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We propose two nonparametric tests for investigating the pathwise properties of a signal modeled as the
sum of a Lévy process and a Brownian semimartingale. Using a nonparametric threshold estimator for
the continuous component of the quadratic variation, we design a test for the presence of a continuous
martingale component in the process and a test for establishing whether the jumps have finite or infinite
variation, based on observations on a discrete-time grid. We evaluate the performance of our tests using
simulations of various stochastic models and use the tests to investigate the fine structure of the DM/USD
exchange rate fluctuations and SPX futures prices. In both cases, our tests reveal the presence of a non-zero
Brownian component and a finite variation jump component.
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volatility; semimartingale

1. Introduction

Continuous-time stochastic models based on discontinuous semimartingales have been increas-
ingly used in many applications, such as financial econometrics, option pricing and stochastic
control. Some of these models are constructed by adding i.i.d. jumps to a continuous process
driven by Brownian motion [16,22], while others are based on purely discontinuous processes
which move only through jumps [8,18]. Even within the class of purely discontinuous models,
one finds a variety of models with different path properties – finite/infinite jump intensity, fi-
nite/infinite variation – which turn out to have an importance in applications, such as optimal
stopping [5] and the asymptotic behavior of option prices [9,10]. It is therefore of interest to in-
vestigate which class of models – diffusion, jump-diffusion or pure-jump – is the most appropri-
ate for a given data set. Nonparametric procedures have been recently proposed for investigating
the presence of jumps [2,6,17] and studying some fine properties of the jumps [3,4,25,26] in a sig-
nal. Here, we address related, but different, issues: for a semimartingale whose jump component
is a Lévy process, we propose a test for the presence of a continuous martingale component in
the price process, which allows us to discriminate between pure-jump and jump-diffusion mod-
els, and a test for determining whether the jump component has finite or infinite variation. Our
tests are based on a nonparametric threshold estimator [20] for the integrated variance (defined
as the continuous component of the quadratic variation) based on observations on a discrete-time
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grid. Without imposing restrictive assumptions on the continuous martingale component, we ob-
tain a central limit theorem for this threshold estimator (Section 3) and use it to design our tests
(Section 4).

Using simulations of stochastic models commonly used in finance, we check the performance
of our tests for realistic sample sizes (Section 5). Applied to time series of the DM/USD ex-
change rate and SPX futures prices (Section 6), our tests reveal, in both cases, the presence of a
non-zero Brownian component, combined with a finite variation jump component. These results
suggest that these asset prices may be modeled as the sum of a Brownian martingale and a jump
component of finite variation.

2. Definitions and notation

We consider a semimartingale (Xt )t∈[0,T ], defined on a (filtered) probability space
(�, (Ft )t∈[0,T ], F , P ) with paths in D([0, T ],R), driven by a (standard) Brownian motion W

and a pure-jump Lévy process L:

Xt = x0 +
∫ t

0
as ds +

∫ t

0
σs dWs + Lt , t ∈]0, T ], (1)

where a, σ are adapted processes with right-continuous paths with left limits (cadlag processes),
such that (1) admits a unique strong solution X on [0, T ] which is adapted and cadlag [11]. L has
Lévy measure ν and may be decomposed as Lt = Jt + Mt , where

Jt :=
∫ t

0

∫
|x|>1

xμ(dx,ds) =
Nt∑
�=1

γ�, Mt :=
∫ t

0

∫
|x|≤1

x[μ(dx,ds) − ν(dx)dt]. (2)

J is a compound Poisson process representing the “large” jumps of X, μ is a Poisson random
measure on [0, T ] × R with intensity measure ν(dx)dt , N is a Poisson process with intensity
ν({x, |x| > 1}) < ∞, γ� are i.i.d. and independent of N and the martingale M is the compensated
sum of small jumps of L. We will define μ(dx,dt) − ν(dx)dt =: μ̃(dx,dt), the compensated
Poisson random measure associated to μ. We allow for the infinite activity (IA) case ν(R) = ∞,
where small jumps of L occur infinitely often. For a semimartingale Z, we denote by �iZ =
Zti − Zti−1 its increments and by �Zt = Zt − Zt− its jump at time t . The Blumenthal–Getoor
(BG) index of L, defined as

α := inf

{
δ ≥ 0,

∫
|x|≤1

|x|δν(dx) < +∞
}

≤ 2,

measures the degree of activity of small jumps. A compound Poisson process has α = 0, while an
α-stable process has BG index equal to α ∈]0,2[. The gamma process and the variance gamma
(VG) process are examples of infinite activity Lévy processes with α = 0. A pure-jump Lévy
process with BG index α < 1 has paths with finite variation, while for α > 1, the sample paths
have infinite variation a.s. When α = 1, the paths may have either finite or infinite variation [7].
The normal inverse Gaussian process (NIG) and the generalized hyperbolic Lévy motion (GHL)
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have infinite variation and α = 1. Tempered stable processes [8,10] allow for α ∈ [0,2[. We call
IV = ∫ T

0 σ 2
u du the integrated variance of X and IQ = ∫ T

0 σ 4
u du the integrated quarticity of X,

and we write

X0t =
∫ t

0
as ds +

∫ t

0
σs dWs, X1t = X0t + Jt .

We will use the following assumption.

Assumption A1.

∃α ∈ [0,2]
∫

|x|≤ε

x2ν(dx) ∼ ε2−α as ε → 0, (3)

where f (h) ∼ g(h) means that f (h) = O(g(h)) and g(h) = O(f (h)) as h → 0.

This assumption implies that α is the BG index of L. A1 is satisfied if, for instance, ν has a
density which behaves as K±

|x|1+α when x → 0±, where K± > 0. In particular, A1 holds for all
Lévy processes commonly used in finance [10]: NIG, variance gamma, tempered stable processes
or generalized hyperbolic processes.

Typically, we observe Xt in the form of a discrete record {x0,Xt1, . . . , Xtn−1,Xtn} on a time
grid ti = ih with h = T/n. Our goal is to provide, given such a discrete observations, nonpara-
metric tests for:

• detecting the presence of a continuous martingale component in the price process;
• analyzing the qualitative nature of the jump component, that is, whether it has finite or

infinite variation.

3. Central limit theorem for a threshold estimator of integrated
variance

The “realized variance”
∑n

i=1(�iX)2 of the semimartingale X converges in probability [24] to

[X]T :=
∫ T

0
σ 2

t dt +
∫ T

0

∫
R−{0}

x2μ(dx,ds).

A threshold estimator [19,20] of the integrated variance IV = ∫ T

0 σ 2
t dt is based on the idea of

summing only some of the squared increments of X, those whose absolute value is smaller than
some threshold rh:

ˆIVh :=
n∑

i=1

(�iX)2I{(�iX)2≤rh}. (4)
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The term
∫ T

0

∫
R−{0} x

2μ(dx,ds), due to jumps, vanishes as h → 0 for an appropriate choice of
the threshold. P. Lévy’s law for the modulus of continuity of the Brownian paths implies that

P

(
lim
h→0

sup
i∈{1,...,n}

|�iW |√
2h ln 1/h

≤ 1

)
= 1

and allows such a threshold to be chosen. It is shown in [20], Corollary 2, Theorem 4, that, under
the above assumptions, if we choose a deterministic threshold rh such that

lim
h→0

rh = 0 and lim
h→0

h lnh

rh
= 0, (5)

then ˆIVh
P→ IV as h → 0. If the jumps have finite intensity, then the thresholding procedure

allows as h → 0, a jump to be detected in ]ti−1, ti]. In fact, since a and σ are cadlag (or caglad),
their paths are a.s. bounded on [0, T ], so

lim sup
h→0

supi |
∫ ti
ti−1

as(ω)ds|
h

≤ A(ω) < ∞ and

(6)

lim sup
h→0

supi |
∫ ti
ti−1

σ 2
s (ω)ds|

h
≤ �(ω) < ∞ a.s.

It follows from [20] that

a.s. sup
i

| ∫ ti
ti−1

as ds + ∫ ti
ti−1

σs dWs |√
2h log 1/h

≤ A
√

h + √
� + 1 := . (7)

Since realistic values of σ for asset prices belong to [0.1,0.8] (in annual units), we have that for
small h, the r.v.  has order of magnitude of 1, thus, in the finite jump intensity case, a.s. for
sufficiently small h, (�iX)2 > rh > 2h log 1

h
indicates the presence of jumps in ]ti−1, ti].

When L has infinite activity,
∑n

i=1(�iX)2I{(�iX)2≤rh} behaves like
∑n

i=1(�iX)2 ×
I{�iN=0,|�iM|≤2

√
rh} for small h (Lemma A.2). Moreover, for any δ > 0, the jumps contributing

to the increments �iX such that (�iX)2 ≤ rh for small h have size smaller than c
√

rh + δ ([20],
Lemma 1), so their contribution vanishes when h → 0. Note that rh = chβ satisfies condition (5)
for any β ∈]0,1[ and any constant c. Since

√
2σ 
 1 in most applications, we use c = 1. Define

η2(ε) :=
∫

|x|≤ε

x2ν(dx), d(ε) :=
∫

ε<|x|≤1
xν(dx). (8)

Let us remark that if limh→0 rh = 0, then, by A1, we have, as h → 0,

η2(2√
rh
) = ∫

|x|≤2
√

rh

x2ν(dx) ∼ r
1−α/2
h ,

∫
|x|≤2

√
rh

xkν(dx) ∼ r
(k−α)/2
h ,

k = 3,4, (9)
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2
√

rh<|x|≤1
xν(dx) ∼ [c + r

(1−α)/2
h

]
I{α �=1} +

[
ln

1

2
√

rh

]
I{α=1},

∫
2
√

rh<|x|≤1
ν(dx) ∼ r

−α/2
h ,

where α is the BG index of L. The following lemma, proved in the Appendix, states that un-
der (5), each increment �iM such that |�iM| ≤ 2

√
rh only contains jumps of magnitude less

than 2
√

rh if α ≤ 1, or smaller than 2h1/(2α) log1/(2α) 1
h

if α > 1.

Lemma 3.1. Define, for h > 0, vh := h1/(2α) log1/(2α) 1
h

. Under (5). there exists a sequence
hk = T/nk tending to zero as k → ∞ such that, for k0 sufficiently large and h ∈ {hk, k ≥ k0}:

(i) if α ≤ 1, then for all i = 1, . . . , n,

�iMI{(�iM)2≤4rh}

=
(∫ ti

ti−1

∫
|x|≤2

√
rh

xμ̃(dx,dt) −
∫ ti

ti−1

∫
2
√

rh<|x|≤1
xν(dx)dt

)
I{(�iM)2≤4rh} a.s.;

(ii) if α > 1, then for all i = 1, . . . , n, we have

�iMI{(�iM)2≤4rh}

=
(∫ ti

ti−1

∫
|x|≤2vh

xμ̃(dx,dt) −
∫ ti

ti−1

∫
2vh<|x|≤1

xν(dx)dt

)
I{(�iM)2≤4rh} a.s.

Remark 3.2. Note that vh ≤ r
1/4
h so that in the case (ii) above (α > 1), for all i = 1, . . . , n, the

jumps of M on {(�iM)2 ≤ 4rh} are bounded by r
1/4
h .

Definition. Define

L
(h)
t :=

∫ t

0

∫
|x|≤2 4√rh

xμ̃(dx,dt) −
∫ t

0

∫
2 4√rh<|x|≤1

xν(dx)dt,

(10)

�iM
(h) :=

∫ ti

ti−1

∫
|x|≤2 4√rh

xμ̃(dx,dt).

By Lemma 3.1, on a subsequence, a.s. for sufficiently small h, ∀i = 1, . . . , n, on {(�iM)2 ≤
4rh}, we have

�iM = �iL
(h) = �iM

(h) − hd
(
2 4
√

rh
)
. (11)

�iM
(h) is the compensated sum of jumps smaller in absolute value than 2 4

√
rh, while hd(2 4

√
rh)

is the compensator of the (missing) jumps larger than 2 4
√

rh.
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In [20], a central limit theorem for ˆIVh was shown in the case of finite intensity jumps and
cadlag adapted σ . Theorem 3.5 extends this to the case of infinite activity without extra assump-
tions on σ . In particular, when α < 1, the error ˆIVh − IV has the same rate of convergence and
asymptotic variance as in the case of finite intensity jumps. The following proposition gives the
asymptotic variance of ( ˆIVh − IV)/

√
2h when α < 1.

Proposition 3.3. If rh = hβ with 1 > β > 1
2−α/2 ∈ [1/2,1[, then, as h → 0,

ˆIQh :=
∑

i (�iX)4I{(�iX)2≤rh}
3h

P→ IQ =
∫ T

0
σ 4

t dt.

The following result will be used to prove Theorem 3.5.

Theorem 3.4. Under Assumption A1, as h → 0,∑n
i=1(
∫ ti
ti−1

∫
|x|≤ε

xμ̃(dx,dt) − ∫ ti
ti−1

∫
|x|∈]ε,1] xν(dx)dt)2 − T �2,hε

2−α − T �2
1,hhε2−2αI{α �=1}√

T
√

�4,hε2−α/2

(12)
d→ N(0,1),

where ε = hu, 0 < u ≤ 1/2, �j,h = ∫|x|≤ε
xj ν(dx)/εj−α for j = 2,4 and �1,h = ∫

ε<|x|≤1 xν(dx)/

[(c + ε1−α)I{α �=1} + ln 1
2ε

I{α=1}] tend to non-zero constants depending on ν.

We are now ready to state our central limit theorem for the estimator ˆIVh. A sequence (Xn)

is said to converge stably in law to a random variable X (defined on an extension (�′, F ′,P ′)
of the original probability space) if limE[Uf (Xn)] = E′[Uf (X)] for every bounded continu-
ous function f : R → R and all bounded random variables U . This is obviously stronger than
convergence in law [15].

Theorem 3.5. Assume A1 and σ �≡ 0; choose rh = hβ with β > 1
2−α/2 ∈ [1/2,1[. Then:

(a) if α < 1, we have, with
st→ denoting stable convergence in law,

ˆIVh − IV√
2h ˆIQh

st→ N(0,1); (13)

(b) if α ≥ 1, then

ˆIVh − IV√
2h ˆIQh

a.s.→ +∞.

Remark. For α < 1, Jacod [13], Theorem 2.10(i), has shown a related central limit result for
the threshold estimator of IV , where L is a semimartingale, but under the additional assumption
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that σ is an Itô semimartingale. The proof of Theorem 3.5 in the case α < 1 does not rely
on [13], Theorem 2.10(i). An alternative proof under the Itô semimartingale assumption for σ

could combine the results [20] with [13], Theorem 2.10(i), in that

ˆIV − IV√
h

= ˆIV(X1) − IV√
h

+ ˆIV(M)√
h

+
∑n

i=1(�iX1)
2(I{(�iX)2≤rh} − I{(�iX1)

2≤rh})√
h

+
∑n

i=1(�iM)2(I{(�iX)2≤rh} − I{(�iM)2≤rh})√
h

+ 2

∑n
i=1 �iX1�iMI{(�iX)2≤rh}√

h
,

where

ˆIV(X1)
.=

n∑
i=1

(�iX1)
2I{(�iX1)

2≤rh}, ˆIV(M)
.=

n∑
i=1

(�iM)2I{(�iM)2≤rh}.

The first term converges stably in law by [20], the second one converges stably to zero by [13],
Theorem 2.10(i). That the remaining terms are negligible requires some further work (see the
proof of Theorem 3.5).

4. Statistical tests

4.1. Test for the presence of a continuous martingale component

We now use the above results to design a test to detect the presence of a continuous martingale
component

∫ t

0 σt dWt , given discretely recorded observations. Our test is feasible in the case
where L has BG index α < 1, that is, the jumps are of finite variation (see Section 4.2). The
test proceeds as follows. First, we choose a coefficient β ∈ [1/2,1[ close to 1. If we have an
estimate α̂ of the BG index [3,25,26], then we may choose β > 1

2−α̂
(recall that 1

2−α
∈ [1/2,1[).

We choose a threshold rh = hβ and use the estimator ˆIQh of the integrated quarticity defined in
Proposition 3.3. We have shown in Theorem 3.5 that, when σ �≡ 0 in the case α < 1, the estimator
ˆIVh is asymptotically Gaussian as h → 0. However, if σ ≡ 0, then both the numerator and the

denominator of (13) tend to zero. To handle this case, we add an i.i.d. noise term:

�iX
v := �iX + v

√
hZi, Zi

i.i.d.∼ N(0,1).

As h → 0,

n∑
i=1

(�iX
v)2 P→ [Xv]T =

∫ T

0
σ 2

s ds + v2T + T

∫
R−{0}

x2μ(dx,ds)

and I{(�iX
v)2≤rh} removes the jumps of Xv so that under the assumptions of Theorem 3.5, as

h → 0,

ˆIVv

h :=
n∑

i=1

(�iX
v)2I{(�iX

v)2≤rh}
P→
∫ T

0
σ 2

s ds + v2T .
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Under the null hypothesis σ ≡ 0, we have ˆIVv

h

P→ v2T , ˆIQv

h := ∑i (�iX
v)4I{(�iX

v)2≤rh}/
(3h)

P→ v4T and

Uh := ˆIVv

h − v2T√
2h ˆIQv

h

st→ N . (14)

Note that if, on the contrary, σ �≡ 0, then we have that the limit in probability of ˆIVv

h is strictly
larger than v2T and, by Lemma A.2, passing to a subsequence, a.s.

lim
h→0

h ˆIQv

h = 1

3
lim
h→0

∑
i

(�iX
v)4I{(�iX

v)2≤rh} = 1

3
lim
h→0

∑
i

(�iX
v)4I{�iN=0,(�iM)2≤2rh}

≤ 1

3
lim
h→0

∑
i

(
�iX0 + �iM + v

√
hZi

)4
I{(�iM)2≤2rh}

≤ c

3
lim
h→0

∑
i

(�iX0)
4 + c

3
lim
h→0

∑
i

(�iM)4I{(�iM)2≤2rh} + c

3
lim
h→0

∑
i

(
v
√

hZi

)4
.

Using the facts that limh→0
∑

i (�iM)4I{(�iM)2≤2rh} ≤ limh→0 2rh
∑

i (�iM)2I{(�iM)2≤2rh} =
0, by (44),

∑
i (�iX0)

4/h
P→ c
∫ T

0 σ 4
s ds and

∑
i (v

√
hZi)

4/h
a.s.→ cv4, we have, as h → 0,

h ˆIQv

h

P→ 0. Therefore, under the alternative (H1)σ �≡ 0, Uh → +∞ and P {|Uh| > 1.96} → 1,
so the test is consistent.

Local power of the test. To investigate the local power of the test Uh, we consider a sequence
of alternatives (Hh

1 )σ = σh, where σh ↓ 0. We denote by ˆIQv

σh,Uσh the statistics analogous to
ˆIQv

h,Uh, but constructed from Xh
t = x0 + ∫ t

0 as ds + ∫ t

0 σh
s dWs + Lt , t ∈]0, T ]. In the case of

constant σ and σh, and finite jump intensity, using standard results on convergence of sums of a
triangular array [14], Lemmas 4.1 and 4.3, we have

ˆIQv

σh

ucp→ v4T , Uσh
d→ lim

h→0

(σh)2

√
h

T + √
2v2ZT ,

where
ucp→ denotes uniform convergence in probability on compacts subsets of [0, T ] [24] and

Z is a standard Brownian motion. So, either Uσh tends in distribution to c + √
2v2ZT , if σh =

O(h1/4), or Uσh → ∞, if h1/4 = o(σ h). Thus, if c is a (possibly zero) constant, we have:

if
σh

h1/4
→ c, then P {Uσh > 1.64|Hh

1 } → P

{
Z1 >

1.64 − c2T√
2T v2

}
;

if
σh

h1/4
→ +∞, then P {Uσh > 1.64|Hh

1 } → 1.

For values of v in Section 5, we have 1.64/
√

2T v2 = O(108) and thus the local power of the test
is small if σh = O(h1/4).
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4.2. Testing whether the jump component has finite variation

To construct a test for discriminating α < 1 from α ≥ 1, Theorem 3.5 suggests the use of ( ˆIVh −
IV)/

√
2h ˆIQh, but this requires knowing the process σ to compute IV . We propose a feasible

alternative. Consider, instead, the estimator

Ĥh :=
n∑

i=1

�iXI{(�iX)2>rh} = XT −
n∑

i=1

�iXI{(�iX)2≤rh}.

Proposition 4.1. When α < 1, Ĥh is a consistent estimator of JT + mT , m := ∫ 1
−1 xν(dx).

Consider Zi = �iW
v , where Wv is a Wiener process independent of W,L, and define

�iĤ
v := �iXI{(�iX)2>rh} + v

√
hZi and Hv

T := JT + mT + vWv
T .

Under the null hypothesis α < 1,

ˆIVHv

h :=
∑

i

(�iĤ
v)2I{(�iĤ

v)2≤rh}

is an estimator of the integrated variance v2T of Hv , so, under the null hypothesis (H0) α < 1,

we can find β > 1
2−α

∈] 1
2 ,1[ such that

U
(α)
h := ˆIVHv

h − v2T√
2h ˆIQHv

h

d→ N(0,1), (15)

where ˆIQHv

h := 1
3h

∑
i (�iĤ

v)4I{(�iĤ
v)2≤rh} and rh = hβ . In particular, P {|U(α)

h | > 1.96} →
5%.

If, on the contrary, α ≥ 1, then reasoning as in Theorem 3.5, for any β ∈]0,1[, we have

U
(α)
h

P→ +∞, so the test is consistent. If |U(α)
h | > 1.96, then we reject (H0) α < 1 at the 95%

confidence level.

Remark. To apply this test, we first need to decide whether α < 1, using the previously described
test.

5. Numerical experiments

5.1. Testing the finite variation of the jump component

We simulate n increments �iX of a process X = σW + L, where L is a symmetric α-stable
Lévy process, σ = 0.2. We generate 1000 independent samples containing n increments each
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Table 1. Testing for finite variation of jumps: α-stable process plus Brownian

motion. pct is the percentage of outcomes where |U(α)
(j)

| > 1.96

n h v α pct α pct

1000 5 min 0.000001 0.6 0.067 1.6 0.439
1000 5 min 0.0001 0.6 0.056 1.6 0.407
1000 5 min 0.01 0.6 0.047 1.6 0.250
1000 5 min 0.1 0.6 0.053 1.6 0.726
1000 1 min 0.0001 0.6 0.049 1.6 0.241
1000 1 hour 0.0001 0.6 0.051 1.6 0.875
1000 1 day 0.0001 0.6 0.066 1.6 0.984

100 5 min 0.0001 0.6 0.065 1.6 0.137
10 000 5 min 0.0001 0.6 0.065 1.6 0.928

and compute U
(α)
h as in (15) for a range of values of v, h (1 minute, 5 minutes, 1 hour, 1 day) and

number of observations n. Table 1 reports the percentage (pct) of outcomes where |U(α)
h(j)| > 1.96,

j = 1, . . . ,1000, for threshold exponent β = 0.999. Note that with n = 1000 and h equal to
five minutes (h = 1/(252 × 84)), we have T < 1 year; for α = 0.6, the lower bound for β is

1
2−α

= 0.71; when n = 1000, h = 1/(84 × 252) and the BG index of L is 0.6 (resp., 1.6), the

ratio of v = 10−4 to the standard deviation of the increments �iX is 0.074 (resp., 0.022). The
test results are observed to be reliable if we use n = 10 000 observations, a time resolution of five
minutes and v = 10−4. In fact, when the data-generating process has BG index 0.6, the test leads
us to accept the hypothesis (H0) α < 1 in about 94 cases out of 100. On the contrary, when the
process has BG index 1.6, the test tells us to reject (H0) in 92 cases out of 100.

5.2. Test for the presence of a Brownian component

We simulate 1000 independent paths of a process Xt = ∫ t

0 σu dWu + L, for different Lévy pro-
cesses L and constant or stochastic σ , on a time grid with n steps. We take threshold rh = h0.999.
For each trial j = 1, . . . ,1000, we compute Uh(j) given in (14) and report the percentage (pct)
of cases where |Uh(j)| > 1.96.

Example 5.1 (Brownian motion plus compound Poisson process, BG index α = 0). We con-
sider here constant σ and L =∑Nt

i=1 Bi , a compound Poisson process with i.i.d. N(0,0.62) sizes
of jump and jump intensity λ = 5 (as in [1]). Table 2 illustrates the performance of our test
for various time steps h, numbers of observations n and noise levels v: Note that when σ = 0
(resp., 0.2), n = 1000 and h = 1/(84 × 252) the ratio of v = 10−4 to the standard deviation of
the returns �iX equals 0.007 (resp., 0.052).

We find that the test is reliable for values n = 1000, h = 5 minutes and v = 10−4 since it
correctly accepts (H0) in 95 cases out of 100 and rejects (H0) in all cases when it is false.
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Table 2. Testing for the presence of a Brownian component: case of Brownian
motion plus compound Poisson jumps (Example 5.1)

n h v σ pct σ pct

1000 5 min 0.000001 0 0.043 0.2 1
1000 5 min 0.0001 0 0.048 0.2 1
1000 5 min 0.01 0 0.054 0.2 1
1000 5 min 0.1 0 0.041 0.2 1
1000 1 min 0.0001 0 0.047 0.2 1
1000 1 hour 0.0001 0 0.054 0.2 1
1000 1 day 0.0001 0 0.082 0.2 1

100 5 min 0.0001 0 0.065 0.2 1
10 000 5 min 0.0001 0 0.049 0.2 1

Example 5.2 (Brownian motion plus α-stable jumps: α ∈]0,2[). Here, L is a symmetric α-
stable Lévy process and σ is constant. The results in Table 3 confirm the satisfactory performance
of the test when α = 0.3 < 1 for n = 1000, h = 5 minutes and v = 10−4.

Table 4, for the case α = 1.2 > 1, confirms that we cannot rely on the test results in this case:
even when σ ≡ 0, the statistic Uh diverges if α ≥ 1.

The main point here is that we may use a model-free choice of threshold.

Example 5.3 (Stochastic volatility plus variance gamma jumps: α = 0). Let us now consider a
model X with stochastic volatility σt , correlated with the Brownian motion driving X and with
jumps given by an independent variance gamma process:

dXt = (μ − σ 2
t /2)dt + σt dW

(1)
t + dLt ,

Table 3. Testing for the presence of a Brownian component: case of Brownian
motion plus α-stable Lévy process with α = 0.3 (Example 5.2)

n h v σ pct σ pct

1000 5 min 0.000001 0 0.042 0.2 1
1000 5 min 0.0001 0 0.026 0.2 1
1000 5 min 0.01 0 0.054 0.2 1
1000 5 min 0.1 0 0.053 0.2 1
1000 1 min 0.0001 0 0.046 0.2 1
1000 1 hour 0.0001 0 0.140 0.2 1
1000 1 day 0.0001 0 0.805 0.2 1

100 5 min 0.0001 0 0.056 0.2 1
10 000 5 min 0.0001 0 0.165 0.2 1
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Table 4. Testing for the presence of a Brownian component: case of Brownian
motion plus α-stable Lévy process with α = 1.2 (Example 5.2)

n h v σ pct σ pct

1000 5 min 0.000001 0 1 0.2 1
1000 5 min 0.0001 0 1 0.2 1
1000 5 min 0.01 0 1 0.2 1
1000 5 min 0.1 0 1 0.2 1
1000 1 min 0.0001 0 1 0.2 1
1000 1 hour 0.0001 0 1 0.2 1
1000 1 day 0.0001 0 1 0.2 1

100 5 min 0.0001 0 0.994 0.2 1
10 000 5 min 0.0001 0 1 0.2 1

where

σt = eKt , dKt = −k(Kt − K̄)dt + ς dW
(2)
t , d

〈
W(1),W(2)

〉
t
= ρ dt, (16)

W(�) are standard Brownian motions, � = 1,2,3, and Lt = cGt + ηW
(3)
Gt

is an independent
variance gamma process, a pure-jump Lévy process with BG index α = 0 [18]; G is a gamma
subordinator independent of W(3) with Gh ∼ �(h/b, b). For σ, we choose K0 = ln(0.3), k =
0.09, K̄ = ln(0.25), ς = 0.05 to ensure that σ fluctuates in the range 0.2–0.4. As for the jump
part of X, we use Var(G1) = b = 0.23, η = 0.2, c = −0.2, estimated from the S&P 500 index
in [18]. The remaining parameters are ρ = −0.7 and μ = 0. The following results in Table 5
confirm the reliability of the test for the presence of a Brownian component with n = 1000,
h = 5 minutes and v = 10−4.

Remark. In [21], a variable threshold function is used to estimate the volatility, in order to ac-
count for heteroscedasticity and volatility clustering, with results very similar to the ones ob-

Table 5. Testing for the presence of a Brownian component: stochastic volatil-
ity process with variance gamma jumps (Example 5.3)

n h v σ pct σ pct

1000 5 min 0.000001 0 0.032 Stoch. 1
1000 5 min 0.0001 0 0.017 Stoch. 1
1000 5 min 0.01 0 0.027 Stoch. 1
1000 5 min 0.1 0 0.054 Stoch. 1
1000 1 min 0.0001 0 0.034 Stoch. 1
1000 1 hour 0.0001 0 0.918 Stoch. 1
1000 1 day 0.0001 0 1.000 Stoch. 1

100 5 min 0.0001 0 0.049 Stoch. 1
10 000 5 min 0.0001 0 0.912 Stoch. 1
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tained with a constant threshold. This is justified by the fact that in most applications, values
of σ are within the range [0.1, 0.8], thus the order of magnitude of  in (7) is o 1.

6. Applications to financial time series

We apply our tests to explore the fine structure of price fluctuations in two financial time series.
We consider the DM/USD exchange rate from October 1st, 1991 to November 29th, 1994 and
the SPX futures prices from January 3rd, 1994 to December 18th, 1997. From high-frequency
time series, we build five-minute log-returns (excluding, in the case of SPX futures, overnight
log-returns). This sampling frequency avoids many microstructure effects seen at shorter time
scales (e.g., seconds), while leaving us with a relatively large sample.

6.1. Deutsche Mark/USD exchange rate

The DM/USD exchange rate time series was compiled by Olsen & Associates. We consider the
series of 64 284 equally spaced five-minute log-returns, with h = 1

252×84 ≈ 4.7×10−5, displayed
in Figure 1.

Barndorff-Nielsen and Shephard [6] provide evidence for the presence of jumps in this series
using nonparametric methods. Using as threshold rh = h0.999, we apply the test of Section 5.1
to the degree of activity of the jump component. As in the simulation study, we divide the data
into 64 non-overlapping batches of n = 1000 observations each and compute, for each batch,
the statistic U

(α)
h(j), j = 1, . . . ,64, with v = 10−4. Only 4.7% of the values observed are outside

the interval [−1.96,1.96], hence we cannot reject the assumption (H0) α < 1. Given this result,
we can now use the test in Section 5.2 for the presence of a Brownian component in the price
process. Computation of the statistic Uh shows values much larger than 1.96 for all batches: we
reject (H0) σ ≡ 0. These results indicate, for instance, that a variance gamma model, with no
Brownian component, would be inadequate for the DM/USD time series.

Figure 1. Left: DM/USD five-minute log-returns, October 1991 to November 1994. Center: plot of
�iXI{(�iX)2≤rh}, i = 1, . . . , n. Right: increments with jumps �iXI{(�iX)2>rh}, i = 1, . . . , n.
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Figure 2. Left: SPX five-minute log-returns, January 1994 to December 1997. Center: plot of
�iXI{(�iX)2≤rh}, i = 1, . . . , n. Right: increments with jumps �iXI{(�iX)2>rh}, i = 1, . . . , n.

6.2. S&P 500 index

We consider a series of 78 497 non-overlapping five-minute log-returns, as displayed in Figure 2.
Using as threshold rh = h0.999, we decompose the series into periods displaying jumps and other
periods, as displayed in Figure 2 (central and right panels).

We divide the data into 78 non-overlapping batches of n = 1000 observations each and com-
pute, for each batch, the statistic U

(α)
h(j)

, j = 1, . . . ,64, with v = 10−4. 5.1% of the values ob-
served are outside the interval [−1.96,1.96]: for this period, we cannot reject the assumption
(H0) α < 1. Given this result, we can use the test for the presence of a Brownian component
in the price process. Computation of the statistic Uh shows values much larger than 1.96 for all
batches: we reject (H0) σ ≡ 0. The test thus indicates the presence of a Brownian martingale
component.

We note that our findings contradict the conclusion of Carr et al. [8] who model the (log-) SPX
index from 1994 to 1998 as a tempered stable Lévy process plus a Brownian motion and propose
a pure-jump model using a parametric estimation method. Under less restrictive assumptions on
the structure of the process and using our nonparametric test, we find evidence for a non-zero
Brownian component in the index.

Appendix: Technical results and proofs

Proof of Lemma 3.1. By [23], Theorem 25.1, there exists a sequence (nk) such that

sup
tj ∈�(nk)

∣∣∣∣(�jM)2 −
∑

s∈]tj−1,tj ]
(�Ms)

2
∣∣∣∣ a.s.→ 0, (17)



Nonparametric tests for pathwise properties of semimartingales 795

where �(nk) is the partition of [0, T ] on which the increments (�iM)2 are constructed. Let us
rename nk as n. Using Itô’s formula, we have

(�iM)2 −
∑

s∈]ti−1,ti ]
(�Ms)

2 = 2
∫ ti

ti−1

(Ms− − Mti−1)dMs.

(i) For α < 1, our statement is proved in [21], Lemma A.2, which uses the fact that the speed
of convergence to 0 of

∑n
i=1 | ∫ ti

ti−1
(Ms− −Mti−1)dMs | is shown in [12] to be un = n. For α = 1,

the same reasoning can be repeated since un = n/(logn)2 does not change the conclusion.
(ii) If α > 1, we have un = (n/ logn)1/α and can only conclude that a.s. for small h,

sup
i

∣∣∣∣
∫ ti

ti−1

(Ms− − Mti−1)dMs

∣∣∣∣≤ cu−1
n

with c > 0, so that a.s. for small h, we have

sup
i

( ∑
s∈]ti−1,ti ]

(�Ms)
2
)

I{(�iM)2≤4rh} ≤ sup
i

∣∣∣∣(�iM)2 −
∑

s∈]ti−1,ti ]
(�Ms)

2
∣∣∣∣+ sup

i

|(�iM)2|

≤ cu−1
n + 4rh = O

(
δ1/α log1/α 1

h

)
. �

Lemma A.1. Under (5):

(i) there exists a strictly positive variable h̄ such that for all i = 1, . . . , n,

I{h≤h̄}I{(�iX0)
2>rh} = 0 a.s.; (18)

(ii)

∀c > 0, nP {�iN �= 0, (�iM)2 > crh} h→0−→0; (19)

(iii) in the case rh = hβ , β ∈]0,1[, we have

lim sup
h→0

hαβ/2
n∑

i=1

P {(�iX)2 > rh} ≤ c. (20)

Proof. Equality (18) is a consequence of (7), while (19) is a consequence of the independence
of N and M , and of the Chebyshev inequality: as h → 0,

nP {�iN �= 0, (�iM)2 > crh} ≤ nO(h) · E[(�iM)2]
crh

= O

(
h

rh

)
.

The proof of (20) can be achieved as in [3], Lemma 6, but we give a simpler proof under our
assumptions. It is sufficient to show that

P {(�iX)2 > rh} ≤ ch1−αβ/2. (21)
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First, we show that

P
{|�iX| > √

rh
}= P

{|�iM| > √
rh/4
}+ O(h1−αβ/2) (22)

so that for (21), it is sufficient to prove that

P
{|�iM| > √

rh/4
}≤ ch1−αβ/2. (23)

To show (22), note that if |�iX| >
√

rh, then either �iJ �= 0 or |�iM| >
√

rh/4 since, for
small h,

√
rh < |�iX| ≤ |�iX0| + |�iJ | + |�iM| ≤ √

rh/2 + |�iJ | + |�iM| a.s. (24)

Thus,

P
{|�iX| > √

rh
}≤ P {�iJ �= 0} + P

{|�iM| > √
rh/4
}

and since P {�iJ �= 0} = O(h) = o(h1−αβ/2), (22) is verified.
In order to verify (23), define Ñt :=∑s≤t I{|�Ms |>√

rh/4} and write

P
{|�iM| > √

rh/4
} = P

{
�iÑ = 0, |�iM| > √

rh/4
}

+ P
{
�iÑ ≥ 1, |�iM| > √

rh/4
}

(25)

≤ P {�iÑ ≥ 1} + P
{
�iÑ = 0, |�iM| > √

rh/4
}
.

Note that Ñt = ∫ t

0

∫
|x|>√

rh/4 μ(dx,dt) is a compound Poisson process with intensity ν{|x| >
√

rh/4} = O(r
−α/2
h ), so P {�iÑ ≥ 1} = O(hν{|x| >

√
rh/4}) = O(h1−αβ/2) and thus the first

term above is dominated by h1−αβ/2, as required. Finally, on {�iÑ = 0}, M does not have jumps
bigger than

√
rh/4 on the interval ]ti−1, ti], so

�iM =
∫ ti

ti−1

∫
|x|≤√

rh/4
xμ̃(dx,dt) − h

∫
√

rh/4<|x|≤1
xν(dx),

therefore

P
{
�iÑ = 0, |�iM| > √

rh/4
} ≤ P

{|�iM| > √
rh/4, |�Ms | ≤ √

rh/4 for all s ∈]ti−1, ti]
}

≤ 4
E[(�iM)2I{|�Ms |≤√

rh/4 for all s∈]ti−1,ti ]}]
rh

= O

(
hη2(rh/4)

rh

)
= O(h1−αβ/2)

and (23) is verified. �
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Proof of Proposition 3.3.

∑
i (�iX)4I{(�iX)2≤rh}

3h

=
∑

i (�iX1)
4I{(�iX1)

2≤4rh}
3h

+ 1

3h

∑
i

(�iX1)
4(I{(�iX)2≤rh} − I{(�iX1)

2≤4rh}
)

+
4∑

k=1

(
4
k

) ∑
i (�iX1)

4−k(�iM)kI{(�iX)2≤rh}
3h

:=
3∑

j=1

Ij (h).

By Proposition 1 in [20], I1(h) tends to
∫ T

0 σ 4
t dt in probability. We show here that the

other terms tend to zero in probability. Let us consider I2(h) := 1
3h

∑
i (�iX1)

4(I{(�iX)2≤rh} −
I{(�iX1)

2≤4rh}): on {(�iX)2 ≤ rh, (�iX1)
2 > 4rh}, we have

√
rh ≥ |�iX| > |�iX1| − |�iM| > 2

√
rh − |�iM|, (26)

so |�iM| > √
rh. Moreover, if |�iX1| > 2

√
rh, then we necessarily have �iN �= 0 since

|�iX0| + |�iJ | ≥ |�iX1| > 2
√

rh (27)

and, by (18), a.s. for sufficiently small h, for all i = 1, . . . , n, |�iX0| ≤ √
rh, thus |�iJ | >

2
√

rh − |�iX0| ≥ √
rh. It follows that

P

{
1

h

∑
i

(�iX1)
4I{(�iX)2≤rh,(�iX1)

2>4rh} �= 0

}
≤ nP

{|�iM| > √
rh,�iN �= 0

}→ 0,

by Lemma A.1. On the other hand, for all i = 1, . . . , n on {(�iX1)
2 ≤ 4rh}, we have, for suffi-

ciently small h, �iN = 0 because

|�iJ | − |�iX0| ≤ |�iX1| ≤ 2
√

rh, (28)

so if �iN �= 0, then a.s. for small h, we in fact have �iN = 1 and �Js ≥ 1, by the definition of J .
Therefore, if �iN �= 0, we would have 1 ≤ |�iJ | ≤ 2

√
rh + √

rh = 3
√

rh, which is impossible
for small h. It follows that

{(�iX)2 > rh, (�iX1)
2 ≤ 4rh} ⊂ {(�iX0 + �iM)2 > rh}

⊂
{
(�iX0)

2 >
rh

4

}
∪
{
(�iM)2 >

rh

4

}
.
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This implies, by (18) and (23), that a.s. as h → 0,

1

h

∑
i

(�iX1)
4I{(�iX)2>rh,(�iX1)

2≤4rh} ≤
∑

i (�iX0)
4I{(�iM)2>rh/4}
h

≤ 4h ln2 1

h

∑
i

I{(�iM)2>rh/4}
P→ 0.

We can conclude that I2(h)
P→ 0 as h → 0. Now, consider I3(h) :=∑4

k=1

(
4
k

)
I3,k(h), where

I3,k(h) := 1

3h

∑
i

(�iX1)
4−k(�iM)kI{(�iX)2≤rh}, k = 1, . . . ,4,

is decomposable as

1

3h

∑
i

(�iX1)
4−k(�iM)kI{(�iX)2≤rh,(�iM)2≤4rh}

(29)

+ 1

3h

∑
i

(�iX1)
4−k(�iM)kI{(�iX)2≤rh,(�iM)2>4rh}.

We have, a.s. for small h, that for all i on {(�iX)2 ≤ rh, (�iM)2 > 4rh}, �iN �= 0 since

2
√

rh − |�iX1| < |�iM| − |�iX1| ≤ |�iX| ≤ √
rh

and then |�iX1| >
√

rh and, similarly as in (27), |�iJ | > 3
√

rh/4. So, the probability that the
second term of (29) differs from zero is bounded by (19) and tends to zero. As for the first
term, a.s. for sufficiently small h, for all i on {(�iX)2 ≤ rh, (�iM)2 ≤ 4rh}, we have �iN = 0
because

|�iX1| − |�iM| ≤ |�iX| ≤ √
rh,

thus |�iX1| < 3
√

rh and we proceed as in (28). So, the first term in (29) is a.s. dominated by∑
i |�iX1|4−k|�iM|kI{�iN=0,(�iM)2≤4rh}

3h
≤
∑

i |�iX0|4−k|�iM|kI{(�iM)2≤4rh}
3h

.

Now, for k = 4, we apply to M property (C.19) in [4], Lemma 5, with β there being α here,
un = √

rh = hβ/2, p = 4, vh = hφ for a proper exponent φ we specify below and β ′ = 0. Result
(C.19) of [4] then implies that

1

h
E

[∣∣∣∣∣
n∑

i=1

(�iM)4I{|�iM|≤2
√

rh} −
∑
v≤T

|�Mv|4I{|�Mv |≤2
√

rh}

∣∣∣∣∣
]

≤ ch(β/2)(4−α)−1 · η4,n,

where η4,n = h(hβ/2vh)
−α + h2hαβ/2(hβ/2vh)

−3α + hhαβ/2(hβ/2)−2α + (2hβ/2)α +
h1/4h−((4−α)/4)β/2 + v

(4−α)/4
h . As soon as β > 1/(2 − α/2) and we choose φ ∈]0,

1−β
3 [, so
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that for all α ∈]0,2[ we have φ < (2/α − β)/3, it is guaranteed both that h(β/2)(4−α)−1 → 0 and
that h(β/2)(4−α)−1 · η4,n → 0. Thus,

lim
h

∑
i |�iM|4I{(�iM)2≤4rh}

3h
= lim

h

∑
i

∫ ti
ti−1

∫
|x|≤2

√
rh

|x|4μ(dx,dt)

3h

and

E

[∑
i

∫ ti

ti−1

∫
|x|≤2

√
rh

|x|4μ(dx,dt)/3h

]
= O

(∫
|x|≤2

√
rh

|x|4ν(dx)/h

)

= O
(
h(β/2)(4−α)−1)→ 0,

given that β > 1/(2 − α/2).
To show, further, that the terms∑

i |�iX0|4−k|�iM|kI{(�iM)2≤4rh}
3h

tend to zero in probability for k = 1,2,3, we use the fact that, by (11), each term is dominated
by (recall the notation in (10))

c

∑
i |�iX0|4−k|�iM

(h)|k
3h

+ c

∑
i |�iX0|4−k|hd(2 4

√
rh)|k

3h
.

Now, a.s.∑
i |�iX0|4−k|hd(2 4

√
rh)|k

3h

≤
(

h ln
1

h

)(4−k)/2

nhk−1
[∣∣c + r

(1−α)/4
h

∣∣kI{α �=1} + lnk 1

r
1/4
h

I{α=1}
]

≤ chk/2
(

ln
1

h

)(4−k)/2

+ chk/2
(

ln
1

h

)(4−k)/2

r
k(1−α)/4
h + hh/2 ln2−k/2 1

hr
1/4
h

= o(1) + chk[1/2+β(1−α)/4] log(4−k)/2 1

h
→ 0

for all k = 1,2,3 as rh = hβ , β ∈]0,1[. As for

∑
i |�iX0|4−k|�iM

(h)|k
3h

, (30)

we need to deal separately with each of k = 1,2,3. Note that since a and σ are locally
bounded on � × [0, T ], we can assume that they are bounded without loss of generality, so
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E[(∫ ti
ti−1

σs dWs)
2k] = O(hk) for each k = 1,2,3, using, for instance, the Burkholder inequal-

ity [24], page 226, and a.s. (
∫ ti
ti−1

as ds)2k = o(hk). Therefore, E[(�iX0)
2k] = O(hk) for each

of k = 1,2,3. For k = 1, the expected value of (30) is bounded by (n/3h)
√

E[(�iX0)6] ×√
E(�iM(h))2 = O(r

(1/4)(1−α/2)
h ) and thus tends to zero as h → 0. As for k = 2,∑

i (�iX0)
2(�iM

(h))2

h
≤ h ln

1

h

∑
i (�iM

(h))2

h
, (31)

whose expected value is given by

ln
1

h
η2(2r

1/4
h ) → 0

as h → 0 since rh = hβ , with β > 0. Concerning k = 3, we have∑
i |�iX0||�iM

(h)|3
h

≤ c

h

∑
i

(�iX0)
2(�iM

(h)
)2 + c

h

∑
i

(
�iM

(h)
)4

,

so that this step is reduced to the steps with k = 2,4 which we dealt with previously. �

Proof of Theorem 3.4. Let us define Kni := (
∫ ti
ti−1

∫
|x|≤ε

xμ̃(dx,dt) − h
∫
ε<|x|≤1 xν(dx))2. We

apply the Lindeberg–Feller theorem to the double array sequence Hni given by the normalized
versions of the variables Kni , i = 1, . . . , n, and n = T/h. Using relations (9), we have

E[Kni] = h�2,hε
2−α +

(
h

∫
ε<|x|≤1

xν(dx)

)2

(32)

= h�2,hε
2−α + �2

1,hh
2
[
(c + ε1−α)2I{α �=1} +

(
ln2 1

ε

)
I{α=1}

]
.

Taking ε = hu and any u ∈]0,1/2], we obtain that

v2
ni := var[Kni] = E

[(∫ ti

ti−1

∫
|x|≤ε

xμ̃(dx,dt) − h

∫
ε<|x|≤1

xν(dx)

)4]

− E2
ni ∼ h

∫
|x|≤ε

x4ν(dx) = h�4,hε
4−α

as h → 0. Then, consider

Hni := Kni − E[Kni]√
nvni

∼ Kni − h�2,hε
2−α − �2

1,hh
2[(c + ε1−α)2I{α �=1} + (ln2 1/ε)I{α=1}]√
T
√

�4,hε2−α/2
.

We now show that for any δ > 0, there exists a q > 1 such that

n∑
i=1

E
[
H 2

niI{|Hni |>δ}
]≤ cεα/(2q) → 0 (33)
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as h → 0, so the Lindeberg condition is satisfied and implies that

n∑
i=1

Hni
d→ N(0,1). (34)

Noting that h/ε2−α/2 and (hε1−α)/(ε2−α/2)I{α �=1} + (h ln2(1/ε))/(ε2−α/2)I{α=1} tend to zero as
h → 0, (34) leads to (12). To show inequality (33), consider

nE
[
H 2

n1I{|Hn1|>δ}
]≤ nE1/p[H 2p

n1 ]P 1/q{|Hn1| > δ}, (35)

as for the last factor above, we note that |Hn1| > δ if and only if either

Kn1 < h�2,hε
2−α + �2

1,hh
2
[
(c + ε1−α)2I{α �=1} +

(
ln2 1

ε

)
I{α=1}

]
− δ
√

T �4,hε
2−α/2

= ε2−α/2(o(1) − cδ
)
,

where c denotes a generic constant, or

Kn1 > h�2,hε
2−α + �2

1,hh
2
[
(c + ε1−α)2I{α �=1} +

(
ln2 1

ε

)
I{α=1}

]
+ cδε2−α/2 = O(ε2−α/2).

However, Kn1 ≥ 0, while for sufficiently small h, the right-hand term of the first inequality above
is strictly negative, therefore |Hn1| > δ if and only if Kn1 > cε2−α/2, that is, either

−cε1−α/4 ∼ h(c + ε1−α)I{α �=1} + I{α=1}h ln
1

ε
− cε1−α/4 >

∫ t1

0

∫
|x|≤ε

xμ̃(dx,dt)

or, for sufficiently small h,
∫ t1

0

∫
|x|≤ε

xμ̃(dx,dt) > cε1−α/4, and so |Hn1| > δ if and only if∣∣∣∣
∫ t1

0

∫
|x|≤ε

xμ̃(dx,dt)

∣∣∣∣> cε1−α/4.

This entails that for sufficiently small h,

P {|Hn1| > δ} = P

{∣∣∣∣
∫ t1

0

∫
|x|≤ε

xμ̃(dx,dt)

∣∣∣∣> cε1−α/4
}

≤ c
E[| ∫ t1

0

∫
|x|≤ε

xμ̃(dx,dt)|2]
ε2−α/2

= h1−(αu)/2 → 0.

The first two factors of the right-hand side of (35) are dominated by

cn
E1/p[(Kn1 − h�2,hε

2−α − h2�2
1,h[(c + ε1−α)2I{α �=1} + (ln2 1/ε)I{α=1}])2p]

ε4−α

≤ cn
E1/p[K2p

n1 ] + (hε2−α)2 + h4(1 − ε1−α)4 + h4 ln4 1/ε

ε4−α
.
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The last three terms give no contribution to (35) since

n
(hε2−α)2 + h4(1 − ε1−α)4 + h4 ln4 1/ε

ε4−α
h(1−αu/2)(1/q) → 0.

On the other hand, by choosing, for example, p = 5/4, we have

E[K2p

n1 ] = O(hε5−α),

so we are left to deal with n
(hε5−α)1/p

ε4−α h(1−αu/2)(1/q) = εα/(2q) and the inequality in (33) is
proved. �

Lemma A.2. As h → 0, if rh → 0, n = T/h and supi=1,...,n |ahi | = O(rh), then

∑
i

|ahi |I{(�iX)2≤rh} −
∑

i

|ahi |I{(�iM)2≤4rh,�iN=0}
P→ 0.

Proof. On {(�iX)2 ≤ rh}, we have |�iL| − |�iX0| ≤ |�iX| ≤ √
rh and, thus, by (7), for

small h, |�iL| ≤ 2
√

rh, so that a.s.

lim
h→0

∑
i

|ahi |I{(�iX)2≤rh} ≤ lim
h→0

∑
i

|ahi |I{(�iL)2≤4rh}.

However, ∑
i

|ahi |I{(�iL)2≤4rh,�iN �=0} ≤ sup
i

|ahi |NT
a.s.→ 0 (36)

as h → 0 and thus a.s.

lim
h→0

∑
i

|ahi |I{(�iX)2≤rh} ≤ lim
h→0

∑
i

|ahi |I{(�iL)2≤4rh,�iN=0} = lim
h→0

∑
i

|ahi |I{(�iM)2≤4rh,�iN=0}.

We now show that, on the other hand, the positive quantity

lim
h→0

∑
i

|ahi |
(
I{(�iL)2≤4rh,�iN=0} − I{(�iX)2≤rh}

)= 0 a.s.

In fact,

{(�iL)2 ≤ 4rh,�iN = 0} − {(�iX)2 ≤ rh}
= {(�iL)2 ≤ 4rh,�iN = 0, (�iX)2 > rh}

⊂ {|�iL| ≤ 2
√

rh,�iN = 0, |�iX0| + |�iM| > √
rh
}

⊂ {|�iX0| > √
rh/2
}∪ {|�iM| ≤ 2

√
rh, |�iM| > √

rh/2
}
.
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Since, by (18), a.s. for sufficiently small h
∑

i |ahi |I{|�iX0|>√
rh/2} = 0, we a.s. have

lim
h→0

∑
i

|ahi |
(
I{(�iL)2≤4rh,�iN=0} − I{(�iX)2≤rh}

)≤ lim
h→0

∑
i

|ahi |I{|�iM|≤2
√

rh,|�iM|>√
rh/2};

however, by Remark 3.2, as h → 0,

E

[∑
i

|ahi |I{|�iM|≤2
√

rh,|�iM|>√
rh/2}
]

≤ O(rh)nP
{|�iM| ≤ 2

√
rh, |�iM| > √

rh/2
}

≤ O(rh)nP
{|�iM|I{|�iM|≤2

√
rh} >

√
rh/2
}

≤ O(rh)n
E[(�iM)2I{|�iM|≤2

√
rh}]

rh

= O(rh)n
hη2(2r

c1/4
h )

rh
→ 0. �

Lemma A.3. Under the assumptions of Theorem 3.5, for all α ∈ [0,2[,
n∑

i=1

(�iM)2I{(�iM)2≤rh/16} − oP (h1−α/2) ≤
n∑

i=1

(�iM)2I{(�iX)2≤rh,(�iM)2≤4rh}
(37)

≤
n∑

i=1

(�iM)2I{(�iM)2≤9rh/4} + oP (h1−α/2) a.s.

Proof. Let us first deal with
∑n

i=1(�iM)2I{(�iX)2>rh,(�iM)2≤4rh}.
As in (24), on {(�iX)2 > rh}, we have either |�iJ | > √

rh/4 or |�iM| > √
rh/4, so

n∑
i=1

(�iM)2I{(�iX)2>rh,(�iM)2≤4rh}

≤
n∑

i=1

(�iM)2I{(�iX)2>rh,�iJ �=0,(�iM)2≤4rh}

+
n∑

i=1

(�iM)2I{(�iX)2>rh,(�iM)2>rh/16,(�iM)2≤4rh}.

However,

E

[∑n
i=1(�iM)2I{(�iM)2≤4rh,�iN �=0}

h1−α/2

]
= O

(
hη2(r

1/4
h )NT

h1−α/2

)
→ 0,
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so

n∑
i=1

(�iM)2I{(�iX)2>rh,(�iM)2≤4rh}

≤ oP (h1−α/2) +
n∑

i=1

(�iM)2I{(�iM)2≤4rh,(�iM)2>rh/16}
(38)

= oP (h1−α/2) +
n∑

i=1

(�iM)2I{(�iM)2≤4rh} −
n∑

i=1

(�iM)2I{(�iM)2≤4rh,(�iM)2≤rh/16}

= oP (h1−α/2) +
n∑

i=1

(�iM)2I{(�iM)2≤4rh} −
n∑

i=1

(�iM)2I{(�iM)2≤rh/16}.

Now, consider
∑n

i=1(�iM)2I{(�iM)2≤4rh,(�iM)2>9rh/4}: on {2√
rh ≥ |�iM| > 3

2
√

rh}, either
�iN �= 0, in which case

∑n
i=1(�iM)2I{(�iM)2≤4rh,�iN �=0}

h1−α/2
P→ 0,

as before, or �iN = 0, in which case |�iX| > |�iM| − |�iX0| > 3
2
√

rh − 1
2
√

rh = √
rh, so

n∑
i=1

(�iM)2I{(�iX)2>rh,(�iM)2≤4rh} + oP (h1−α/2) ≥
n∑

i=1

(�iM)2I{(�iM)2≤4rh,(�iM)2>9rh/4}.

Therefore,

n∑
i=1

(�iM)2I{(�iX)2>rh,(�iM)2≤4rh}
(39)

≥ −oP (h1−α/2) +
n∑

i=1

(�iM)2I{(�iM)2≤4rh} −
n∑

i=1

(�iM)2I{(�iM)2≤9rh/4}.

Now combining (38) and (39), we obtain (37) since

n∑
i=1

(�iM)2I{(�iX)2≤rh,(�iM)2≤4rh}

=
n∑

i=1

(�iM)2I{(�iM)2≤4rh} −
n∑

i=1

(�iM)2I{(�iX)2>rh,(�iM)2≤4rh}. �
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Proof of Theorem 3.5. Note that under β > 1
2−α/2 , the assumptions of Proposition 3.3 are sat-

isfied. Since X = X1 + M , we decompose

ˆIVh − IV√
2h ˆIQh

=
∑n

i=1(�iX)2I{(�iX)2≤rh} − IV
√

2h
√∑

i (�iX)4I{(�iX)2≤rh}/3h

(40)

=
∑n

i=1(�iX1)
2I{(�iX1)

2≤4rh} − IV√
(2/3)

∑
i (�iX)4I{(�iX)2≤rh}

+
√

2hIQ√
(2/3)

∑
i (�iX)4I{(�iX)2≤rh}

×
[∑n

i=1(�iX1)
2(I{(�iX)2≤rh} − I{(�iX1)

2≤4rh})√
2hIQ

(41)

+ 2

∑n
i=1 �iX1�iMI{(�iX)2≤rh}√

2hIQ
+
∑n

i=1(�iM)2I{(�iX)2≤rh}√
2hIQ

]

:=
4∑

j=1

Ij (h).

The proof of [20], Theorem 2, shows that I1(h) converges stably in law to a standard Gaus-
sian random variable. To show that the remaining terms either tend to zero or to infinity, we
can assume without loss of generality that both a and σ are bounded a.s. If (�iX)2 ≤ rh and
(�iX1)

2 > 4rh, then |�iM| >
√

rh and �iN �= 0, exactly as for I2(h) in Proposition 3.3. It
follows that

P

{∑n
i=1(�iX1)

2I{(�iX)2≤rh,(�iX1)
2>4rh}√

2hIQ
�= 0

}

≤ nP
{
�iN �= 0, |�iM| > √

rh
}→ 0,

by (19). The main factor of the remaining part of I2(h) is

∑n
i=1(�iX1)

2I{(�iX)2>rh,(�iX1)
2≤4rh}√

2hIQ
.

We recall that on {|�iX1| ≤ 2
√

rh}, we have �iN = 0, thus (�iX1)
2 = (�iX0)

2. Moreover,

∑n
i=1(
∫ ti
ti−1

au du)2I{(�iX)2>rh,(�iX1)
2≤4rh}√

2hIQ
= OP

(√
h
)→ 0
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and, by (20),

1√
2hIQ

n∑
i=1

∫ ti

ti−1

au du

∫ ti

ti−1

σu dWu I{(�iX)2>rh,(�iX1)
2≤4rh} ≤ c

√
h

√
h ln

1

h

n∑
i=1

I{(�iX)2>rh}

= O

(
h1−αβ/2

√
ln

1

h

)
→ 0.

Therefore, in probability,

lim
h→0

I2(h) = lim
h→0

−
∑n

i=1(
∫ ti
ti−1

σu dWu)
2I{(�iX)2>rh,(�iX1)

2≤4rh}√
2hIQ

.

We now show that term I3(h)/2 in (41) tends to zero in probability. First, recall that �iX1 =
�iX0 + �iJ and, within the sum

∑n
i=1 �iJ�iMI{(�iX)2≤rh}/

√
h, the term i contributes only

when �iN �= 0, in which case we also have (�iX1)
2 > 4rh and thus |�iM| >

√
rh, as in (26).

That implies

P

{∑n
i=1 �iJ�iMI{(�iX)2≤rh}√

2hIQ
�= 0

}
≤ nP

{
�iN �= 0, |�iM| > √

rh
}→ 0.

As for
∑n

i=1 �iX0�iMI{(�iX)2≤rh}√
h

, as in the proof of Lemma A.2, we have

∑n
i=1 �iX0�iMI{(�iX)2≤rh}√

h
=
∑n

i=1 �iX0�iMI{(�iX)2≤rh,(�iL)2≤4rh}√
h

. (42)

However, since both P { 1√
h

∑n
i=1 �iX0�iMI{(�iX)2≤rh,(�iL)2≤4rh,�iN �=0} �= 0} and P { 1√

h
×∑n

i=1 �iX0�iMI{(�iX)2≤rh,(�iM)2≤4rh,�iN �=0} �= 0} are dominated by nP {�iN �= 0,

(�iM)2 > crh} → 0, we have

lim
h

1√
h

n∑
i=1

�iX0�iMI{(�iX)2≤rh,(�iL)2≤4rh}

= lim
h

1√
h

n∑
i=1

�iX0�iMI{(�iX)2≤rh,(�iL)2≤4rh,�iN=0}

= lim
h

1√
h

n∑
i=1

�iX0�iMI{(�iX)2≤rh,(�iM)2≤4rh,�iN=0}

= lim
h

1√
h

n∑
i=1

�iX0�iMI{(�iX)2≤rh,(�iM)2≤4rh}.
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Moreover, by the Cauchy–Schwarz inequality, we have

∑n
i=1

∫ ti
ti−1

au du�iMI{(�iX)2≤rh,(�iM)2≤4rh}√
h

≤
√∑n

i=1(
∫ ti
ti−1

au du)2

√
h

√√√√ n∑
i=1

(�iM)2I{(�iM)2≤4rh} (43)

≤ c

√√√√ n∑
i=1

(�iM)2I{(�iM)2≤4rh},

which tends to zero in probability since, by Remark 3.2, as h → 0,

E

[
n∑

i=1

(�iM)2I{(�iM)2≤4rh}

]
=
∫ T

0

∫
|x|≤2r

1/4
h

x2ν(dx) = T η2(r
1/4
h ) → 0. (44)

On the other hand,

1√
h

n∑
i=1

(∫ ti

ti−1

σu dWu

)
�iMI{(�iX)2≤rh,(�iM)2≤4rh}

= 1√
h

n∑
i=1

(∫ ti

ti−1

σu dWu

)
�iM

(h)I{(�iX)2≤rh,(�iM)2≤4rh} (45)

− 1√
h

n∑
i=1

(∫ ti

ti−1

σu dWu

)
hd
(
2 4
√

rh
)
I{(�iX)2≤rh,(�iM)2≤4rh},

where, using the fact that
∫ ti
ti−1

σu dWu and �iM
(h) are martingale increments with zero quadratic

covariation, the L1(�)-norm of the first right-hand term is bounded by

√√√√
E

[∑n
i=1(
∫ ti
ti−1

σu dWu)2(�iM(h))2

h

]
,

which is dealt with similarly as in (31) and tends to zero. Moreover,

E

[
1√
h

n∑
i=1

(∫ ti

ti−1

σu dWu

)
hd
(
2 4
√

rh
)
I{(�iX)2≤rh,(�iM)2≤4rh}

]

= c
√

h

[
Iα �=1
(
c + r

(1−α)/4
h

)+ Iα=1 ln
1

r
1/4
h

]
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× E

[
n∑

i=1

(∫ ti

ti−1

σu dWu

)
I{(�iX)2≤rh,(�iM)2≤4rh}

]

≤ c
√

h

[
Iα �=1
(
c + r

(1−α)/4
h

)+ Iα=1 ln
1

r
1/4
h

]√√√√E

[
n∑

i=1

(∫ ti

ti−1

σu dWu

)2
]

→ 0.

Using the fact that
√

2hIQ√
2/3
∑

i (�iX)4I{(�iX)2≤rh}

tends to 1 in probability, treating I4(h) as in (42) and putting together the simplified version of

I2(h), we obtain that ( ˆIVh − IV)/

√
2h ˆIQh is the sum of a term which converges in distribution

to an N(0,1) r.v. plus a negligible term and a remainder

−
∑n

i=1(
∫ ti
ti−1

σu dWu)
2I{(�iX)2>rh,(�iX1)

2≤4rh}√
2hIQ

+
∑n

i=1(�iM)2I{(�iX)2≤rh,(�iM)2≤4rh}√
2hIQ

. (46)

(a) If α < 1, the first term of (46) is negligible with respect to
r

1−α/2
h√
2hIQ

, in fact,

∑n
i=1(
∫ ti
ti−1

σu dWu)
2I{(�iX)2>rh,(�iX1)

2≤4rh}
r

1−α/2
h

≤
∑n

i=1 h ln(1/h)I{(�iX)2>rh}
r

1−α/2
h

,

where

E

[∑n
i=1 h ln(1/h)I{(�iX)2>rh}

r
1−α/2
h

]
≤ h1−β ln

1

h
→ 0.

Therefore, (46) can be written as

r
1−α/2
h√
2hIQ

[
oP (1) +

∑n
i=1(�iM)2I{(�iX)2≤rh,(�iM)2≤4rh}

r
1−α/2
h

]
. (47)

Using (37), Lemma 3.1(i) and Theorem 3.4, we arrive at∑n
i=1(�iM)2I{(�iX)2≤rh,(�iM)2≤4rh}

r
1−α/2
h

≤
∑n

i=1(�iM)2I{(�iM)2≤9rh/4} + oP (h1−α/2)

r
1−α/2
h

∼
∑n

i=1(�iM)2I{(�iM)2≤9rh/4}
r

1−α/2
h
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≤
∑

i (
∫ ti
ti−1

∫
|x|≤3

√
rh/2 xμ̃(dx,dt) − h

∫
3
√

rh/2<|x|≤1 xν(dx))2

r
1−α/2
h

= Rh + T c + T c

(
h

r h

)α/2

h1−α/2 P→ T c,

where the term Rh has variance ∼ cr
α/2
h → 0 and so converges to zero in probability. Since

r
1−α/2
h√

h
→ 0, we arrive at

ˆIVh − IV√
2h ˆIQh

st→ N(0,1).

(b) If α > 1, define Rt :=∑s≤t I{|�Ms |>
√

h}. Then, by (37), the last term (times
√

2IQ) in (46)
dominates∑n

i=1(�iM)2I{(�iM)2≤rh/16} − oP (h1−α/2)√
h

= 1√
h

[∑
i

(�iM)2I{�iR=0} +
∑

i

(�iM)2[I{(�iM)2≤rh/16} − I{�iR=0}
]]− oP (h1/2−α/2)

(48)

≥ −oP (h1/2−α/2) +
∑

i (
∫ ti
ti−1

∫
|x|≤√

h
xμ̃(dx,dt) − h

∫√
h<|x|≤1 xν(dx))2

√
h

−
∑

i (�iM)2I{(�iM)2>rh/16,�iR=0}√
h

.

First, ∑
i

(�iM)2I{(�iM)2>rh/16,�iR=0}

=
∑

i

[
�i[M] + 2

∫ ti

ti−1

(Ms− − Mti−1)dMs

]
I{(�iM)2>rh/16,�iR=0}.

As in Lemma 3.1, the sum of the right-hand terms within brackets is of order un = (n/ logn)1/α

so that ∑
i |
∫ ti
ti−1

(Ms− − Mti−1)dMs |√
h

=
un

∑
i |
∫ ti
ti−1

(Ms− − Mti−1)dMs |
un

√
h

P→ 0

since un

√
h = ( n(1−α/2)

logn
)1/α → +∞. Theorem 3.4 applied with u = 1/2 yields that with ε = h1/2,

∑
i

(∫ ti

ti−1

∫
|x|≤√

h

xμ̃(dx,dt) − h

∫
√

h<|x|≤1
xν(dx)

)2

= ε2−α/2Yh + T cε2−α + T chε2−2α,
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where var(Yh) → 1. Therefore, in (48), we remain with

h1/2−α/2
[
−oP (1) + hα/4Y + T c + T ch1−α/2 −

∑
i �i[M]I{(�iM)2>rh/16,�iR=0}

h1−α/2

]
a.s.→ +∞,

where the divergence is due to the fact that h1/2−α/2 → +∞ while
∑

i �i [M]I{(�iM)2>rh/16,�iR=0}
h1−α/2

tends to zero in probability since its expected value is dominated by

n

h1−α/2
E1/2[(�i[M]I{�iR=0}

)2]
P 1/2{(�iM)2 > rh/16,�iR = 0}

≤ n

h1−α/2

(
h

∫
|x|≤√

h

x4ν(dx)

)1/2

h(2−α/2−β)1/2 = h(1−β)/2 → 0,

having used the fact that

P {(�iM)2 > rh,�iR = 0} = P
{
(�iM)2I{�iR=0} > rh

}≤ E[(�iM)2I{�iR=0}]
rh

(49)

= h
∫
|x|≤√

h
x2ν(dx)

rh
= h2−α/2−β .

On the other hand, the first term in (46) is negligible with respect to h1/2−α/2 (the speed of
divergence of (

∑n
i=1(�iM)2I{(�iM)2≤rh/16} − oP (h1−α/2))/

√
h) because

∑n
i=1(
∫ ti
ti−1

σu dWu)
2I{(�iX)2>rh,(�iX1)

2≤4rh}√
hh1/2−α/2

≤ h log(1/h)h−αβ/2

h1−α/2
= h(α/2)(1−β) log

1

h
→ 0.

Therefore, (46) explodes to +∞. Finally, if α = 1 in (46), then the first term is negligible, as

∑n
i=1(
∫ ti
ti−1

σu dWu)
2I{(�iX)2>rh,(�iX1)

2≤4rh}√
h

= Op

(
h(1−β)/2 log

1

h

)
→ 0.

For the second term, we take a δ > 0 such that 2/3 < β + δ < 1, we choose ε = h(β+δ)/2 and we
use the same steps as were used to reach (48) for α > 1, but we consider R̃t =∑s≤t I{|�Ms |>ε}
in place of Rt . Also using Theorem 3.4, we obtain that the second term in (46) dominates

Yhε
3/2

√
2hIQ

+ ε√
2hIQ

−
∑

�i[M]I{(�iM)2>rh/16,�i R̃=0}√
2hIQ

−
2
∑n

i=1

∫ ti
ti−1

(Ms− − Mti−1)dMs I{(�iM)2>rh/16,�i R̃=0}√
2hIQ

,

where the variance of Yh tends to 1 so that Yhε
3/2/

√
h tends to zero in probability. The second

term tends to +∞ at rate ε/
√

h. The third term is negligible with respect to ε/
√

h: applying (49)



Nonparametric tests for pathwise properties of semimartingales 811

with R̃ in place of R and the Cauchy–Schwarz inequality, we get

E

[
1

ε

∑∫ ti

ti−1

∫
|x|≤1

x2μ(dx,dt)I{(�iM)2>rh/16,�iR̃=0}
]

= O(hδ/2) → 0.

Finally, the last term is also negligible since the speed of convergence to zero of the numerator
is un = n/ log2 n (as in the proof of Lemma 3.1) and un

√
h → +∞. So, even for α = 1, the

normalized bias ( ˆIVh − IV)/

√
2h ˆIQh diverges to +∞. �

Proof of Proposition 4.1. As in Lemma A.2 with
√

rh in place of rh as bound for
maxi=1,...,n |ani |, using the fact that α < 1 and applying Lemma 3.1(i), we deduce that Ĥh has
the same limit in probability as

XT −
n∑

i=1

(�iX0 + �iM)I{�iN=0,(�iM)2≤rh}

when h → 0. Moreover, since a.s. NT < ∞ and
∑n

i=1 �iX0I{(�iM)2>rh}) = OP (h(1−αβ)/2 ×√
log(1/h)) → 0, taking R̃t =∑s≤t I{|�Ms |>√

rh}, the above term has limit in probability equal
to

XT − lim
h

n∑
i=1

(
�iX0 + �iMI{(�iM)2≤rh}

)

= XT − X0T − lim
h

[
n∑

i=1

∫ ti

ti−1

∫
|x|≤√

rh

xμ̃(dx,dt) − T

∫
√

rh<|x|≤1
xν(dx)

]

− lim
h

∑
i

�iM
(
I{(�iM)2≤rh} − I{�iR̃=0}

)
.

Using the fact that P {�iR̃ ≥ 1} = O(h1−αβ/2), as was used after (25), we deduce that∑
i �iMI{(�iM)2≤rh,�iR̃≥1} = OP (h(1−α)β/2) → 0. Using the Hölder inequality with ex-

ponents p = q = 2, we have
∑

i �iMI{(�iM)2>rh,�iR̃=0} = OP (r
(1−α)β/2
h ) → 0. Finally,∫ T

0

∫
|x|≤√

rh
xμ̃(dx,dt)

L2→ 0 and
∫√

rh<|x|≤1 xν(dx) → m so that Ĥh,T
P→ JT + mT . �
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