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In this paper, we develop necessary and sufficient conditions for the validity of a martingale approximation
for the partial sums of a stationary process in terms of the maximum of consecutive errors. Such an ap-
proximation is useful for transferring the conditional functional central limit theorem from the martingale
to the original process. The condition found is simple and well adapted to a variety of examples, leading to
a better understanding of the structure of several stochastic processes and their asymptotic behaviors. The
approximation brings together many disparate examples in probability theory. It is valid for classes of vari-
ables defined by familiar projection conditions such as the Maxwell–Woodroofe condition, various classes
of mixing processes, including the large class of strongly mixing processes, and for additive functionals of
Markov chains with normal or symmetric Markov operators.
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1. Introduction and results

The objective of this paper is to find a characterization of stationary stochastic processes that can
be studied via a martingale approximation in order to derive the functional central limit theorem
for processes associated with partial sums.

There are several ways to present the results since stationary processes can be introduced in
several equivalent ways. We assume that (ξn)n∈Z denotes a stationary Markov chain defined on a
probability space (�, F ,P ) with values in a measurable space (S, A). The marginal distribution
and the transition kernel are denoted by π(A) = P(ξ0 ∈ A) and Q(ξ0,A) = P(ξ1 ∈ A|ξ0), re-
spectively. In addition, Q denotes the operator acting via (Qf )(ξ) = ∫

S
f (s)Q(ξ,ds). Next,

let L
2
0(π) be the set of functions on S such that

∫
f 2 dπ < ∞ and

∫
f dπ = 0. Denote by

Fk the σ -field generated by ξi with i ≤ k, Xi = f (ξi), Sn = ∑n−1
i=0 Xi (i.e., S0 = 0, S1 = X0,

S2 = X0 +X1, . . .). For any integrable variable X, we define Ek(X) = E(X|Fk). In our notation,
E0(X1) = Qf (ξ0) = E(X1|ξ0). We also set F−∞ = ⋂

k∈Z
Fk .

Throughout the paper, we assume f ∈ L
2
0(π); in other words, we assume that ‖X‖2 =

(E[X2
1])1/2 < ∞ and E[X1] = 0.

Note that any stationary sequence (Yk)k∈Z can be viewed as a function of a Markov process
ξk = (Yi; i ≤ k) for the function g(ξk) = Yk .
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The stationary stochastic processes may be also introduced in the following, alternative, way.
Let T :� �→ � be a bijective bimeasurable transformation preserving the probability. Let F0

be a sub-σ -algebra of F satisfying F0 ⊆ T −1(F0). We then define the non-decreasing filtration
(Fi )i∈Z by Fi = T −i (F0). Let X0 be a random variable which is F0-measurable. We define the
stationary sequence (Xi)i∈Z by Xi = X0 ◦ T i .

In this paper, we shall use both frameworks.
In order to analyze the asymptotic behavior of the partial sums Sn = ∑n−1

i=0 Xi, Gordin, in [15],
proposed to decompose the sums related to the original stationary sequence into the sum

Sn = Mn + Rn (1)

of a square-integrable martingale Mn = ∑n−1
i=0 Di adapted to Fn, whose martingale differ-

ences (Di) are stationary, and a so-called coboundary Rn, that is, a telescoping sum of random
variables with the basic property that supn E(R2

n) < ∞. More precisely, Xn = Dn + Zn − Zn−1,

where Zn is another stationary sequence in L2. The limiting properties of the martingales can
then be transported from the martingale to the general sequence. In the context of Markov chains,
the existence of such a decomposition is equivalent to the solvability of the Poisson equation
in L2.

For proving a central limit theorem for stationary sequences, a weaker form of martingale
approximation has been pointed out by many authors (see, e.g., [21] for a survey). Recently,
two interesting papers, one by Dedecker, Merlevède and Volný [7] and the other by Zhao and
Woodroofe [32], provided necessary and sufficient conditions for martingale approximation with
an error term in (1) satisfying

E
(
(Sn − Mn)

2)/n → 0. (2)

This decomposition is strong enough for transporting the conditional central limit theorem from
sums of stationary martingale differences in L2 to Sn/

√
n. By conditional CLT, as discussed

in [6], we understand, in this context, that for any continuous function f such that |f (x)|/(1+x2)

is bounded and for any k ≥ 0,

∥∥∥∥Ek

(
f

(
Sn/

√
n
)) −

∫ ∞

−∞
f

(
x
√

η
)
g(x)dx

∥∥∥∥
1

−→
n→∞ 0, (3)

where g is the standard normal density and η ≥ 0 is an invariant function satisfying

lim
n→∞

∥∥∥∥E0(S
2
n)

n
− η

∥∥∥∥
1
= 0.

Here, and throughout the paper, we denote by ‖ · ‖p the norm in Lp .
An important extension of this theory is to consider the conditional central limit theorem in its

functional form. For t ∈ [0,1], define

Sn(t) = S[nt] + (nt − [nt])X[nt],
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where [x] denotes the integer part of x. Note that Sn(·)/√n is a random element of the space
C([0,1]) endowed with the supremum norm ‖ · ‖∞. Then, by the conditional CLT in the func-
tional form (FCLT), we understand that for any continuous function f :C([0,1]) → R such that
x �→ |f (x)|/(1 + ‖x‖2∞) is bounded and for any k ≥ 0, we have∥∥∥∥Ek

(
f

(
Sn/

√
n
)) −

∫
C([0,1])

(
f

(
x
√

η
))

dW(x)

∥∥∥∥
1

−→
n→∞ 0. (4)

Here, W is the standard Wiener measure on C([0,1]).
It is well known that a martingale with stationary differences in L2 satisfies this type of behav-

ior with η = limn→∞
∑n−1

l=0 D2
l /n in L1 – this is at the heart of many statistical procedures. This

conditional form of the invariance principle is a stable type of convergence that makes possible
the change of measure with another absolutely continuous measure, as discussed in [1,11,27].

With such a result in mind, the question is now to find necessary and sufficient conditions for
a martingale decomposition with the error term satisfying

E

(
max

1≤j≤n
(Sj − Mj)

2
)/

n → 0. (5)

In order to state our martingale approximation result, for fixed m, we consider the stationary
sequence

Ym
0 = 1

m
E0(X1 + · · · + Xm), Ym

k = Ym
0 ◦ T k. (6)

In the language of Markov operators, we then have

Ym
0 = 1

m
(Qf + · · · + Qmf )(ξ0).

It is convenient to introduce a seminorm notation, namely,

‖Z‖M+ = lim sup
n→∞

1√
n

∥∥∥∥∥ max
1≤k≤n

∣∣∣∣∣
k∑

j=1

Z ◦ T j

∣∣∣∣∣
∥∥∥∥∥

2

on the space of all Z ∈ L2
0 with ‖Z‖M+ < ∞.

Theorem 1. Assume that (Xk)k∈Z is a stationary sequence of centered square-integrable ran-
dom variables. Then

‖Ym
0 ‖M+ → 0 as m → ∞ (7)

if and only if there exists a martingale with stationary increments satisfying (5). Such a martin-
gale is unique if it exists. In particular, (7) implies (4).

As a consequence of the proof of Theorem 1, we also obtain the following result that adds
a new equivalent condition to the characterizations by Dedecker, Merlevède and Volný [7] and
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Zhao and Woodroofe [32]. With (Ym
k )k∈Z defined by (6) and the seminorm notation

‖Ym
0 ‖+ = lim sup

n→∞
1√
n

∥∥∥∥∥
n∑

j=1

Ym
j

∥∥∥∥∥
2

we have the following characterization.

Theorem 2. Assume that (Xk)k∈Z is as in Theorem 1. Then

‖Ym
0 ‖+ → 0 as m → ∞ (8)

if and only if there exists a stationary martingale satisfying (2). Such a martingale is unique if it
exists. In particular, (8) implies (3).

Our approach is constructive. If the stationary sequence is supposed to be ergodic, then the
constructed martingale differences are also ergodic and therefore the conditional theorems (3)
and (4) can be easily transported to the original processes satisfying (8) and (7), respectively,
with η = ‖D0‖2.

A natural and useful question is to provide classes of stochastic processes that have a martin-
gale decomposition with an error term satisfying (5), in other words, to provide sharp sufficient
conditions for such a decomposition. Obviously, a maximal inequality is needed in order to ver-
ify this condition. We shall combine our approach with several maximal inequalities. One is due
to Rio [26], formula (3.9), page 53; for related inequalities, see [23] and [9].

• For any stationary process with centered variables in L2,

E

(
max

1≤i≤n
S2

i

)
≤ 8nE(X2

0) + 16
n∑

k=2

E|X0E0(Sk − S1)|. (9)

Another inequality comes from [24], Proposition (2.3); see also [25], Theorem 1, for the in-
equality in Lp .

• For any stationary process with centered variables in L2,

E

(
max

1≤i≤n
S2

i

)
≤ n

(
2‖X0‖2 + 3

r−1∑
j=0

‖E0(S2j )‖2

2j/2

)2

(10)

≤ n

(
2‖X0‖2 + 80

n∑
j=1

‖E0(Sj )‖2

j3/2

)2

,

where 2r−1 < n ≤ 2r .

The following maximal inequality is a particular case of Dedecker and Merlevède [6], Propo-
sition 6; see [34], Theorem 1, for the inequality in Lp .
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• For any stationary process with centered variables in L2 such that E(X0|F−∞) = 0 almost
surely, we have

E

(
max

1≤i≤n
S2

i

)
≤ 4n

( ∞∑
i=0

‖E−i (X0) − E−i−1(X0)‖2

)2

. (11)

Another inequality we use for additive functionals of stationary reversible Markov chains is a
consequence of Wu [33], Corollary 2.7 and relation (2.5) in the same paper (note that there is a
typographical error in this relation, namely, a square should be added to the norm); see also [28]:

• Assume (ξn)n∈Z is a stationary, reversible Markov chain and Xn = f (ξn) with f ∈ L
2
0(π).

Then, for every n ≥ 1,

E

(
max

1≤i≤n
S2

i

)
≤ (24n + 3)

∞∑
n=0

E(X0Xn), (12)

provided the series on the right-hand side is convergent.

This inequality, originally stated for the ergodic case, extends without changes to the general
case.

By combining the martingale decomposition in Theorem 1 with these maximal inequalities, we
point out various classes of stochastic processes for which a conditional functional limit theorem
holds. These include mixing processes and classes of Markov chains.

2. Proof of Theorem 1

The proof of this theorem has several steps.
Step 1. Construction of the approximating martingale.
The construction of the martingale decomposition is based on averages. It was introduced by

Wu and Woodroofe [35] (see their definition (6) on page 1677) and further developed in [32],
extending the construction in [12] and [17]; see also [3], Theorem 8.1, and [18]. We give the
martingale construction here for completeness.

We introduce a parameter m ≥ 1 (kept fixed for the moment) and define the following station-
ary sequence of random variables:

θm
0 = 1

m

m∑
i=1

E0(Si), θ
m
k = θm

0 ◦ T k.

Set

Dm
k = θm

k+1 − Ek(θ
m
k+1), Mm

n =
n−1∑
k=0

Dm
k . (13)
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Then (Dm
k )k∈Z is a stationary martingale difference sequence and (Mm

n )n≥0 is a martingale. Thus,
we have

Xk = Dm
k + θm

k − θm
k+1 + 1

m
Ek(Sk+m+1 − Sk+1)

and therefore

Sk = Mm
k + θm

0 − θm
k +

k∑
j=1

1

m
Ej−1(Sj+m − Sj )

(14)
= Mm

k + θm
0 − θm

k + R
m

k ,

where we have made use of the notation

R
m

k =
k∑

j=1

1

m
Ej−1(Sj+m − Sj ).

Observe that

R
m

k =
k−1∑
j=0

Ym
j . (15)

With the notation

Rm
k = θm

0 − θm
k + R

m

k , (16)

we have

Sk = Mm
k + Rm

k . (17)

Step 2. Sufficiency.
We show that ‖Ym

0 ‖M+ → 0 as m → ∞ is sufficient for (5).
The starting point is the construction of the martingale differences, as in (13). By the martin-

gale property and (17), for all positive integers m′ and m′′, we have

‖Dm′
0 − Dm′′

0 ‖2 = 1√
n
‖Mm′

n − Mm′′
n ‖2 = 1√

n
‖Rm′

n − Rm′′
n ‖2.

We now let n → ∞. By relation (16) and stationarity, it follows that

lim sup
n→∞

1√
n
‖Rm′

n − Rm′′
n ‖2 = lim sup

n→∞
1√
n
‖Rm′

n − R
m′′
n ‖2

≤ lim sup
n→∞

1√
n
(‖Rm′

n ‖2 + ‖Rm′′
n ‖2).

By (7), the limit when m′ and m′′ both tend to ∞ is then 0, giving that (Dm
0 ) is Cauchy in L2

and therefore convergent. Denote its limit by D0. Then Mn = ∑n−1
k=0 Dk is a martingale with the
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desired properties. To see this, we start from the decomposition in relation (14) and obtain

|Sk − Mk| ≤ |Mm
k − Mk| + |θm

k − θm
0 | + |Rm

k |.
Then

1√
n

∥∥∥ max
1≤k≤n

|Sk − Mk|
∥∥∥

2
≤ 1√

n

∥∥∥ max
1≤k≤n

|Mm
k − Mk|

∥∥∥
2

+ 1√
n
‖θm

0 ‖2 + 1√
n

∥∥∥ max
1≤k≤n

|θm
k |

∥∥∥
2
+ 1√

n

∥∥∥ max
1≤k≤n

|Rm

k |
∥∥∥

2
.

By Doob’s maximal inequality for martingales and by stationarity, we conclude that

1√
n

∥∥∥ max
1≤k≤n

|Mm
k − Mk|

∥∥∥
2
≤ ‖Dm

0 − D0‖2.

For m fixed, since (θm
k )k∈Z is a stationary sequence of square-integrable random variables, for

any A > 0, we have

1

n
E

[
max

1≤k≤n
|θm

k |2
]

≤ A2

n
+ 1

n

n∑
k=1

E[|θm
k |2I (|θm

k | > A)]

= A2

n
+ E[|θm

0 |2I (|θm
0 | > A)]

and then, clearly,

lim
n→∞

1

n
E

[
max

1≤k≤n
|θm

k |2
]

= 0. (18)

Then, taking into account (15), we easily obtain

lim sup
n→∞

1√
n

∥∥∥ max
1≤k≤n

|Sk − Mk|
∥∥∥

2
≤ ‖Dm

0 − D0‖2 + ‖Ym
0 ‖M+

and the result follows by letting m → ∞, from the fact that Dm
0 → D0 in L2. It is easy to see

that the martingale is unique.
Step 3. Necessity.
Assume that the martingale approximation (5) holds. With the notation Rn = Sn − Mn, we

then have

lim
n→∞

1√
n

∥∥∥ max
1≤k≤n

|Rk|
∥∥∥

2
= 0.

In particular, this approximation implies that

lim
n→∞

1√
n

max
1≤k≤n

‖E(Sk|F0)‖2 = 0. (19)
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From

‖Rn

n‖2 ≤ ‖E(Sn|F0)‖2,

we deduce that

‖Rn
n‖2 = ‖θn

0 − θn
n + R

n

n‖2 ≤ 2‖θn
0 ‖2 + ‖Rn

n‖2 ≤ 3 max
1≤k≤n

‖E(Sk|F0)‖2,

whence, by (19), it follows that

lim
n→∞

‖Rn
n‖2√
n

= 0.

As a consequence, we obtain

E(Dn
0 − D0)

2 = E(Mn
n − Mn)

2

n
= E(Rn

n − Rn)
2

n
→ 0 as n → ∞.

This shows that Dn
0 → D0 in L2. By the triangle inequality, followed by Doob’s inequality, for

any positive integer m, we have

1√
n

∥∥∥ max
1≤k≤n

|Rm
k |

∥∥∥
2

≤ 1√
n

∥∥∥ max
1≤k≤n

|Rk|
∥∥∥

2
+ 1√

n

∥∥∥ max
1≤k≤n

|Mm
k − Mk|

∥∥∥
2

≤ 1√
n

∥∥∥ max
1≤k≤n

|Rk|
∥∥∥

2
+ ‖Dm

0 − D0‖.

Now, letting n → ∞ followed by m → ∞, we obtain

lim
m→∞ lim sup

n→∞
1√
n

∥∥∥ max
1≤k≤n

|Rm
k |

∥∥∥
2
= 0. (20)

Now, observe that by (16), Rm
n − R

m

n = θm
0 − θm

n . Then, for every fixed m, by (18), we have

1√
n

∥∥∥ max
1≤k≤n

|θm
0 − θm

k |
∥∥∥

2
→

n→∞ 0.

Thus, we conclude from (20) that

lim
m→∞‖Ym

0 ‖M+ = 0

and the necessity follows.

3. Applications

3.1. Applications using projective criteria

The first application involves the class of variables satisfying the Maxwell–Woodroofe condi-
tion [19].
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Proposition 3. Assume that

�(X0) =
∞∑

k=1

‖E0(Sk)‖2

k3/2
< ∞. (21)

The martingale approximation (5) then holds.

Proof. In order to verify condition (7) of Theorem 1, we apply inequality (10) to the stationary
sequence (Ym

k )k∈Z defined by (6). Then

∥∥∥∥∥ max
1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
∥∥∥∥∥

2

≤ n1/2(2‖Ym
0 ‖2 + 80�(Ym

0 )
)
.

First, note that by Peligrad and Utev [24], Proposition 2.5, we know that condition (21) implies
that ‖Ym

0 ‖2 → 0. We complete the proof by showing that

�(Ym
0 ) −→

m→∞ 0.

Since ‖Ym
0 ‖2 → 0, by the triangle inequality and stationarity, every term of the series on the

right-hand side of the equality

�(Ym
0 ) =

∞∑
k=1

1

k3/2
‖E0(Y

m
0 + · · · + Ym

k−1)‖2

tends to 0 as m → ∞. Furthermore, because

‖E0(Y
m
0 + · · · + Ym

k−1)‖2 =
∥∥∥∥∥E0

(
1

m

m∑
l=1

k−1∑
i=0

Ei (Xi+l )

)∥∥∥∥∥
2

≤ ‖E0(X0 + · · · + Xk−1)‖2,

each term in �(Ym
0 ) is dominated by the corresponding term in �(X0), the latter being indepen-

dent of m. The result follows from the above considerations, along with the Lebesgue dominated
convergence theorem for the counting measure. �

For the sake of applications, we give the following corollary.

Corollary 4. Assume that

∞∑
n=1

1√
n
‖E0(Xn)‖2 < ∞. (22)

The martingale representation (5) then holds.
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The fact that (22) implies (21) was observed in Maxwell and Woodroofe [19].
We shall now combine Theorem 1 with Rio’s maximal inequality (9) to obtain the following

proposition.

Proposition 5. Assume that for any j ≥ 0,

	j =
∑
k≥j

‖XjE0(Xk)‖1 < ∞ and
1

m

m−1∑
j=0

	j → 0 as m → ∞. (23)

The martingale representation (5) then holds.

Proof. In order to verify condition (7), we now apply the maximal inequality (9) to (Ym
k )k≥1

defined by (6). We conclude that for n ≥ m,

∥∥∥∥∥ max
1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
∥∥∥∥∥

2

2

≤ 8n‖Ym
0 ‖2

2 + 16
n−1∑
j=1

‖Ym
0 E0(Y

m
1 + · · · + Ym

j )‖1

≤ 8n(12m + 1)‖Ym
0 ‖2

2 + 16
n−1∑

j=m+1

‖Ym
0 E0(Y

m
m+1 + · · · + Ym

j )‖1,

where, in the last sum, we have implemented a decomposition into two terms to deal with over-
lapping blocks. So, for an absolute constant C,

1

n

∥∥∥∥∥ max
1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
∥∥∥∥∥

2

2

≤ C

(
‖E0(Sm)‖2

2

m
+ 1

n

n−1∑
l=m+1

‖Ym
0 E0(Y

m
m+1 + · · · + Ym

l )‖1

)
.

Since, for any l > m,

‖Ym
0 E0(Y

m
m+1 + · · · + Ym

l )‖1 ≤ 1

m

m∑
j=1

sup
i>m

‖(E0(Xj ))E0(Xi + · · · + Xi+l)‖1

≤ 1

m

m∑
j=1

∑
k≥m

‖E0(Xj )E0(Xk)‖1

and also

‖E0(Sm)‖2
2 ≤ 2

m−1∑
j=0

m−1∑
k=j

‖E0(Xj )E0(Xk)‖1,
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we then obtain, by the properties of conditional expectations, that for a certain absolute con-
stant C′,

1

n

∥∥∥∥∥ max
1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
∥∥∥∥∥

2

2

≤ C′

m

m∑
j=0

∑
k≥j

‖XjE0(Xk)‖1

and the result follows from condition (23), by first letting n → ∞, followed by m → ∞. �

The projective criteria in the next proposition were studied in [11,13,16], among others.

Proposition 6. Assume

E(X0|F−∞) = 0 almost surely and
∞∑
i=1

‖E−i (X0) − E−i−1(X0)‖2 < ∞. (24)

The martingale approximation (5) then holds.

Proof. The validity of this proposition easily follows by verifying condition (7) via maximal
inequality (11) applied to (Ym

k )k≥1 defined by (6). Indeed, by (11), the triangle inequality and
stationarity, we have

1√
n

∥∥∥∥∥ max
1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
∥∥∥∥∥

2

≤ 2
∞∑
i=0

‖E−i (Y
m
0 ) − E−i−1(Y

m
0 )‖2

≤ 2

m

∞∑
i=0

m∑
k=1

‖E−i (Xk) − E−i−1(Xk)‖2.

Now, by stationarity, change of order of summation and change of variable,

1√
n

∥∥∥∥∥ max
1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
∥∥∥∥∥

2

≤ 2

m

m∑
k=1

∞∑
j=k

‖E−j (X0) − E−j−1(X0)‖2.

To verify condition (7), we let n → ∞ followed by m → ∞. Note that the term on the right-hand
side of the previous inequality tends to 0 as m → ∞, by (24). �

3.2. Application to mixing sequences

The results in the previous section can be immediately applied to mixing sequences, leading to
the sharpest possible results and providing additional information about the structures of these
processes. Examples include various classes of Markov chains and Gaussian processes.

We shall introduce the following mixing coefficients: for any two σ -algebras A and B, define
the strong mixing coefficient α(A, B),

α(A, B) = sup{|P(A ∩ B) − P(A)P(B)|;A ∈ A,B ∈ B},
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and the ρ-mixing coefficient, known also as the maximal coefficient of correlation ρ(A, B),

ρ(A, B) = sup{Cov(X,Y )/‖X‖2‖Y‖2 :X ∈ L2(A), Y ∈ L2(B)}.
For the stationary sequence of random variables (Xk)k∈Z, we also define F n

m, the σ -field
generated by Xi with indices m ≤ i ≤ n. F n denotes the σ -field generated by Xi with indices
i ≥ n and Fm denotes the σ -field generated by Xi with indices i ≤ m. The sequences of coeffi-
cients α(n) and ρ(n) are then defined by

α(n) = α(F0, F n
n ) and ρ(n) = ρ(F0, F n).

Equivalently (see [2], Chapter 4),

ρ(n) = sup{‖E(Y |F0)‖2/‖Y‖2 :Y ∈ L2(F n), E(Y ) = 0}.
Finally, we say that the stationary sequence is strongly mixing if α(n) → 0 as n → ∞ and

ρ-mixing if ρ(n) → 0 as n → ∞.
An interesting application of Proposition 3 is to ρ-mixing sequences. It is well known that

the central limit theorem and its invariance principle hold for stationary centered sequences with
finite second moments under the assumption

∞∑
k=1

ρ(2k) < ∞, (25)

where ρ(n) = ρ(F0, F n). Let us recall that the central limit theorem is due to [14], while the
invariance principle is found in [22,29–31]. The fact that condition (25) is sharp in this context
is due to [2], Volume 1, page 367, and Volume 3, Theorem 34.13. Bradley’s example shows that
if (25) fails, then Sn/‖Sn‖2 might have non-degenerate non-normal distributions as weak limit
points.

As a corollary of Proposition 3, we obtain the conditional invariance principle for ρ-mixing
sequences.

Proposition 7. Assume
∑∞

k=1 ρ(2k) < ∞. The martingale representation (5) then holds.

Proof. As in [21], for a positive constant C, we have

∞∑
r=0

‖E(S2r |F0)‖2

2r/2
≤ C‖X0‖2

∞∑
j=0

ρ(2j ).
�

To obtain sharp results for strongly mixing sequences, we shall use Proposition 5.
According to Doukhan, Massart and Rio [10], a condition that is optimal for CLT or the in-

variance principle for strongly mixing sequences is∑
k≥1

EX2
0I

(|X0| ≥ Q|X0|(2αk)
)
< ∞, (26)
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where Q|X0| denotes the cadlag inverse of the function t → P(|X0| > t). Also under this condi-
tion, we add the additional information given by Theorem 1.

Proposition 8. Assume that condition (26) is satisfied. The martingale representation (5) then
holds.

Proof. We shall just verify the condition of Proposition 5. Note that on the set [0, P (|Y | > 0)],
the function HY :x → ∫ x

0 QY (u)du is an absolutely continuous and increasing function with
values in [0, E|Y |]. Denote by GY the inverse of HY . With this notation, by Merlevède and
Peligrad [20], relation (4.84), we have

‖XjE(Xk|F0)‖1 ≤ 3
∫ ‖E(Xk |F0)‖1

0
Q|X0| ◦ G(u)du

and we then majorize the right-hand side in the previous inequality by Dedecker and Doukhan [5],
Proposition 1, to obtain

‖XjE(Xk|F0)‖1 ≤ 6
∫ 2α(k)

0
Q2|X0| du.

Therefore,

∑
k≥j

‖XjE0(Xk)‖1 ≤ 6
∑
k≥j

∫ 2α(k)

0
Q2|X0| du

≤ 6
∑
k≥j

EX2
0I

(|X0| ≥ Q|X0|(2αk)
) → 0 as j → ∞.

�

Note that the coefficient α(k) is defined by using only one variable in the future. Moreover, by
the Cauchy–Schwarz inequality, condition (26) is satisfied if the variables have finite moments
of order 2 + δ for a δ > 0 and ∑

k≥1

α(k)δ/(2+δ) < ∞.

An excellent source of information for classes of mixing sequences and classes of Markov chains
satisfying mixing conditions is the book by Bradley [2]. Further applications can be obtained by
using the coupling coefficients in [8].

3.3. Application to additive functionals of reversible Markov chains

For reversible Markov processes (i.e., Q = Q∗), the invariance principle under an optimal con-
dition is known since Kipnis and Varadhan [18]. The following is a formulation in terms of
martingale approximation.
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Proposition 9. Let (ξi)i∈Z be a stationary reversible Markov chain and f ∈ L
2
0(π) with the

property

lim
n→∞

var(Sn)

n
→ σ 2

f < ∞. (27)

The martingale approximation satisfying (5) then holds.

Proof. We have to verify condition (7). Denote by ρf the spectral measure of f corresponding
to the self-adjoint operator Q on L2(π). It is well known that the assumption (27) for f ∈ L

2
0 im-

plies that
∫ 1
−1(1− t)−1ρf (dt) < ∞ (see [18]). Define Ym

0 by (6). By the maximal inequality (12),
we have

1

n
E

(
max

1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
)2

≤ 27
∑
k≥0

E(Ym
0 Ym

k ),

provided that the sum on the right-hand side is finite. To prove it, by using spectral calculus for
the self-adjoint operator Q, we obtain

∑
k≥0

E(Ym
0 Ym

k ) ≤ 1

m2

∫ 1

−1

(1 + t + · · · + tm−1)2

(1 − t)
ρf (dt)

and therefore, for every positive integer m > 0,

‖Ym
0 ‖2

M+ ≤ 27
∫ 1

−1

(1 + t + · · · + tm−1)2

m2(1 − t)
ρf (dt).

Since
∫ 1
−1(1 − t)−1ρf (dt) < ∞, the right-hand side is finite and, by the dominated convergence

theorem,

lim
m→∞‖Ym

0 ‖2
M+ = 0. �

Similar results are expected to hold for other classes of stationary and ergodic Markov chains
when Q is not necessarily self-adjoint, but instead satisfies a quasi-symmetry or strong sector
condition, or is symmetrized. See [33] and [28] for these related processes.

3.4. Application to additive functionals of normal Markov chains

For additive functionals of normal Markov chains (QQ∗ = Q∗Q), the central limit theorem be-
low is a result of Gordin and Lifshitz [17]. As an application of Theorem 2, we give an alternative
proof.

Let ρf be the spectral measure on the closed unit disk D ⊂ C corresponding to the function
f ∈ L

2
0(π).
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Proposition 10. Let (ξi)i∈Z be a stationary normal Markov chain and a function f ∈ L
2
0(π),

satisfying the condition ∫
D

1

|1 − z|ρf (dz) < ∞. (28)

The martingale approximation (2) then holds.

Proof. According to Theorem 2, we have to verify condition (8). By using spectral calculus as
in [3], Chapter 4, after some computations, we get

lim sup
n→∞

1

n

∥∥∥∥∥
n−1∑
k=0

Ym
k

∥∥∥∥∥
2

2

≤ 4
∫

D

|1 + z + · · · + zm−1|2
m2|1 − z| ρf (dz)

and condition (8) is therefore satisfied by condition (28) and the dominated convergence theo-
rem. �

Condition (28) has an interesting equivalent formulation in terms of conditional moments that
is in the spirit of (and which implies) the Mawxell–Woodroofe condition (21).

Remark 11. Condition (28) is equivalent to

∞∑
k=1

‖E0(Sk)‖2
2

k2
< ∞. (29)

Condition (29) is further implied by

∞∑
k=1

‖E0(Xk)‖2
2 < ∞. (30)

The equivalence in the above remark can be found in [4], Lemma 2.1. The fact that (30)
implies (29) is easily established, much like the proof that (22) implies (21).
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