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We study regression models for the situation where both dependent and independent variables are square-
integrable stochastic processes. Questions concerning the definition and existence of the corresponding
functional linear regression models and some basic properties are explored for this situation. We derive
a representation of the regression parameter function in terms of the canonical components of the processes
involved. This representation establishes a connection between functional regression and functional canon-
ical analysis and suggests alternative approaches for the implementation of functional linear regression
analysis. A specific procedure for the estimation of the regression parameter function using canonical
expansions is proposed and compared with an established functional principal component regression ap-
proach. As an example of an application, we present an analysis of mortality data for cohorts of medflies,
obtained in experimental studies of aging and longevity.
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longitudinal data; parameter function; stochastic process

1. Introduction

With the advancement of modern technology, data sets which contain repeated measurements
obtained on a dense grid are becoming ubiquitous. Such data can be viewed as a sample of curves
or functions and are referred to as functional data. We consider here the extension of the linear
regression model to the case of functional data. In this extension, both predictors and responses
are random functions rather than random vectors. It is well known (Ramsay and Dalzell (1991);
Ramsay and Silverman (2005)) that the traditional linear regression model for multivariate data,
defined as

Y = α0 + Xβ0 + ε, (1)

may be extended to the functional setting by postulating the model, for s ∈ T1, t ∈ T2,

Y(t) = α0(t) +
∫

T1

X(s)β0(s, t)ds + ε(t). (2)
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Writing all vectors as row vectors in the classical model (1), Y and ε are random vectors
in Rp2 , X is a random vector in Rp1 , and α0 and β0 are, respectively, 1×p2 and p1 ×p2 matrices
containing the regression parameters. The vector ε has the usual interpretation of an error vector,
with E[ε] = 0 and cov[ε] = σ 2I , I denoting the identity matrix. In the functional model (2),
random vectors X,Y and ε in (1) are replaced by random functions defined on the intervals T1
and T2. The extension of the classical linear model (1) to the functional linear model (2) is
obtained by replacing the matrix operation on the right-hand side of (1) with an integral operator
in (2). In the original approach of Ramsay and Dalzell (1991), a penalized least-squares approach
using L-splines was adopted and applied to a study in temperature-precipitation patterns, based
on data from Canadian weather stations.

The functional regression model (2) for the case of scalar responses has attracted much recent
interest (Cardot and Sarda (2005); Müller and Stadtmüller (2005); Hall and Horowitz (2007)),
while the case of functional responses has been much less thoroughly investigated (Ramsay and
Dalzell (1991); Yao, Müller and Wang (2005b)). Discussions on various approaches and estima-
tion procedures can be found in the insightful monograph of Ramsay and Silverman (2005). In
this paper, we propose an alternative approach to predict Y(·) from X(·), by adopting a novel
canonical representation of the regression parameter function β0(s, t). Several distinctive fea-
tures of functional linear models emerge in the development of this canonical expansion ap-
proach.

It is well known that in the classical multivariate linear model, the regression slope parameter
matrix is uniquely determined by β0 = cov(X)−1 cov(X,Y), as long as the covariance matrix
cov(X) is invertible. In contrast, the corresponding parameter function β0(·, ·), appearing in (2),
is typically not identifiable. This identifiability issue is discussed in Section 2. It relates to the
compactness of the covariance operator of the process X which makes it non-invertible. In Sec-
tion 2, we demonstrate how restriction to a subspace allows this problem to be circumvented.
Under suitable restrictions, the components of model (2) are then well defined.

Utilizing the canonical decomposition in Theorem 3.3 below leads to an alternative approach
to estimating the parameter function β0(·, ·). The canonical decomposition links Y and X through
their functional canonical correlation structure. The corresponding canonical components form
a bridge between canonical analysis and linear regression modeling. Canonical components pro-
vide a decomposition of the structure of the dependency between Y and X and lead to a natural
expansion of the regression parameter function β0(·, ·), thus aiding in its interpretation. The
canonical regression decomposition also suggests a new family of estimation procedures for
functional regression analysis. We refer to this methodology as functional canonical regression
analysis. Classical canonical correlation analysis (CCA) was introduced by Hotelling (1936) and
was connected to function spaces by Hannan (1961). Substantial extensions and connections
to reproducing kernel Hilbert spaces were recently developed in Eubank and Hsing (2008); for
other recent developments see Cupidon et al. (2007).

Canonical correlation is known not to work particularly well for very high-dimensional
multivariate data, as it involves an inverse problem. Leurgans, Moyeed and Silverman (1993)
tackled the difficult problem of extending CCA to the case of infinite-dimensional functional
data and discussed the precarious regularization issues which are faced; He, Müller and Wang
(2003, 2004) further explored various aspects and proposed practically feasible regularization
procedures for functional CCA. While CCA for functional data is worthwhile, but difficult to im-
plement and interpret, the canonical approach to functional regression is here found to compare
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favorably with the well established principal-component-based regression approach in an exam-
ple of an application (Section 5). This demonstrates a potentially important new role for canon-
ical decompositions in functional regression analysis. The functional linear model (2) includes
the varying coefficient linear model studied in Hoover et al. (1998) and Fan and Zhang (2000) as
a special case, where β(s, t) = β(t)δt (s); here, δt (·) is a delta function centered at t and β(t) is
the varying coefficient function. Other forms of functional regression models with vector-valued
predictors and functional responses were considered by Faraway (1997), Shi, Weiss and Taylor
(1996), Rice and Wu (2000), Chiou, Müller and Wang (2003) and Ritz and Streibig (2009).

The paper is organized as follows. Functional canonical analysis and functional linear models
for L2-processes are introduced in Section 2. Sufficient conditions for the existence of functional
normal equations are given in Proposition 2.2. The canonical regression decomposition and its
properties are the theme of Section 3. In Section 4, we propose a novel estimation technique
to obtain regression parameter function estimates based on functional canonical components.
The regression parameter function is the basic model component of interest in functional linear
models, in analogy to the parameter vector in classical linear models. The proposed estima-
tion method, based on a canonical regression decomposition, is contrasted with an established
functional regression method based on a principal component decomposition. These methods
utilize a dimension reduction step to regularize the solution of the inverse problems posed by
both functional regression and functional canonical analysis. As a selection criterion for tun-
ing parameters, such as bandwidths or numbers of canonical components, we use minimization
of prediction error via leave-one-curve-out cross-validation (Rice and Silverman (1991)). The
proposed estimation procedures are applied to mortality data obtained for cohorts of medflies
(Section 5). Our goal in this application is to predict a random trajectory of mortality for a fe-
male cohort of flies from the trajectory of mortality for a male cohort which was raised in the
same cage. We find that the proposed functional canonical regression method gains an advantage
over functional principal component regression in terms of prediction error.

Additional results on canonical regression decompositions and properties of functional regres-
sion operators are compiled in Section 6. All proofs are collected in Section 7.

2. Functional linear regression and the functional normal
equation

In this section, we explore the formal setting as well as identifiability issues for functional linear
regression models. Both response and predictor functions are considered to come from a sample
of pairs of random curves. A basic assumption is that all random curves or functions are square-
integrable stochastic processes. Consider a measure μ on a real index set T and let L2(T ) be
the class of real-valued functions such that ‖f ‖2 = ∫

T
|f |2 dμ < ∞. This is a Hilbert space with

the inner product 〈f,g〉 = ∫
T

fg dμ and we write f = g if
∫
T
(f − g)2 dμ = 0. The index set T

can be a set of time points, such as T = {1,2, . . . , k}, a compact interval T = [a, b] or even a
rectangle formed by two intervals S1 and S2, T = S1 ×S2. We focus on index sets T that are either
compact real intervals or compact rectangles in R2 and consider μ to be the Lebesgue measure
on R1 or R2. Extensions to other index sets T and other measures are self-evident. An L2-process



708 He, Müller, Wang and Yang

is a stochastic process X = {X(t), t ∈ T }, X ∈ L2(T ), with E[‖X‖2] < ∞,E[X(t)2] < ∞ for
all t ∈ T .

Let X ∈ L2(T1) and Y ∈ L2(T2).

Definition 2.1. Processes (X,Y ) are subject to a functional linear model if

Y(t) = α0(t) +
∫

T1

X(s)β0(s, t)ds + ε(t), t ∈ T2, (3)

where β0 ∈ L2(T1 × T2) is the parameter function, ε ∈ L2(T2) is a random error process with
E[ε(t)] = 0 for t ∈ T1, and ε and X are uncorrelated, in the sense that E[X(t)ε(s)] = 0 for all
s, t ∈ T1.

Without loss of generality, we assume from now on that all processes considered have zero
mean functions, EX(t) = 0 and EY(s) = 0 for all t , s. We define the regression integral operator
LX : L2(T1 × T2) → L2(T2) by

(LXβ)(t) =
∫

T1

X(s)β(s, t)ds for any β ∈ L2(T1 × T2).

Equation (3) can then be rewritten as

Y = LXβ0 + ε. (4)

Denote the auto- and cross-covariance functions of X and Y by

rXX(s, t) = cov[X(s),X(t)], s, t ∈ T1,

rYY (s, t) = cov[Y(s), Y (t)], s, t ∈ T2, and

rXY (s, t) = cov[X(s),Y (t)], s ∈ T1, t ∈ T2.

The autocovariance operator of X is the integral operator RXX :L2(T1) → L2(T1), defined by

(RXXu)(s) =
∫

T1

rXX(s, t)u(t)dt, u ∈ L2(T1).

Replacing rXX by rYY , rXY , we analogously define operators RYY :L2(T2) → L2(T2) and
RXY :L2(T2) → L2(T1), similarly RYX . Then RXX and RYY are compact, self-adjoint and non-
negative definite operators, and RXY and RYX are compact operators (Conway (1985)). We refer
to He et al. (2003) for a discussion of various properties of these operators.

Another linear operator of interest is the integral operator �XX :L2(T1 × T2) → L2(T1 × T2),

(�XXβ)(s, t) =
∫

T1

rXX(s,w)β(w, t)dw. (5)

The operator equation

rXY = �XXβ, β ∈ L2(T1 × T2) (6)
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is a direct extension of the least-squares normal equation and may be referred to as the functional
population normal equation.

Proposition 2.2. The following statements are equivalent for a function β0 ∈ L2(T1 × T2):

(a) β0 satisfies the linear model (4);
(b) β0 is a solution of the functional normal equation (6);
(c) β0 minimizes E‖Y − LXβ‖2 among all β ∈ L2(T1 × T2).

The proof is found Section 7. In the infinite-dimensional case, the operator �XX is a Hilbert–
Schmidt operator in the Hilbert space L2, according to Proposition 6.6 below. A problem we
face is that it is known from functional analysis that a bounded inverse does not exist for such
operators. A consequence is that the parameter function β0 in (3), (4) is not identifiable without
additional constraints. In a situation where the inverse of the covariance matrix does not exist in
the multivariate case, a unique solution of the normal equation always exists within the column
space of cov(X) and this solution then minimizes E‖Y − LXβ‖2 on that space. Our idea to get
around the non-invertibility issue in the functional infinite-dimensional case is to extend this ap-
proach for the non-invertible multivariate case to the functional case. Indeed, as is demonstrated
in Theorem 2.3 below, under the additional Condition (C1), the solution of (6) exists in the sub-
space defined by the range of �XX . This unique solution indeed minimizes E‖Y − LXβ‖2.

We will make use of the Karhunen–Loève decompositions (Ash and Gardner (1975)) for L2-
processes X and Y ,

X(s) =
∞∑

m=1

ξmθm(s), s ∈ T1 and Y(t) =
∞∑

j=1

ζjϕj (t), t ∈ T2, (7)

with random variables ξm, ζj , m,j ≥ 1, and orthonormal families of L2-functions {θm}m≥1 and
{ϕj }j≥1. Here, Eξm = Eζj = 0, Eξmξp = λXmδmp , Eζjζp = λYj δjp and {(λXm, θm)}, {(λYj ,

ϕj )} are the eigenvalues and eigenfunctions of the covariance operators RXX and RYY , respec-
tively, with

∑
m λXm < ∞,

∑
j λYj < ∞. Note that δmj is the Kronecker symbol with δmj = 1

for m = j , δmj = 0 for m 	= j .
We consider a subset of L2 on which inverses of the operator �XX can be defined. As

a Hilbert–Schmidt operator, �XX is compact and therefore not invertible on L2. According to
Conway (1985), page 50, the range of �XX,

GXX = {�XXh :h ∈ L2(T1 × T2)},

is characterized by

GXX =
{

g ∈ L2(T1 × T2) :
∞∑

m,j=1

λ−2
Xm|〈g, θmϕj 〉|2 < ∞, g ⊥ ker(�XX)

}
, (8)
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where ker(�XX) = {h : �XXh = 0}. Defining

G−1
XX =

{
h ∈ L2(T1 × T2) : h =

∞∑
m,j=1

λ−1
Xm〈g, θmϕj 〉θmϕj , g ∈ GXX

}
,

we find that �XX is a one-to-one mapping from the vector space G−1
XX ⊂ L2(T1 × T2) onto the

vector space GXX. Thus, restricting �XX to a subdomain defined by the subspace G−1
XX, we can

define its inverse for g ∈ GXX as

�−1
XXg =

∞∑
m,j=1

λ−1
Xm〈g, θmϕj 〉θmϕj . (9)

�−1
XX then satisfies the usual properties of an inverse, in the sense that �XX�−1

XXg = g for all
g ∈ GXX, and �−1

XX�XXh = h for all h ∈ G−1
XX.

The following Condition (C1) for processes (X,Y ) is of interest.

Condition (C1). The L2 -processes Xand Y with Karhunen–Loève decompositions (7) satisfy

∞∑
m,j=1

{
E[ξmζj ]

λXm

}2

< ∞.

If (C1) is satisfied, then the solution to the non-invertibility problem as outlined above is viable
in the functional case, as demonstrated by the following basic result on functional linear models.

Theorem 2.3 (Basic theorem for functional linear models). A unique solution of the linear
model (4) exists in ker(�XX)⊥ if and only if X and Y satisfy Condition (C1). In this case, the
unique solution is of the form

β∗
0 (t, s) = (�−1

XXrXY )(t, s). (10)

As a consequence of Proposition 2.2, solutions of the functional linear model (4), solutions of
the functional population normal equation (6) and minimizers of E‖Y − LXβ‖2 are all equivalent
and allow the usual projection interpretation.

Proposition 2.4. Assume X and Y satisfy Condition (C1). The following are then equivalent:

(a) the set of all solutions of the functional linear model (4);
(b) the set of all solutions of the population normal equation (6);
(c) the set of all minimizers of E‖Y − LXβ‖2 for β ∈ L2(T1 × T2);
(d) the set β∗

0 + ker(�XX) = {β∗
0 + h|h ∈ L2(T1 × T2),�XXh = 0}.

It is well known that in a finite-dimensional situation, the linear model (6) always has a unique
solution in the column space of �XX , which may be obtained by using a generalized inverse of
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the matrix �XX . However, in the infinite-dimensional case, such a solution does not always exist.
The following example demonstrates that a pair of L2-processes does not necessarily satisfy
Condition (C1). In this case, the linear model (6) does not have a solution.

Example 2.5. Assume processes X and Y have Karhunen–Loève expansions (7), where the ran-
dom variables ξm, ζj satisfy

λXm = E[ξ2
m] = 1

m2
, λYj = E[ζ 2

j ] = 1

j2
(11)

and let

E[ξmζj ] = 1

(m + 1)2(j + 1)2
for m,j ≥ 1. (12)

As shown in He et al. (2003), (11) and (12) can be satisfied by a pair of L2-processes with
appropriate operators RXX , RYY and RXY . Then

∞∑
m,j=1

{
E[ξmζj ]

λXm

}2

= lim
n→∞

n∑
m,j=1

[
m

(m + 1)(j + 1)

]4

= lim
n→∞

n∑
m=1

[
m

(m + 1)

]4 ∞∑
j=1

1

(j + 1)4
= ∞

and, therefore, Condition (C1) is not satisfied.

3. Canonical regression analysis

Canonical analysis is a time-honored tool for studying the dependency between the components
of a pair of random vectors or stochastic processes; for multivariate stationary time series, its
utility was established in the work of Brillinger (1985). In this section, we demonstrate that
functional canonical decomposition provides a useful tool to represent functional linear models.
The definition of functional canonical correlation for L2-processes is as follows.

Definition 3.1. The first canonical correlation ρ1 and weight functions u1 and v1 for L2-
processes X and Y are defined as

ρ1 = sup
u∈L2(T1),v∈L2(T2)

cov(〈u,X〉, 〈v,Y 〉) = cov(〈u1,X〉, 〈v1, Y 〉), (13)

where u and v are subject to

var(〈uj ,X〉) = 1, var(〈vj ,Y 〉) = 1 (14)
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for j = 1. The kth canonical correlation ρk and weight functions uk , vk for processes X and Y

for k > 1 are defined as

ρk = sup
u∈L2(T1),v∈L2(T2)

cov(〈u,X〉, 〈v,Y 〉) = cov(〈uk,X〉, 〈vk,Y 〉),

where u and v are subject to (14) for j = k and

cov(〈uk,X〉, 〈uj ,X〉) = 0, cov(〈vk,Y 〉, 〈vj ,Y 〉) = 0

for j = 1, . . . , k − 1. We refer to Uk = 〈uk,X〉 and Vk = 〈vk,Y 〉 as the kth canonical variates
and to (ρk, uk, vk,Uk,Vk) as the kth canonical components.

It has been shown in He et al. (2003) that canonical correlations do not exist for all L2-
processes, but that Condition (C2) below is sufficient for the existence of canonical correlations
and weight functions. We remark that Condition (C2) implies Condition (C1).

Condition (C2). Let X and Y be L2-processes, with Karhunen–Loève decompositions (7) satis-
fying

∞∑
m,j=1

{
E[ξmζj ]
λXmλ

1/2
Yj

}2

< ∞.

The proposed functional canonical regression analysis exploits features of functional principal
components and of functional canonical analysis. In functional principal component analysis,
one studies the structure of an L2-process via its decomposition into the eigenfunctions of its
autocovariance operator, the Karhunen–Loève decomposition (Rice and Silverman (1991)). In
functional canonical analysis, the relation between a pair of L2-processes is analyzed by decom-
posing the processes into their canonical components. The idea of canonical regression analysis
is to expand the regression parameter function in terms of functional canonical components for
predictor and response processes. The canonical regression decomposition (Theorem 3.3) below
provides insights into the structure of the regression parameter functions and not only aids in the
understanding of functional linear models, but also leads to promising estimation procedures for
functional regression analysis. The details of these estimation procedures will be discussed in
Section 4. We demonstrate in Section 5 that these estimates can lead to competitive prediction
errors in a finite-sample situation.

We now state two key results. The first of these (Theorem 3.2) provides the canonical de-
composition of the cross-covariance function of processes X and Y . This result plays a cen-
tral role in the solution of the population normal equation (6). This solution is referred to as
canonical regression decomposition and it leads to an explicit representation of the underly-
ing regression parameter function β∗

0 (·, ·) of the functional linear model (4). The decomposi-
tion is in terms of functional canonical correlations ρj and canonical weight functions uj and
vj . Given a predictor process X(t), we obtain, as a consequence, an explicit representation for
E(Y(t)|X) = (LXβ∗

0 )(t), where LX is as in (4). For the following main results, we refer to the
definitions of ρj , uj , vj , Uj , Vj in Definition 3.1. All proofs are found in Section 7.
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Theorem 3.2 (Canonical decomposition of cross-covariance function). Assume that L2-
processes X and Y satisfy Condition (C2). The cross-covariance function rXY then allows the
following representation in terms of canonical correlations ρj and weight functions uj and vj :

rXY (s, t) =
∞∑

m=1

ρmRXXum(s)RYY vm(t). (15)

Theorem 3.3 (Canonical regression decomposition). Assume that the L2-processes X and Y

satisfy Condition (C2). One then obtains, for the regression parameter function β∗
0 (·, ·) (10), the

following explicit solution:

β∗
0 (s, t) =

∞∑
m=1

ρmum(s)RYY vm(t). (16)

To obtain the predicted value of the response process Y , we use the linear predictor

Y ∗(t) = E(Y(t)|X) = (LXβ∗
0 )(t) =

∞∑
m=1

ρmUmRYY vm(t). (17)

This canonical regression decomposition leads to approximations of the regression parame-
ter function β∗

0 and the predicted process Y ∗(t) = LXβ∗
0 via a finitely truncated version of the

canonical expansions (16) and (17). The following result provides approximation errors incurred
from finite truncation. Thus, we have a vehicle to achieve practically feasible estimation of β∗

0
and associated predictions Y ∗ (Section 4).

Theorem 3.4. For K ≥ 1, let β∗
K(s, t) = ∑K

k=1 ρkuk(s)RYY vk(t) be the finitely truncated ver-
sion of the canonical regression decomposition (16) for β∗

0 and define Y ∗
K(t) = (LXβ∗

K)(t). Then,

Y ∗
K(t) =

K∑
k=1

ρkUkRYY vk(t) (18)

with E[Y ∗
K ] = 0. Moreover,

E‖Y ∗ − Y ∗
K‖2 =

∞∑
k=K+1

ρ2
k‖RYY vk‖2 → 0 as K → ∞

and

E‖Y − Y ∗
K‖2 = E‖Y‖2 − E‖LXβ∗

K‖2 = trace(RYY ) −
K∑

k=1

ρ2
k‖RYY vk‖2. (19)

In finite-sample implementations, to be explored in the next two sections, truncation as in (18)
is a practical necessity; this requires a choice of suitable truncation parameters.
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4. Estimation procedures

4.1. Preliminaries

Estimating the regression parameter function and obtaining fitted processes from the linear
model (2) based on a sample of curves is central to the implementation of functional linear mod-
els. In practice, data are observed at discrete time points and we temporarily assume, for simplic-
ity, that the Nx time points are the same for all observed predictor curves and are equidistantly
spaced over the domain of the data. Analogous assumptions are made for the Ny time points
where the response curves are sampled. Thus, the original observations are (Xi, Yi), i = 1, . . . , n,
where Xi is an Nx -dimensional vector sampled at time points sj , and Yi is an Ny -dimensional
vector sampled at time points tj . We assume that Nx and Ny are both large. Without going
into any analytical details, we compare the finite-sample behavior of two functional regression
methods, one of which utilizes the canonical decomposition for regression and the other a well
established direct principal component approach to implement functional linear regression.

The proposed practical version of functional regression analysis through functional canonical
regression analysis (FCR) is discussed in Section 4.2. This method is compared with a more
standard functional linear regression implementation that is based on principal components and
referred to as functional principal regression (FPR), in Section 4.3. For the choice of the smooth-
ing parameters for the various smoothing steps, we adopt leave-one-curve-out cross-validation
(Rice and Silverman (1991)). Smoothing is implemented by local linear fitting for functions and
surfaces (Fan and Gijbels (1996)), minimizing locally weighted least squares.

In a pre-processing step, all observed process data are centered by subtracting the cross-
sectional means Xi(sj ) − 1

n

∑n
l=1 Xl(sj ), and analogously for Yi . If the data are not sampled on

the same grid for different individuals, a smoothing step may be added before the cross-sectional
average is obtained. As in the previous sections, we use in the following the notation X,Y,Xi,Yi

to denote centered processes and trajectories.
When employing the Karhunen–Loève decomposition (7), we approximate observed centered

processes by the fitted versions

X̂i(s) =
L∑

l=1

ξ̂il θ̂l(s), Ŷi(t) =
L∑

l=1

ζ̂il ϕ̂l(t), (20)

where {θ̂l(s)}Ll=1 and {ϕ̂l(t)}Ll=1 are the estimated first L smoothed eigenfunctions for the ran-
dom processes X and Y , respectively, with the corresponding estimated eigenscores {ξ̂il}Ll=1 and
{ζ̂il}Ll=1 for the ith subject. We obtain these estimates as described in Yao et al. (2005a). Related
estimation approaches, such as those of Rice and Silverman (1991) or Ramsay and Silverman
(2005), could alternatively be used.

4.2. Functional canonical regression (FCR)

To obtain functional canonical correlations and the corresponding weight functions as needed
for FCR, we adopt one of the methods proposed in He et al. (2004). In preliminary studies,
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we determined that the eigenbase method as described there yielded the best performance for
regression applications, with the Fourier base method a close second. Adopting the eigenbase
method, the implementation of FCR is as follows:

(i) Starting with the eigenscore estimates as in (20), estimated raw functional canonical cor-
relations ρ̃l and L-dimensional weight vectors ûl , v̂l , l = 1, . . . ,L, are obtained by applying
conventional numerical procedures of multivariate canonical analysis to the estimated eigenscore
vectors (ξ̂i1, . . . , ξ̂iL)′ and (ζ̂i1, . . . , ζ̂iL)′. This works empirically well for moderately sized val-
ues of L, as typically obtained from automatic selectors.

(ii) Smooth weight function estimates ũl(t), ṽl(t) are then obtained as

ũl(t) = ûl θ̂(t), ṽl(t) = v̂lϕ̂(t),

where θ̂(t) = (θ̂1(t), . . . , θ̂L(t))′, ϕ̂(t) = (ϕ̂1(t), . . . , ϕ̂L(t))′.
(iii) The estimated regression parameter function β̂ is obtained according to (16) by

β̂(s, t) =
L∑

l=1

ρ̃l ũl(s)

∫
T2

r̂YY (s, t)ṽl(s)ds,

where r̂YY is an estimate of the covariance function of Y , obtained by two-dimensional smooth-
ing of the empirical autocovariances of Y . This estimate is obtained as described in Yao et
al. (2005a). Since the data are regularly sampled, the above integrals are easily obtained by
the approximations

∑my

j=1 r̂YY (tj , t)ṽl(tj )(tj − tj−1), l = 1, . . . ,L, with t0 defined analogously
to s0 in (22) below.

(iv) Fitted/predicted processes

Ŷi (t) =
∫

T1

β̂(s, t)Xi(s)ds for i = 1, . . . , n, (21)

are obtained, where the integral is again evaluated numerically by

Ŷi (t) =
Nx∑
j=1

β̂(sj , t)Xi(sj )(sj − sj−1). (22)

Here, s0 is chosen such that s1 − s0 = s2 − s1.

This procedure depends on two tuning parameters, a bandwidth h for the smoothing
steps (which are defined in detail, e.g., in Yao et al. (2005a)) and the number of canonical
components L that are included. These tuning parameters may be determined by leave-one-out
cross-validation (Rice and Silverman (1991)) as follows. With α = (h,L), the ith leave-one-out
estimate for β is

β̂(−i)
α =

L∑
l=1

ρ̆
(−i)
l ũ

(−i)
h,l (s)R̂

(−i)
YY (ṽ)

(−i)
h,l (t) for i = 1, . . . , n, (23)
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where ρ̆
(−i)
l is the lth canonical correlation, and ũ

(−i)
h,l and R̂

(−i)
YY ṽ

(−i)
h,l are the lth weight function

untransformed and transformed with the covariance operator, respectively, all obtained while
leaving out the data for the ith subject. Computation of these estimates follows steps (iii) and (iv)
above, using tuning parameter α = (h,L), and omitting the ith pair of observed curves (Xi, Yi).
The average leave-one-out squared prediction error is then

PEα = 1

n

n∑
i=1

∫
T2

(
Yi(t) −

∫
T1

Xi(s)β̂
(−i)
α (s, t)ds

)2

dt. (24)

The cross-validation procedure then selects the tuning parameter that minimizes the approximate
average prediction error,

α̂ = arg min
α

P̃Eα,

where P̃Eα is obtained by replacing the integrals on the right-hand side of (24) by sums of the
type (22).

4.3. Functional principal component regression (FPR)

Yao et al. (2005b) considered an implementation of functional linear regression whereby one uses
functional principal component analysis for predictor and response functions separately, followed
by simple linear regressions of the response principal component scores on the predictor scores.
We adopt this approach as FPR.

Briefly, defining σmp = E(ξmζp), this approach is based on representations

β(s, t) =
∞∑

m=1

∞∑
p=1

σmp

λXm

θm(s)ϕp(t)

of the regression parameter function β(s, t), where

σmp =
∫

T2

∫
T1

θm(s)rXY (s, t)ϕp(t)ds dt (25)

for all m and p.
For estimation, one first obtains a smooth estimate r̂XY of the cross-covariance rXY by smooth-

ing sample cross-covariances, for example, by the method described in Yao et al. (2005b). This
leads to estimates σ̂mp of σmp,1 ≤ m,p ≤ L, by plugging in estimates r̂XY for rXY and θ̂l , ϕ̂l

for eigenfunctions θl, ϕl (as described in Section 4.2), in combination with approximating the
integrals in (25) by appropriate sums. One may then use these estimates in conjunction with
estimates λ̂Xm of eigenvalues λXm to arrive at the estimate β̂ of the regression parameter func-
tion β(s, t) given by

β̂(s, t) =
L∑

m=1

L∑
p=1

σ̂mp

λ̂Xm

θ̂m(s)ϕ̂p(t).

For further details about numerical implementations, we refer to Yao et al. (2005b).
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5. Application to medfly mortality data

In this section, we present an application to age-at-death data that were collected for cohorts of
male and female medflies in a biodemographic study of survival and mortality patterns of co-
horts of male and female Mediterranean fruit flies (Ceratitis capitata; for details, see Carey et
al. (2002)). A point of interest in this study is the relation of mortality trajectories between male
and female medflies which were raised in the same cage. One specifically desires to quantify
the influence of male survival on female survival. This is of interest because female survival
determines the number of eggs laid and thus reproductive success of these flies. We use a sub-
sample of the data generated by this experiment, comprising 46 cages of medflies, to address
these questions. Each cage contains both a male and a female cohort, consisting each of approx-
imately 4000 male and 4000 female medflies. These flies were raised in the shared cage from
the time of eclosion. For each cohort, the number of flies alive at the beginning of each day was
recorded, simply by counting the dead flies on each day; we confined the analysis to the first
40 days. The observed processes Xi(t) and Yi(t), t = 1, . . . ,40, i = 1, . . . ,46, are the estimated
random hazard functions for male and female cohorts, respectively. All deaths are fully observed
so that censoring is not an issue. In a pre-processing step, cohort-specific hazard functions were
estimated nonparametrically from the lifetable data, implementing the transformation approach
described in Müller et al. (1997a).

A functional linear model was used to study the specific influence of male mortality on female
mortality for flies that were raised in the same cage, with the hazard function of males as pre-
dictor process and that of females as response process. We applied both the proposed regression
via canonical representation (FCR) and the more conventional functional regression based on
principal components (FPR), implementing the estimation procedures described in the previous
section. Tuning parameters were selected by cross-validation. Table 1 lists the average squared
prediction error (PE) (24) obtained by the leave-one-out technique. For this application, the FCR
procedure is seen to perform about 20% better than FPR in terms of PE.

The estimated regression parameter surface β̂(s, t) that is obtained for the FCR regression
when choosing the cross-validated values for h and L, as given in Table 1, is shown in Figure 1.
The shape of the regression surface indicates that female mortality at later ages is very clearly
affected by male mortality throughout male lifespan, while female mortality at very early ages
is not much influenced by male mortality. The effect of male mortality on female mortality is
periodically elevated, as evidenced by the bumps visible in the surface. The particularly influen-
tial predictive periods are male mortality around days 10 and 20, which then has a particularly
large influence on female mortality around days 15 and 25, that is, about five days later, and,

Table 1. Results for medfly data, comparing functional canonical regression (FCR) and functional principal
component regression (FPR) with regard to average leave-one-out squared prediction error (PE) (24); values
for bandwidth h and number L of components as chosen by cross-validation are also shown

h L PE

FCR 1.92 3 0.0100
FPR 1.65 3 0.0121
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Figure 1. Estimated regression parameter surface obtained by functional canonical regression for the med-
fly study.

again, around days 35 and 40, judging from the locations of the peaks in the surface of β̂(s, t). In
contrast, enhanced male mortality around day 30 leads to lessened female mortality throughout,
while enhanced male mortality at age 40 is associated with higher older-age female mortality.
These observations point to the existence of periodic waves of mortality, first affecting males and
subsequently females. While some of the waves of increased male mortality tend to be associated
with subsequently increased female mortality, others are associated with subsequently decreased
female mortality.

These waves of mortality might be related to the so-called “vulnerable periods” that are char-
acterized by locally heightened mortality (Müller et al. (1997b)). One such vulnerable period
occurs around ages 10 and 20, and the analysis suggests that heightened male mortality during
these phases is indicative of heightened female mortality. In contrast, heightened male mortality
during a non-vulnerable period such as the time around 30 days seems to be associated with
lower female mortality. A word of caution is in order as no inference methods are available to
establish that the bumps observed in β̂(s, t) are real, so one cannot exclude the possibility that
these bumps are enhanced by random fluctuations in the data.

Examples of observed, as well as predicted, female mortality trajectories for three randomly
selected pairs of cohorts (male and female flies raised in the same cages) are displayed in Fig-
ure 2. The predicted female trajectories were constructed by applying both regression methods
(FCR and FPR) with the leave-one-out technique. The prediction of an individual response tra-
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Figure 2. Functional regression of female (response) on male (predictor) medfly trajectories quantifying
mortality in the form of cohort hazard functions for three cages of flies. Shown are actually observed female
trajectories (solid) that are not used in the prediction, as well as the predictions for these trajectories obtained
through estimation procedures based on functional principal component regression (FPR) (dash–dot) and
on functional canonical regression (FCR) (dashed).

jectory from a predictor trajectory cannot, of course, be expected to be very close to the actually
observed response trajectory, due to the extra random variation that is a large inherent component
of response variability; this is analogous to the situation of predicting an individual response in
the well-known simple linear regression case. Nevertheless, overall, FCR predictions are found
to be closer to the target.

We note the presence of a “shoulder” at around day 20 for the three female mortality curves.
This “shoulder” is related to the wave phenomenon visible in β̂(s, t) as discussed above and
corresponds to a phase of elevated female mortality. The functional regression method based
on FCR correctly predicts the shoulder effect and its overall shape in female mortality. At the
rightmost points, for ages near 40 days, the variability of the mortality trajectories becomes
large, posing extra difficulties for prediction in the right tail of the trajectories.

6. Additional results

Theorems 6.3 and 6.4 in this section provide a functional analog to the sums-of-squares de-
composition of classical regression analysis. In addition, we provide two results characterizing
the regression operators LX . We begin with two auxiliary results which are taken from He et
al. (2003). The first of these characterizes the correlation operator between processes X and Y .

Lemma 6.1. Assume that the L2-processes X and Y satisfy Condition (C2). The correlation
operator R

−1/2
XX RXY R

−1/2
YY can then be extended continuously to a Hilbert–Schmidt operator R

on L2(T2) to L2(T1). Hence, R0 = R∗R is also a Hilbert–Schmidt operator with a countable
number of non-zero eigenvalues and eigenfunctions {(λm,qm)}, m ≥ 1, λ1 ≥ λ2 ≥ · · ·, pm =
Rqm/

√
λm. Then:
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(a) ρm = √
λm, um = R

−1/2
XX pm, vm = R

−1/2
YY qm and both um and vm are L2-functions;

(b) corr(Um,Uj ) = 〈um,RXXuj 〉 = 〈pm,pj 〉 = δmj ;
(c) corr(Vm,Vj ) = 〈vm,RXXvj 〉 = 〈qm,qj 〉 = δmj ;
(d) corr(Um,Vj ) = 〈um,RXXvj 〉 = 〈pm,Rqj 〉 = ρmδmj .

One of the main results in He et al. (2003) reveals that the L2-processes X and Y can be
expressed as sums of uncorrelated component functions and the correlation between the mth
components of the expansion is the mth corresponding functional canonical correlation between
the two processes.

Lemma 6.2 (Canonical decomposition). Assume L2-processes X and Y satisfy Condition (C2).
There then exists a decomposition:

(a)

X = Xc,K + X⊥
c,K, Y = Yc,K + Y⊥

c,K,

where

Xc,K =
K∑

j=1

UjRXXuj , X⊥
c,K = X − Xc,K,

Yc,K =
K∑

j=1

VjRYY vj , Y⊥
c,K = Y − Yc,K.

The index K stands for canonical decomposition with K components, and Uj , Vj , uj , vj are as
in Definition 3.1. Here, (X,Y ) and (Xc,K,Yc,K) share the same first K canonical components,
and (Xc,K,Yc,K) and (X⊥

c,K,Y⊥
c,K) are uncorrelated, that is,

corr(Xc,K,X⊥
c,K) = 0, corr(Yc,K,Y⊥

c,K) = 0,

corr(Xc,K,Y⊥
c,K) = 0, corr(Yc,K,X⊥

c,K) = 0.

(b) Let K → ∞ and Xc,∞ = ∑∞
m=1 UmRXXum,Yc,∞ = ∑∞

m=1 VmRYY vm. Then

X = Xc,∞ + X⊥
c,∞, Y = Yc,∞ + X⊥

c,∞,

where X⊥
c,∞ = X− Xc,∞, Y⊥

c,∞ = Y− Yc,∞. Here, (Xc,∞, Yc,∞) and (X,Y ) share the same
canonical components, corr(X⊥

c,∞, Y⊥
c,∞) = 0, and (X⊥

c,∞, Y⊥
c,∞) and (Xc,∞, Yc,∞) are uncorre-

lated. Moreover, X⊥
c,∞ = 0 if {pm,m ≥ 1} forms a basis of the closure of the domain of RXX and

Y⊥
c,∞ = 0 if {qm,m ≥ 1} forms a basis of the closure of the domain of RYY .

Since the covariance operators of L2-processes are non-negative self-adjoint, they can be or-
dered as follows. The definitions of Y ∗, Y ∗

K,Yc,∞ are in (17), (18) and Lemma 6.2(b), respec-
tively.
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Theorem 6.3. For K ≥ 1, RY ∗
KY ∗

K
≤ RY ∗Y ∗ ≤ RYc,∞Yc,∞ ≤ RYY .

In multiple regression analysis, the ordering of the operators in Theorem 6.3 is related to the
ordering of regression models in terms of a notion analogous to the regression sum of squares
(SSR). The canonical regression decomposition provides information about the model in terms of
its canonical components. Our next result describes the canonical correlations between observed
and fitted processes. This provides an extension of the coefficient of multiple determination,
R2 = corr(Y, Ŷ ), an important quantity in classical multiple regression analysis, to the functional
case; compare also Yao et al. (2005b).

Theorem 6.4. Assume that L2-processes X and Y satisfy Condition (C2). The canonical corre-
lations and weight functions for the pair of observed and fitted response processes (Y,Y ∗) are
then {(ρm, vm, vm/ρm);m ≥ 1} and the corresponding K-component (or ∞-component) canon-
ical decomposition for Y ∗, as defined in Lemma 6.2 for K ≥ 1 and denoted here by Y ∗

c,K (or
Y ∗

c,∞), is equivalent to the process Y ∗
K or Y ∗ given in Theorem 3.4, that is,

Y ∗
c,K = Y ∗

K =
K∑

m=1

ρmUmRYY vm, K ≥ 1, Y ∗
c,∞ = Y ∗ =

∞∑
m=1

ρmUmRYY vm. (26)

We note that if Y is a scalar, then R2 = ρ1, and for a functional response Y , R2 is replaced by
the set {ρm, m ≥ 1}.

The following two results serve to characterize the regression operator LX defined in (4). They
are used in the proofs provided in the following section.

Proposition 6.5. The adjoint operator of LX is L∗
X :L2(T2) → L2(T1 × T2), where

(L∗
Xz)(s, t) = X(s)z(t) for z ∈ L2(T2).

We have the following relation between the correlation operator �XX defined in (5) and the
regression operator LX .

Proposition 6.6. The operator �XX is a self-adjoint non-negative Hilbert–Schmidt operator and
satisfies �XX = E[L∗

X LX].

7. Proofs

In this section, we provide sketches of proofs and some auxiliary results. We use tensor notation
to define an operator θ ⊗ ϕ :H → H,

(θ ⊗ ϕ)(h) = 〈h, θ〉ϕ for h ∈ H.

Proof of Proposition 2.2. To prove (a) ⇒ (b), we multiply equation (4) by X on both sides and
take expected values to obtain E(XY) = E(XLXβ0) + E(Xε). Equation (6) then follows from
E(XY) = rXY , E(XLXβ0) = �XXβ0 (by Propositions 6.5 and 6.6) and E(Xε) = 0.
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For (b) ⇒ (c), let β0 be a solution of equation (6). For any β ∈ L2(T1 × T2), we then have
E‖Y − LXβ‖2 = E‖Y − LXβ0‖2 + E‖LX(β0 − β)‖2 + 2E[〈Y − LXβ0, LX(β0 − β)〉]. Since

E〈Y − LXβ0, LX(β0 − β)〉
= E〈L∗

XY − L∗
X LXβ0, β0 − β〉

= 〈E[L∗
XY ] − E[L∗

X LXβ0], β0 − β〉 = 〈rXY − �XXβ0, β0 − β〉 = 0,

by Proposition 6.6, we then have

E‖Y − LXβ‖2 = E‖Y − LXβ0‖2 + E‖LX(β0 − β)‖2 ≥ E‖Y − LXβ0‖2,

which implies that β0 is indeed a minimizer of E‖Y − LXβ‖2.
For (c) ⇒ (a), let

d2 = E‖Y − LXβ0‖2 = min
β∈L2(T1×T2)

E‖Y − LXβ‖2.

Then, for any β ∈ L2(T1 × T2), a ∈ R,

d2 = E‖Y − LXβ0‖2 ≤ E‖Y − LX(β0 + aβ)‖2

= E‖Y − LXβ0‖2 − 2E〈Y − LXβ0, LX(aβ)〉 + E‖LX(aβ)‖2

= d2 − 2a〈E[X(Y − LXβ0)], β〉 + a2E‖LXβ‖2.

Choosing a = 〈E[X(Y − LXβ0)], β〉/E‖LXβ‖2, it follows that |〈E[X(Y − LXβ0)], β〉|2/
E‖LXβ‖2 ≤ 0 and 〈E[X(Y − LXβ0)], β〉 = 0. Since β is arbitrary, E[X(Y − LXβ0)] = 0 and
therefore β0 satisfies the functional linear model (4). �

Proof of Theorem 2.3. Note, first, that rXY (s, t) = ∑
m,j E[ξmζj ]θm(s)ϕj (t). Thus, Condi-

tion (C1) is equivalent to rXY ∈ GXX . Suppose that a unique solution of (4) exists in ker(�XX)⊥.

This solution is then also a solution of (6), by Proposition 2.2(b). Therefore, rXY ∈ GXX ,
which implies (C1). On the other hand, if (C1) holds, then rXY ∈ GXX, which implies that
�−1

XXrXY = ∑
m λ−1

Xm〈rXY , θmϕj 〉θmϕj is a solution of (6), is in ker(�XX)⊥ and, therefore, is the
unique solution in ker(�XX)⊥ and also the unique solution of (4) in ker(�XX)⊥. �

Proof of Proposition 2.4. The equivalence of (a), (b) and (c) follows from Proposition 2.2 and
(d) ⇒ (b) is a consequence of Theorem 2.3. We now prove (b) ⇒ (d). Let β0 be a solution
of (6). Proposition 2.2 and Theorem 2.3 imply that both β0 and β∗

0 minimize E‖Y − LXβ‖2 for
β ∈ L2(T1 × T2). Hence, E‖Y − LXβ0‖2 = E‖Y − LXβ∗

0 ‖2 + E‖LX(β∗
0 − β0)‖2 + 2E〈Y −

LXβ∗
0 , LX(β∗

0 − β0)〉, which, by Proposition 6.6, implies that 2E〈L∗
X(Y − LXβ∗

0 ), β∗
0 − β0〉 =

2〈rXY −�XXβ∗
0 , β∗

0 −β0〉 = 0. Therefore, E‖LX(β∗
0 −β0)‖2 = ‖�1/2

XX(β∗
0 −β0)‖2 = 0. It follows

that β∗
0 − β0 ∈ ker(�XX), or β0 = β∗

0 + h, for an h ∈ ker(�XX). �
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Proof of Theorem 3.2. According to Lemma 6.2(b), Condition (C2) guarantees the existence of
the canonical components and canonical decomposition of X and Y . Moreover,

rXY (s, t) = E[X(s)Y (t)] = E
[(

Xc,∞(s) + X⊥
c,∞(s)

)(
Yc,∞(t) + Y⊥

c,∞(t)
)]

= E[Xc,∞(s)Yc,∞(t)] = E

[ ∞∑
m=1

UmRXXum(s)

∞∑
m=1

VmRYY vm(t)

]

=
∞∑

m,j=1

E[UmVj ]RXXum(s)RYY vm(t) =
∞∑

m=1

ρmRXXum(s)RYY vm(t).

We now show that the exchange of the expectation with the summation above is valid. From
Lemma 6.1(b), for any K > 0 and the spectral decomposition RXX = ∑

m λXmθm ⊗ θm,

K∑
m=1

E‖UmRXXum‖2 =
K∑

m=1

E[U2
m]‖R1/2

XXpm‖2 =
K∑

m=1

〈pm,RXXpm〉

=
K∑

m=1

∞∑
j=1

λXj 〈pm, θj 〉2 =
∞∑

j=1

λXj

(
K∑

m=1

〈pm, θj 〉2

)

≤
∞∑

j=1

λXj‖θj‖2 =
∞∑

j=1

λXj < ∞,

where the inequality follows from the fact that
∑K

m=1〈pm, θj 〉2 is the square length of the pro-
jection of θj onto the linear subspace spanned by {p1, . . . , pK }. Similarly, we can show that for
any K > 0,

K∑
m=1

E‖VmRYY vm‖2 <

∞∑
j=1

λYj < ∞. �

Proof of Theorem 3.3. Note that Condition (C2) implies Condition (C1). Hence, from Theo-
rem 2.3, β∗

0 = �−1
XXrXY exists and is unique in ker(�XX)⊥. We can show (16) by applying �−1

XX

to both sides of (6), exchanging the order of summation and integration. To establish (17), it
remains to show that

∞∑
m=1

‖ρmumRYY vm‖2 < ∞, (27)

where umRYY vm(s, t) = um(s)RYY vm(t) in L2(T1 × T2). Note that

ρmum = ρmR
1/2
XXpm = R

1/2
XXRqm =

∞∑
j=1

1√
λXj

〈Rqm, θj 〉θj ,
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where the operator R = R
1/2
XXRXY R

1/2
YY is defined in Lemma 6.1 and can be written as R =∑

k,� rk�ϕk ⊗θ�, with rkm = E[ξkζ�]/√λXkλY�, using the Karhunen–Loève expansion (7). Then,

Rqm =
∑
k,�

rk�〈ϕk, qm〉θ�, 〈Rqm, θj 〉 =
∑

k

rkj 〈ϕk, qm〉

and, therefore,∑
m

‖ρmumRYY vm‖2

≤
∑
m

‖ρmum‖2‖RYY vm‖2 =
∑
m

[∑
j

1

λXj

(〈Rqm, θj 〉)2
]
‖RYY vm‖2

=
∑
m

[∑
j

1

λXj

{∑
k

rkj 〈ϕk, qm〉
}2]

‖RYY vm‖2

≤
∑
m

[∑
j

1

λXj

∑
k

r2
kj

∑
�

〈ϕ�, qm〉2
]
‖RYY vm‖2

=
[∑

j

1

λXj

∑
k

r2
kj

]∑
m

[∑
�

〈ϕ�, qm〉2
]
‖RYY vm‖2

=
∑
j,k

r2
kj

λXj

∑
m

‖RYY vm‖2 as ‖qm‖ = 1.

Note that by (C2), the first sum on the right-hand side is bounded. For the second sum,

∑
m

‖RYY vm‖2 =
∑
m

‖R1/2
YY qm‖2 =

∑
m

〈qm,RYY qm〉 =
∑
m

∑
j

λYj 〈qm,ϕj 〉2

=
∑
j

λYj

∑
m

〈qm,ϕj 〉2 ≤
∑
j

λYj‖ϕj‖2 ≤
∑
j

λYj < ∞,

which implies (27). �

Proof of Theorem 3.4. Observing

Y ∗
K = LXβ∗

K =
K∑

m=1

ρmLX(um)RYY vm

=
K∑

m=1

ρm〈um,X〉RYY vm =
K∑

m=1

ρmUmRYY vm,
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E‖Y ∗ − Y ∗
K‖2 = E

∥∥∥∥∥
∞∑

m=K+1

ρmUmRYY vm

∥∥∥∥∥
2

=
∞∑

m=K+1

ρm‖RYY vm‖2 and

E‖LXβ∗
K‖2 = E

∥∥∥∥∥
∞∑

m=1

ρmUmRYY vm

∥∥∥∥∥
2

=
∞∑

m,j=1

ρmρjE[UmUj ]〈RYY vm,RYY vj 〉 =
∞∑

m=1

ρ2
m‖RYY vm‖2 < ∞,

we infer that E‖Y ∗ − Y ∗
K‖2 → 0 as K → ∞. From E[Um] = 0, for m ≥ 1, we have E[Y ∗

K ] = 0
and, moreover,

E‖Y − Y ∗
K‖2 = E‖(Y − LXβ∗

0 ) + LX(β∗
0 − β∗

K)‖2

= E‖Y − LXβ∗
0 ‖2 + E‖LX(β∗

0 − β∗
K)‖2 + 2E〈Y − LXβ∗

0 , LX(β∗
0 − β∗

K)〉.

Since E‖Y − LXβ∗
0 ‖2 = trace(RYY ) − E‖LXβ∗

0 ‖2 and as β∗
0 is the solution of the normal equa-

tion (6), we obtain E〈Y − LXβ∗
0 , LX(β∗

0 − β∗
K)〉 = E〈L∗

X(Y − LXβ∗
0 ), β∗

0 − β∗
K 〉 = 0. Likewise,

E‖LX(β∗
0 − β∗

K)‖2 =
∞∑

m=K+1

ρ2
m‖RYY vm‖2,

implying (19). �

Proof of Theorem 6.3. From (17), (18) for any K ≥ 1,

RY ∗Y ∗ − RY ∗
KY ∗

K
= R

1/2
YY

[ ∞∑
m=K+1

ρ2
mqm ⊗ qm

]
R

1/2
YY = R

1/2
YY R∗

K+1RK+1R
1/2
YY ,

where RK+1 = Projspan{qm,m≥K+1} R and hence, RY ∗Y ∗ − RY ∗
KY ∗

K
≥ 0. Note that

rYc,∞Yc,∞(s, t) = E[Yc,∞(s)Yc,∞(t)] =
∞∑

m,j=1

E[VmVj ]RYY vm(s)RYY vj (t)

=
∞∑

m=1

RYY vm(s)RYY vj (t) =
∞∑

m=1

R
1/2
YY (qm)(s)R

1/2
YY (qm)(t),

implying that

RYc,∞Yc,∞ − RY ∗Y ∗ = R
1/2
YY

[ ∞∑
m=1

(1 − ρ2
m)qm ⊗ qm

]
R

1/2
YY ≥ 0.
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Finally, from Lemma 6.2(b), we have Y = Yc,∞ − Y⊥
c,∞, therefore rYY = rYc,∞Yc,∞ + rY⊥

c,∞Y⊥
c,∞ .

This leads to rYY − rYc,∞Yc,∞ = rY⊥
c,∞Y⊥

c,∞ and RYY − RYc,∞Yc,∞ = RY⊥
c,∞Y⊥

c,∞ ≥ 0. �

We need the following auxiliary result to prove Theorem 6.3. We call two L2-processes X

and Y uncorrelated if and only if E[〈u,X〉〈v,Y 〉] = 0 for all L2-functions u and v.

Lemma 7.1. Y⊥
c,∞ and Y ∗ are uncorrelated.

Proof. For any ũ, ṽ ∈ L2(T2), write ṽ = ṽ1 + ṽ2, with R
1/2
YY ṽ1 ∈ span{qm;m ≥ 1}, which is

equivalent to ṽ1 ∈ span{vm;m ≥ 1} and R
1/2
YY ṽ2 ∈ span{qm;m ≥ 1}⊥. Then

〈ṽ2, Y
∗〉 =

∞∑
m=1

ρmUm〈ṽ2,RYY vm〉 =
∞∑

m=1

ρmUm〈R1/2
YY ṽ2, qm〉 = 0.

With ṽ1 = ∑
m amvm, write 〈ṽ, Y ∗〉 = 〈ṽ1, Y

∗〉 = ∑
m,j amρjUj 〈vm,RYY vj 〉 = ∑

m amρmUm.

Furthermore, from Lemma 6.2(b), E[Um〈ũ, Y⊥
c,∞〉] = 0 for all m ≥ 1. We conclude that

E[〈ũ, Y⊥
c,∞〉〈ṽ, Y ∗〉] = 0. �

Proof of Theorem 6.4. Calculating the covariance operators for (Y,Y ∗),

rY ∗Y ∗(s, t) = E[Y ∗(s)Y ∗(t)] =
∑
m,j

ρmρjE[UmUj ]RYY um(s)RYY vj (t)

=
∑
m

ρ2
mRYY um(s)RYY vm(t) =

∑
m

ρ2
mR

1/2
YY qm(s)R

1/2
YY qm(t)

so that

RY ∗Y ∗ =
∑
m

ρ2
mR

1/2
YY [qm ⊗ qm]R1/2

YY = R
1/2
YY

[∑
m

ρ2
mqm ⊗ qm

]
R

1/2
YY = R

1/2
YY R0R

1/2
YY .

Now, from Lemmas 6.2 and 7.1,

rYY ∗(s, t) = E[Y(s)Y ∗(t)] = E
[(

Yc,∞(s) + Y⊥
c,∞(s)

)
Y ∗(t)

]
= E[Yc,∞(s)Y ∗(t)] = E

[∑
m

VmRYY vm(s)
∑
j

ρjUjRYY vj (t)

]

=
∑
m,j

E[VmUjρjRYY vm(s)RYY vj (t)]

=
∑
m

ρ2
mRYY vm(s)RYY vj (t) = rY ∗Y ∗(s, t).

Hence, RYY ∗ = RY ∗Y ∗ . The correlation operator for (Y,Y ∗) is R̃ = R
−1/2
YY RYY ∗R−1/2

Y ∗Y ∗ =
R

−1/2
YY R

1/2
Y ∗Y ∗ with R̃R̃∗ = R

−1/2
YY RY ∗Y ∗R−1/2

YY = R0. Hence, ρ̃m = ρm, p̃m = qm and q̃m =
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R̃∗p̃m/ρ̃m = R
1/2
Y ∗Y ∗R

−1/2
YY qm/ρm = R

1/2
Y ∗Y ∗vm/ρm. Moreover, ũm = R

−1/2
YY p̃m = R

−1/2
YY qm = vm

and ṽm = R
−1/2
Y ∗Y ∗ q̃m = R

−1/2
Y ∗Y ∗R

1/2
Y ∗Y ∗vm/ρm = vm/ρm. Note that Y ∗

c,∞ = ∑
m ṼmRY ∗Y ∗ ṽm with

Ṽm = 〈ṽm,Y ∗〉 =
〈
vm/ρm,

∑
j

ρjUjRYY vj

〉
=

∑
j

Uj 〈vm,RYY vj 〉 = Um,

RY ∗Y ∗ ṽm = R
1/2
YY R0R

1/2
YY vm/ρm = R

1/2
YY R0qm/ρm = ρmR

1/2
YY qm = ρmRYY vm.

Substituting into the equation on the left-hand side of (26), one obtains the equation on the right-
hand side of (26). �

Proof of Proposition 6.5. From the definition, L∗
X must satisfy 〈LXβ, z〉 = 〈β, L∗

Xz〉
for β ∈ L2(T1 × T2) and z ∈ L2(T2). Note that 〈LXβ, z〉 = ∫

T2
(LXβ)(t)z(t)dt =∫

T2

∫
T1

X(s)β(s, t)z(t)ds dt and 〈β, L∗
Xz〉 = ∫ ∫

T1×T2
β(s, t)(L∗

Xz)(s, t)ds dt. For the differ-
ences, we obtain

∫ ∫
β(s, t)[X(s)z(t) − (L∗

Xz)(s, t)]ds dt = 0 for arbitrary β ∈ L2(T1 × T2)

and z ∈ L2(T2). This implies that (L∗
Xz)(s, t) = X(s)z(t). �

Proof of Proposition 6.6. By Proposition 6.5, �XX = E[L∗
X LX]. Since the integral operator

�XX has the L2-integral kernel rXX , it is a Hilbert–Schmidt operator (Conway (1985)). More-
over, for β1, β2 ∈ L2(T1 × T2),

〈�XXβ1, β2〉 =
∫ ∫

(�XXβ1)(s, t)β2(s, t)ds dt =
∫ ∫ ∫

rXX(s,w)β1(w, t)β2(s, t)dw ds dt,

〈β1,�XXβ2〉 =
∫ ∫

β1(s, t)(�XXβ2(s, t))ds dt =
∫ ∫ ∫

β1(w, t)rXX(s,w)β2(s, t)dw ds dt,

implying that �XX is self-adjoint. Furthermore, �XX is non-negative definite because, for arbi-
trary β ∈ L2(T1 × T2),

〈�XXβ,β〉 =
∫ ∫ ∫

E[X(s)X(w)]β(w, t)β(s, t)dw ds dt

= E

[∫
(LXβ)(t)(LXβ)(t)dt

]
= E‖LXβ‖2 ≥ 0. �
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