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We characterize the Gneiting class of space–time covariance functions and give more relaxed conditions
on the functions involved. We then show necessary conditions for the construction of compactly supported
functions of the Gneiting type. These conditions are very general since they do not depend on the Euclidean
norm.
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1. Introduction

The construction of space–time covariance functions is an important subject, the literature for
which can be traced back to at least the early 1990s [1,2], where it is emphasized how, under
the framework of geostatistical techniques for the study of, for instance, atmospheric and envi-
ronmental sciences, covariance functions are crucial for estimation and prediction since the best
linear predictor depends exclusively on the covariance matrix, which determines the weights of
any individual observation in the predictor itself [4].

There are several unsolved problems which are of interest to both the statistical and mathe-
matical communities and this paper provides solutions to two of them.

The first problem is related to the characterization of space–time covariance functions. To the
best of our knowledge, there is no literature related to this important problem. In particular, we
can find several permissibility criteria, that is, sufficient conditions to ensure that a candidate
function is positive definite (permissible) on the space–time domain, but no characterization
theorem, at least for given classes of covariance functions, is available.

A wide class of covariance functions can be obtained through Gaussian mixtures [4,7,8] for
which one can find a large number of contributions having as common origin the Gneiting class
of covariance functions [4]: for (x, t) ∈ Rd+l , the function

(x, t) �→ K(x, t) := h(‖t‖2)−d/2ϕ

( ‖x‖2

h(‖t‖2)

)
(1.1)

is positive definite, where ϕ is completely monotone on the positive real line, h is a Bernstein
function and ‖ · ‖ denotes the Euclidean norm. For l = 1, the function above is a stationary and
non-separable space–time covariance. This function has been persistently used in the literature
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and a Google Scholar search in September 2009 yielded over 90 papers where this covariance
has been used for applications to space–time data.

The first result in this paper states necessary and sufficient conditions for the permissibility of
the Gneiting class. Also, more general conditions for its permissibility are given.

The second problem confronted in this paper relates to the construction of space–time covari-
ances that are compactly supported in the spatial component. Although such compactly supported
covariances are much in demand in the recent literature, there is no single contribution concern-
ing the construction of compactly supported correlations over space and time. This challenge is
considerable from a mathematical point of view. A natural perspective is to consider the Gneit-
ing class above and replace the completely monotone function ϕ(·) with a compactly supported
one, that is, a function which is identically zero outside a finite range. In particular, the tempting
choice t �→ ϕ(t) := (1 − ‖t‖α)λ+, for positive values of α and λ and where (x)+ denotes the
positive part of x, creates an interesting connection to the celebrated Schoenberg [9] problem,
in which the positive definiteness of the function ϕ defined above is related to that of the func-
tion t �→ exp(−tβ) for some positive β . The reader is referred to the survey in [14,15] and the
references therein for a thorough review.

In considering this problem, we work in a fairly general framework and let the function ϕ de-
pend on a general seminorm and not on the Euclidean one, as the latter is a restrictive assumption
for spatial applications.

The paper is organized as follows. Section 2 completely characterizes the Gneiting class, for
which only sufficient conditions have been known. In Section 3, we present necessary conditions
for compactly supported covariances of the Gneiting type.

2. Characterization of the Gneiting class

In this section, we give a characterization of the Gneiting class. In doing so, we relax the permis-
sibility hypotheses stated in [4]. Two technical lemmas are needed for a more elegant proof of
the main result, stated as Theorem 2.1 below.

For a complex-valued function f : Rn → C, we write f ∈ L(Rn) when f is absolutely inte-
grable on R

n. Similarly, we write f ∈ C(Rn) when f is continuous in R
n.

For a real linear space E, we denote by FD(E) the set of all linear finite-dimensional subspaces
of E.

If dimE = n ∈ N and e1, . . . , en constitute a basis for E, then, by definition, we have

C(E) = {f :E → C | f (x1e1 + · · · + xnen) ∈ C(Rn)},
C0(E) = {f ∈ C(E) | f has compact support} and

L(E) = {f :E → C | f (x1e1 + · · · + xnen) ∈ L(Rn)}.
Obviously, these classes do not depend on the choice of the basis in E. Thus, in this case, it is
possible to set E = R

n.
If dimE = ∞, then, by definition, we have that C(E) = {f :E → C | f ∈ C(E0) for all

E0 ∈ FD(E)}.
A complex-valued function f :E → C is said to be positive definite on E (denoted hereafter

f ∈ �(E)) if, for any finite collection of points {ξi}ni=1 ∈ E, the matrix (f (ξi − ξj ))
n
i,j=1 is
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positive definite, that is,

for all a1, a2, . . . , an ∈ C

n∑
i,j=1

aif (ξi − ξj )aj ≥ 0.

Let E = R
n. By Bochner’s theorem, the function f is positive definite and continuous in R

n

if and only if f (x) = ∫
Rn e−i(u,x) dμ(u), where (u, x) = u1x1 + u2x2 + · · · + unxn is a scalar

product in R
n and μ is a non-negative finite Borel measure on R

n. Additionally, if f ∈ C(Rn) ∩
L(Rn), then f is positive definite on R

n if and only if f̂ (u) := ∫
Rn ei(u,x)f (x)dx ≥ 0, u ∈ R

n.

Lemma 2.1.

(i) f ∈ �(E) ⇐⇒ f ∈ �(E0) ∀E0 ∈ FD(E).
(ii) If dimE = n ∈ N, then f ∈ �(E) ⇐⇒ fg ∈ �(E) for all g ∈ �(E) ∩ C0(E).

Proof. For both parts, the necessity is obvious. For the sufficiency of part (i), for n ∈ N and
x1, . . . , xn in E, we have that x1, . . . , xn ∈ E0, where E0 is the linear span of these elements.
Obviously, dimE0 ≤ n.

For the sufficiency of part (ii), let e1, . . . , en be a basis in E. We then take g(x1e1 + · · · +
xnen) = (1 − ε|x1|)+ · · · (1 − ε|xn|)+ and ε ↓ 0. The proof is thus completed. �

Lemma 2.2. Let the following conditions be satisfied:

(1) h,b ∈ C(E) and h(t) > 0 for all t ∈ E;
(2) ϕ ∈ C([0,+∞)) and for some m ∈ N, we have

∫ ∞
0 |ϕ(u2)|um−1 du < ∞;

(3) ρ ∈ C(Rm), ρ(tx) = |t |ρ(x) for all t ∈ R, x ∈ R
m and ρ(x) > 0, x �= 0.

Then K(x, t) := b(t)ϕ(
ρ2(x)
h(t)

) ∈ �(Rm × E) ⇐⇒ b(t)(h(t))m/2Gm(
√

h(t)v) ∈ �(E) for all
v ∈ R

m with Gm(·) defined in equation (2.1) and

R
n � v �→ Gn(v) :=

∫
Rn

ϕ(ρ2(y))ei(y,v) dy. (2.1)

Proof. Observe that ϕ(ρ2(x)) ∈ L(Rm). We have that

K(x, t) ∈ �(Rm × E) ⇐⇒ K(x, t) ∈ �(Rm × E0) for all E0 ∈ FD(E)

⇐⇒ K(x, t)g(t) ∈ �(Rm × E0) for all E0 ∈ FD(E) and all g ∈ �(E0) ∩ C0(E0)

⇐⇒
∫

Rm

∫
E0

K(x, t)g(t)ei(x,v)ei(t,u) dx dt ≥ 0

for all E0 ∈ FD(E), g ∈ �(E0) ∩ C0(E0) and v ∈ R
m,u ∈ E0.

As for the last integral, a change of variables of the type x = √
h(t)y yields that the last inequality

is equivalent to∫
E0

g(t)b(t)(h(t))m/2Gm

(√
h(t)v

)
ei(t,u) dt ≥ 0 for all v ∈ R

m,u ∈ E0,
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which holds if and only if, for all g ∈ �(E0) ∩ C0(E0) and v ∈ R
m, we have

g(t)b(t)(h(t))m/2Gm

(√
h(t)v

) ∈ �(E0) for all E0 ∈ FD(E)

⇐⇒ b(t)(h(t))m/2Gm

(√
h(t)v

) ∈ �(E) for all v ∈ R
m.

The proof is thus complete. �

A function f : (0,∞) → R is called completely monotone if it is arbitrarily often differen-
tiable and (−1)nf (n)(x) ≥ 0 for x > 0, n = 0,1, . . . . By the Bernstein–Widder theorem [10],
the set M(0,∞) of completely monotone functions coincides with that of Laplace transforms L
of positive measures μ on [0,∞), that is, f (x) = Lμ(x) = ∫

[0,∞)
e−xt dμ(t), x > 0, where we

require e−xt to be μ-integrable for any x > 0. By Schoenberg’s theorem, the radial function
f (x) = ϕ(‖x‖2), ϕ ∈ C([0,+∞)) belongs to �(Rn) for all n ∈ N if and only if ϕ ∈ M(0,∞).

Theorem 2.1 gives our characterization of the Gneiting class. This has the feature, additional
to our introduction of the class in Section 1, that only negative definiteness of the function h is
required [8], while Gneiting’s assumptions are much more restrictive as it is required that h′ is
completely monotone on the positive real line. Furthermore, the proof of this result is deferred to
the final section for reasons that will become apparent.

Theorem 2.1. Let h ∈ C(E), h(t) > 0 for all t ∈ E. Let d ∈ N. The following statements are
equivalent:

(1) K(x, t) := (h(t))−d/2ϕ(
‖x‖2

h(t)
) ∈ �(Rd × E) for all ϕ ∈ C([0,+∞)) ∩ M(0,∞);

(2) e−λh(t) ∈ �(E) for all positive λ.

Let us consider examples of functions h for which statement (2) in Theorem 2.1 holds.

Example 2.1. Let h(t) = ‖t‖α
p + c, c > 0, 0 < p ≤ ∞, α ≥ 0, t = (t1, . . . , tn) ∈ R

n, where

‖t‖p = (
∑n

k=1 |tk|p)1/p , 0 < p < ∞, and ‖t‖∞ = sup1≤k≤n |tk|. Then e−λh(t) ∈ �(E) for all
positive λ if and only if 0 ≤ α ≤ αn,p , where

αn,p =

⎧⎪⎨⎪⎩
2 if n = 1, 0 < p ≤ ∞,
p if n ≥ 2, 0 < p ≤ 2,
1 if n = 2, 2 < p ≤ ∞,
0 if n ≥ 3, 2 < p ≤ ∞.

(2.2)

The case 0 < p ≤ 2 corresponds to the result of Schoenberg [9]. The other three cases have been
investigated by Koldobsky [5] and Zastavnyi [11–13] (2 < p ≤ ∞, n ≥ 2). Finally, Misiewiez
[6] gave the most recent result (p = ∞, n ≥ 3).

Example 2.2. If ρ(t) is a norm on R
2, then e−ρα(t) ∈ �(R2) for all 0 ≤ α ≤ 1 (see, e.g., [14]).

Therefore, e−λh(t) ∈ �(R2) for any λ > 0, where h(t) = ρα(t) + c, 0 ≤ α ≤ 1, c > 0.
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Example 2.3. Let ψ(s) ∈ R, s > 0. We then have e−λψ ∈ M(0,∞) for all λ > 0 if and only if
ψ ′ ∈ M(0,∞). Therefore, if ψ ∈ C([0,+∞)) and ψ(s) > 0 for all s ≥ 0, and ψ ′ ∈ M(0,∞), then
e−λh(t) ∈ �(Rn) for all λ > 0, n ∈ N, where h(t) := ψ(‖t‖2) and, hence (see Theorem 2.1),

K(x, t) := (ψ(‖t‖2))−d/2ϕ(
‖x‖2

ψ(‖t‖2)
) ∈ �(Rd × R

n) for all ϕ ∈ C([0,+∞)) ∩ M(0,∞), d ∈ N.

This result was proven by Gneiting [4].

A complex-valued function h :E → C is called conditionally negative definite on E (denoted
h ∈ N(E) hereafter) if the inequality

∑n
k,j=1 ckc̄j h(xk − xj ) ≤ 0 is satisfied for every posi-

tive integer n, every collection of points x1, . . . , xn in E and every set of complex numbers
c1, c2, . . . , cn, satisfying the condition

∑n
k=1 ck = 0.

Example 2.4 (Schoenberg’s theorem [9]). e−λh(t) ∈ �(E) for any λ > 0 if and only if h(−t) =
h(t) for all t ∈ E and h(t) ∈ N(E).

3. Necessary conditions for functions of the Gneiting type

Before presenting the main results contained in this section, some comments are in order. The
construction of compactly supported correlation functions is a non-trivial task that has conse-
quences for the estimation of space–time processes for the computational gains that follow. At
present, there is no contribution in the literature devoted to non-separable covariances that are
compactly supported. Until now, in order to obtain compactly supported correlations, the com-
monplace approach is to use tapering [3]. We described a more natural approach in the Introduc-
tion and the results following subsequently highlight interesting solutions to this problem.

In order to be clear, we will henceforth write Sd−1 := {x ∈ R
d :‖x‖ = 1} for the unit sphere

in R
d .

Theorem 3.1. Let the following conditions be satisfied:

(1) h ∈ C(E), h(t) > 0 for any t ∈ E and h(t) �≡ h(0) on E;
(2) ϕ ∈ C([0,+∞)), ϕ(0) > 0;
(3) for d ∈ N, ρ ∈ C(Rd), ρ(tx) = |t |ρ(x) ∀t ∈ R, x ∈ R

d and ρ(x) > 0, x �= 0;

(4) K(x, t) := (h(t))−d/2ϕ(
ρ2(x)
h(t)

) ∈ �(Rd × E).

Then:

1. (h(t))−d/2 ∈ �(E) and ϕ(ρ2(x)) ∈ �(Rd);
2. if there exists an integer n ∈ {1, . . . , d} such that

∫ ∞
0 |ϕ(u2)|un−1 du < ∞, then for all m =

1, . . . , n and v ∈ R
m, the function s �→ fm,v(s) := sm−dGm(sv), with Gm(·) as defined in

(2.1), is decreasing on (0,∞) and, furthermore, fm,v(∞) = 0 for v �= 0.
3. if

∫ ∞
0 |ϕ(u2)|ud−1 du < ∞, then Gd(0) > 0 and if, in addition, Gd is real analytic, then for

any v ∈ R
d , v �= 0, the function s �→ fd,v(s) := Gd(sv) is strictly decreasing on [0,+∞)

and Gd(v) > 0 for all v ∈ Rd ;
4. if

∫ ∞
0 |ϕ(u2)|ud+1 du < ∞, then α1(v) := ∫

Rd ϕ(ρ2(y))(y, v)2 dy ≥ 0 for all v ∈ S
d−1 and

β1 := ∫
Rd ϕ(ρ2(y))‖y‖2 dy ≥ 0 and, furthermore, α1(v) ≡ 0 on S

d−1 if and only if β1 = 0;
if, in addition, β1 > 0, then e−λh(t) ∈ �(E) for any λ > 0;
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5. if
∫ ∞

0 |ϕ(u2)|eεu du < ∞ for some ε > 0, then for every λ > 0 and every v ∈ S
d−1 we have

e−λhp(t) ∈ �(E), where

p = p(v) := min

{
k ∈ N :αk(v) =

∫
Rd

ϕ(ρ2(y))(y, v)2k dy �= 0

}
, v ∈ S

d−1;

the function p : Sd−1 → N is bounded on the unit sphere and

min
v∈Sd−1

p(v) = min

{
k ∈ N :βk =

∫
Rd

ϕ(ρ2(y))‖y‖2k dy �= 0

}
.

Proof. Part 1 is obvious.
As for part 2, by Lemma 2.2, we have

Fm,v(t) := (h(t))(m−d)/2Gm

(√
h(t)v

) ∈ �(E), m = 1, . . . , n, v ∈ R
m.

Hence, Fm,v(0) = (h(0))(m−d)/2Gm(
√

h(0)v) ≥ 0 and |Fm,v(t)| ≤ Fm,v(0), t ∈ E. Therefore,
Gm(v) ≥ 0, v ∈ R

m, and

(sh(t))(m−d)/2Gm

(√
h(t)sv

) ≤ (sh(0))(m−d)/2Gm

(√
h(0)sv

)
for m = 1, . . . , n, v ∈ R

m, s > 0 and for all t ∈ E. The latter inequality is equivalent to

fm,v

(√
h(t)

h(0)
· s

)
≤ fm,v(s).

Since (h(t))−d/2 ∈ �(E), we have h(t) ≥ h(0), t ∈ E. Since h(t) �≡ h(0) on E, there exists a

point t0 ∈ E such that q :=
√

h(t0)
h(0)

> 1. By the mean value theorem, for any α ∈ [1, q], there

exists a ξ ∈ E such that
√

h(ξ)
h(0)

= α. Therefore, fm,v(αs) ≤ fm,v(s) for all s > 0 and α ∈ [1, q].
Hence, fm,v(α

2s) ≤ fm,v(αs) ≤ fm,v(s) for all s > 0 and α ∈ [1, q]. Thus, fm,v(α
ps) ≤ fm,v(s)

for all s > 0, α ∈ [1, q] and p ∈ N. This implies that the function fm,v(s) decreases in s ∈ (0,∞).
By the Riemann–Lebesgue theorem, it follows that Gm(v) → 0 as ‖v‖ → ∞. Hence, fm,v(∞) =
0 for v �= 0.

3.i. From part 2, it follows that for all v ∈ R
d , v �= 0, the function Gd(sv) decreases in s ∈

(0,∞) and, hence, 0 ≤ Gd(v) ≤ Gd(0). Therefore, Gd(0) > 0 (otherwise, Gd(v) ≡ 0 on Rd ⇒
ϕ(ρ2(y)) ≡ 0 on R

d , which contradicts the condition ϕ(0) > 0).
ii. If, in addition, Gd is real analytic, then for all v ∈ Rd , v �= 0, the function Gd(sv) is strictly

decreasing on [0,∞). This can be proven by contradiction. Let us assume that, for some v0 ∈ R
d

and v0 �= 0, the function Gd(sv0) is constant on some interval (α,β) ⊂ (0,∞), α < β . This
would imply that Gd is constant on [0,∞) and that Gd(0) = lims→∞ Gd(sv0) = 0, which con-
tradicts part i above. Thus, for all v ∈ R

d , v �= 0, the function Gd(sv) strictly decreases on [0,∞)

and, hence, Gd(v) > lims→∞ Gd(sv) = 0.
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4. Let v ∈ S
d−1 and define fd,v(s) := Gd(sv). From parts 2 and 3, it follows that the function

fd,v(s) decreases on [0,∞) and that fd,v(0) > 0. Obviously, fd,v(s) ∈ C2(R) and

fd,v(s) = fd,v(0) + f ′′
d,v(0)

2
s2 + o(s2), s → 0,

where f ′′
d,v(0) = −α1(v). Note that f ′′

d,v(0) ≤ 0, otherwise the function fd,v(s) would be strongly
increasing on [0, c] for some c > 0, which would contradict part 2. Thus, α1(v) ≥ 0 for all
v ∈ S

d−1. For p > 0, the following integral is constant on S
d−1:∫

Sd−1
|(y, v)|p dσ(v) ≡ cd,p > 0, y ∈ S

d−1,

where dσ , if n ≥ 2, is the surface measure on S
d−1 and dσ(v) = δ(v − 1) + δ(v + 1), if d = 1

(here, δ(v) is the Dirac measure with mass 1 concentrated in the point v = 0). Therefore,∫
Sd−1

|(y, v)|p dσ(v) = cd,p‖y‖p, y ∈ R
d,p > 0. (3.1)

Hence, ∫
Sd−1

α1(v)dσ(v) = cd,2β1 ≥ 0

and α1(v) ≡ 0 on S
d−1 if and only if β1 = 0.

Let, in addition, β1 > 0. Then f ′′
d,v0

(0) = −α1(v0) < 0 for some v0 ∈ S
d−1 and

ψn(t) :=
(

Gd(γn

√
h(t)v0)

Gd(0)

)n

= (
1 + gn(t)

)n ∈ �(E) ∀n ∈ N, γn > 0. (3.2)

Now, let us take

γn :=
(

−2fd,v0(0)

f ′′
d,v0

(0)
· λ

n

)1/2

> 0, λ > 0.

Obviously, γn → +0 and

gn(t) = fd,v0(γn

√
h(t)) − fd,v0(0)

fd,v0(0)
∼ f ′′

d,v0
(0)

2fd,v0(0)
· (γn

√
h(t)

)2 = −λ

n
· h(t) as n → ∞.

Therefore, ψn(t) → e−λh(t) and, hence, e−λh(t) ∈ �(E) for all λ > 0.
5. In this case, Gd is real analytic and

f
(2k)
d,v (0) = (−1)kαk(v),

(3.3)

f
(2k−1)
d,v (0) = 0,

∫
Sd−1

αk(v)dσ(v) = cd,2kβk, k ∈ N.
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Therefore, for all v ∈ S
d−1, there exists a natural number p ∈ N such that

fd,v(s) = fd,v(0) + f
(2p)
d,v (0)

(2p)! s2p + o(s2p) as s → 0,

where f
(2p)
d,v (0) �= 0; otherwise, the function fd,v(0) ≡ fd,v(s) ≡ fd,v(+∞) = 0, which would

contradict the inequality Gd(0) > 0 (see part 3). Hence, f
(2p)
d,v (0) < 0, otherwise the function

fd,v(s) would be strongly increasing on [0, c] for some c > 0, which would contradict part 2.
Let v ∈ Sd−1 and p = p(v). Take the function in equation (3.2), where v0 = v

γn :=
(

− (2p)!fd,v0(0)

f
(2p)
d,v0

(0)
· λ

n

)1/(2p)

> 0, λ > 0.

Then gn(t) ∼ −λ
n

· hp(t) as n → ∞. Therefore, ψn(t) → e−λhp(t) and, hence, e−λhp(t) ∈ �(E)

for all λ > 0.
If αk(v0) �= 0 for some v0 ∈ S

d−2, k ∈ N, then αk(v) �= 0 in some neighborhood of a point v0
and, hence, p(v) ≤ p(v0) in this neighborhood. Thus, the function p(v) is locally bounded on
S

d−1 and, hence, p(v) is bounded there.
Let m = minv∈Sd−1 p(v) = p(v0) for some v0 ∈ Sd−1. Then αm(v0) �= 0 and, for all v ∈ Sd−1,

the equality

fd,v(s) = fd,v(0) + f
(2m)
d,v (0)

(2m)! s2m + o(s2m) as s → 0

holds. Obviously, (−1)kαk(v) = f
(2k)
d,v (0) = 0 for all 1 ≤ k < m (if m ≥ 2), and (−1)mαm(v) =

f
(2m)
d,v (0) ≤ 0 (otherwise the function fd,v(s) is strongly increasing on [0, c] for some c > 0,

which would contradict 2). From (3.3), it follows that βk = 0 for all 1 ≤ k < m (if m ≥ 2) and
(−1)mβm < 0. Therefore,

m = min

{
k ∈ N :βk =

∫
Rd

ϕ(ρ2(y))‖y‖2k dy �= 0

}
and this completes the proof. �

We are now able to give a simple proof of Theorem 2.1.

Proof of Theorem 2.1. If h(t) ≡ h(0) > 0 on E, then the implication (1) ⇒ (2) is obvious. If
h(t) �≡ h(0) on E, then this implication follows from statement 4 of Theorem 3.1 for the choice
ϕ(s) = e−s ∈ C([0,+∞)) ∩ M(0,∞).

The reverse implication (2) ⇒ (1) follows from Lemma 2.2 with the choice ϕ(s) = e−s , from
the equality ∫

Rd

e−1/(2σ)‖y‖2
ei(y,v) dy = (2πσ)d/2e−σ/2‖v‖2

, v ∈ R
d, σ > 0,
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and from the Bernstein–Widder theorem. �

The next theorem is an addition to Theorem 3.1 for the special case ρ(x) = ‖x‖, that is, when
ρ is the Euclidean norm. If f (x) = ϕ(‖x‖2), ϕ ∈ C([0,+∞)), f ∈ L(Rn), then the Fourier
transform above simplifies to the Bessel integral

f̂ (u) = (2π)n/2gn(‖u‖), where gn(s) :=
∫ ∞

0
ϕ(u2)un−1jn/2−1(su)du (3.4)

and jλ(u) := u−λJλ(u) with Jλ a Bessel function of the first kind. In this case, the functions
Gn(·) and gn(·) are related by the known equality Gn(v) = (2π)n/2gn(‖v‖).

Theorem 3.2. Let the following conditions be satisfied:

(1) h ∈ C(E), h(t) > 0 for all t ∈ E and h(t) �≡ h(0) on E;
(2) ϕ ∈ C([0,+∞)), ϕ(0) > 0;

(3) K(x, t) := (h(t))−d/2ϕ(
‖x‖2

h(t)
) ∈ �(Rd × E).

If
∫ ∞

0 |ϕ(u2)|um−1 du < ∞ for some m ∈ {1, . . . , d} and gm is real analytic, then the function
fm(s) := sm−dgm(s) is strictly decreasing on (0,∞) and gm(s) > 0 for all s > 0.

Proof. From Theorem 3.1, we have that fm decreases on (0,∞) and fm(s) ≥ fm(∞) = 0 for
s > 0. Since fm is real-analytic on (0,∞), the function fm(s) is strictly decreasing on (0,∞).
Otherwise, the function fm is constant on some open interval (α,β) ⊂ (0,∞), α < β , and, hence,
it is constant on (0,∞) and fm(s) = fm(∞) = 0, s > 0. Therefore, Gm(v) = (2π)m/2gm(‖v‖) ≡
0 on R

m. Hence, ϕ(‖x‖2) ≡ 0 on R
m, which contradicts the condition ϕ(0) > 0. Thus, the func-

tion fm is strictly decreasing on (0,∞) and, hence, fm(s) > fm(∞) = 0 for all s > 0. �

Remark 3.1. The necessary conditions stated in Theorems 3.1 and 3.2 allow the following hy-
pothesis to be formulated.

Let the following conditions be satisfied:

(1) h ∈ C(E) and h(t) > 0 for all t ∈ E;
(2) ϕ ∈ C([0,+∞)), ϕ(0) > 0 and ϕ has compact support;

(3) K(x, t) := (h(t))−d/2ϕ(
||x||2
h(t)

) ∈ �(Rd × E), d ∈ N.

We then conjecture that h(t) ≡ h(0) on E.
From Theorem 3.2, a weaker version of this hypothesis can be formulated: under the three

conditions stated above, and if:

(4) gm(s0) = 0 for some m ∈ {1, . . . , d} and for some s0 > 0, then we conjecture that h(t) ≡
h(0) on E.

Let us assume that h(t) �≡ h(0) on E. Then (see Theorem 3.2) gm(s) > 0 for all s > 0, which
contradicts condition (4).

As an example, it is possible to take the function ϕ(u2) := (1 − |u|)+ ∈ �(R), m = 1. In this

case (see (3.4)), g1(s) =
√

2
π

∫ 1
0 (1 − u) cos(su)du =

√
2
π

1−cos s

s2 . Condition (4) is fulfilled for
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m = 1 and s0 = 2π. Therefore, (h(t))−1/2ϕ(
‖x‖2

h(t)
) ∈ �(R × E), where h ∈ C(E) and h(t) > 0

for all t ∈ E ⇐⇒ h(t) ≡ h(0) on E.

Acknowledgements

The authors are grateful to Daryl Daley for interesting discussions during the preparation of this
paper. They would also like to thank the Associate Editor and the two referees, whose remarks
allowed for a considerable improvement of an earlier version of the manuscript. Emilio Porcu
acknowledges the DFG-SNF Research Group FOR916, subproject A2.

References

[1] Christakos, G. (2000). Modern Spatiotemporal Geostatistics. New York: Oxford Univ. Press.
[2] Cressie, N. and Huang, H.S. (1999). Classes of nonseparable, spatio-temporal stationary covariance

functions. J. Amer. Statist. Assoc. 94 1330–1340. MR1731494
[3] Du, J., Zhang, H. and Mandrekar, V. (2009). Infill asymptotic properties of tapered maximum likeli-

hood estimators. Ann. Statist. 37 3330–3361. MR2549562
[4] Gneiting, T. (2002). Nonseparable, stationary covariance functions for space–time data. J. Amer. Sta-

tist. Assoc. 97 590–600. MR1941475
[5] Koldobsky, A. (1991). Schoenberg’s problem on positive definite functions. Algebra Anal. 3 78–85

(English translation in St. Petersburg Math. J. 3 563–570). MR1150554
[6] Misiewicz, J. (1989). Positive definite functions on l∞. Statist. Probab. Lett. 8 255–260. MR1024036
[7] Porcu, E. and Mateu, J. (2007). Mixture-based modeling for space–time data. Environmetrics 18 285–

302. MR2364349
[8] Schlather, M. (2010). Some covariance models based on normal scale mixtures. Bernoulli. To appear.
[9] Schoenberg, I.J. (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44

522–536. MR1501980
[10] Widder, D.V. (1946). The Laplace Transform. New York: Princeton Univ. Press. MR0005923
[11] Zastavnyi, V.P. (1991). Positive definite functions depending on a norm. Solution of a problem of

Schoenberg. Preprint N1-35. Donetsk: Inst. Appl. Math. Mech. Acad. Sci. Ukraine. MR1198176
[12] Zastavnyi, V.P. (1992). Positive definite functions depending on a norm. Dokl. Russian Acad. Nauk

325 901–903 (English translation in Russian Acad. Sci. Dokl. Math. 46 (1993) 112–114). MR1198176
[13] Zastavnyi, V.P. (1993). Positive definite functions depending on the norm. Russian J. Math. Phys. 1

511–522. MR1297933
[14] Zastavnyi, V.P. (2000). On positive definiteness of some functions. J. Multivariate Anal. 73 55–81.

MR1766121
[15] Zastavnyi, V.P. (2008). Problems related to positive definite functions. In Positive Definite Func-

tions: From Schoenberg to Space–Time Challenges (J. Mateu and E. Porcu, eds.). Editorial Universitat
Jaume I.

Received May 2009 and revised January 2010

http://www.ams.org/mathscinet-getitem?mr=1731494
http://www.ams.org/mathscinet-getitem?mr=2549562
http://www.ams.org/mathscinet-getitem?mr=1941475
http://www.ams.org/mathscinet-getitem?mr=1150554
http://www.ams.org/mathscinet-getitem?mr=1024036
http://www.ams.org/mathscinet-getitem?mr=2364349
http://www.ams.org/mathscinet-getitem?mr=1501980
http://www.ams.org/mathscinet-getitem?mr=0005923
http://www.ams.org/mathscinet-getitem?mr=1198176
http://www.ams.org/mathscinet-getitem?mr=1198176
http://www.ams.org/mathscinet-getitem?mr=1297933
http://www.ams.org/mathscinet-getitem?mr=1766121

	Introduction
	Characterization of the Gneiting class
	Necessary conditions for functions of the Gneiting type
	Acknowledgements
	References

