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In this paper, we prove maximal inequalities and study the functional central limit theorem for the partial
sums of linear processes generated by dependent innovations. Due to the general weights, these processes
can exhibit long-range dependence and the limiting distribution is a fractional Brownian motion. The proofs
are based on new approximations by a linear process with martingale difference innovations. The results are
then applied to study an estimator of the isotonic regression when the error process is a (possibly long-range
dependent) time series.
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1. Introduction and notation

Without loss of generality, we assume that all the strictly stationary sequences (ξi)i∈Z considered
in this paper are given by ξi = ξ0 ◦ T i , where T :� �→ � is a bijective bimeasurable transfor-
mation preserving the probability P on (�, A). We denote by I the σ -algebra of all T -invariant
sets. For a subfield F0 satisfying F0 ⊆ T −1(F0), let Fi = T −i (F0). Let F−∞ = ⋂

n≥0 F−n and
F∞ = ∨

k∈Z Fk . The sequence (Fi )i∈Z will be called a stationary filtration. We also assume that
ξ0 is regular, that is, E(ξ0|F−∞) = 0 and ξ0 is F∞-measurable. On L2, we define the projection
operator Pj by

Pj (Y ) = E(Y |Fj ) − E(Y |Fj−1).

For any random variable Y , ‖Y‖p denotes the norm in Lp .
Recall that the linear process Xk = ∑

i∈Z aiξk−i is well defined in L2 for any (ai)i∈Z in �2

(i.e.,
∑

i∈Z a2
i < ∞) if and only if the stationary sequence (ξi)i∈Z has a bounded spectral density.

Let Sn = X1 + · · · + Xn and cn,j = a1−j + · · · + an−j . In the case where ξ0 is F0-measurable,
Peligrad and Utev [19] have proven that if the sequence (ξi)i∈Z satisfies an appropriate weak
dependence condition, then (∑

j∈Z

c2
n,j

)−1/2

Sn
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converges in distribution to
√

ηN , where η is a non-negative I -measurable random variable and
N is a standard normal random variable independent of η. Their result extends the classical result
of Ibragimov [12] from i.i.d. ξi ’s to the case of weakly dependent sequences. In particular, the
result applies if ∑

i∈Z

‖P0(ξi)‖2 < ∞. (1)

Note that if this condition is satisfied, then the series
∑

k∈Z |E(ξ0ξk)| converges. Indeed, since
ξk = ∑

i∈Z Pi(ξk) and since E(Pi(ξ0)Pj (ξk)) = 0 if i �= j , it follows that for any k ∈ Z,

|E(ξ0ξk)| ≤
∣∣∣∣∑

i∈Z

E(Pi(ξ0)Pi(ξk))

∣∣∣∣ ≤
∑
i∈Z

‖P0(ξi)‖2‖P0(ξk+i )‖2

so that
∑

k∈Z |E(ξ0ξk)| ≤ (
∑

i∈Z ‖P0(ξi)‖2)
2. In addition, under condition (1), the non-negative

random variable η satisfies η = ∑
k∈Z E(ξ0ξk|I).

Condition (1) was introduced by Hannan [9], and by Heyde [10] in a slightly weaker form,
and is well adapted to the analysis of time series (see, in particular, the application to time series
regression given in the paper by Hannan [9]). As we shall see in our Remark 3.3, condition (1)
is also satisfied if

∞∑
n=1

1√
n
‖E(ξn|F0)‖2 < ∞ and

∞∑
n=1

1√
n
‖ξ−n − E(ξ−n|F0)‖2 < ∞, (2)

which is weaker than the condition introduced by Gordin [7]. If ξ0 is F0-measurable, then condi-
tion (2) leads to interesting new conditions for weakly dependent sequences and can be success-
fully applied to functions of dynamical systems (see [19], Section 3, and [4], Section 6, for more
details).

A natural question is now: what can we say about the weak convergence of the partial sum
process {(∑

j∈Z

c2
n,j

)−1/2

S[nt], t ∈ [0,1]
}

(3)

in the space D([0,1]) of cadlag functions equipped with the uniform topology? Due to the results
of Davydov [3] for i.i.d. ξi ’s, we know that the question is not as simple as for the central limit
question and that the limiting process (when it exists) depends on the behavior of the normalizing
sequence v2

n = ∑
j∈Z c2

n,j . More precisely, if (1) holds and if there exists β ∈]0,2] such that

for any t ∈]0,1] lim
n→∞

v2[nt]
v2
n

= tβ, (4)

then we show in Theorems 3.1 and 3.2 that the finite-dimensional marginals of the process (3)
converge in distribution to those of

√
ηWH , where WH is a fractional Brownian motion, inde-

pendent of η, with Hurst index H = β/2. The question is now: under what conditions can we
obtain the tightness in D([0,1])?
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In Theorem 3.1 of Section 3.1, we show that if β ∈]1,2], then condition (1) is sufficient for
weak convergence in D([0,1]). If β ∈]0,1], we point out in Theorem 3.1 that the convergence
in D([0,1]) holds if (1) is replaced by the stronger condition∑

i∈Z

‖P0(ξi)‖q < ∞ for q > 2/β. (5)

As a matter of fact, for β = 1, it is known from counterexamples given in [29] and [16] that
if the sequence (ξi)i∈Z is i.i.d. with E(ξ2

0 ) < ∞, then the weak invariance principle may not be
true for the partial sums of the linear process, so a reinforcement of (1) is necessary. The case
β = 1, where W1/2 is a standard Brownian motion, is of special interest and is known as the
weakly dependent case. In that case, we point out in Section 3.2 that if we impose some addi-
tional assumptions on (ai)i∈Z, then condition (1) is sufficient for the weak invariance principle
(Comments 3.1 and 3.2) or may be reinforced in a weaker way than (5) (Theorem 3.3).

Note that, with the notation above, the sum Sn may be written as

Sn =
∑
i∈Z

cn,iξi . (6)

Consequently, to prove our main theorems, in Section 2, we give two preliminary results for linear
statistics of type (6): first, a moment inequality given in Proposition 2.1 and, next, a martingale
approximation result given in Proposition 2.2, which enables us to go back to the standard case
where the ξi ’s are martingale differences. Both results are given in terms of Orlicz norms.

Our results provide, besides the invariance principles, estimates of the maximums of partial
sums that make them appealing to the study of statistics involving linear processes. In Section 4,
we apply our results to the so-called isotonic regression problem

yk = φ

(
k

n

)
+ Xk, k = 1,2, . . . , n, (7)

where φ is non-decreasing and the error Xk is a linear process. We follow the general scheme
given in [1], who showed that in the context of dependent errors, the main tools to obtain the
asymptotic distribution of the isotonic estimator φ̂ are the convergence in D([0,1]) of the partial
sum process defined in (3) and a suitable maximal inequality for the rescaled stochastic term
(see their condition (14)). Zhao and Woodroofe [30] shed light on the fact that, in addition to the
weak invariance principle, it is, in fact, enough to prove a suitable maximal inequality directly on
the partial sums of the error process. As in [1], the rate of convergence of φ̂ is determined by the
asymptotic behavior of the normalizing sequence v2

n = ∑
j∈Z c2

n,j and the limiting distribution
depends on the limiting process WH .

2. Moment inequalities and martingale approximation for
Orlicz norms

For 	 : R+ → R+ a Young function (convex, increasing, 	(0) = 0 and limx→∞ 	(x) = ∞),
we denote by L	 the Orlicz space defined as the space of all random variables X such that
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E	(|X|/c) < ∞ for some c > 0. It is a Banach space for the norm

‖X‖	 = inf{c > 0,E	(|X|/c) ≤ 1}.
Note that if 	(x) = xq , 1 ≤ q < ∞, then L	 = Lq .

Let us also introduce the following class of functions (see [5], page 60). For α > 0, the class
Aα consists of functions � : R+ → R+, where �(0) = 0, � is non-decreasing continuous and
such that

�(cx) ≤ cα�(x) for all c ≥ 2, x ≥ 0.

We also denote by C(Aα) the class of functions 	 such that 	 is a Young function in Aα and
x �→ 	(

√
x) is a convex function.

Proposition 2.1. Let {Yk}k∈Z be a sequence of random variables such that for all k, E(Yk|
F−∞) = 0 almost surely and Yk is F∞-measurable. Let 	 be a function in C(Aα). Assume
that

‖Pk−j (Yk)‖	 ≤ pj and D	 :=
∞∑

j=−∞
pj < ∞.

For any positive integer m, let {cm,j }j∈Z be a sequence in �2. Define Sm = ∑
j∈Z cm,jYj . Then,

for all m ≥ 1, there exists a positive constant Cα , depending only on α, such that

‖Sm‖	 ≤ CαD	

(∑
j∈Z

c2
m,j

)1/2

. (8)

Remark 2.1. Using the notation of the above proposition, we get, for the special function 	(x) =
xq with q ∈ [2,∞[, the following moment inequality. Assume that

‖Pk−j (Yk)‖q ≤ pj and Dq :=
∞∑

j=−∞
pj < ∞.

Then, for any m ≥ 1,

‖Sm‖q ≤ Cq

(∑
j∈Z

c2
m,j

)1/2

Dq,

where C
q
q = 18q3/2/(q − 1)1/2.

For all j ∈ Z, let dj = ∑
�∈Z Pj (ξ�). Clearly, (dj )j∈Z is a stationary sequence of martingale

differences with respect to the filtration (Fj )j∈Z.
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Proposition 2.2. For any positive integer n, let {cn,i}i∈Z be a sequence in �2. Let 	 be a function
in C(Aα). If

∑
j∈Z ‖P0(ξj )‖	 < ∞, then we have the following martingale-difference approxi-

mation: for any positive integer m, there exists a positive constant Cα , depending only on α, such
that

∥∥∥∥∑
i∈Z

cn,i(ξi − di)

∥∥∥∥
	

≤ 2Cα

(∑
i∈Z

c2
n,i

)1/2 ∑
|k|≥m

‖P0(ξk)‖	

+ 3Cαm

(∑
j∈Z

(cn,j − cn,j−1)
2
)1/2 ∑

j∈Z

‖P0(ξj )‖	.

Corollary 2.1. Let (ai)i∈Z be a sequence of real numbers in �2. Let 	 be a function in C(Aα).
Assume that ξ0 ∈ L	 and

∑
j ‖P0(ξj )‖	 < ∞. Let Xk = ∑

j∈Z aj ξk−j and Yk = ∑
j∈Z ajdk−j .

Set Sn = ∑n
k=1 Xk and Tn = ∑n

k=1 Yk . Then, for any positive m, there exist positive constants
C1 and C2 such that

‖Sn − Tn‖	 ≤ C1vn

∑
|k|≥m

‖P0(ξk)‖	 + C2m, (9)

where v2
n = ∑

j∈Z c2
n,j and cn,j = a1−j + · · · + an−j .

Proof. We apply Proposition 2.2 by noting that Sn − Tn = ∑
j∈Z cn,j (ξj − dj ) and that

∑
j∈Z

(cn,j − cn,j−1)
2 ≤ 4

∑
j∈Z

a2
j . �

Using the Orlicz norms, we give the following maximal inequality, which is a refinement of
inequality (6) in [27], Proposition 1.

Lemma 2.1. Let 	 be a Young function. Let p ≥ 1 and write 	p(x) for 	(xp). Let (Yi)1≤i≤2N

be a strictly stationary sequence of random variables such that ‖Y1‖	p < ∞. Let Sn = Y1 +
· · · + Yn. Then

∥∥∥ max
1≤m≤2N

|Sm|
∥∥∥

p
≤

N∑
L=0

‖S2L‖	p(	−1(2N−L))1/p.

Remark 2.2. Clearly, we can take 	(x) = x in Lemma 2.1. Hence, in the stationary case, we
recover the inequality (6) in [27].
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3. Invariance principle for linear processes

In this section, we shall focus on the weak invariance principle for linear processes. Let (ai)i∈Z
be a sequence of real numbers in �2. Let

Xk =
∑
i∈Z

aiξk−i and S[nt] =
[nt]∑
k=1

Xk, (10)

and

v2
n =

∑
j∈Z

c2
n,j , where cn,j = a1−j + · · · + an−j . (11)

The behavior of the process {S[nt], t ∈ [0,1]}, properly normalized, strongly depends on the be-
havior of the sequence (ai)i∈Z.

In the next two sections, we treat separately the case where the limit process is a mixture of
fractional Brownian motions and the case where it is a mixture of standard Brownian motions.

3.1. Convergence to a mixture of fractional Brownian motions

Definition 3.1. We say that a positive sequence (v2
n)n≥1 is regularly varying with exponent β > 0

if, for any t ∈]0,1],
v2[nt]
v2
n

→ tβ as n → ∞. (12)

We shall separate the case β ∈]1,2] from the case β ∈]0,1].

Theorem 3.1. Let (ai)i∈Z be in �2. Let β ∈]1,2] and assume that v2
n defined by (11) is regularly

varying with exponent β . Let ξ0 be a regular random variable such that ‖ξ0‖2 < ∞ and let ξi =
ξ0 ◦T i. Assume that condition (1) is satisfied. The process {v−1

n S[nt], t ∈ [0,1]} then converges in
D([0,1]) to

√
ηWH , where WH is a standard fractional Brownian motion independent of η with

Hurst index H = β/2, η = ∑
k∈Z E(ξ0ξk|I) and there exists a positive constant C (not depending

on n) such that

E
(

max
1≤k≤n

S2
k

)
≤ Cv2

n. (13)

Theorem 3.2. Let β ∈]0,1] and assume that v2
n defined by (11) is regularly varying with expo-

nent β . Let ξ0 be a regular random variable such that ‖ξ0‖2 < ∞ and let ξi = ξ0 ◦ T i. Assume
that condition (1) is satisfied. The finite-dimensional distributions of {v−1

n S[nt], t ∈ [0,1]} then
converge to the corresponding ones of

√
ηWH , where WH is a standard fractional Brownian mo-

tion, independent of η, with Hurst index H = β/2 and η = ∑
k∈Z E(ξ0ξk|I). Assume, in addition,
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that for a q > 2/β , we have ‖ξ0‖q < ∞ and∑
j∈Z

‖P0(ξj )‖q < ∞. (14)

Then the process {v−1
n S[nt], t ∈ [0,1]} converges in D([0,1]) to

√
ηWH and (13) holds.

Remark 3.1. According to Peligrad and Utev [19], Corollary 2, we have

lim
n→∞

Var(Sn)

v2
n

= lim
n→∞

Var(ξ1 + · · · + ξn)

n
= v2 =

∥∥∥∥∑
j∈Z

P0(ξj )

∥∥∥∥2

2
.

Remark 3.2. In the context of Theorem 3.1, condition (12) is necessary for the conclusion of
this theorem (see [14]). This condition has also been imposed by Davydov [3] to study the weak
invariance principle of linear processes with i.i.d. innovations. To be more precise, Davydov
proved that if (12) holds and if ξ0 ∈ L

q with q ≥ 4 and q > 4(1/β − 1), then {v−1
n S[nt], t ∈

[0,1]} converges in D([0,1]) to
√

E(ξ2
0 )Wβ/2. Later, in the case β > 1, Konstantopoulos and

Sakhanenko [13] sharpened Davydov’s result, showing that the weak invariance principle holds
if the ξi ’s are i.i.d. and in L2.

Example 1. For 0 < d < 1/2, let us consider the linear process Xk defined by

Xk = (1 − B)−dξk =
∑
i≥0

aiξk−i , (15)

where B is the lag operator, a0 = 1, ai = �(i+d)
�(d)�(i+1)

for i ≥ 1 and (ξi)i∈Z is a strictly stationary
sequence satisfying the condition of Theorem 3.1. In this case, Theorem 3.1 applies with β =
2d + 1 since ak ∼ (�(d))−1kd−1.

Example 2. Now, consider the following choice of (ak)k≥0: a0 = 1 and ai = (i +1)−α − i−α for
i ≥ 1 with α ∈]0,1/2[. Theorem 3.2 then applies. Indeed, for this choice, v2

n ∼ καn1−2α , where
κα is a positive constant depending on α.

Example 3. For the choice ai ∼ i−α�(i), where � is a slowly varying function at infinity and
1/2 < α < 1, we have v2

n ∼ καn3−2α�2(n) (see, e.g., [26], relations (12)), where κα is a positive
constant depending on α.

Example 4. Finally, if ai ∼ i−1/2(log i)−α for some α > 1/2, then v2
n ∼ n2(logn)1−2α/(2α − 1)

(see [26], relations (12)). Hence, (12) is satisfied with β = 2.

For the sake of applications, we now give a sufficient condition for (14) to hold.
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Remark 3.3. For any q ∈ [2,∞[, the condition (14) is satisfied if we assume that

∞∑
n=1

1

n1/q
‖E(ξn|F0)‖q < ∞ and

∞∑
n=1

1

n1/q
‖ξ−n − E(ξ−n|F0)‖q < ∞. (16)

The fact that (16) implies (14) extends [19], Corollary 2, and also [4], Corollary 5, from the
case q = 2 to more general situations.

For causal linear processes, Shao and Wu [23] also showed that the weak invariance princi-
ple holds under the condition (14), as long as the coefficients of the linear processes satisfy a
certain regularity condition. To be more precise, their condition on the coefficients of the linear
processes lead either to β > 1 or β < 1. For this last case, they specified the coefficients (ai)i≥0
as follows: for 1 < α < 3/2, aj = j−α�(j) for j ≥ 1 (where �(i) is a slowly varying function)
and

∑∞
j=0 aj = 0 (see, e.g., their Lemma 4.1). For this choice, v2

n is regularly varying with co-
efficient β = 3 − 2α < 1. Our Theorem 3.2 does not require conditions on the coefficients, but
only the fact that the variance is regularly varying, which is a necessary condition.

3.2. Convergence to a mixture of Brownian motions

The case β = 1 deserves special attention. For this case, the limit is a mixture of Brownian
motions.

As an immediate consequence of Theorem 3.2, we formulate the following corollary for causal
linear processes, under a recent condition introduced by Wu and Woodroofe [29].

Corollary 3.1. Let ξ0 be a regular random variable such that ‖ξ0‖q < ∞ for some q > 2 and
let ξi = ξ0 ◦ T i . Assume, in addition, that∑

j∈Z

‖P0(ξj )‖q < ∞. (17)

Let (ai)i∈Z be a sequence of real numbers in �2 such that ai = 0 for i < 0. Let bj = a0 +· · ·+aj .
Define (Xk)k≥1 as above and assume that

n−1∑
k=0

b2
k → ∞ as n → ∞, (18)

and that
∞∑

j=0

(bn+j − bj )
2 = o

(
n−1∑
k=0

b2
k

)
. (19)

Then v2
n ∼ nh(n), where h(n) is a slowly varying function. Moreover, the process {v−1

n S[nt], t ∈
[0,1]} converges in D([0,1]) to

√
ηW , where W is a standard Brownian motion, independent

of η, and η = ∑
k∈Z E(ξ0ξk|I). In addition, (13) holds.
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To prove this result, it suffices to apply Theorem 3.2 and to use the fact that under (18) and
(19), v2

n ∼ nh(n) (see [29]). Under the same conditions (18) and (19), Wu and Min [28], in
their Theorem 1, also proved the weak invariance principle, but under the stronger condition∑

j≥0 j‖P0(ξj )‖q < ∞ (in their paper, the random variables ξj are adapted to the filtration Fj ).

Remark 3.4. The above result fails if, in (17), we take q = 2; see [29] and also [16], Example 1,
page 657.

Let us make some comments on the case where the condition (1) is sufficient for weak conver-
gence to the Brownian motion with the normalization

√
n. The first case is already known and

the second case deserves a short proof.

Comment 3.1. When
∑

i∈Z |ai | < ∞ (the short memory case) and condition (1) is satisfied,
one can use the result from [18] in the adapted case, showing that the invariance principle for
the linear process is inherited from the innovations at no extra cost. For this case, the process
{n−1/2S[nt], t ∈ [0,1]} converges in distribution in D([0,1]) to

√
ηW , where W is a standard

Brownian motion, independent of η, and η = A2 ∑
k∈Z E(ξ0ξk|I) with A = ∑

i∈Z ai . Moreover,
E(max1≤k≤n S2

k ) ≤ Cn. See [4], Corollaries 2 and 3, for the non-adapted case.

Comment 3.2. Let (ai)i∈Z in �2 and assume that the series
∑

i∈Z ai converges (meaning that
the two series

∑
i≥0 ai and

∑
i<0 ai converge) and Heyde’s [11] condition (H) holds:

(H)

∞∑
n=1

(∑
k≥n

ak

)2

< ∞ and
∞∑

n=1

( ∑
k≤−n

ak

)2

< ∞.

Assume, also, that condition (1) is satisfied. The same conclusion as in Comment 3.1 then holds.

Example 5. Heyde’s condition allows the following possibility:
∑

i∈Z |ai | = ∞, but
∑

i∈Z ai

converges. For instance, if, for n < 0, an = 0 and, for n ≥ 1, an = (−1)nun, for some sequence
(un)n≥1 of positive coefficients decreasing to zero such that

∑
n≥1 un = ∞, then condition (H)

is satisfied as soon as
∑

n>0 u2
n < ∞, which is a minimal condition. It is noteworthy to indicate

that Heyde’s condition implies (19).

Now, if
∑

j∈Z |aj | = ∞ and (H) does not hold, then condition (17) may still be weakened in
some particular cases. The following result generalizes Corollary 4 in [4] to the case where the
innovations of the linear process are not necessarily martingale difference sequences. We write

s2
n = n

(
n∑

i=−n

ai

)2

. (20)
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Theorem 3.3. Let (ai)i∈Z be a sequence of real numbers in �2, but not in �1, and let s2
n be

defined by (20). Define (Xk)k≥1 as above and assume that

lim sup
n→∞

∑n
i=−n |ai |

|∑n
i=−n ai | < ∞ and

n∑
k=1

√∑
|i|≥k

a2
i = o(sn). (21)

If one of the following two conditions holds,

(a)
∑
j∈Z

‖P0(ξj )‖	2,α
< ∞, where 	2,α(x) = x2 logα(1 + x2) and α > 2,

or

(b)
∑
j∈Z

log(1 + |j |)‖P0(ξj )‖2 < ∞,

then {s−1
n S[nt], t ∈ [0,1]} converges weakly in D([0,1]) to

√
ηW , where W is a standard Brown-

ian motion, independent of η, and η = ∑
k∈Z E(ξ0ξk|I). In addition, there exists a positive con-

stant C (not depending on n) such that

E
(

max
1≤k≤n

S2
k

)
≤ Cs2

n. (22)

Remark 3.5. For two positive sequences of numbers, the notation un ∼ vn means that
limn→∞ un/vn = 1. According to [4], Remark 12, we have that

s2
n ∼ v2

n ∼ nh(n),

where h(n) is a slowly varying function at infinity. In addition, if we assume the first part of
condition (21) and

∑
j∈Z |aj | = ∞, then we get that sn/

√
n → ∞ as n → ∞.

Example 6. Consider the following choice of (ak)k∈Z: a0 = 1 and ai = 1/|i| for i �= 0. Then
Theorem 3.3 applies. Indeed, for this choice, condition (21) holds and sn ∼ 2

√
n(logn).

We now give a useful sufficient condition for the validity of condition (b) of Theorem 3.3.

Remark 3.6. Condition (b) of Theorem 3.3 is satisfied if we assume that

∞∑
n=1

logn
‖E(ξn|F0)‖2√

n
< ∞ and

∞∑
n=1

logn
‖ξ−n − E(ξ−n|F0)‖2√

n
< ∞. (23)

4. Application to isotonic regression

Let φ be a non-decreasing function on the unit interval and let

yk = φ

(
k

n

)
+ Xk, k = 1,2, . . . , n, (24)
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where (Xk) is a strictly stationary sequence of random variables such that E(Xk) = 0 and
E(X2

k) < ∞. The problem is then to estimate φ in a nonparametric way. We write Sn = ∑n
k=1 Xk .

Taking advantage of the monotonicity of the regression function, isotonic estimates have been
suggested. Let μk = φ(k/n). It is well known that the least-squares estimator

μ̂ = argmin

{
n∑

k=1

(yk − μk)
2,μ1 ≤ · · · ≤ μn

}

is such that

μ̂k = max
i≤k

min
j≥k

yi + · · · + yj

j − i + 1
.

In addition, setting

Yn(t) = 1

n

( [nt]∑
k=1

yk

)
and Ỹn = GCM(Yn),

where GCM designates the greatest convex minorant, we have

μ̂k = Ỹ ′
n

(
k

n

)
,

where the derivative in taken on the left (see [21]). Now, let φ̂n(·) be the left-continuous step
function on [0,1] such that φ̂n(k/n) = μ̂k at the knots k/n for k = 1, . . . , n.

When the error process (Xk) in the model (24) is short-range dependent and satisfies suitable
weak dependence conditions, Zhao and Woodroofe [30] have obtained the asymptotic behav-
ior of φ̂n(t). In their paper, an application to global warming is given. Some other situations
are considered in [1]: in their Theorem 3(iii), they consider the case where (Xk) can exhibit
long-range dependence and they assume that Xk is a function of a Gaussian process such that its
Hermite polynomial expansion is of rank greater than one. When no shape assumption is imposed
on the regression function, nonparametric regression analysis when data can exhibit long-range
dependence has been also studied by other authors (see, e.g., [22] or, more recently, Gao and
Wang [6] wherein random designs are introduced in the nonparametric trend model). The moti-
vation for studying such models is that, in order to avoid misrepresenting the mean function or
the conditional mean function of long-range dependent data, one should let the data “speak for
themselves” in terms of specifying the true form of the mean function or the conditional mean
function. Situations where the error process (Xk) in the model (24) is long-range dependent
often occur when considering financial or climatological time series. For instance, the annual
series of winter means of the NAO index (North Atlantic Oscillation index) exhibits long-range
dependence (see [24]) and also an increasing trend for the last decade (which can possibly be
explained by global warming). Concerning financial time series, we refer to the paper by Pesee
[20], where daily exchange rate data are studied. For instance, the daily changes of the US dol-
lar against the Deutsche Mark constitute a financial series that exhibits long-range dependence
with a long period of monotonic trend. For other data examples of long-memory processes, we
refer to the book by Beran [2]. In particular, concerning the monthly temperature for the northern
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hemisphere, Beran suggests (page 29 of his book) that the series could be long-range dependent
(see his Figure 1.12a–c, page 31).

The aim of this section, then, is to derive the asymptotic behavior of φ̂n(t) when Xk is a
linear process which can exhibit short or long memory. Recall that, by the well-known Wold
decomposition, a stationary process in L2 that is purely non-deterministic and such that its one-
step mean squared error is positive can be represented by a linear process generated by orthogonal
random variables.

As is implicitly mentioned in [1] and elucidated in [30], the two main tools to obtain the
asymptotic behavior of φ̂n(t) are a weak invariance principle for the partial sums process
{S[nt], t ∈ [0,1]}, properly normalized, and a suitable moment inequality for max1≤k≤n S2

k .

Theorem 4.1. Let (ai)i∈Z and (ξi)i∈Z be as in Comments 3.1 or 3.2. Let us consider the
model (24) with Xk defined by (10). For any t ∈ (0,1) such that φ′(t) > 0,

n1/3κ−1(φ̂n(t) − φ(t)
) �⇒ (√

η
)2/3 argmin{B(s) + s2, s ∈ R},

where B denotes a standard two-sided Brownian motion independent of η, η = ∑
k∈Z E(ξ0ξk|I)

and κ = 2( 1
2A2φ′(t))1/3 with A = ∑

j∈Z aj .

Let β ∈]0,2] and let h be a slowly varying function at infinity. Now, let

L(x) =
(

1

h(x2/(4−β))

)1/2

(25)

and note that L(x) is also a slowly varying function at infinity. Denote by L∗ the asymptotic
conjugate of L, which means that L∗ satisfies

lim
x→∞L∗(x)L(xL∗(x)) = 1. (26)

Then define

dn = 1

n(2−β)/(4−β)
�(n), where �(n) = (L∗(n))2/(4−β). (27)

Theorem 4.2. Let (ai)i∈Z and (ξi)i∈Z be as in Theorem 3.3. For β = 1 and h(n) = |∑n
i=−n ai |2,

let dn be defined by (27). Let us consider the model (24) with Xk defined by (10). For any t ∈ (0,1)

such that φ′(t) > 0,

d−1
n κ−1(φ̂n(t) − φ(t)

) �⇒ (√
η
)2/3 argmin{B(s) + s2, s ∈ R},

where B denotes a standard two-sided Brownian motion independent of η, η = ∑
k∈Z E(ξ0ξk|I)

and κ = 2( 1
2φ′(t))1/3.

Example 7. In the case of the linear process defined in Example 6, Theorem 4.2 applies with
dn = n−1/3(4 ln(n)/3)2/3.
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Theorem 4.3. Let (ai)i∈Z and (ξi)i∈Z be as in Theorem 3.1 or 3.2 for some β ∈]0,2[. By
assumption, v2

n defined by (11) is regularly varying with exponent β . For this β and for
h(n) = v2

nn
−β , let dn be defined by (27). Let us consider the model (24) with Xk defined by

(10). Then, for any t ∈ (0,1) such that φ′(t) > 0, we have

d−1
n κ−1

β

(
φ̂n(t) − φ(t)

) �⇒ (√
η
)1/(2−H) argmin{BH (s) + s2, s ∈ R},

where BH denotes a standard two-sided fractional Brownian motion, independent of η, with
Hurst index H = β/2, η = ∑

k∈Z E(ξ0ξk|I) and where the constant κβ is given by κβ =
2(φ′(t)/2)(2−β)/(4−β).

Example 8. In the case of the linear process defined in Example 1, Theorem 4.3 applies with
β = 2d + 1 and dn = τdn(1−2d)/(3−2d), where τd is a positive constant depending only on d .

Proofs of Theorems 4.1–4.3. For any t ∈ (0,1) and any s ∈ [−td−1
n , d−1

n (1 − t)], let

Zn(s) = d−2
n

(
Yn(t + dns) − Yn(t) − φ(t)dns

)
.

Then d−1
n (φ̂n(t) − φ(t)) = Z̃′

n(0), the left-hand derivative of the GCM of Zn at s = 0. Hence,
the key for establishing the result is the study of the GCM of the process Zn. This can be done
by following the arguments given in [1], Section 3, and also in [30]. More precisely, a careful
analysis of the proofs given in both of these papers shows that the following lemma is valid.

Lemma 4.1. Assume that there exists a positive sequence mn → ∞ satisfying, for any t > 0,

m[nt]/mn → tH , where H ∈]0,1[, (28)

and such that:

(1) the process {m−1
n S[nt], t ∈ [0,1]} converges in D([0,1]) to

√
ηWH , where η is a positive

random variable and WH is a standard fractional Brownian motion (with Hurst index H )
independent of η;

(2) E(max1≤k≤n S2
k ) ≤ Cm2

n.

Then, for any positive sequence dn → 0 such that ndn → ∞ and d−2
n n−1m[ndn] → 1, and for any

t ∈ (0,1) such that φ′(t) > 0,

d−1
n κ−1

H

(
φ̂n(t) − φ(t)

) �⇒ (√
η
)1/(2−H) argmin{BH (s) + s2, s ∈ R},

where BH (·) denotes a standard two-sided fractional Brownian motion, independent of η, with
Hurst index H ∈]0,1[ and κH = 2(φ′(t)/2)(1−H)/(2−H).

Proof. We proceed as in the proof of Anevski and Hössjer [1], Theorem 3. The main point
is then to verify their assumptions A1–A7 in order to apply their Corollary 1. Since ndn →
∞, assumption A2 follows from the arguments given in the proof of Anevski and Hössjer [1],
Theorem 3(i). By the properties of our limiting process,

√
ηWH , the assumptions A5 and A7
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are satisfied. Now, if assumption A1 holds, then, by Anevski and Hössjer [1], Proposition 2,
and the properties of the fractional Brownian motion, assumption A6 also holds. Note that their
Proposition 2 allows the continuous mapping theorem to be applied to the functional h from
D[−c, c] (the space of cadlag functions on [−c, c]) to R, defined as the left-hand derivative of
GCM(x) at 0. To verify their assumptions A3 and A4, it suffices to apply their Proposition 1.
According to the proofs of their Lemmas B1 and B2, the condition (14) of their Proposition 1 is
satisfied as soon as their condition (87) and our condition (28) are. Now, their condition (87) is
clearly satisfied provided item 2 of Lemma 4.1 holds.

It remains to prove [1], assumption A1, namely, that the process{
n−1d−2

n S[ndnt], t ∈ [0,1]}
converges in D[0,1] to

√
ηWH , where η is a positive random variable and WH is a standard

fractional Brownian motion (with Hurst index H ), independent of η. This holds by item 1 of
Lemma 4.1 and the fact that d−2

n n−1m[ndn] → 1. This completes the proof of Lemma 4.1. �

We go back to the proofs of Theorems 4.1–4.3. Note that the conditions of items 1 and 2 are
clearly satisfied by using either Comment 3.1 or 3.2 (with mn = √

n), either Theorem 3.3 (with
mn = √

n|∑n
i=−n ai |) or Theorem 3.1 or 3.2 (with mn = vn). In addition, in all these situations,

we have that mn = (nβh(n))1/2 and the selection of dn leads to

d−2
n n−1m[ndn] ∼ d

(β−4)/2
n n(β−2)/2

√
h(ndn)

∼ (L∗(n))−1
√

h
(
(nL∗(n))2/(4−β)

)
∼ (L∗(n))−1(L(nL∗(n)))−1,

which converges to 1 by (26). �

5. Proofs

5.1. Proof of Proposition 2.1

Without loss of generality, we shall assume that D	 = 1 and
∑

j∈Z c2
m,j = 1 since, otherwise,

we can divide each coefficient cm,j by (
∑

j∈Z c2
m,j )

1/2 and each variable by D	 . Start with the
decomposition

Yk =
∞∑

j=−∞
Pk−j (Yk) =

∞∑
j=−∞

pjPk−j (Yk)/pj .

Then

Sm =
∞∑

j=−∞
pj

∑
k∈Z

cm,kPk−j (Yk)/pj .
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By using the facts that 	 is convex and non-decreasing, and pj ≥ 0 with
∑

j∈Z pj = D	 = 1,
we obtain that

E	(|Sm|) ≤
∞∑

j=−∞
pj E	

(∣∣∣∣∑
k∈Z

cm,kPk−j (Yk)/pj

∣∣∣∣).

Consider the martingale difference Uk = cm,kPk−j (Yk)/pj , k ∈ Z. By Burkholder’s inequality
(see [5], Theorem 6.6.2), we obtain that

E	

(∣∣∣∣∑
k∈Z

cm,kPk−j (Yk)/pj

∣∣∣∣) ≤ KαE	

((∑
k∈Z

c2
m,kP

2
k−j (Yk)/p

2
j

)1/2)
,

where Kα is a constant depending only on α. Let �(x) = 	(
√

x). Since � is convex and∑
k∈Z c2

m,k = 1, it follows that

E	

(∣∣∣∣∑
k∈Z

cm,kPk−j (Yk)/pj

∣∣∣∣) ≤ KαE�

(∑
k∈Z

c2
m,kP

2
k−j (Yk)/p

2
j

)
≤ Kα

∑
k∈Z

c2
m,kE�

(
P 2

k−j (Yk)/p
2
j

)
≤ Kα

∑
k∈Z

c2
m,kE

(
	

(|Pk−j (Yk)|/pj

))
.

Therefore,

E	(|Sm|) ≤ Kα

∑
k∈Z

c2
m,k

∞∑
j=−∞

pj E
(
	

(|Pk−j (Yk)|/pj

))
.

Now, note that ‖Pk−j (Yk)‖	 ≤ pj , so using the fact that
∑

k∈Z c2
m,k = 1 and D	 =∑∞

j=−∞ pj = 1, we get

E	(|Sm|) ≤ Kα

and hence the desired result.

5.2. Proof of Proposition 2.2

Fix a positive integer m and define

θ0,m =
2m−2∑
k=0

m−1∑
i=k−m+1

Pi(ξk) and θj,m = θ0,m ◦ T j .
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Observe that, by stationarity,

‖θ0,m‖	 =
∥∥∥∥∥

2m−2∑
k=0

m−1∑
i=k−m+1

Pi(ξk)

∥∥∥∥∥
	

≤ 2m
∑
i∈Z

‖P0(ξi)‖	 < ∞.

Simple computations lead to the decomposition

m−1∑
i=−m+1

Pi(ξ0) −
2m−1∑
�=1

Pm(ξ�) = θ0,m − θ1,m,

implying that

ξ0 −
(∑

k

P0(ξk)

)
◦ T m = θ0,m − θ1,m +

∑
|i|≥m

Pi(ξ0) −
( ∑

|k|≥m

P0(ξk)

)
◦ T m.

With our notation (d0 = ∑
k P0(ξk)), we obtain

ξ0 − d0 = d0 ◦ T m − d0 + θ0,m − θ1,m +
∑
|i|≥m

Pi(ξ0) −
( ∑

|k|≥m

P0(ξk)

)
◦ T m. (29)

By stationarity, we obtain similar decompositions for each ξj − dj . We shall treat the terms from
the error of approximation

∑
i∈Z cn,i(ξi − di) separately. First, note that

R1 :=
∞∑

j=−∞
cn,j (dj ◦ T m − dj ) =

∞∑
j=−∞

(cn,j−m − cn,j )dj

=
m−1∑
k=0

∞∑
j=−∞

(cn,j−k−1 − cn,j−k)dj .

According to Proposition 2.1,

‖R1‖	 ≤ Cαm‖d0‖	

( ∞∑
j=−∞

(cn,j − cn,j−1)
2

)1/2

.

To treat the second difference in the error, note that

R2 :=
∞∑

i=−∞
cn,i(θi,m − θi+1,m) =

∞∑
i=−∞

(cn,i − cn,i−1)θi,m.

By the definition of θ0,m, we have that

∑
j∈Z

‖Pj (θ0,m)‖	 ≤
2m−2∑
k=0

m−1∑
i=k−m+1

∑
j∈Z

‖Pj (Pi(ξk))‖	.
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Now, Pj (Pi(f )) = 0 for j �= i. It follows that

∑
j∈Z

‖Pj (θ0,m)‖	 ≤
2m−2∑
k=0

m−1∑
�=k−m+1

‖P0(ξ�)‖	 ≤ (2m − 1)

m−1∑
�=−m+1

‖P0(ξ�)‖	

and, by Proposition 2.1, we conclude that

‖R2‖	 ≤ 2Cαm

( ∞∑
j=−∞

(cn,j − cn,j−1)
2

)1/2 ∑
�∈Z

‖P0(ξ�)‖	.

For the term R3 := ∑∞
i=−∞ cn,i(

∑
|j |≥m Pj (ξ0)) ◦ T i , we apply Proposition 2.1 to get

‖R3‖	 ≤ Cα

( ∞∑
i=−∞

c2
n,i

)1/2 ∑
|j |≥m

‖Pj (ξ0)‖	.

To deal with the last term R4 := ∑∞
i=−∞ cn,i(

∑
|k|≥m P0(ξk)) ◦ T m+i , we again apply Proposi-

tion 2.1, which gives

‖R4‖	 ≤ Cα

( ∞∑
i=−∞

c2
n,i

)1/2 ∑
|k|≥m

‖P0(ξk)‖	.

Combining all the bounds, we obtain the desired approximation.

5.3. Proof of Lemma 2.1

For any m ∈ [1,2N ], write m in base 2 as follows:

m =
N∑

i=0

bi(m)2i , where bi(m) = 0 or bi(m) = 1.

Set mL = ∑N
i=L bi(m)2i . So, for any p ≥ 1, we have

|Sm|p ≤
(

N∑
L=0

|SmL
− SmL+1 |

)p

.

Hence, setting

αL = ‖S2L‖	p(	−1(2N−L))1/p and λL = αL∑N
L=0 αL

,
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we get, by convexity,

|Sm|p ≤
N∑

L=0

λ
1−p
L |SmL

− SmL+1 |p.

Now, mL �= mL+1 only if bL(m) = 1 and, in that case, mL = km2L with km odd. It follows that

max
1≤m≤2N

|Sm|p ≤
N∑

L=0

λ
1−p
L max

1≤k≤2N−L,k odd

∣∣Sk2L − S(k−1)2L

∣∣p.

Now, we apply [15], Lemma 11.3, to the variables

Zk = |Sk2L − S(k−1)2L |p
Ap

, where A = ‖S2L‖	p ,

and to the Young function 	 . Since

E(	(Zk)) = E	p

( |S2L |
A

)
≤ 1

and since 	−1 is concave, we get that, for any measurable set B ,

E(Zk1B) ≤ P(B)	−1
(

1

P(B)

)
so that the assumptions of Ledoux and Talagrand [15], Lemma 11.3, are satisfied. It follows that

E
(

max
1≤k≤2N−L,k odd

∣∣Sk2L − S(k−1)2L

∣∣p)
≤ Ap	−1(2N−L).

Finally, we conclude that

E
(

max
1≤m≤2N

|Sm|p
)

≤
(

N∑
L=0

αL

)p

,

which is the desired result.

5.4. Proofs of Theorems 3.1 and 3.2

By the weak convergence theory of random functions, it suffices to establish the convergence
of the finite-dimensional distributions and the tightness of {v−1

n S[nt], t ∈ [0,1]}. For the finite-
dimensional distribution, we shall use the following proposition which was basically established
in [17,19].
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Proposition 5.1. Let {ξk}k∈Z be a strictly stationary sequence of centered and regular random
variables in L2 such that

∑
j ‖P0(ξj )‖2 < ∞. For any positive integer n, let {bn,i ,−∞ ≤ i ≤ ∞}

be a triangular array of numbers satisfying∑
i

b2
n,i → 1 and

∑
j

(bn,j − bn,j−1)
2 → 0 as n → ∞ (30)

and

sup
j

|bn,j | → 0 as n → ∞. (31)

Then {Sn = ∑
j bn,j ξj } converges in distribution to

√
ηN , where N is a standard Gaussian

random variable, independent of η, and η = ∑
k∈Z E(ξ0ξk|I).

Proof. We give here the proof for completeness. By using Proposition 2.2, it suffices to prove
this proposition with dj = d0 ◦ T j in place of ξj , where d0 = ∑

j P0(ξj ). Hence, we just have to
apply the central limit theorem for triangular arrays of martingales (see [8], Theorem 3.6). The
Lindeberg condition has been established by Peligrad and Utev [17], provided that condition (31)
and the first part of condition (30) are satisfied. Now, in the proof of Peligrad and Utev [19],
Proposition 4, it is established that (30) implies that∑

j

b2
n,j d

2
j → η in probability as n → ∞,

which ends the proof of the proposition. �

We return to the proofs of Theorems 3.1 and 3.2. To prove the convergence of the finite-
dimensional distributions, we shall apply the Cramér–Wold device. For all integer 1 ≤ � ≤ m, let
n� = [nt�], where 0 < t1 < t2 < · · · < tm ≤ 1. For λ1, . . . , λm ∈ R, note that∑m

�=1 λ�Sn�

vn

=
∑
j∈Z

(
m∑

�=1

λ�cn�,j

vn

)
ξj , (32)

where cn,j = a1−j + · · · + an−j for all j ∈ Z and v2
n = ∑

j∈Z c2
n,j . Let

bn,j = 1

�m,β

m∑
�=1

λ�cn�,j

vn

, (33)

where

�2
m,β = 1

2

m∑
�,k=1

λ�λk(t
β
� + t

β
k − |tk − t�|β).
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We apply Proposition 5.1 to bn,j and the ξj ’s defined as �m,βξj . First, we have to calculate the
limit over n of the quantity

∑
j∈Z

b2
n,j = 1

�2
m,β

∑
j∈Z

∑m
�=1

∑m
k=1 λ�λkcn�,j cnk,j

v2
n

.

For any 1 ≤ � ≤ k ≤ m, by using the fact that for any two real numbers A and B , we have
A(A + B) = 1/2(A2 + (A + B)2 − B2), we get that

1

v2
n

∑
j∈Z

cn�,j cnk,j = 1

2v2
n

∑
j∈Z

(
c2
n�,j

+ c2
nk,j

− (cn�,j − cnk,j )
2)

= 1

2v2
n

∑
j∈Z

(c2
n�,j

+ c2
nk,j

− c2
nk−n�,j

).

By now using condition (12), we derive that, for any 1 ≤ � ≤ k ≤ m,∑
j∈Z bn�,j bnk,j

v2
n

→ 1

2

(
t
β
� + t

β
k − (tk − t�)

β
)
. (34)

It follows from (34) that

lim
n→∞

∑
j∈Z

b2
n,j = 1. (35)

As a consequence, the first part of condition (30) holds. On the other hand, by using Peligrad
and Utev [19], Lemma A.1, the second part of condition (30) is satisfied. Now, by the proof of
Corollary 2.1 in [17], we get that

maxj |cn,j |
vn

→ 0,

which, together with (12), implies (31). Now, applying Proposition 5.1, we derive that∑m
�=1 λ�Sn�

vn

converges in distribution to �m,β
√

ηN,

ending the proof of the convergence of the finite-dimensional distribution.
We now turn to the proof of the tightness of {v−1

n S[nt], t ∈ [0,1]}. By using Proposition 2.1,
we get, for q ≥ 2, that

‖Sk‖q ≤ Cq

(∑
j∈Z

b2
k,j

)1/2 ∑
m∈Z

‖P0(ξm)‖q = Cqvk

∑
m∈Z

‖P0(ξm)‖q, (36)

provided that
∑

m∈Z ‖P0(ξm)‖q < ∞. Therefore, the conditions of Taqqu [25], Lemma 2.1, page
290, are satisfied with q > 2/β and the tightness follows.
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Finally, to prove (13), we use (36), together with Lemma 2.1 applied with ψ(x) = x, by taking
into account the fact that v2

n is regularly varying with exponent β .

5.5. Proof of Remarks 3.3 and 3.6

To prove Remark 3.3, we apply Lemma A.1 from the Appendix with bi = 1 and ui = ‖P−i (ξ0)‖q .
Hence, we get

∞∑
n=1

‖P−n(ξ0)‖q ≤ Cq

∞∑
n=1

(
1

n

∞∑
k=n

‖P−k(ξ0)‖q
q

)1/q

.

Applying the Rosenthal inequality given in [8], Theorem 2.12, we then derive that for any q ∈
[2,∞[, there exists a constant cq , depending only on q , such that

∞∑
k=n

‖P−k(ξ0)‖q
q ≤ cq

∥∥∥∥∥
∞∑

k=n

P−k(ξ0)

∥∥∥∥∥
q

q

= cq‖E(ξn|F0)‖q
q .

The same argument works with P−i (ξ0) replaced by Pi(ξ0), and the result follows by applying
the Rosenthal inequality and noting that ‖ξ−n − E(ξ−n|F0)‖q = ‖∑∞

k=n Pk+1(ξ0)‖q .
To prove Remark 3.6, we apply Lemma A.1 from the Appendix with bn = log(n) and un =

‖P0(ξn)‖2. We then get that

∞∑
n=1

logn‖P0(ξn)‖2 ≤ C

∞∑
n=1

logn√
n

( ∞∑
k=n

‖P0(ξk)‖2
2

)1/2

.

Now, note that

∞∑
k=n

‖P0(ξk)‖2
2 = ‖E(ξn|F0)‖2

2

and so

∞∑
n=1

logn‖P0(ξn)‖2 ≤ C

∞∑
n=1

logn
‖E(ξn|F0)‖2√

n
< ∞.

The same argument works with P0(ξi) replaced by P0(ξ−i ).
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5.6. Proof of Theorem 3.3

For all j ∈ Z, let dj = ∑
�∈Z Pj (ξ�). Note that if either condition (a) or condition (b) is satisfied,

(dj )j∈Z is a sequence of martingale differences in L2. We set

Yk =
∑
i∈Z

aidk−i and Tn =
n∑

k=1

Yk,

and apply [4], Corollary 4. By taking into account Remark 3.5, we derive that under (21),

{
s−1
n T[nt], t ∈ [0,1]} converges in distribution in (D([0,1]), d) to

√
E(d2

0 |I)W ,

where W is a standard Brownian motion independent of I . It follows that in order to prove that

{s−1
n S[nt], t ∈ [0,1]} converges in distribution in (D([0,1]), d) to

√
E(d2

0 |I)W , it is sufficient to
show that

‖max1≤k≤n |Sk − Tk|‖2

sn
→ 0 as n → ∞. (37)

Now, for any n, let N be such that 2N−1 < n ≤ 2N . By using Remark 3.5 and the properties of
the slowly varying function, we get that sn ∼ s2N . So, the proof (37) is reduced to showing that

‖max1≤k≤2N |Sk − Tk|‖2

s2N

→ 0 as N → ∞. (38)

We first prove that (38) holds under condition (a). By using Corollary 2.1, together with
Lemma 2.1, we get that for any positive integer m,

∥∥∥ max
1≤k≤2N

|Sk − Tk|
∥∥∥

2
≤ C1

∑
|k|≥m

‖P0(ξk)‖	2,α

N∑
L=0

v2L(g−1(2N−L))1/2

+ C2m

N∑
L=0

(g−1(2N−L))1/2,

where g(x) = x logα(1+x). Noting that g−1(x) ∼ x
logα(1+x)

as x goes to infinity, and taking into
account Remark 3.5 and the first part of condition (21), we get that∥∥∥ max

1≤k≤2N
|Sk − Tk|

∥∥∥
2
≤ Cs2N

∑
|k|≥m

‖P0(ξk)‖	2,α
+ Cmε(N)s2N , (39)

where ε(N) → 0 as N → ∞. By now using (39) and first letting N tend to infinity and then m

tend to infinity, we derive (38) under condition (a).
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We now turn to the proof of (38) under condition (b). Taking m = m2L = 2L/4 in Corollary 2.1
and using Lemma 2.1 with p = 2 and ψ(x) = x, we get that

‖max1≤k≤2N |Sk − Tk|‖2

s2N

(40)

≤ C
2N/2

s2N

N∑
L=0

m2L

2L/2
+ C

2N/2

s2N

N∑
L=0

v2L

2L/2

∑
|k|≥m2L

‖P0(ξk)‖2.

By Remark 3.5, we have that limN→∞
s2N

2N/2 = ∞, which, together with the selection of m2L ,
implies that the first term on the right-hand side of the above inequality tends to zero as n → ∞.
Now, to treat the last term, we first fix a positive integer p and write

2N/2

s2N

N∑
L=0

v2L

2L/2

∑
|k|≥m2L

‖P0(ξk)‖2 ≤ p
2N/2

s2N

max
0≤L<p

v2L

2L/2

∑
|k|≥m2L

‖P0(ξk)‖2

+ 2N/2

s2N

N∑
L=p

v2L

2L/2

∑
|k|≥m2L

‖P0(ξk)‖2.

Since limN→∞
s2N

2N/2 = ∞, the first term on the right-hand side of the above inequality tends to
zero as N → ∞. To treat the second one, we note that if N and p are large enough,

2N/2

s2N

N∑
L=p

v2L

2L/2

∑
|k|≥m2L

‖P0(ξk)‖2 ≤ C

N∑
L=p

h(2L)

h(2N)

∑
|k|≥m2L

‖P0(ξk)‖2,

where h(n) = |∑n
i=−n ai |. By the first part of condition (21),

lim sup
N→∞

max
p≤L≤N

h(2L)

h(2N)
< ∞.

Hence, for N and p large enough and taking into account the selection of m2L , we get that

2N/2

s2N

N∑
L=p

v2L

2L/2

∑
|k|≥m2L

‖P0(ξk)‖2 ≤ C
∑

|k|≥2p/4

logk‖P0(ξk)‖2,

which converges to zero as p → ∞, by using condition (b). Hence, starting from (40) and taking
into account the previous considerations, we get that (38) holds under condition (b). The proof
of (22) is straightforward, following the arguments used to derive (37).
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5.7. Proof of Comment 3.2

The justification of this result is due to the following coboundary decomposition. Define

Z0 =
∞∑

�=1

∞∑
k=�

akξ−� −
∞∑

�=0

−�−1∑
k=−∞

akξ�. (41)

Since condition (1) implies that the sequence (ξi)i∈Z has a bounded spectral density, the random
variable Z0 is well defined in L2 under condition (H). Now,

Z0 − Z0 ◦ T =
∞∑

�=1

a�ξ−� − ξ0

∞∑
k=1

ak − ξ0

∞∑
k=1

a−k +
∞∑

�=1

a−�ξ�,

whence

Aξ0 + Z0 − Z0 ◦ T = a0ξ0 +
∑

j∈Z\{0}
aj ξ−j = X0.

We derive that, for any k ≥ 1,

Sk = A

k∑
i=1

ξi + Z1 − Zk+1, (42)

where Zk = Z0 ◦ Tk . Since, under condition (1), the partial sums process {n−1/2 ∑[nt]
k=1 ξk, t ∈

[0,1]} converges in distribution in D([0,1]) to
√

λW with λ = ∑
j∈Z E(ξ0ξj |I), we just have to

show that

lim sup
n→∞

P
(

max
1≤k≤n

|Zk+1| ≥ ε
√

n
)

= 0,

which holds because Z0 ∈ L2 (see [8], inequality (5.30)).

Appendix

A.1. A fact concerning series

Lemma A.1. Let q > 1 and α = 2(q −1)/q . Let (bj )j∈N be a sequence of non-negative numbers
such that nαbn ≤ Kα

∑n
k=1 kα−1bk for some positive constant Kα depending only on α. Then,

for any sequence of non-negative numbers (uj )j∈N, the following inequality holds:

∞∑
n=1

bnun ≤ Cq

∞∑
n=1

bn

(
1

n

∞∑
k=n

u
q
k

)1/q

,

where Cq is a constant depending only on q .
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Proof. We write

∞∑
n=1

bnun ≤ Kα

∞∑
n=1

n−αun

(
n∑

k=1

bkk
α−1

)
≤ Kα

∞∑
k=1

bkk
α−1

(∑
n≥k

n−αun

)
.

Hölder’s inequality then gives

∞∑
n=1

bnun ≤ C′
q

∞∑
k=1

bkk
α−1

(∑
n≥k

n−2
)α/2(∑

n≥k

u
q
n

)1/q

and the result follows. �
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