)
�(2α + 1)�(α + 1)−2, α ∈ (−1/2,1/2).
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Proposition 4.6. Let the setting be as described above.

(i) For t → ∞ and α ∈ (−1,− 1
2 ), ψ(t) ∼ ctα implies RX(t) ∼ (c2kα)t2α+1, provided

|ψ(t)| ≤ c1t
α for all t > 0 and some c1 > 0.

(ii) For t → ∞ and α ∈ (−∞,−1), ψ(t) ∼ ctα implies RX(t)/tα → c
∫ ∞

0 ψ(s)ds, and
hence RX(t) ∼ (c

∫ ∞
0 ψ(s)ds)tα , provided

∫ ∞
0 ψ(s)ds �= 0.

(iii) For t → 0 and α ∈ (− 1
2 , 1

2 ), ψ(t) ∼ ctα implies R̄X(t) ∼ (c2jα/2)|t |2α+1, provided ψ

is absolutely continuous on (0,∞) with density ψ ′ satisfying |ψ ′(t)| ≤ c2t
α−1 for all t > 0 and

some c2 > 0.

Proof. (i) Let α ∈ (−1,− 1
2 ) and assume that ψ(t) ∼ ctα as t → ∞ and |ψ(t)| ≤ c1t

α for t > 0.
Then

RX(t) =
∫ ∞

0
ψ(t + s)ψ(s)ds

= t

∫ ∞

0
ψ

(
t (s + 1)

)
ψ(ts)ds

(4.6)

= t2α+1
∫ ∞

0

ψ(t (1 + s))ψ(ts)

(t (1 + s))α(ts)α
(1 + s)αsα ds

∼ t2α+1c2
∫ ∞

0
(1 + s)αsα ds as t → ∞.

Since ∫ ∞

0
(1 + s)αsα ds = �(1 + α)�(−1 − 2α)

�(−α)
= kα,

(4.6) shows that RX(t) ∼ (c2kα)t2α+1 for t → ∞.
(ii) Let α ∈ (−∞,−1) and assume that ψ(t) ∼ ctα for t → ∞. Note that ψ ∈ L1(R+, λ) and

for some K > 0 we have for all t ≥ K and s > 0 that |ψ(t + s)|/tα ≤ 2|c|(t + s)α/tα ≤ 2|c|.
Hence, by applying Lebesgue’s dominated convergence theorem, we obtain

RX(t) = tα
∫ ∞

0

(
ψ(t + s)

tα
ψ(s)

)
ds ∼ tαc

∫ ∞

0
ψ(s)ds for t → ∞.

(iii) By letting

ft (s) := ψ(t (s + 1)) − ψ(ts)

tα
, t > 0, s ∈ R,

we have

E[(Xt − X0)
2] = t

∫ [
ψ

(
t (s + 1)

) − ψ(ts)
]2 ds = t2α+1

∫
|ft (s)|2 ds. (4.7)
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As t → 0, we find

ft (s) = ψ(t (s + 1))

(t (s + 1))α
(s + 1)α − ψ(ts)

(ts)α
sα → c

(
(s + 1)α+ − sα+

)
.

Choose δ > 0 such that |ψ(x)| ≤ 2xα for x ∈ (0, δ). By our assumptions we have for all s ≥ δ

that

|ft (s)| = t−α

∣∣∣∣
∫ t (1+s)

ts

ψ ′(u)du

∣∣∣∣ ≤ t−α+1 sup
u∈[st,t (s+1)]

|ψ ′(u)|

≤ c2t
−α+1 sup

u∈[st,t (s+1)]
|u|α−1 = c2t

−α+1|ts|α−1 = c2s
α−1,

and for s ∈ [−1, δ), |ft (s)| ≤ 2c[(1 + s)α + sα+]. This shows that there exists a function g ∈
L2(R+, λ) such that |ft | ≤ g for all t > 0, and thus, by Lebesgue’s dominated convergence
theorem, we have

∫
|ft (s)|2 ds −→

t→0
c2

∫ (
(s + 1)α+ − sα+

)2 ds = c2jα. (4.8)

Together with (4.7), (4.8) shows that R̄X(t) ∼ (c2jα/2)t2α+1 for t → 0. �

Remark 4.7. It would be of interest to obtain a general result covering Proposition 4.6(ii) in
the case

∫ ∞
0 ψ(s)ds = 0. Recall that ψf , given by (4.5), often satisfies that

∫ ∞
0 ψf (s)ds = 0,

according to Lemma 4.5.

Example 4.8. Consider the case where ψ(t) = tαe−λt for α ∈ (− 1
2 ,∞) and λ > 0. For t → 0,

ψ(t) ∼ tα , and hence R̄X(t) ∼ (jα/2)t2α+1 for t → 0 and α ∈ (− 1
2 , 1

2 ), by Proposition 4.6(iii)
(compare with Barndorff-Nielsen et al. [2]).

Note that if X = ψ ∗ Z is a moving average, as above, then by Proposition 4.6(i) and for t →
∞, RX(t) ∼ c1t

−α with α ∈ (0,1), provided that ψ(t) ∼ c2t
−(α+1)/2 and |ψ(t)| ≤ c3t

−(α+1)/2.
This shows that X has long-range dependence of order α.

Let us conclude this section with a short discussion of when an MA X = ψ ∗ Z is a semi-
martingale. It is often very important that the process of interest is a semimartingale, especially
in finance, where the semimartingale property of the asset price is equivalent to the property that
the capital process depends continuously on the chosen strategy; see Section 8.1.1 in Cont and
Tankov [16]. In the case where Z is a Brownian motion, Theorem 6.5, in Knight [22] shows that
X is an F Z semimartingale if and only if ψ is absolutely continuous on [0,∞) with a square-
integrable density. (Here F Z

t := σ(Zs : s ∈ (−∞, t]).) For a further study of the semimartingale
property of PMA and more general processes, see [7,8,10] in the Gaussian case, and Basse and
Pedersen [9] for the infinitely divisible case.
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4.3.2. QOU processes with PMA noise

Let us return to the case of a QOU process driven by a PMA. Let Z be a centered Lévy process,
f : R → R be a measurable function that is 0 on (−∞,0) and satisfies f (t − ·) − f (−·) ∈ Lφ

for all t ∈ R and N be given by

Nt =
∫

R

[f (t − s) − f (−s)]dZs, t ∈ R. (4.9)

First, we will consider the relationship between the behavior of the kernel of the noise N and
that of the kernel ψf of the corresponding moving average X.

Proposition 4.9. Let N be given by (4.9), and X be a QOU process driven by N with parameter
λ > 0.

(i) Let α ∈ (−1,− 1
2 ) and assume that, for some c �= 0, f is continuous differentiable in

a neighborhood of ∞ with f ′(t) ∼ ctα for t → ∞. Then, for t → ∞, we have RX(t) ∼
( c2kα

λ2 )t2α+1, provided |f (t)| ≤ rtα for all t > 0 and some r > 0.

(ii) Let α ∈ (− 1
2 , 1

2 ) and f (t) ∼ ctα for t → 0. Then, for t → 0, we have R̄X(t) ∼
(c2jα/2)|t |2α+1, provided f is two times continuous differentiable in a neighborhood of ∞ with
f ′′(t) = O(tα−1) for t → ∞, and that f is absolutely continuous on (0,∞) with a density f ′
satisfying supt∈(0,to)

|f ′(t)|t1−α < ∞ for all t0 > 0.

Proof. (i) Choose β > 0 such that f is continuous differentiable on [β,∞). By partial integra-
tion, we have for t ≥ β ,

ψf (t) = e−λt

(
eλaf (a) − λ

∫ a

−∞
eλsf (s)ds

)
+ e−λt

∫ t

a

eλsf ′(s)ds, (4.10)

showing that ψf (t) ∼ ( c
λ
)tα for t → ∞. Choose k > 0 such that |ψf (t)| ≤ (2c/λ)tα for all

t ≥ k. By (4.5) we have that supt∈[0,k] |ψf (t)t−α| < ∞, since supt∈[0,k] |f (t)t−α| < ∞, and
hence there exists a constant c1 > 0 such that |ψf (t)| ≤ c1t

α for all t > 0. Therefore, (i) follows
by Proposition 4.6(i).

(ii) Choose β > 0 such that f is two times continuous differentiable on [β,∞). By (4.10) and
partial integration we have for t > β and t → ∞,

ψ ′
f (t) = f ′(t) − λψf (t) = f ′(t) − λe−λt

∫ t

β

eλsf ′(s)ds + O(e−λt )

= e−λt

∫ t

β

eλsf ′′(s)ds + O(e−λt ) = O(tα−1),

where we in the last equality have used that f ′′(t) = O(tα−1) for t → ∞. Using that |ψ ′
f (t)| ≤

|f ′(t)| + λ|ψf (t)| and supt∈(0,t0)
|f ′(t)t1−α| < ∞ for all t0 > 0, it follows that there exists a

c2 > 0 such that |ψ ′
f (t)| ≤ c1t

α−1 for all t > 0. Moreover, for t → 0, we have that ψf (t) ∼ ctα .
Hence, (ii) follows by Proposition 4.6(iii). �
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Now consider the following set-up: Let Z = (Zt )t∈R be a centered and square-integrable Lévy
process, and for H ∈ (0,1), r0 �= 0, δ ≥ 0, let

f (t) = r0(δ ∨ t)H−1/2 and N
H,δ
t =

∫
R

[f (t − s) − f (−s)]dZs. (4.11)

Note that when δ = 0 and Z is a Brownian motion, NH,δ is a constant times the fBm of index H ,
and when δ > 0, NH,δ is a semimartingale. We have the following corollary to Proposition 4.9.

Corollary 4.10. Let NH,δ be given by (4.11), and let XH,δ be a QOU process driven by NH,δ

with parameter λ > 0. Then, for H ∈ ( 1
2 ,1) and t → ∞,

RXH,δ (t) ∼ (
r2

0kH−3/2(H − 1/2)/λ2)t2H−2, δ ≥ 0,

and for H ∈ (0,1) and t → 0,

R̄XH,δ (t) ∼
{

(r2
0 δ2H−1/2)|t |, δ > 0,

(r2
0 jH−1/2/2)|t |2H , δ = 0.

(4.12)

Proof. For H ∈ ( 1
2 ,1), let β = δ. Then f ∈ C1((β,∞);R) and, for t > β , f ′(t) = ctα , where

α = H −3/2 ∈ (−1,− 1
2 ) and c = r(H −1/2). Moreover, |f (t)| ≤ rδtα . Thus, Proposition 4.9(i)

shows that RXH,δ (t) ∼ (c2kα/λ2)t2α+1 = (r2(H − 1/2)2kH−3/2/λ
2)t2H−2. To show (4.12) as-

sume that H ∈ (0,1). For t → 0, we have f (t) ∼ ctα , where c = r0 and α = H − 1/2 ∈ (− 1
2 , 1

2 )

when δ = 0, and c = r0δ
H−1/2 and α = 0 when δ > 0. For β = δ, f ∈ C2((β,∞);R) with

f ′′(t) = r0(H − 1/2)(H − 3/2)tH−5/2, showing that f ′′(t) = O(tα−1) for t → ∞ (both for
δ > 0 and δ = 0). Moreover, f is absolutely continuous on (0,∞) with density f ′(t) =
r0(H − 1/2)tH−3/21[δ,∞)(t). This shows that supt∈(0,t0)

|f ′(t)t1−α| < ∞ for all t0 > 0 (both
for δ > 0 and δ = 0). Hence (4.12) follows by Proposition 4.9(ii). �

4.4. Stability of the autocovariance function

Let N be a PMA of the form (4.1), where Z is a centered square-integrable Lévy process, and
f (t) = cH t

H−1/2
+ , where H ∈ (0,1). (Recall that if Z is a Brownian motion, then N is an fBm

of index H .) Let X be a QOU process driven by N with parameter λ > 0, and recall that by
Proposition 4.2, X is an MA of the form

Xt =
∫ t

−∞
ψH (t − s)dZs, t ∈ R,

where

ψH (t) = cH

(
tH−2/2 − λe−λt

∫ t

0
eλuuH−1/2 du

)
, t ≥ 0.
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Below we will discus some stability properties for the autocovariance function under minor mod-
ification of the kernel function.

For all bounded measurable functions f : R+ → R with compact support, let X
f
t =∫ t

−∞(ψH (t − s) − f (t − s))dZs . We will think of Xf as an MA where we have made a mi-

nor change of X’s kernel. Note that if we let Y
f
t = Xt − X

f
t = ∫ t

−∞ f (t − s)dZs , then the
autocovariance function RYf (t), of Yf , is zero whenever t is large enough due to the fact that f

has compact support.

Corollary 4.11. We have the following two situations in which c1, c2, c3 �= 0 are non-zero con-
stants.

(i) For H ∈ (0, 1
2 ) and

∫ ∞
0 f (s)ds �= 0, we have for t → ∞,

RXf (t) ∼ c2RX(t)t1/2−H ∼ c1t
H−3/2.

(ii) For H ∈ ( 1
2 ,1), we have for t → ∞,

RXf (t) ∼ RX(t) ∼ c3t
2H−2.

Thus for H ∈ (0, 1
2 ), the above shows that the behavior of the autocovariance function at

infinity is changed dramatically by making a minor change of the kernel. In particular, if f is
a positive function, not the zero function, then RXf (t) behaves as t1/2−H RX(t) at infinity. On
the other hand, when H ∈ ( 1

2 ,1), the behavior of the autocovariance function at infinity does not
change if we make a minor change to the kernel. That is, in this case the autocovariance function
has a stability property, contrary to the case where H ∈ (0, 1

2 ).

Remark 4.12. Note that the dramatic effect appearing from Corollary 4.11(i) is associated with
the fact that

∫ ∞
0 ψH (s)ds = 0, as shown in Lemma 4.5.

Proof of Corollary 4.11. By Corollary 4.3 we have for t → ∞ that ψH (t) ∼ ctα , where c =
cH (H −1/2)/λ and α = H −3/2. To show (i), assume that H ∈ (0, 1

2 ) and hence α ∈ (−∞,−1).
According to Lemma 4.5, we have that

∫ ∞
0 ψH (s)ds = 0 and hence

∫ ∞
0 [ψH (s) − f (s)]ds �= 0,

since
∫ ∞

0 f (s)ds �= 0 by assumption. From Proposition 4.6(ii) and for t → ∞, we have that
RXf (t)(t) ∼ c1t

2α+1 = c1t
H−3/2, where c1 = c

∫ ∞
0 [ψH (s) − f (s)]ds. On the other hand, by

Corollary 2.6 we have that RX(t) ∼ (H(H − 1/2)/λ2)t2H−2 for t → ∞, and hence we have
shown (i) with c2 = c1λ

2/(H(H − 1/2). For H ∈ ( 1
2 ,1) we have that α ∈ (−1,− 1

2 ), and hence
(ii) follows by Proposition 4.6(i). �

Appendix

In this Appendix we will show an auxiliary continuity result used several times in the paper.
The main result in this Appendix is Theorem A.1; Corollary A.3 is used in Theorem 2.1, while
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the general modular setting is needed to prove Proposition 4.2. For the basic definitions and
properties of linear metric spaces, modulars and F -norms, we refer to Rolewicz [32].

Let (E, E ,μ) be a σ -finite measure space, and φ : R → R+ an even and continuous function
that is non-decreasing on R+, with φ(0) = 0. Assume there exists a constant C > 0 such that
φ(2x) ≤ Cφ(x) for all x ∈ R (that is, φ satisfies the �2 condition). Let L0 = L0(E, E ,μ) denote
the space of all measurable functions from E into R; � denote the modular on L0 given by

�(g) =
∫

E

φ(g)dμ, g ∈ L0;

and Lφ = {g ∈ L0 : �(g) < ∞} denote the corresponding modular space. Furthermore, for g ∈
L0, define

ρ(g) = inf{c > 0: �(g/c) ≤ c} and ‖g‖φ = inf{c > 0: �(g/c) ≤ 1}.
Then ρ is an F -norm on Lφ and, in particular, dφ(f, g) = ρ(f − g) is an invariant metric on Lφ .
Moreover, when φ is convex, the Luxemburg norm ‖ · ‖φ is a norm on Lφ ; see Khamsi [21].

Theorem A.1. Let f : R×E → R denote a measurable function satisfying ft = f (t, ·) ∈ Lφ for
all t ∈ R, and

dφ(ft+u, fv+u) = dφ(ft , fv) for all t, u, v ∈ R. (A.1)

Then, (t ∈ R) �→ (ft ∈ Lφ) is continuous. Moreover, if φ is convex, then there exist α,β > 0 such
that ‖ft‖φ ≤ α + β|t | for all t ∈ R.

To prove Theorem A.1, we shall need the following lemma.

Lemma A.2. Let f : R × E → R denote a measurable function, such that ft ∈ Lφ for all t ∈ R.
Then, (t ∈ R) �→ (ft ∈ Lφ) is Borel measurable and has a separable range.

Recall that f :E → F has a separable range, if f (E) is a separable subset of F .

Proof of Lemma A.2. We will use a monotone class lemma argument to prove this result, so let
M2 be the set of all functions f for which Lemma A.2 holds and M1 be the set of all functions
f of the form

ft (s) =
n∑

i=1

αi1Ai
(t)1Bi

(s), t ∈ R, s ∈ E,

where, for n ≥ 1, A1, . . . ,An are measurable subsets of R, B1, . . . ,Bn are measurable subsets
of E of finite μ measure and α1, . . . , αn ∈ R. Let us show that �f : (t ∈ R) �→ (ft ∈ Lφ) is
measurable. Since, for all g ∈ Lφ , t �→ dφ(ft , g) is measurable, we get that for all g ∈ Lφ and
r > 0, �−1

f (B(g, r)) is measurable (we use the notation, B(g, r) = {h ∈ Lφ : dφ(g,h) < r}).
Therefore, since �f has separable range, it follows that �f is measurable (recall that the Borel
σ -field in a separable metric space is generated by the open balls). This shows that M1 ⊆ M2.
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Note that the set bM2 of bounded elements from M2 is a vector space with 1 ∈ bM2, and that
(fn)n≥1 ⊆ bM2 with 0 ≤ fn ↑ f ≤ K implies that f ∈ bM2. Moreover, since M1 is stable
under pointwise multiplication, the monotone class lemma (see [31], Chapter II, Theorem 3.2)
shows that

bM
(

B(R) × F
) = bM(σ (M1)) ⊆ bM2.

(For a family of functions M, σ(M) denotes the least σ -algebra for which all the functions are
measurable, and for each σ -algebra E , bM(E ) denotes the space of all bounded E -measurable
functions.) For a general function f , define f (n) by f

(n)
t = ft1{|ft |≤n}. For all n ≥ 1, f (n) is

a bounded measurable function and hence �f (n) is a measurable map with a separable range.
Moreover, limn �f (n) = �f pointwise in Lφ , showing that �f is measurable and has a separable
range. �

Proof of Theorem A.1. Let �f denote the map (t ∈ R) �→ (ft ∈ Lφ), and for fixed ε > 0
and arbitrary t ∈ R, consider the ball Bt = {s ∈ R: dφ(ft , fs) < ε}. By Lemma A.2, �f is
measurable, and hence Bt is a measurable subset of R for all t ∈ R. According to Lemma A.2,
�f has a separable range and, therefore, there exists a countable set (tn)n≥1 ⊆ R such that the
range of �f is included in

⋃
n≥1 B(ftn, ε), implying that R = ⋃

n≥1 Btn . In particular, there
exists an n ≥ 1 such that Btn has a strictly positive Lebesgue measure. By the Steinhaus lemma,
see [12], Theorem 1.1.1, there exists a δ > 0 such that (−δ, δ) ⊆ Btn − Btn . Note that by (A.1)
it is enough to show continuity of �f at t = 0. For |t | < δ there exists, by definition, s1, s2 ∈ R

such that dφ(ftn, fsi ) < ε for i = 1,2, showing that

dφ(ft , f0) ≤ dφ(ft , fs1) + dφ(ft , fs2) < 2ε,

which completes the proof of the continuity part.
To show the last part of the theorem, assume that φ is convex. For each t > 0 choose n =

0,1,2, . . . such that n ≤ t < n + 1. Then,

‖ft − f0‖φ ≤
n∑

i=1

‖fi − fi−1‖φ + ‖ft − fn‖φ

(A.2)
≤ n‖f1 − f0‖φ + ‖ft−n − f0‖φ ≤ tβ + a,

where β = ‖f1 − f0‖φ and a = sups∈[0,1] ‖fs − f0‖φ . We have already shown that t �→ ft is
continuous, and hence a < ∞. Since ‖f−t − f0‖φ = ‖ft − f0‖φ for all t ∈ R, (A.2) shows that
‖ft − f0‖φ ≤ a + β|t | for all t ∈ R, implying that ‖ft‖φ ≤ α + β|t |, where α = a + ‖f0‖φ . �

For (E, E ,μ) = (�, F ,P ) and φ(t) = |t |p for p > 0 or φ(t) = |t | ∧ 1 for p = 0, we have the
following corollary to Theorem A.1.

Corollary A.3. Let p ≥ 0 and X = (Xt )t∈R be a measurable process with stationary increments
and finite p moments. Then X is continuous in Lp . Moreover, if p ≥ 1, then there exist α,β > 0
such that ‖Xt‖p ≤ α + β|t | for all t ∈ R.
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Note that in Corollary A.3 the reversed implication is also true; in fact, all stochastic processes
X = (Xt )t∈R that are continuous in L0 have a measurable modification according to Theorem 2
in Cohn [15]. The idea of using the Steinhaus lemma to prove Theorem A.1 is borrowed from
Surgailis et al. [38], where Corollary A.3 is shown for p = 0. Furthermore, when μ is a proba-
bility measure and φ(t) = |t | ∧ 1, Lemma A.2 is known from Cohn [15].
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