
Bernoulli 16(3), 2010, 641–678
DOI: 10.3150/09-BEJ229

Construction of Bayesian deformable models
via a stochastic approximation algorithm:
A convergence study
STÉPHANIE ALLASSONNIÈRE1, ESTELLE KUHN2 and ALAIN TROUVÉ3

1CMAP Ecole Polytechnique, Route de Saclay, F-91128 Palaiseau, France.
E-mail: Stephanie.Allassonniere@polytechnique.edu
2LAGA, Université Paris 13, 99, Av. Jean-Baptiste Clément, F-93430 Villetaneuse and INRA, MIA, Domaine
de Vilvert, F-78352 Jouy-en-Josas, France. E-mail: estelle.kuhn@jouy.inra.fr
3CMLA, ENS Cachan, CNRS, PRES UniverSud, 61 Av. Président Wilson, F-94230 Cachan, France.
E-mail: Alain.Trouve@cmla.ens-cachan.fr

The problem of the definition and estimation of generative models based on deformable templates from raw
data is of particular importance for modeling non-aligned data affected by various types of geometric vari-
ability. This is especially true in shape modeling in the computer vision community or in probabilistic atlas
building in computational anatomy. A first coherent statistical framework modeling geometric variability as
hidden variables was described in Allassonnière, Amit and Trouvé [J. R. Stat. Soc. Ser. B Stat. Methodol.
69 (2007) 3–29]. The present paper gives a theoretical proof of convergence of effective stochastic approx-
imation expectation strategies to estimate such models and shows the robustness of this approach against
noise through numerical experiments in the context of handwritten digit modeling.

Keywords: Bayesian modeling; MAP estimation; non-rigid deformable templates; shape statistics;
stochastic approximation algorithms

1. Introduction

In the field of image analysis, the statistical analysis and modeling of variable objects from a lim-
ited set of examples is still a quite challenging and largely unsolved problem, depending strongly
on the use of adequate representations of data. One such representation is the so-called dense
deformable template (DDT) framework (Amit, Grenander and Piccioni (1991)). Observations
are defined as deformations, taken from a family of deformations of moderate “dimensional-
ity”, of a given exemplar or template. Such a representation appears particularly well adapted to
the emerging field of computational anatomy, where one aims to build statistical models of the
anatomical variability within a given population (Grenander and Miller (1998)). However, re-
search on DDT has been mainly focused on the variational point of view, in which DDT is used
as an efficient vehicle for a wide range of registration algorithms (Chef d’Hotel, Hermosillo and
Faugeras (2002)). The problem of template estimation, viewed as a statistical estimation prob-
lem of parameters of generative models of images of deformable objects, has received much less
attention.
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In this paper, we consider the hierarchical Bayesian framework for dense deformable tem-
plates developed in Allassonnière, Amit and Trouvé (2007). Each image in a given population
is assumed to be generated as a noisy and randomly deformed version of a common template
drawn from a prior distribution on the set of templates. Individual deformations in this frame-
work are treated as hidden variables (or, equivalently, as random effects in the mixed effects
setting), whereas the template and the law of the deformations are parameters (or, equivalently,
fixed effects) of interest. Parameter estimation for this model could be performed by maximum a
posteriori (MAP), for which existence and consistency (as the number of observed images tends
to infinity) has been proven (see Allassonnière, Amit and Trouvé (2007)). This contrasts with
earlier work in Glasbey and Mardia (2001) using a penalized likelihood (PL), or the more recent
maximum description length approach in Marsland, Twining and Taylor (2007), for which con-
sistency cannot be proven because the deformations are considered as nuisance parameters to be
estimated.

Our contribution in this paper is in defining effective and theoretically proven convergent sto-
chastic algorithms for computing (local) maxima of the posterior on the parameters for Bayesian
deformable template models. First, we specify an adapted stochastic approximation expecta-
tion minimization algorithm (SAEM algorithm) in this highly demanding framework where the
hidden variables are non-rigid deformation fields living in finite- but high-dimensional space
(typically hundreds or more dimensions). In particular, special attention must be paid to the
sampling of the posterior distribution on the deformations. Obviously, MCMC samplers are un-
avoidable, but non-adaptive proposal distributions yielding simple symmetric random steps are
of limited practical interest. The present paper introduces a more sophisticated hybrid Gibbs
sampling scheme allowing an acceptable rejection rate during the estimation step. The overall al-
gorithm is cast in the larger class of SAEM-MCMC algorithms introduced in Kuhn and Lavielle
(2004). Second, we extend the convergence theory of SAEM-MCMC algorithms developed in
Kuhn and Lavielle (2004) to cover the case of unbounded random effects arising naturally for
deformation fields. The core material for this extension is based on the general stability and
convergence results for stochastic algorithms with truncation on random boundaries given in
Andrieu, Moulines and Priouret (2005). The main technical point is that in the presence of un-
bounded random effects and sequential estimation of the covariance matrix of the random effects,
the usual regularity conditions for the solutions of the Poisson equations for the Markovian dy-
namic as a function of the parameters cannot be verified and have to be relaxed. As a result, we
provide a new general stochastic approximation convergence theorem with a weaker set of as-
sumptions. Third, we prove that the conditions for stability and convergence are fulfilled for our
general SAEM-MCMC estimation algorithm for Bayesian dense deformable templates. Indeed,
a well-known weakness of general stochastic approximation algorithm convergence results is
that they rarely provide proofs of convergence for the algorithms used in practice since, in these
implementations, the assumptions are not satisfied or are hard to verify (see Andrieu, Moulines
and Priouret (2005)). Since stochastic approximation algorithms have recently started to attract
interest in the field of deformable model estimation (see Allassonière et al. (2006) and Richard,
Samson and Cuénod (2009)), our results provide the missing theoretical foundations and guide-
lines for their effective use. As an illustration of the potential of such SAEM-MCMC approaches
in the context of deformable templates, particularly in the presence of noisy data, we present a
set of experiments with images of handwritten digits.
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This article is organized as follows. Section 2 briefly reviews the hierarchical Bayesian de-
formable template model proposed by Allassonnière, Amit and Trouvé (2007). In Section 3, we
develop the SAEM-MCMC strategy for the estimation of the parameters. In Section 4, we then
state our general convergence result for truncated stochastic approximation algorithms, extend-
ing the convergence theorem in Andrieu, Moulines and Priouret (2005), and state that members
of the designed family of SAEM-MCMC algorithms in the previous section satisfy the assump-
tions. The proof of this last statement is postponed to Section 6, after Section 5 concentrates on
experiments. In the final section, we provide a short discussion and conclusion.

2. Observation model

Let us recall the model introduced in Allassonnière, Amit and Trouvé (2007). We are given gray
level images (yi)1≤i≤n observed on a grid of pixels {vu ∈ D ⊂ R

2, u ∈ �} which is embedded
in a continuous domain D ⊂ R

2 (typically, D = [−1,1] × [−1,1]). Although the images are
observed only at the pixels (vu)u, we are looking for a template image I0 : R2 → R defined on
the plane (the extension to images on R

d is straightforward). Each observation y is assumed to be
the discretization on a fixed pixel grid of a deformation of the template plus independent noise.
Specifically, for each observation, there exists an unobserved deformation field z : R2 → R

2 such
that for u ∈ �,

y(u) = I0
(
vu − z(vu)

)+ ε(u),

where ε denotes an independent additive noise.

2.1. Models for template and deformation

Our model takes into account two complementary aspects: photometry, indexed by p, and geom-
etry, indexed by g. Estimating the template and the distribution on deformations directly as a
continuous function would be an infinite-dimensional problem. We reduce this problem to a
finite-dimensional one by restricting the search to a parameterized space of functions. The tem-
plate I0 : R2 → R and the deformation z : R2 → R

2 are assumed to belong to fixed reproducing
kernel Hilbert spaces Vp and Vg , defined by their respective kernels Kp and Kg . Moreover, we
restrict them to the subset of linear combinations of the kernels centered at some fixed control
points in the domain D: (vp,j )1≤j≤kp and (vg,j )1≤j≤kg , respectively. They are therefore parame-
terized by the coefficients α ∈ R

kp and β ∈ R
kg × R

kg , as follows. For all v in D, let

Iα(v) � (Kpα)(v) �
kp∑

j=1

Kp(v, vp,j )α
j

and

zβ(v) � (Kgβ)(v) �
kg∑

j=1

Kg(v, vg,j )β
j .
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Other forms of smooth parametric representation of the images and of the deformation fields
could be used without affecting the overall results.

2.2. Parametric model

For clarity, we denote by yt = (yt
1, . . . , y

t
n) and β t = (βt

1, . . . , β
t
n) the collection of data and their

corresponding deformation coefficients, respectively. The statistical model of the observations
we consider is a generative hierarchical one. We assume conditional normal distributions for y
and β: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
β ∼

n⊗
i=1

N2kg (0,�g)

∣∣∣�g,

y ∼
n⊗

i=1

N|�|(zβi
Iα, σ 2Id)

∣∣∣β, α, σ 2,

(1)

where
⊗

denotes the product of distributions of independent variables and zIα(u) = Iα(vu −
z(vu)), for u in �, denotes the action of the deformation on the template image. The parameters
of interest are α (which determines the template image), σ 2 (the variance of the additive noise)
and �g (the covariance matrix of the variables β). We assume that θ = (α,σ 2,�g) belongs to an
open parameter space 	:

	 � {θ = (α,σ 2,�g) | α ∈ R
kp ,‖α‖ < R,σ > 0,�g ∈ Sym+

2kg
},

where ‖·‖ is the Euclidean norm, Sym+
2kg

is the cone of real 2kg ×2kg positive definite symmetric
matrices and R is an arbitrary positive constant.

The likelihood of the observed data qobs can be written as an integral over the unobserved
deformation variables. Let us denote by qc the conditional likelihood of the observations, given
the hidden variables, and by qm the likelihood of these missing variables. Then

qobs(y|θ) =
∫

qc(y|β, α, σ 2)qm(β|�g)dβ,

where all of the densities are determined by the model (1).

2.3. Bayesian model

Even though the parameters are finite-dimensional, the maximum likelihood estimator can yield
degenerate estimates when the training sample is small. By introducing prior distributions on
the parameters, estimation with small samples is still possible. The regularizing effect of such
priors can be seen in the parameter update steps (cf. Allassonnière, Amit and Trouvé (2007)).
We use a generative model based on standard conjugate prior distributions for parameters θ =
(α,σ 2,�g) with fixed hyper-parameters. Specifically, we assume a normal prior for α, an inverse
Wishart prior on σ 2 and an inverse Wishart prior on �g . Furthermore, all priors are assumed to
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be independent. This yields θ = (α,σ 2,�g) ∼ qpara � νp ⊗ νg , where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

νp(dα,dσ 2) ∝ exp

(
−1

2
(α − μp)t (�p)−1(α − μp)

)

×
(

exp

(
− σ 2

0

2σ 2

)
1√
σ 2

)ap

dσ 2 dα, ap ≥ 3,

νg(d�g) ∝
(

exp(−〈�−1
g ,�g〉F /2)

1√|�g|
)ag

d�g, ag ≥ 4kg + 1.

(2)

For two matrices A and B , we define 〈A,B〉F � tr(AtB), the Frobenius dot product on the set
of matrices, where tr denotes the trace of the matrix.

3. Parameter estimation based on stochastic approximation EM

In our Bayesian framework, we obtain from Allassonnière, Amit and Trouvé (2007) the existence
of the MAP estimator

θ̃n = arg max
θ∈	

qB(θ |y),

where qB denotes the posterior likelihood of the parameters given the observations. The depen-
dence on n refers to the sample size.

We now turn to the maximization problem for the penalized posterior distribution qB(θ |y),
which has no closed form in our case. Indeed, the probability density function is known up to a
renormalization constant. That prevents a direct computation of θ̃n.

In order to solve this problem, we apply an “EM-like” algorithm to approximate the MAP
estimator θ̃n. The solution we propose is to base our algorithm on the use of the stochastic ap-
proximation EM (SAEM). First, we outline certain characteristics of our model, which highlight
the reasons for the choice of the particular procedure and enable us to simplify its implementa-
tion.

3.1. Model characteristics

An important characteristic of our model is that it belongs to the curved exponential family. In
other words, the complete likelihood q can be written as

q(y,β, θ) = exp[−ψ(θ) + 〈S(β),φ(θ)〉],
where the sufficient statistic S is a Borel function on R

N , with N � 2nkg , taking its values in an
open subset S of R

m, and ψ , φ are two Borel functions on 	. (Note that S, φ and ψ may also
depend on y, but since y will stay fixed in what follows, we omit this dependence.)

In our setting, we obtain the following formula:

logq(y,β, θ) = logqc(y|β, θ) + logqm(β|θ) + logqpara(θ),
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where qpara denotes the prior density of the parameters defined in the previous paragraph.
For any 1 ≤ j ≤ kp and any u ∈ �, we denote by

Kβ
p (u, j) = Kp

(
vu − zβ(vu), vp,j

)
the matrix which corresponds to the deformation of the kernel Kp through zβ at pixel u and
evaluated at pixel location vu. Then, for some constant C independent of θ ,

logq(y,β, θ) =
n∑

i=1

{
−|�|

2
log(σ 2) − 1

2σ 2
‖yi − Kβi

p α‖2
}

+
n∑

i=1

{
−1

2
log(|�g|) − 1

2
βt

i �
−1
g βi

}

+ ag

{
−1

2
log(|�g|) − 1

2
〈�−1

g ,�g〉F
}

− 1

2
(α − μp)t�−1

p (α − μp)

+ ap

{
−1

2
log(σ 2) − σ 2

0

2σ 2

}
+ C.

Note that ‖yi − K
βi
p α‖2 = (yi − K

βi
p α)t (yi − K

βi
p α), where K

βi
p α is another way to write the

action of the deformation zβi
on the template Iα , denoted previously by zβi

Iα . This form em-
phasizes the dot product between the sufficient statistics and a function of the parameters. It can
be easily verified that the following matrix-valued functions are the sufficient statistics (up to a
multiplicative constant):

S1(β) =
∑

1≤i≤n

(Kβi
p )tyi,

S2(β) =
∑

1≤i≤n

(Kβi
p )t (Kβi

p ),

S3(β) =
∑

1≤i≤n

βt
i βi .

For simplicity, we write S(β) = (S1(β), S2(β), S3(β)) for any β ∈ R
N and define the sufficient

statistic space as

S = {(S1, S2, S3) | S1 ∈ R
kp , S2 + σ 2

0 �−1
p ∈ Sym+

kp
, S3 + ag�g ∈ Sym+

2kg
}.

Identifying S2 and S3 with their lower triangular parts, the set S can be viewed as an open set of
R

ns with ns = kp + kp(kp+1)

2 + kg(2kg + 1).

In Allassonnière, Amit and Trouvé (2007), the existence of the parameter estimate θ̂ (S) that
maximizes the complete log-likelihood has been proven. It can easily be shown that α, σ 2 and �g
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are explicitly expressed with the above sufficient statistics as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�g(S) = 1

n + ag

(S3 + ag�g),

α(S) = (
S2 + σ 2(S)(�p)−1

)−1(
S1 + σ 2(S)(�p)−1μp

)
,

σ 2(S) = 1

n|�| + ap

(
n‖y‖2 + α(S)tS2α(S) − 2α(S)tS1 + apσ 2

0

)
.

(3)

These formulae also prove the smoothness of θ̂ on the subset S .

3.2. SAEM-MCMC algorithm with truncation on random boundaries

In order to compute the MAP estimator for our Bayesian model, we use a variant of the EM
(expectation-maximization) algorithm from Dempster, Laird and Rubin (1977). This algorithm
is quite natural when we have to maximize a likelihood under a hierarchical model with missing
variables. Unfortunately, direct computation is not tractable and we have to find a solution to
overcome the problematic E step where we have to compute an expectation with respect to the
posterior distribution on β given y. A first attempt was proposed in Allassonnière, Amit and
Trouvé (2007), where this conditional distribution is approximated by a Dirac distribution at
its mode (fast approximation with mode, or FAM-EM). The results are very interesting, but the
authors point out the lack of convergence of the FAM-EM algorithm on a database with low
signal-to-noise ratio (SNR). This is the issue we consider here. We propose an algorithm that
ensures the convergence of the resulting sequence of estimators toward the MAP, whatever the
quality of the input.

This solution is a procedure combining the stochastic approximation EM (SAEM) with
Markov chain Monte Carlo (MCMC) in a more general framework than that proposed by Kuhn
and Lavielle (2004), which, in turn, generalized the algorithm introduced by Delyon, Lavielle
and Moulines (1999). Indeed, the kth iteration of the SAEM-MCMC algorithm consists of the
following three steps.

Step 1: Simulation step. The missing data, that is, the deformation parameters β , are drawn
using the transition probability of a convergent Markov chain �θ having the posterior distribution
qpost(·|y, θ) as its stationary distribution:

βk ∼ �θk−1(βk−1, ·).
Step 2: Stochastic approximation step. A stochastic approximation is performed on the com-

plete log-likelihood using the simulated value of the missing data:

Qk(θ) = Qk−1(θ) + �k−1[logq(y,βk, θ) − Qk−1(θ)],
where � = (�k)k is a decreasing sequence of positive step-sizes.

Step 3: Maximization step. The parameters are updated in the M-step:

θk = arg max
θ∈	

Qk(θ).
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The initial values Q0 and θ0 are arbitrarily chosen.

Remark 1. We cannot use the direct SAEM algorithm. Indeed, this would require sampling
the hidden variable from the posterior distribution which is known only up to a normalization
constant. This sampling is not possible here due to the complexity of the posterior probability
density function.

Since our model belongs to the curved exponential family, the stochastic approximation step
can easily be performed on the sufficient statistics S instead of on the complete log-likelihood.
The maximization step (Step 3) is then straightforward, replacing in (3) the sufficient statistics
with their corresponding stochastic approximations.

The convergence of this algorithm has been proven in Kuhn and Lavielle (2004) in the par-
ticular case of missing variables belonging to a compact subset of R

N . However, as we set a
Gaussian prior on the missing variables β , we cannot assume that their support is compact. In or-
der to provide an algorithm whose convergence can be proven in the current framework, we have
to use a more general setting, introduced in Andrieu, Moulines and Priouret (2005), which in-
volves truncation on random boundaries. The proof is given in Section 4. This can be formalized
as follows.

Let (Kq)q≥0 be a sequence of increasing compact subsets of S , such as
⋃

q≥0 Kq = S and
Kq ⊂ int(Kq+1), for all q ≥ 0. Let ε = (εk)k≥0 be a monotone non-increasing sequence of posi-
tive numbers and K a compact subset of R

N . We construct a sequence ((βk, sk))k≥0, as described
in Algorithm 1, as follows. As long as the stochastic approximation does not wander outside the
current compact set and is not too far from its previous value, we run the SAEM-MCMC al-
gorithm. As soon as one of these conditions is not satisfied, we reinitialize the sequences of β
and s using a projection (for more details, see Andrieu, Moulines and Priouret (2005)), increase
the size of the compact set and continue the iterations until convergence. This is detailed in the
following steps.

Algorithm 1 Stochastic approximation with truncation on random boundaries
Set β0 ∈ K, s0 ∈ K0, κ0 = 0, ζ0 = 0 and ν0 = 0.
for all k ≥ 1 do
compute s̄ = sk−1 + �ζk−1(S(β̄) − sk−1)

where β̄ is sampled from a transition kernel �θk−1(βk−1, ·)
if s̄ ∈ Kκk−1 and ‖s̄ − sk−1‖ ≤ εζk−1 then
set (βk, sk) = (β̄, s̄) and κk = κk−1, νk = νk−1 + 1, ζk = ζk−1 + 1

else
set (βk, sk) = (β̃, s̃) ∈ K × K0 and κk = κk−1 + 1, νk = 0, ζk = ζk−1 + φ(νk−1)

where φ : N → Z is a function such that φ(k) > −k for any k

and (β̃, s̃) can be chosen through different ways (cf. (Andrieu,
Moulines and Priouret, 2005)).

end if
θk= θ̂ (sk)

end for



Bayesian deformable models building 649

Initialization step: Initialize β0 and s0 in two fixed compact sets K and K0, respectively.
Then, for the kth iteration, repeat the following four steps.
Step 1: MCMC simulation step. Draw one new element β̄ of the non-homogeneous Markov

chain with respect to the kernel with the current parameters �θk−1 and starting at βk−1,

β̄ ∼ �θk−1(βk−1, ·).

Step 2: Stochastic approximation step. Compute

s̄ = sk−1 + �ζk−1

(
S(β̄) − sk−1

)
. (4)

Step 3: Truncation on random boundaries. If s̄ is outside the current compact set Kκk−1 or too
far from the previous value sk , then restart the stochastic approximation in the initial compact
set, extend the truncation boundary to Kκk

and start again with a bounded value of the missing
variable. Otherwise, set (βk, sk) = (β̄, s̄) and keep the truncation boundary to Kκk−1 .

Step 4: Maximization step. Update the parameters using (3).
In this algorithm, the MCMC simulation step has to be explained since it involves the choice

of the transition kernel of the Markov chain. Usually, one uses a Metropolis–Hastings algorithm
in which a candidate value is sampled from a proposal distribution followed by an accept–reject
step. However, there are different possible proposal distributions. The only requirement is that
all of these kernels lead to an ergodic Markov chain whose stationary distribution is our posterior
distribution. The choice among these possibilities should be based on the specific framework we
are working in.

While minimizing the Kullback–Leibler distance between the stationary distribution
β → πθ (β) and a tensorial product β → ⊗n

i=1 p(βi) corresponding to independent identically
distributed missing variables, we get that p is proportional to 1

n

∑n
i=1 qpost(·|yi, θ). As n tends to

∞ and for a given θ , p converges a.s. toward the prior pdf on the missing variable qm(·|θ). This
suggests using as proposal the prior distribution which involves the current parameters.

On the other hand, the setting we are considering in this paper deals with high-dimensional
missing variables. This raises several issues. If we simulate candidates for the hidden variable
as a complete vector, it appears that most of the candidates are rejected. This is a typical high-
dimensional concentration phenomenon: locally around a current point, the proportion of the
space occupied by acceptable moves becomes negligible when the space dimension grows. From
a more practical point of view, even if the proposed candidate is drawn with respect to the cur-
rent prior distribution, it creates a deformation that is very different from the current one and too
large for the corresponding deformed template to fit the observations. This yields very few pos-
sible moves from the current missing variable value and the algorithm is stuck in a non-optimal
location or converges very slowly.

One solution is to update the chain one coordinate at a time, conditionally on the others. This
corresponds to a Gibbs sampler and leads to more relevant candidates which have a higher chance
of being accepted (cf. Amit (1996)). From an image analysis point of view, this puts stronger
conditions on the kinds of deformations which are produced when proposing a candidate for
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each coordinate. Knowing the tendency of the movement given by the other coordinates, the
candidate will either confirm it or not, depending on whether this is a suitable movement. It will
thus be accepted with a corresponding probability. Even if some coordinates remain unchanged,
some others are updated, which enables the algorithm to visit a larger part of the missing variable
support.

Remark 2. The index κ denotes the current active truncation set, the index ζ is the current
index in the sequences �, ε and the index ν denotes the number of iterations since the last
projection.

3.3. Transition probability of the Markov chain

We now explain how to simulate the missing variables by means of a Markov chain Monte Carlo
algorithm having the posterior distribution as its stationary distribution. Due to the inherent high
dimensionality N of β , we consider a Gibbs sampler to sequentially scan all coordinates βj for
1 ≤ j ≤ N .

We define β−j = (β l )l �=j . We consider here a hybrid Gibbs sampler, that is, each step of the
Gibbs sampler includes a Metropolis–Hastings step. The proposal law is chosen as qj (·|β−j , θ),
that is, the conditional law based on the current parameter value θ derived from the normal
distribution qm.

If b is a proposed value at coordinate j , then the acceptance rate of the Metropolis–Hastings
algorithm is given by

rj (β
j , b;β−j , θ) =

[
qj (b|β−j ,y, θ)qj (β

j |β−j , θ)

qj (β
j |β−j ,y, θ)qj (b|β−j , θ)

∧ 1

]
.

Since

qj (β
j |β−j ,y, θ) ∝ qobs(y|β, θ)qj (β

j |β−j , θ),

the acceptance rate can be simplified to

rj (β
j , b;β−j , θ) =

[
qobs(y|βb→j , θ)

qobs(y|β, θ)
∧ 1

]
,

where, for any b ∈ R and 1 ≤ j ≤ N , we denote by βb→j the unique vector which is equal to β

everywhere except at coordinate j , where it equals b. An illustration of the hybrid Gibbs sampler
can be found in Robert (1996). The following steps are performed for each coordinate j .

Step 1: Proposition. Sample b with respect to the density qj (·|β−j , θ).
Step 2: Accept–reject. Compute rj (β

j , b;β−j , θ) and, with probability rj (β
j , b;β−j , θ), up-

date βj to b.
In Algorithm 2, we summarize the transition step of the Markov chain.
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Algorithm 2 Transition step k → k + 1 using a hybrid Gibbs sampler
Require: β = βk ; θ = θk

Gibbs sampler:
for all j = 1 : N do
Metropolis-Hastings procedure:
b ∼ qj (·|β−j , θ);
compute rj (β

j , b;β−j , θ) = [ qobs(y|βb→j ,θ)

qobs(y|β,θ)
∧ 1]

with probability rj (β
j , b;β−j , θ), update βj : βj ← b

end for

This yields the transition probability kernel of our Markov chain on β: for coordinate j , the
kernel is

�θ,j (β,dz) =
(⊗

m �=j

δβm(dzm)

)

×
[
qj (dzj |β−j , θ)rj (β

j ,dzj ;β−j , θ) (5)

+ δβj (dzj )

∫ (
1 − rj (β

j , b;β−j , θ)
)
qj (b|β−j , θ)db

]

and �θ = �θ,N ◦ · · · ◦ �θ,1 is therefore the kernel associated with a complete scan.

4. Convergence analysis

We prove a general theorem on the convergence of stochastic approximations for which our
algorithm convergence is a special case.

The hybrid Gibbs sampler used to generate the ergodic Markov chain does not satisfy some of
the assumptions of the convergence result presented in Andrieu, Moulines and Priouret (2005).
We therefore weaken some of their conditions, introducing an absorbing set for the stochastic
approximation and weakening their Hölder conditions on some functions of the Markov chain.

4.1. Stochastic approximation convergence theorem

Let S be a subset of R
ns for some integer ns . Let X be a measurable space. For all s ∈ S , let

Hs :X → S be a measurable function. Let � = (�k)k be a sequence of positive step-sizes.
Define the stochastic approximation sequence (sk)k as follows:{

sk = sk−1 + �k−1Hsk−1(βk) with βk ∼ �sk−1(βk−1, ·), if sk−1 ∈ S ,

sk = sc with βk = βc, if sk−1 /∈ S ,
(6)
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where sc /∈ S , βc /∈ X and (�s)s∈S is a family of Markov transition probabilities on X. Denote
by Q� the transition which generates ((βk, sk))k . We consider the natural filtration of the non-
homogeneous chain ((βk, sk))k and denote respectively by P

�
β,s

and E
�
β,s

the probability measure
and the corresponding expectation generated by this Markov chain starting at (β, s) and using
the sequence �.

If the transition kernel �s of the Markov chain admits a stationary distribution πs and if, for
any s ∈ S , Hs is integrable with respect to πs , then we denote by h the mean field associated
with our stochastic approximation so that

h(s) =
∫

Hs(β)πs(β)dβ.

The algorithm defined in (6) is usually designed to solve the equation h(s) = 0, where h is
called the mean field function.

Let (Kq)q≥0 be a sequence of increasing compact subsets of S such as
⋃

q≥0 Kq = S and
Kq ⊂ int(Kq+1),∀q ≥ 0. Let ε = (εk)k≥0 be a monotone non-increasing sequence of positive
numbers and K a subset of X.

Let � :X × S → K × K0 be a measurable function and φ : N → Z be a function such that
φ(k) > −k for any k. Define the homogeneous Markov chain(

Zk = (βk, sk, κk, ζk, νk)
)
k

(7)

on Z � X × S × N
3 with the following transition at iteration k:

• if νk−1 = 0, then draw (βk, sk) ∼ Q�ζk−1
(�(βk−1, sk−1), ·), otherwise draw (βk, sk) ∼

Q�ζk−1
((βk−1, sk−1), ·);

• if ‖sk − sk−1‖ ≤ εζk−1 and sk ∈ Kκk−1 , then set κk = κk−1, ζk = ζk−1 +1 and νk = νk−1 +1,
otherwise set κk = κk−1 + 1, ζk = ζk−1 + φ(νk−1) and νk = 0.

Consider the following assumptions, generalized from Andrieu, Moulines and Priouret (2005).
Define, for any V :X → [1,∞] and any g :X → R

ns , the norm

‖g‖V = sup
β∈X

‖g(β)‖
V (β)

.

A1′. S is an open subset of R
ns , h : S → R

ns is continuous and there exists a continuously
differentiable function w : S → [0,∞[ with the following properties:

(i) there exists an M0 > 0 such that

L � {s ∈ S, 〈∇w(s),h(s)〉 = 0} ⊂ {s ∈ S,w(s) < M0};
(ii) there exists a closed convex set Sa ⊂ S for which s → s +ρHs(β) ∈ Sa for any ρ ∈ [0,1]

and (β, s) ∈ X × Sa (Sa is absorbing), and such that for any M1 ∈]M0,∞], the set WM1 ∩ Sa is
a compact set of S , where WM1 � {s ∈ S,w(s) ≤ M1};

(iii) for any s ∈ S \ L 〈∇w(s),h(s)〉 < 0;
(iv) the closure of w(L) has an empty interior.
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A2. For any s ∈ S , the Markov kernel �s has a single stationary distribution πs , πs�s = πs .
In addition, for all s ∈ S , Hs :X → S is measurable and

∫
X

‖Hs(β)‖πs(dβ) < ∞.
A3′. For any s ∈ S , the Poisson equation g − �sg = Hs − πs(Hs) has a solution gs . There

exist a function V :X → [1,∞] such that {β ∈ X,V (β) < ∞} �= ∅ and constants a ∈]0,1],
q ≥ 1 and p ≥ 2 such that for any compact subset K ⊂ S :

(i)

sup
s∈K

‖Hs‖V < ∞, (8)

sup
s∈K

(‖gs‖V + ‖�sgs‖V ) < ∞; (9)

(ii)

sup
s,s′∈K

‖s − s′‖−a{‖gs − gs′ ‖V q + ‖�sgs − �s′gs′‖V q } < ∞; (10)

(iii) if k0 is an integer, then there exist an ε̄ > 0 and a constant C such that for any sequence
ε = (εk)k≥0 satisfying 0 < εk ≤ ε̄ for all k ≥ k0, for any sequence � = (�k)k≥0 and for any
β ∈ X,

sup
s∈K

sup
k≥0

E
�
β,s

[
V pq(βk)1σ(K)∧ν(ε)≥k

]≤ CV pq(β), (11)

where ν(ε) = inf{k ≥ 1,‖sk − sk−1‖ ≥ εk}, σ(K) = inf{k ≥ 1, sk /∈ K} and the expectation is re-
lated to the non-homogeneous Markov chain ((βk, sk))k≥0 using the step-size sequence (�k)k≥0.

A4. The sequences � = (�k)k≥0 and ε = (εk)k≥0 are non-increasing, positive and satisfy∑∞
k=0 �k = ∞, limk→∞ εk = 0 and

∑∞
k=1{�2

k + �kε
a
k + (�kε

−1
k )p} < ∞, where a and p are

defined in (A3′).

Theorem 1 (General convergence result for truncated stochastic approximation). Assume
(A1′), (A2), (A3′) and (A4). Let K ⊂ X be such that supβ∈K V (β) < ∞ and K0 ⊂ WM0 ∩ Sa

(where M0 is defined in (A1′)) and let (Zk)k≥0 be the sequence defined in equation (7). Then,
for all β0 ∈ K and s0 ∈ K0, we have limk→∞ d(sk, L) = 0 P̄β0,s0,0,0,0-a.s, where P̄β0,s0,0,0,0
is the probability measure associated with the chain (Zk = (βk, sk, κk, ζk, νk))k≥0 starting at
(β0, s0,0,0,0).

Proof. • The deterministic results obtained by Andrieu, Moulines and Priouret (2005) under
their assumption (A1) remain true if we suppose the existence of an absorbing set, as defined in
assumption (A1′). Indeed, the proofs in Andrieu, Moulines and Priouret (2005) can be carried
through in the same way, restricting the sequences to the absorbing set. Therefore, we obtain the
same properties. The first one (stated in Lemma 2.1 of Andrieu, Moulines and Priouret (2005))
gives the contraction property of the Lyapunov function w. We then have (as in Theorem 2.2
of Andrieu, Moulines and Priouret (2005)) the fact that a sequence of stochastic approximations
stays almost surely in a compact set under some conditions on the perturbation. Finally, we
establish the convergence of such a stochastic approximation.
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• We then state a relation between the homogeneous and non-homogeneous chains, as done in
Lemma 4.1 of Andrieu, Moulines and Priouret (2005).

• We now prove an equivalent version of Proposition 5.2 of Andrieu, Moulines and Priouret
(2005), under our conditions. Indeed, the upper bound on the fluctuations of the noise sequence
stated in this proposition is relaxed in our case, involving a different power on the function V .

Proposition 1. Assume (A3′). Let K be a compact subset of S and let � = (�k)k and ε = (εk)k
be two non-increasing sequences of positive numbers such that limk→∞ εk = 0. Then, for p

defined in (A3′):

1. there exists a constant C such that, for any (β, s) ∈ X × K, any integer l and any δ > 0,

P
�
β,s

(
sup
n≥l

‖Sl,n(ε,�, K)‖ ≥ δ
)

≤ Cδ−p

{( ∞∑
k=l

�2
k

)p/2

+
( ∞∑

k=l

�kε
a
k

)p}
V pq(β),

where Sl,n(ε,�, K) � 1σ(K)∧ν(ε)≥n

∑n
k=l �k(Hsk−1(βk) − h(sk−1)) and P

�
β,s

is the prob-
ability measure generated by the non-homogeneous Markov chain ((βk, sk))k started from
the initial condition (β, s);

2. there exists a constant C such that for any (β, s) ∈ X × K,

P
�
β,s

(
ν(ε) < σ(K)

)≤ C

{ ∞∑
k=l

(�kε
−1
k )p

}
V pq(β).

Proof. The proof of this proposition can proceed as in Andrieu, Moulines and Priouret (2005),
except for the upper bound on the term involving the Hölder property (the second term in what
follows). Under A3′(ii), this upper bound brings into play an exponent pq on the function V .

Indeed, rewrite S1,n(ε,�, K) using the Poisson equation and decompose it into a sum of the
following five terms:

T (1)
n =

n∑
k=1

�k

(
gsk−1(βk) − �sk−1gsk−1(βk−1)

)
1{σ(K)∧ν(ε)≥k}, (12)

T (2)
n =

n−1∑
k=1

�k+1
(
�sk gsk (βk) − �sk−1gsk−1(βk)

)
1{σ(K)∧ν(ε)≥k+1}, (13)

T (3)
n =

n−1∑
k=1

(�k+1 − �k)�sk−1gsk−1(βk)1{σ(K)∧ν(ε)≥k+1}, (14)

T (4)
n = �1�s0gs0(β0)1{σ(K)∧ν(ε)≥1} − �n�sn−1gsn−1(βn)1{σ(K)∧ν(ε)≥n}, (15)

T (5)
n = −

n−1∑
k=1

�k�sk−1gsk−1(βk)1{σ(K)∧ν(ε)=k}. (16)
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We evaluate bounds for the first four quantities. Using the Minkowski inequality for p/2 ≥ 1
and the Burkholder inequality (for T

(1)
n ), we have

sup
s∈S

E
�
β0,s

[
sup
n≥0

∥∥T (1)
n

∥∥p
]

≤ C

( ∞∑
k=1

�2
k

)p/2

sup
s∈S

∑
k

E
�
β0,s

[
V p(βk)1{σ(K)∧ν(ε)≥k}

]
, (17)

sup
s∈S

E
�
β0,s

[
sup
n≥0

∥∥T (2)
n

∥∥p
]

≤ C

( ∞∑
k=1

�kε
α
k

)p

sup
s∈S

∑
k

E
�
β0,s

[
V pq(βk)1{σ(K)∧ν(ε)≥k}

]
, (18)

sup
s∈S

E
�
β0,s

[
sup
n≥0

∥∥T (3)
n

∥∥p
]

≤ C�
p

1 sup
s∈S

∑
k

E
�
β0,s

[
V p(βk)1{σ(K)∧ν(ε)≥k}

]
, (19)

sup
s∈S

E
�
β0,s

[
sup
n≥0

∥∥T (4)
n

∥∥p
]

≤ C

( ∞∑
k=1

�2
k

)p/2

sup
s∈S

∑
k

E
�
β0,s

[
V p(βk)1{σ(K)∧ν(ε)≥k}

]
, (20)

where C is a constant which depends only on the compact set K. The higher power pq appears
because of the Hölder condition we assume on the solution of the Poisson equation.

Since, now, T
(5)
n 1{σ(K)∧ν(ε)≥n} = 0 and noting that V (β) ≥ 1,∀β ∈ X, we have V (β)p ≤

V pq(β). Successively applying (as in Andrieu, Moulines and Priouret (2005)) the Markov in-
equality, condition (11) and the Markov property to these upper bounds completes the proof of
the first part of Proposition 1.

Concerning the second part, it follows from the same trick as above for upper-bounding the
expectation of V p by V pq . This completes the proof of the proposition. �

It is now straightforward to prove the following proposition, which corresponds to Proposi-
tion 5.3 in Andrieu, Moulines and Priouret (2005).

Proposition 2. Assume (A3′) and (A4). Then, for any subset K ⊂ X such that supβ∈K V (β) <

∞, any M ∈ (M0,M1] and any δ > 0, we have limk→∞ A(δ,ε←k,M,�←k) = 0, where ε←k

stands for the sequence ε delayed by k switches (ε←k
l = εk+l for all l ∈ N) and

A(δ,ε,M,�) = sup
s∈K0

sup
β∈K

{
P

�
β,s

(
sup
k≥1

‖S1,k(ε,�, WM)‖ ≥ δ
)

+ P
�
β,s

(
ν(ε) < σ(WM)

)}
.

The convergence of the sequence (sk)k follows from the proof of Theorem 5.5 of Andrieu,
Moulines and Priouret (2005), which states the almost sure convergence due to the previous
propositions. �

Remark 3. We can weaken the condition on p given in (A3′). Indeed, we can assume that (A3′)
holds for any p > 0 provided that at least condition (11) is true also for a power equaled to 2
on V . This is needed in the proof when giving an upper bound for all of the Tn’s using Jensen’s
inequality instead of Minkowski’s inequality, as in Andrieu, Moulines and Priouret (2005). In
this case, assumption (A4) would have to be satisfied for a power max(p,2) instead of power 2.
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4.2. Convergence theorem for dense deformable template model

We now give the convergence result for our estimation process which is an application of the
previous theorem. In this section, we assume that σ 2 is fixed, which reduces θ to (α,�g). In fact,
due to the implicit definition of θ̂ given in equation (3), we were not able to prove the smoothness
of the inverse of the function s �→ θ̂ (s), which is straightforward for fixed σ 2.

We can easily exhibit some of the functions involved in our procedure. Comparing equation (4)
to equation (6), we have

Hs(β) = S(β) − s. (21)

Equation (3) gives the existence of the function s → θ̂ (s). We denote by l the observed log-
likelihood, l(θ) � log

∫
q(y,β, θ)dβ , and let w(s) � −l ◦ θ̂ (s) and h(s) �

∫
Hs(β)qpost(β|y,

θ̂ (s))dβ for s ∈ S .

Theorem 2. The sequence of stochastic approximations (sk)k related to the model defined in
Section 2 and generated by Algorithms 1 and 2 satisfies assumptions (A1′)(ii), (iii), (iv), (A2)
and (A3′).

Proof. The details of the proof are given in Section 6. �

Corollary 1 (Convergence of dense deformable template building via stochastic approxima-
tion).

Assume that:

1. there exist p ≥ 1 and a ∈]0,1[ such that the sequences � = (�k)k≥0 and ε = (εk)k≥0 are
non-increasing, positive and satisfy

∞∑
k=0

�k = ∞, lim
k→∞ εk = 0 and

∞∑
k=1

{�2
k + �kε

a
k + (�kε

−1
k )p} < ∞;

2. L � {s ∈ S, 〈∇w(s),h(s)〉 = 0} is included in a level set of w.

Let K be a compact subset of R
N and K0 a compact subset of S(RN).

Let (sk)k≥0 and (θk)k≥0 be the two sequences defined in Algorithms 1 and 2. If we define
L′ � {θ ∈ θ̂ (S), ∂l

∂θ
(θ) = 0}, then θ̂ (L) = L′ and

lim
k→∞d(θk, L′) = 0 P̄β0,s0,0,0,0-a.s.

for all β0 ∈ K and s0 ∈ K0, where P̄β0,s0,0,0,0 is the probability measure associated with the
chain (Zk = (βk, sk, κk, ζk, νk))k≥0 starting at (β0, s0,0,0,0).

Proof. We first note that, as mentioned in Delyon, Lavielle and Moulines (1999) (Lemma 2,
equation (36)), since θ̂ , φ and ψ are smooth functions, it is easy to relate the convergence of
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the stochastic approximation sequence (sk)k to the convergence of the estimated parameter se-
quence (θk)k .

The proof then follows from the general stability result, Theorem 1, stated in Section 4.1 and
from the previous Theorem 2. �

Remark 4. Note that condition (1) is easily checked for �k = k−c and εk = k−c′
with 1/2 <

c′ < c < 1. However, condition (2) has not yet been successfully proven and should be relaxed
in future work.

5. Experiments

To illustrate our stochastic algorithm for the deformable template models, we consider handwrit-
ten digit images. For each digit class, we find the template, the corresponding noise variance and
the geometric covariance matrices. (Note that in this experiment, the noise variance is no longer
fixed and is estimated as the other parameters.) We use the United States Postal Service database,
which contains a training set of around 7000 images.

Each picture is a 16 × 16 gray level image with intensity in [0,2], where 0 corresponds to the
black background. We will also use these sets in the special case of a noisy setting by adding
independent centered Gaussian noise to each image.

To be able to compare the results with the previous deterministic algorithm proposed in
Allassonnière, Amit and Trouvé (2007), we use the same samples. In Figure 1 below, we show
some of the training images.

A natural choice for the hyper-parameters on α and �g is μp = 0 and we induce the two
covariance matrices �p and �g by the metric of the Hilbert spaces Vp and Vg (defined in Sec-
tion 2.1) involving the correlation between the landmarks determined by the kernel. If we define
the square matrices

Mp(k, k′) = Kp(vp,j , vp,j ′) ∀1 ≤ k, k′ ≤ kp,
(22)

Mg(k, k′) = Kg(vg,j , vg,j ′) ∀1 ≤ k, k′ ≤ kg,

Figure 1. Some images from the training set used for the estimation of the model parameters (inverse
video).
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Figure 2. Estimated prototypes of digit 1 (20 images per class) for different hyper-parameters. Left:
smoother geometry but larger photometric covariance in the spline kernel; right: more rigid geometry and
smaller photometric covariance.

then �p = M−1
p and �g = M−1

g . In our experiments, we have chosen Gaussian kernels for both
Kp and Kg , where the standard deviations are fixed at σp = 0.12 and σg = 0.3. The deforma-
tion is computed in the [−1,1]2 square with kg = 6 equidistributed landmarks on this domain.
The template has been estimated with kp = 15 equidistributed control points on [−1.5,1.5]2.

These two covariance matrices are important hyper-parameters; indeed, it has been shown in
Allassonnière, Amit and Trouvé (2007) that changing the geometric covariance has an effect on
the sharpness of the template images. As for the photometric hyper-parameter, it affects both the
template and the geometry, in the sense that with a large variance, the kernel centered on one
landmark spreads out to many of its neighbors. This leads to thicker shapes, as shown in the left
panel of Figure 2. As a consequence, the template is biased: it is not “centered” in the sense
that the mean of the deformations required to fit the data is not close to zero. For example, for
digit “1”, the main deformations should be contractions or dilations of the template. With a large
variance σ 2

p , the template is thicker, yielding larger contractions and smaller dilations. Since
we have set a Gaussian law on the deformation variable β and z−β = −zβ , the deformations
(Id + zβ) and (Id − zβ) have the same probability of being drawn under the estimated model.
As shown on synthetic examples given in the left panel of Figure 3, there are many large dilated
shapes. However, these examples were not in the training set and are not generated with other
hyper-parameters (Figure 3, right panel). We have tried different relevant values and kept the best
with regard to the visual results. In the following, we present only the results with the adapted
variances.

For the stochastic approximation step-size, we allow a heating period which corresponds to
the absence of memory for the first iterations. This allows the Markov chain to reach a region of
interest in the posterior probability density function before exploring this particular region.

In the experiments presented here, the heating time lasts kh (up to 150) iterations and the
whole algorithm stops after, at most, 200 iterations, depending on the data set (noisy or not).
This number of iterations corresponds to a point where the convergence seems to have been
reached. This yields

�k =
⎧⎨
⎩

1, ∀1 ≤ k ≤ kh,
1

(k − kh)d
, ∀k > kh for d = 0.6 or 1.

Figure 3. Synthetic examples corresponding to the two previous estimated templates of digit 1 (inverse
video). Left: with a thicker shape; right: with a correct shape thickness.
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To optimise the choice of the transition kernel �θ , we have run the algorithm with different
kernels and compared the evolution of the simulated hidden variables, as well as the results on
the estimated parameters. Some kernels, such as the ones mentioned above, do not yield good
coverage of the infinite support of the unobserved variable. From this point of view, the hybrid
Gibbs sampler we used has better properties and gives nice estimation results which are presented
below.

5.1. Estimated template

We show here the results of the statistical learning algorithm for this model. Figure 4 shows two
runs of the algorithm for a non-noisy database with 10 and 20 images per class. Ten images per
class are enough to obtain satisfactory template images with high contrast.

Although it was proven in Allassonnière, Amit and Trouvé (2007) that the Kullback–Leibler
divergence between q(·; θ̃ ) and the common density function for observations from a given class
converges to its minimal value on the family q(·; θ), we note that increasing the number of train-
ing images does not significantly improve the estimated photometric template. This apparently
surprising fact can be explained as follows: since strong variations in appearance among the im-
ages may occur within a given class (consider, e.g., topological changes), the image distribution
cannot be perfectly represented as a distribution around a single template. This distribution is bet-
ter represented as being clustered around a major template and minor ones in a multimodal way.
When the sample size is moderate, with a high probability, the sample basically contains images
around the major mode and the parametric model fits these data quite accurately. When the sam-
ple size increases, the minor modes start to play a significant role as “outliers” with respect to the
major mode in the data, resulting in a slightly more blurry template trying to accommodate the
different modes. One way to overcome this fact is to use some clustering methods, as proposed
in Allassonnière, Amit and Trouvé (2007). To visualize robustness with respect to the training
set, we ran this algorithm with 20 images per class, randomly chosen from the whole database.
The different runs are presented in Figure 5. The two left images show some templates which
look like the ones obtained in the left panel of Figure 4 with the 20 first examples of the database.
When outliers appear among the 20 randomly chosen training images, the template may become
somewhat more blurry. This is observed for digits ‘2’ and ‘4’ (apparently the most variable dig-
its) in the right panel of Figure 5. For digits where all of the images are close to each other (in
term of deformation cost), the templates are stable.

Figure 4. Estimated prototypes issued from left 10 images per class and right 20 images per class in the
training set.
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Figure 5. Templates estimated with randomly chosen samples from the whole United States Postal Service
database. Each image is one run of the algorithm with the same initial conditions but different training sets
of 20 images per digit each. The variability of the results is related to the huge variability within the USPS
database.

The evolution of the template with the iterations can be viewed in Figure 6. The initialization of
the template is the mean of the gray level images. As the iterations proceed, the templates become
sharper. In particular, the estimated templates for digits with small geometric variability converge
very fast. For digits like ‘2’ or ‘4’, where the geometric variability is higher, the convergence of
the coupled parameters (photometry and geometry) is slowed down.

5.2. Photometric noise variance

The evolution of the noise variance along the SAEM-MCMC iterations is the same as the one ob-
served with the “mode approximation EM” described in Allassonnière, Amit and Trouvé (2007).
As shown in Figure 7, during the first iterations, the noise variance balances the inaccuracy of

Figure 6. Evolution of the templates with the algorithm iterations. Top line – left: mean gray level images
of the 20 training samples; middle: template at the 50th iteration; right: template at the 100th iteration.
Bottom line: template at the 150th iteration. The improvement is visible, very fast for some very simple
shapes, such as the digit ‘1’, and longer for very variable ones, such as the digit ‘2’. The higher geometric
variability increases the fitting time of the algorithm.
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Figure 7. Evolution of the estimated noise variance using 20 images per class along the SAEM-MCMC
algorithm. This confirms the visual effects seen on the templates: rapid convergence for some very con-
strained digits and slower convergence for the more variable ones.

the estimated template which is simply the gray level mean of the training set. As the iterations
proceed, the template estimates become sharper, as does the estimate of the covariance matrix for
the geometry. This yields very small residual noise. Note that, here, the final noise variance for
the SAEM-MCMC algorithm, which is less than 0.1 for all digits, is less than the noise variance,
which is between 0.2 and 0.3, for the mode approximation EM experimented in Allassonnière,
Amit and Trouvé (2007) in the one component run. This can be explained by the stochastic na-
ture of the algorithm, which enables it to escape from local minima provoking early terminations
in the deterministic version.

5.3. Estimated geometric distribution

As mentioned previously, we have to fix the value of the hyper-parameter ag of the prior on �g .
This quantity plays a significant role in the results. Indeed, to satisfy the theoretical conditions,
we have to choose ag larger than 4kg + 1, say 4 × 36 + 1, in our examples. From the geometry
update equation, a barycenter between the ‘sample’ covariance and the prior, with the number n

of images and ag as coefficients, we find that the prior dominates when the training set is small.
The covariance matrix stays close to the prior. Thus, we need to decrease ag and find the best
trade-off between the degenerate inverse Wishart and the weight of the prior in the covariance
estimation. We fix this value with a visual criterion: both the templates and the generated sample
with the learned geometry have to be satisfactory. This yields ag = 0.5 or 0.1.
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Figure 8. Effect of the estimated geometric distribution: 40 synthetic examples per class generated with
the estimated parameters, 20 with the direct deformations and 20 with the symmetric deformations (inverse
video).

As we have observed from Figure 8, parameter estimation is robust, regardless of whether the
prior is degenerate or not. In addition, considering the update formulae, even if this law does not
have a total weight equal to 1, it does not affect parameter estimation.

In Figure 8, we show a sample of some synthetic digits modeled by deformation templates
drawn with the estimated parameters. Note that the resulting digits in Figure 8 look like some
elements of the training set and seem to explain these data correctly, whereas the prior pro-
duces some non-relevant local deformations (cf. Figure 9). In particular, for some especially

Figure 9. Effect of the prior distribution on the deformation: 20 synthetic examples per class generated
with the estimated template but the prior covariance matrix (inverse video).



Bayesian deformable models building 663

geometrically constrained digits such as ‘0’ or ‘1’, the geometric variability reflects their con-
straints. For digits like the ‘2’s, the training set is heterogeneous and shows a large geometric
variability. When comparing to the deformations obtained by the mode approximation to EM in
Allassonnière, Amit and Trouvé (2007), it seems that we here obtain a more variable geometry.
This might be because with a stochastic algorithm, we explore the posterior density and do not
only concentrate at its mode. This allows some more exotic deformations corresponding to real-
izations of the missing variable β which may belong to the tail of the law. Another reason may
be that for such digits, the mode approximation gets stuck in a local minimum of the matching
energy. Jumping out of this configuration would require a large deformation (not allowed by the
gradient descent since it would increase the energy again). However, such a deformation can be
proposed, leading to acceptance by the stochastic algorithm. Subsequently, the deformed tem-
plate may better fit the observations, leading to acceptance of these large deformations. This also
leads to a lower value of the residual noise and may also explain the low noise variance estimated
by the stochastic EM algorithm.

5.4. Noise effect

As shown in Allassonnière, Amit and Trouvé (2007), in the presence of noise, the mode approx-
imation algorithm does not converge toward the MAP estimator. In our setting, the consistency
of the “SAEM-like” algorithm has been proven independently of the training set and thus noisy
images can also be treated in the same way. These are the results we present here. Figure 10
shows two training examples per class for noise variance values σ 2 = 1 and σ 2 = 2. In Fig-
ures 11 and 12, we show the estimated templates for the noisy training set containing 20 images
for both methods. Even if the mode approximation algorithm does not diverge, it cannot fit the
template for digits with a high variability. In contrast, the stochastic EM gives acceptable con-
trasted templates which look like those obtained in Figure 4. This becomes more significant as
we increase the variance of the additive noise we introduce in the training set.

Concerning the choice of the hyper-parameters, it is not necessary to change all of them.
For the photometric variance of the spline kernel, a small one could create some non-smooth
templates and a large kernel would smooth the noise effect. However, we can keep the geometric

Figure 10. Two image examples per class of the noisy training set (variance – top: σ 2 = 1; bottom: σ 2 = 2).
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Figure 11. Estimated prototypes in a noisy setting σ 2 = 1. Left: with the mode approximation algorithm;
right: with the SAEM-MCMC coupling procedure.

hyper-parameters unchanged. Here, we are presenting only experiments which seemed to provide
a reasonable trade-off between these effects.

The geometry is also well estimated, despite the high level of noise in the training set. Fig-
ure 13 shows some synthetic examples, in which parameters are learned from the training set
with an additive noise variance of 1. The two lines correspond to deformations and their sym-
metric deformation. This sample looks like the synthetic samples learned on non-noisy images,
even if some examples are not relevant. However, the global behavior has been learned.

The algorithm manages to catch the photometry (a contrasted and smoothed template) and the
geometry of the shapes, and to “separate” the additive noise.

The number of iterations needed to reach the convergence point in the noisy setting is about
twice that of the non-noisy case. The template takes the longest time to converge and the estimate
of σ 2 converges in a few iterations. In particular, the templates obtained in the left panel of Fig-
ure 4 with only 10 images per training digit set are obtained with a heating period of 25 iterations
and 5 more steps with memory. The templates of the right panel of Figure 11 require 100 to 125
heating iterations in the 150 global iterations. This is understandable since the algorithm has to
cope with variations due to the noise and thus needs a longer time to fit the model.

6. Proof of Theorem 2

Here, we demonstrate Theorem 2, that is, that the stochastic approximation sequence satisfies
assumptions (A1′)(ii), (iii), (iv), (A2) and (A3′).

Figure 12. Estimated prototypes in a noisy setting σ 2 = 2. Left: with the mode approximation algorithm;
right: with the SAEM-MCMC coupling procedure.
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Figure 13. Effect of the noise on the geometric parameter estimation: 40 synthetic examples per class
generated with the parameters estimated from the noisy training set (additive noise variance of 1, inverse
video).

We recall that in this section, the parameter σ 2 is fixed so that θ = (α,�). The sufficient
statistic vector S, the set S and the explicit expression of θ̂ (s) have all been given in Section 4.2.
As noted, θ̂ is a smooth function of S .

We will prove that these conditions hold for any p ≥ 1 and a ∈]0,1[.

6.1. Proof of assumption (A1′)

We recall the functions H,h and w, as in Delyon, Lavielle and Moulines (1999), are defined as
follows:

Hs(β) = S(β) − s,

h(s) =
∫

RN

Hs(β)qpost(β|y, θ̂ (s))dβ,

w(s) = −l(θ̂ (s)).

As shown in Delyon, Lavielle and Moulines (1999), with these functions, we satisfy A1′(iii)
and A1′(iv).

Moreover, since the interpolation kernel Kp is bounded, there exist A > 0 and B ∈ Sym+
kp

such that for any β ∈ R
N , we have

‖S1(β)‖ ≤ A, 0 ≤ S2(β) ≤ B and 0 ≤ S3(β),
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where, for any symmetric matrices B and B ′, we say that B ≤ B ′ if B ′ − B is a non-negative
symmetric matrix.

We define the set Sa by

Sa � {S ∈ S | ‖S1‖ ≤ A,0 ≤ S2 ≤ B and 0 ≤ S3}.
Since the constraints are obviously convex and closed, we get that Sa is a closed convex subset
of R

ns such that

Sa ⊂ S ⊂ R
ns

and satisfying

s + ρHs(β) ∈ Sa for any ρ ∈ [0,1], any s ∈ Sa and any β ∈ R
N .

We now focus on the first two points. As l and θ̂ are continuous functions, we only need to
prove that WM ∩ Sa is a bounded set for a constant M ∈ R

∗+ with

WM = {s ∈ S,w(s) ≤ M}.
On Sa , s1 and s2 are bounded; writing θ̂ (s) = (α(s),�(s)), we deduce from (3) and from the
boundedness of Kp that α(s) is bounded on Sa and |yi − K

βi
p α(s)| is uniformly bounded on

βi ∈ R
2kg and s ∈ Sa . Hence (recall that σ 2 is fixed here), there exists an η > 0 such that

qc(y|β, θ̂ (s)) ≥ η for any s ∈ Sa and β ∈ R
N . Thus,

w(s) ≥ − log

(∫
qm(β, θ̂ (s))dβ

)
+ C ≥ − log(qpara(θ̂(s))) + C ≥ − log(qpara|� (�(s))) + C,

where C is a constant independent of s ∈ Sa . Since

− log(qpara|� (�g)) = ag

2
(〈�−1

g ,�g〉F + log |�g|) ≥ ag

2
log |�g|

and

lim
‖s‖→+∞,s∈Sa

log(|�g(s)|) = lim
‖s‖→+∞,s∈Sa

log
(|(s3 + ag�g)/(n + ag)|

)= +∞,

we deduce that

lim
‖s‖→+∞,s∈Sa

w(s) = +∞.

Since w is continuous and Sa is closed, this proves A1′(ii).

6.2. Proof of assumption (A2)

We prove a classical sufficient condition (DRI1), used in Andrieu, Moulines and Priouret (2005),
which will imply (A2) under the condition that Hs is dominated by V for any s ∈ K.
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(DRI1) For any s ∈ S , �
θ̂ (s)

is φ-irreducible and aperiodic. In addition, there exist a function

V : R
N → [1,∞[ and some p ≥ 2 such that for any compact subset K ⊂ S , there exist an

integer m and constants 0 < λ < 1, B > 0, κ > 0, δ > 0, a subset C of R
N and a probability

measure ν such that

sup
s∈K

�m

θ̂(s)
V p(β) ≤ λV p(β) + B1C(β), (23)

sup
s∈K

�
θ̂ (s)

V p(β) ≤ κV p(β) ∀β ∈ R
N, (24)

inf
s∈K

�m

θ̂(s)
(β,A) ≥ δν(A) ∀β ∈ C,∀A ∈ B(RN). (25)

Remark 5. Note that condition (25) is equivalent to the existence of a small set C (defined below)
which depends only on K.

Notation 1. Let (ej )1≤j≤N be the canonical basis of R
N . For any 1 ≤ j ≤ N , let Eθ,j � {β ∈

R
N | 〈β, ej 〉θ = 0} be the orthogonal space of Span{ej } and pθ,j be the orthogonal projection

onto Eθ,j , that is,

pθ,j (β) � β − 〈β, ej 〉θ
‖ej‖2

θ

ej ,

where 〈β,β ′〉θ =∑n
i=1 βt

i �
−1
g β ′

i for θ = (α,�g) (i.e., the natural dot product associated with the
covariance matrix �g) and ‖ · ‖θ is the corresponding norm.

For any 1 ≤ j ≤ N and θ ∈ 	, we denote by �θ,j the Markov kernel on R
N (5) associated

with the Metropolis–Hastings step of the j th Gibbs sampler step on β . We have �θ = �θ,N ◦
· · · ◦ �θ,1.

We first recall the definition of a small set.

Definition 1 (cf. Meyn and Tweedie (1993)). A set E ∈ B(X ) is called a small set for the kernel
� if there exist an m > 0 and a non-trivial measure νm on B(X ) such that for all β ∈ E , B ∈

B(X ),

�m(β,B) ≥ νm(B). (26)

When (26) holds, we say that E is νm-small.

We now prove the following lemma, which gives the existence of the small set C in (DRI1).

Lemma 1. Let E be a compact subset of R
N and K a compact subset of S . Then E is a small set

of R
N for �

θ̂ (s)
, for any s ∈ K.

Proof. First, note that there exists an ac > 0 such that for any θ ∈ 	, any β ∈ R
N and any

b ∈ R, the acceptance rate rj (β
j , b;β−j , θ) is uniformly bounded below by ac so that for any
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1 ≤ j ≤ N and any non-negative function f ,

�θ,j f (β) ≥ ac

∫
R

f (β−j + bej )qj (b|β−j , θ)db

= ac

∫
R

f
(
pθ,j (β) + zej /‖ej‖θ

)
g0,1(z)dz,

where g0,1 is the density of the standard Gaussian distribution N (0,1).
By induction, we have

�θf (β) ≥ aN
c

∫
RN

f

(
pθ,N,1(β) +

N∑
j=1

zjpθ,N,j+1(ej )/‖ej‖θ

)
N∏

j=1

g0,1(zj )dzj , (27)

where pθ,q,r = pθ,r ◦ pθ,r−1 ◦ · · · ◦ pθ,q for any integers q ≤ r and pθ,N,N+1 = Id.
Let Aθ ∈ L(RN) be the linear mapping on R

N defined by

Aθz =
N∑

j=1

zjpθ,N,j+1(ej )/‖ej‖θ .

One easily checks that for any 1 ≤ k ≤ N , Span{pθ,N,j+1(ej ), k ≤ j ≤ N} = Span{ej | k ≤
j ≤ N} so that Aθ is an invertible mapping. By a change of variable, we get

∫
RN

f
(
pθ,N,1(β) + Aθz

N
1

) N∏
j=1

g0,1(zj )dzj =
∫

RN

f (u)gpθ,N,1(β),AθAt
θ
(u)du,

where gμ,� stands for the density of the normal law N (μ,�). Since θ → Aθ is smooth on the
set of invertible mappings in θ , we deduce that there exist two constants, cK > 0 and CK > 0,
such that cKId ≤ AθA

t
θ ≤ Id/cK and gpθ,N,1(β),AθAt

θ
(u) ≥ CKgpθ,N,1(β),Id/cK (u), uniformly for

θ = θ̂ (s) with s ∈ K. Assuming that β ∈ E , since θ → pθ,N,1 is smooth and E is compact, we
have supβ∈E ,θ=θ̂ (s),s∈K ‖pθ,N,1(β)‖ < ∞. Therefore, there exist C′

K > 0 and c′
K > 0 such that

for any (u,β) ∈ R
N × E and any θ = θ̂ (s), s ∈ K,

gpθ,N,1(β),AθAt
θ
(u) ≥ C′

Kg0,Id/c′
K
(u). (28)

Using (27) and (28), we deduce that for any A, for any s ∈ K and θ = θ̂ (s),

�θ (β,A) ≥ C′
KaN

c νK(A),

with νK equal to the density of the normal law N (0, Id/c′
K).

This yields the existence of the small set as well as equation (25). �

This property also implies the φ-irreducibility of the Markov chain (βk)k and its aperiodicity
(cf. Meyn and Tweedie (1993), page 121).
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We set V : RN → [1,+∞[ to be the function

V (β) = 1 + ‖β‖2. (29)

In fact, we have the following property: ∃CK > 0 such that ∀β ∈ R
N ,

sup
s∈K

‖Hs(β)‖ ≤ CKV (β).

This condition is required for the implication of A2 by DRI1.
We now prove condition (24).
Let K be a compact subset of S and p ≥ 1. For any 1 ≤ j ≤ N , any s ∈ K and θ = θ̂ (s), we

have

�θ,jV
p(β) ≤ V p(β) +

∫
R

V p
(
pθ,j (β) + zej /‖ej‖θ

)
g0,1(z)dz.

Since V (β +h) ≤ 2(V (β)+V (h)) for any β, h ∈ R
N and since there exist two constants, cK > 0

and CK > 0, such that for any β ∈ R
N , θ ∈ θ̂ (K), ‖pθ,j (β)‖ ≤ CK‖β‖ and ‖ej‖θ ≥ 1/cK , we

have∫
R

V p
(
pθ,j (β) + zej /‖ej‖θ

)
g0,1(z)dz ≤ 2pC

p

KV p(β)

∫
R

(
1 + V (cKzej )

)p
g0,1(z)dz.

We deduce that there exists a C′
K > 0 such that for any β ∈ R

N ,

sup
θ=θ̂ (s),s∈K

�θ,jV
p(β) ≤ C′

KV p(β).

Then, by composition, �θV
p(β) ≤ C′N

K V p(β) and (24) holds for any p ≥ 1.
Now, consider the drift condition (23).
To prove this inequality, we prove the same inequality for a subsidiary function Vθ which

depends on the parameters θ and then we deduce the result for V . So, let us define, for any
θ = (α,�g), the function Vθ(β) � 1 + ‖β‖2

θ .

Lemma 2. Let K be a compact subset of 	. For any p ≥ 1, there exist an 0 ≤ ρK < 1 and an
CK > 0 such that for any θ ∈ K and any β ∈ R

N , we have

�θV
p
θ (β) ≤ ρKV

p
θ (β) + CK.

Proof. The proposal distribution for �θ,j is given by q(β|β−j , y, θ)
law= pθ,j (β)+z

ej

‖ej ‖θ
, where

z ∼ N (0,1). There then exists CK such that for any β ∈ R
N and any measurable set A ∈ B(RN),

�θ,j (β,A) = (1 − aθ,β)1A(β) + aθ,β

∫
R

1A

(
pθ,j (β) + z

ej

‖ej‖θ

)
g0,1(z)dz,

where aθ,β ≥ ac (ac is a lower bound for the acceptance rate).
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Since 〈pθ,j (β), ej 〉θ = 0, we get Vθ(pθ,j (β) + z
ej

‖ej ‖θ
) = Vθ(pθ,j (β)) + z2 and

�θ,jV
p
θ (β) = (1 − aθ,β)V

p
θ (β) + aθ,β

∫
R

(
Vθ(pθ,j (β)) + z2)pg0,1(z)dz

≤ (1 − aθ,β)V
p
θ (β)

+ aθ,β

(
V

p
θ (pθ,j (β)) + CKV

p−1
θ (pθ,j (β))

∫
R

(1 + z2)pg0,1(z)dz

)

≤ (1 − aθ,β)V
p
θ (β) + aθ,βV

p
θ (pθ,j (β)) + C′

KV
p−1
θ (pθ,j (β)).

In the last inequality, we have used the fact that a Gaussian variable has bounded moments of
any order. Since aθ,β ≥ ac and ‖pθ,j (β)‖θ ≤ ‖β‖θ (pθ,j is an orthonormal projection for the dot
product 〈·, ·〉θ ), we get that ∀η > 0, ∃CK,η such that ∀β ∈ R

N and ∀θ ∈ K ,

�θ,jV
p
θ (β) ≤ (1 − ac)V

p
θ (β) + (ac + η)V

p
θ (pθ,j (β)) + CK,η.

By induction, we show that

�θV
p
θ (β) ≤

∑
u∈{0,1}N

N∏
j=1

(1 − ac)
1−uj (ac + η)uj V

p
θ (pθ,u(β)) + CK,η

η

(
(1 + η)N+1 − 1

)
,

where pθ,u = ((1 − uN)Id + uNpθ,N) ◦ · · · ◦ ((1 − u1)Id + u1pθ,1). Let pθ = pθ,N ◦ · · · ◦ pθ,1
and note that pθ,j is contracting so that

�θV
p
θ (β) ≤ bc,ηV

p
θ (β) + (ac + η)NV

p
θ (pθ (β)) + CK,η

η

(
(1 + η)N+1),

for bc,η = (
∑

u∈{0,1}N ,u �=1
∏N

j=1(1 − ac)
1−uj (ac + η)uj ).

To end the proof, we need to check that pθ is strictly contracting uniformly on K . Indeed,
‖pθ(β)‖θ = ‖β‖θ implies that pθ,j (β) = β for any 1 ≤ j ≤ N . This yields 〈β, ej 〉θ = 0 and
thus β = 0 since (ej )1≤j≤N is a basis. Using the continuity of the norm of pθ in θ and the
compactness of K , we deduce that there exists 0 < ρK < 1 such that ‖pθ(β)‖θ ≤ ρK‖β‖θ for any
β and θ ∈ K . Changing ρK for 1 > ρ′

K > ρK , we get (1 + ρ2
K‖β‖2

θ )
p ≤ ρ′2p

K (1 + ‖β‖2
θ )

p + C′′
K

for some uniform constant C′′
K . Therefore,

�θV
p
θ (β) ≤ bc,ηV

p
θ (β) + ρ′2p

K (ac + η)NV
p
θ (β) + C′′

K,η.

Since we have infη>0 bc,η + ρ′2p
K (ac + η)N < 1, the result is immediate. �

Next, we prove the expected inequality for the function V .

Lemma 3. For any compact set K ⊂ 	 and any p ≥ 1, there exist 0 < ρK < 1, CK > 0 and m0
such that ∀m ≥ m0, ∀θ ∈ K , ∀β ∈ R

N ,

�m
θ V p(β) ≤ ρKV p(β) + CK.
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Proof. Indeed, there exist 0 ≤ c1 ≤ c2 such that c1V (β) ≤ Vθ(β) ≤ c2V (β) for any (β, θ) ∈
R

N × K . Then, using the previous lemma, we have �m
θ V p(β) ≤ c

−p

1 �m
θ V

p
θ (β) ≤

c
−p

1 (ρm
KV

p
θ (β) + CK/(1 − ρK)) ≤ (c2/c1)

p(ρm
KV p(β) + CK/(1 − ρK)). Choosing m large

enough for (c2/c1)
pρm

K < 1 gives the result. �

This completes the proof of (23) and, at the same time, of A2.

6.3. Proof of assumption A3′

The geometric ergodicity of the Markov chain, implied by the drift condition (23), ensures the
existence of a solution of the Poisson equation (cf. Meyn and Tweedie (1993)):

g
θ̂(s)

(β) =
∑
k≥0

(
�k

θ̂(s)
Hs(β) − h(s)

)
.

We first prove condition A3′(i).
Since Hs(β) = S(β)−s with S(β) at most quadratic in β , the choice of V directly ensures (8).
Due to the result presented in Douc, Moulines and Rosenthal (2004), there exist upper bounds

for the convergence rates and the constants involved in the quantification of the geometric er-
godicity of all of the chains indexed by s ∈ K which only depend on m,λ,B, δ. Therefore, these
constants only depend on the fixed compact set K. This yields the uniform ergodicity of the
family of Markov chains on K. Therefore, there exist constants 0 < γK < 1 and CK > 0 such
that

‖g
θ̂(s)

‖V =
∥∥∥∥∥
∑
k≥0

(
�k

θ̂(s)
Hs(β) − h(s)

)∥∥∥∥∥
V

≤
∑
k≥0

CKγ k
K‖Hs‖V < ∞.

Thus, ∀s ∈ K, g
θ̂(s)

belongs to LV = {g : RN → R,‖g‖V < ∞}.
Repeating the same calculation as above, it is immediate that �

θ̂ (s)
g

θ̂(s)
also belongs to LV .

This completes the proof of A3′(i).
We now move to the Hölder condition A3′(ii). We will use the following lemmas which state

Lipschitz conditions on the transition kernel and its iterates.

Lemma 4. Let K be a compact subset of S . There exists a constant CK such that for any p ≥ 1
and any function f ∈ LV p , ∀(s, s′) ∈ K2, we have∥∥�

θ̂ (s)
f − �

θ̂ (s′)f
∥∥

V p+1/2 ≤ CK‖f ‖V p‖s − s′‖.

Proof. For any 1 ≤ j ≤ N and f ∈ LV p , we have

�θ,j f (β) = (
1 − rj (β, θ)

)
f (β) +

∫
R

f (βb→j )rj (β
j , b;β−j , θ)qj (b|β−j , θ)db,

where rj (β, θ) = ∫
R

rj (β
j , b;β−j , θ)qj (b|β−j , θ)db is the average acceptance rate.
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Let s and s′ be two points in K and s(ε) = (1 − ε)s + εs′ for ε ∈ [0,1] be a linear in-
terpolation between s and s′ (since S is convex, we can assume that K is a convex set
so that s(ε) ∈ K for any ε ∈ [0,1]). We also denote by θ(ε) � θ̂ (s(ε)) the associated path
in 	 which is a continuously differentiable function. To study the difference ‖(�θ(1),j −
�θ(0),j )f (β)‖, introduce �1

θ,j f (β) � (1 − rj (β, θ))f (β) and �2
θ,j f (β) �

∫
R

f (βb→j ) ×
rj (β

j , b;β−j , θ)qj (b|β−j , θ)db. We start with the difference ‖(�2
θ(1),j −�2

θ(0),j )f (β)‖. First,

note that under the conditional law qj (b|β−j , θ), b ∼ N (bθ,j (β),1/‖ej‖2
θ ), where

bθ,j (β) � et
jpθ,j (β) = et

jβ − 〈β, ej 〉θ /‖ej‖2
θ

is the j th coordinate of pθ,j (β). We have

�2
θ,j f (β) =

∫
R

f (β0→j + bej )rj (β
j , b;β−j , θ) exp

(
− (b − bθ,j (β))2‖ej‖2

θ

2

)‖ej‖θ√
2π

db.

Since rj (β
j , b;β−j , θ) = r̃j (β

j , b;β−j , θ) ∧ 1, where r̃j (β
j , b;β−j , θ) � qobs(y|βb→j ,θ)

qobs(y|β,θ)
is a

smooth function in θ , we have

∥∥(�2
θ(1),j − �2

θ(0),j

)
f (β)

∥∥
≤
∫ 1

0

∫
R

‖f (β0→j + bej )‖ (30)

×
∣∣∣∣ d

dε

(
rj (β

j , b;β−j , θ) exp

(
− (b − bθ,j (β))2‖ej‖2

θ

2

)‖ej‖θ√
2π

)∣∣∣∣db.

However, one easily checks that there exists a constant CK such that for any s, s′ ∈ K, ε, j and β

(with θ = θ(ε)),

∣∣∣∣ d

dε
exp

(
− (b − bθ,j (β))2‖ej‖2

θ

2

)‖ej‖θ√
2π

∣∣∣∣
≤ CK

(
1 + |b − bθ,j (β)|)2 exp

(
− (b − bθ,j (β))2‖ej‖2

θ

2

)
(31)

× ‖ej‖θ√
2π

(∣∣∣∣ d

dε
bθ,j (β)

∣∣∣∣+
∣∣∣∣ d

dε
‖ej‖θ

∣∣∣∣
)

.

Since d
dε

‖ej‖θ = 1
2‖ej ‖θ

et
j

d
dε

�−1
θ ej , d

dε
�−1

θ = −�−1
θ

d
dε

�θ�
−1
θ and d

dε
�θ = s′

3−s3
n+ag

(see (3)), we
deduce that there exists another constant CK such that

∣∣∣∣ d

dε
‖ej‖θ

∣∣∣∣≤ CK‖s′ − s‖. (32)
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Similarly, updating the constant CK , we have1

∣∣∣∣ d

dε
bθ,j (β)

∣∣∣∣≤ CK(1 + ‖β‖)‖s′ − s‖. (33)

Now, concerning the derivative of r̃j (β
j , b;β−j , θ), since

log(r̃j (β
j , b;β−j , θ)) = 1

2

n∑
i=1

(‖yi − K
β̃i
p α‖2 − ‖yi − K

βi
p α‖2)

with β̃i = βi,b→j , i corresponding to the ith image, only one term of the previous sum is non-

zero. We deduce from the fact that Kp is bounded and from (3) that | d
dε

log(r̃j (β
j , b;β−j , θ))| ≤

CK| d
dε

α| ≤ CK‖s − s′‖, so that, using the facts that r̃j (β
j , b;β−j , θ) is uniformly bounded for

θ ∈ θ̂ (K), β ∈ R
N and b ∈ R, there exists a new constant CK such that∣∣∣∣ d

dε
r̃j (β

j , b;β−j , θ)

∣∣∣∣≤ CK‖s − s′‖.

Thus, using (31), (32) and (33), we get, for a new constant CK , that

∣∣∣∣ d

dε
rj (β

j , b;β−j , θ) exp

(
− (b − bθ,j (β))2‖ej‖2

θ

2

)‖ej‖θ√
2π

∣∣∣∣
≤ CK(1 + ‖β‖)‖s′ − s‖(1 + |b − bθ,j (β)|)2 exp

(
− (b − bθ,j (β))2‖ej‖2

θ

2

)‖ej‖θ√
2π

.

Since ‖f (β)‖ ≤ ‖f ‖V pV p(β) and V (a + b) = 1 + ‖a + b‖2 ≤ 2(V (a) + V (b)), we have
‖f (β0→j + bej )‖ ≤ C‖f ‖V p(V p(β0→j ) + V p(bej )) with C = 22p−1. Hence, there exists a
CK such that ∀(s, s′) ∈ K2, ∀1 ≤ j ≤ N , ∀β ∈ R

N and ∀ε ∈ [0,1],
∫

R

‖f (β0→j + bej )‖
∣∣∣∣ d

dε

(
rj (β

j , b;β−j , θ) exp

(
− (b − bθ,j (β))2‖ej‖2

θ

2

)‖ej‖θ√
2π

)∣∣∣∣db

≤ CK‖f ‖V pV p(β0→j )(1 + ‖β‖)‖s′ − s‖ ≤ CK‖f ‖V pV p(β)(1 + ‖β‖)‖s′ − s‖,

where we have used the fact that a Gaussian variable has finite moments of all orders. Since
(1 + ‖β‖) ≤ (2V (β))1/2, we get (updating CK ) that∥∥(�2

θ(1),j − �2
θ(0),j

)
f (β)

∥∥≤ CK‖f ‖V pV p+1/2(β)‖s′ − s‖. (34)

1Note that the extra factor (1 + ‖β‖) appearing in the right-hand side of (33), compared to the right-hand side of (32),
alleviates the need to show the usual Lipschitz condition ‖�

θ̂ (s)
f − �

θ̂ (s′)f ‖
V p′ ≤ CK‖f ‖V q ‖s − s′‖ with q = p.

Weaker Lipschitz conditions, such as condition A3′(ii) of Theorem 1 are needed.
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Now, looking at the first term in (6.3), we easily deduce from the previous study for f ≡ f (β)

that ∥∥(�1
θ(1),j − �1

θ(0),j

)
f (β)

∥∥ ≤ CKV (β)1/2‖s′ − s‖‖f (β)‖
(35)

≤ CK‖f ‖V pV p+1/2(β)‖s′ − s‖
so that adding (34) and (35), we get (again updating CK ) that∥∥(�θ(1),j − �θ(0),j

)
f
∥∥

V p+1/2 ≤ CK‖f ‖V p‖s′ − s‖. (36)

We conclude the proof by stating that �θ(1) −�θ(0) =∑N
j=1 �θ(1),j+1,N ◦ (�θ(1),j −�θ(0),j )◦

�θ(0),1,j−1, where �θ,q,r = �θ,r ◦ �θ,r−1 ◦ · · · ◦ �θ,q for any integer q ≤ r and any θ ∈ 	 so
that, using (6.2) and (36), the result is straightforward. �

Lemma 5. Let K be a compact subset of S . There exists a constant CK such that for all p ≥ 1
and any function f ∈ LV p , ∀(s, s′) ∈ K2, ∀k ≥ 0, we have, for θ = θ̂ (s) and θ ′ = θ̂ (s′), that

‖�k
θf − �k

θ ′f ‖V p+1/2 ≤ CK‖f ‖V p‖s − s′‖.
Proof. We use the same decomposition of the difference as previously:

�k
θf − �k

θ ′f =
k−1∑
i=1

�i
θ (�θ − �θ ′)

(
�k−i−1

θ ′ f − πθ ′(f )
)
.

Using Lemma 4, the fact that ‖�k
θ (f − πθ (f ))‖V p ≤ γ k

K‖f ‖V p with γK < 1 (geometric ergod-

icity) and supj≥0 supθ∈K ‖�j
θV

q‖V q < ∞, we get

‖�k
θf − �k

θ ′f ‖V p+1/2 ≤ CK
k−1∑
i=1

∥∥(�θ − �θ ′)
(
�k−i−1

θ ′ f − π θ ′(f )
)∥∥

V p+1/2

≤ CK‖f ‖V p |s − s′|
k−1∑
i=1

γ k−i+1
K

and the lemma is proved. �

We now prove that h is a Hölder function, linearly adapting Appendix B of Andrieu, Moulines
and Priouret (2005).

Let β ∈ R
N and write θ = θ̂ (s) and θ ′ = θ̂ (s′). Write h(s) − h(s′) = A(s, s′) + B(s, s′) +

C(s, s′), where

A(s, s′) = (
h(s) − �k

θHs(β)
)+ (

�k
θ ′Hs′(β) − h(s′)

)
,

B(s, s′) = �k
θHs(β) − �k

θ ′Hs(β),

C(s, s′) = �k
θ ′Hs(β) − �k

θ ′Hs′(β).
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Using geometric ergodicity, Lemmas 4 and 5, we get that there exists an C > 0, independent
of k, such that

‖A(s, s′)‖ ≤ Cγ k sup
S∈K

‖Hs‖V V (β),

‖B(s, s′)‖ ≤ C sup
S∈K

‖Hs‖V ‖s − s′‖V 3/2(β),

‖C(s, s′)‖ ≤ C sup
S∈K

‖Hs‖V ‖s − s′‖V (β).

This yields

‖h(s) − h(s′)‖ ≤ CV 3/2(β)(γ k + ‖s − s′‖).
Hence, setting k = [log‖s − s′‖/ log(γ )] if ‖s − s′‖ < 1 and 1 otherwise, we get the result.

We can now complete the proof of A3′(ii). On one hand, we have∥∥(�k
θHs(β) − h(s)

)− (
�k

θ ′Hs′(β) − h(s′)
)∥∥

≤ ‖�k
θHs(β) − �k

θHs′(β)‖
+ ‖�k

θHs′(β) − �k
θ ′Hs′(β)‖ + ‖h(s) − h(s′)‖ ≤ C‖s − s′‖V 3/2(β).

On the other hand, we have, thanks to the geometric ergodicity,∥∥(�k
θHs(β) − h(s)

)− (
�k

θ ′Hs′(β) − h(s′)
)∥∥≤ Cγ kV 3/2(β).

Hence, for any t ≥ 0 and T ≥ t , we have

∥∥�t
θ gθ̂(s)

(β) − �t
θ ′gθ̂(s′)(β)

∥∥ ≤
∞∑
k=t

∥∥(�k
θHs(β) − h(s)

)− (
�k

θ ′Hs′(β) − h(s′)
)∥∥

≤ CV 3/2(β)

[
T ‖s − s′‖ + γ T +t

1 − γ

]
.

Setting T = [log‖s − s′‖/ log(γ )] for ‖s − s′‖ ≤ δ < 1 and T = t otherwise, also using the fact
that for any 0 < a < 1, we have ‖s − s′‖ log‖s − s′‖ = o(‖s − s′‖a), we get the result.

This proves condition A3′(ii) for any a < 1.
We finally focus on the proof of A3′(iii). Once again, we first prove a specific result for each

function Vθ and then obtain a result for the function V .

Lemma 6. Let K be a compact subset of S and p ≥ 1. There exists CK,p > 0 such that for any s,
s′ ∈ K, for any β ∈ R

N , ∣∣V p

θ̂(s)
(β) − V

p

θ̂(s′)(β)
∣∣≤ CK,p‖s − s′‖V p

θ̂(s)
(β).
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Proof. Indeed, there exists C > 0 such that for any θ̂ (s) = (α,�g) and θ̂ (s′) = (α′,�′
g),

|�g − �′
g| ≤ C‖s − s′‖. Therefore, there exists a C such that ∀(s, s′) ∈ K2, |�−1

g − (�′
g)

−1| ≤
C‖s − s′‖ and

∣∣V
θ̂(s)

(β) − V
θ̂(s′)(β)

∣∣≤ n∑
i=1

βt
i

(
�−1

g − (�′
g)

−1)βi ≤ C‖s − s′‖V (β).

The result follows from the existence of a constant C such that 1
c
V (β) ≤ V

θ̂(s)
(β) ≤ CV (β) for

any (β, s) ∈ R
N × K. �

Lemma 7. Let K be a compact subset of S and p ≥ 1. There exist ε̄ > 0 and C > 0 such that
for any sequence ε = (εk)k≥0 such that εk ≤ ε̄ for k large enough, any sequence � = (�k)k≥0
and any β ∈ R

N ,

sup
s∈K

sup
k≥0

E
�
β,s

[
V p(βk)1σ(K)∧ν(ε)≥k

]≤ CV p(β).

Proof. Let K be a compact subset of 	 such that θ̂ (K) ⊂ K . We note, in the sequel, that θk =
θ̂ (sk). For k ≥ 2, we have, using the Markov property and Lemmas 2 and 6,

E
�
β,s

[
V

p
θk−1

(βk)1σ(K)∧ν(ε)≥k

]
≤ E

�
β,s

[
�θk−1V

p
θk−1

(βk−1)1σ(K)∧ν(ε)≥k

]
≤ ρ

(
E

�
β,s

[
V

p
θk−2

(βk−1)1σ(K)∧ν(ε)≥k

]+ E
�
β,s

[(
V

p
θk−1

(βk−1) − V
p
θk−2

(βk−1)
)
1σ(K)∧ν(ε)≥k

])
+ C

≤ ρ
(
E

�
β,s

[
V

p
θk−2

(βk−1)1σ(K)∧ν(ε)≥k−1
]+ C′εk−1E

�
β,s

[
V

p
θk−2

(βk−1)1σ(K)∧ν(ε)≥k−1
])+ C.

By induction, we show that

E
�
β,s

[
V

p
θk−1

(βk)1σ(K)∧ν(ε)≥k

]≤
k−1∏
l=1

(
ρ(1 + C′εl)

)
V

p

θ̂(s)
(β) + C

(1 − ρ(1 + C′ε̄))
.

Choosing ε̄ such that ρ(1 + C′ε̄) < 1 and again introducing 0 ≤ c1 ≤ c2 such that c1V (β) ≤
Vθ(β) ≤ c2V (β) for any (β, θ) ∈ R

N × K completes the proof. �

This yields A3′(iii).
This concludes the demonstration of Theorem 2.

7. Conclusion and discussion

We have proposed a stochastic algorithm for constructing Bayesian non-rigid deformable models
in the same context as Allassonnière, Amit and Trouvé (2007), together with a proof of conver-
gence toward a critical point of the observed likelihood. To the best of our knowledge, this is
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the first theoretical result on convergence in the context of deformable templates. The algorithm
is based on a stochastic approximation of the EM algorithm using an MCMC approximation of
the posterior distribution and truncation on random boundaries. Although our main contribution
is theoretical, the preliminary experiments presented here on the United States Postal Service
database show that the stochastic approach can be easily implemented and is robust to noisy
situations, yielding better results than the previous deterministic schemes.

Many interesting questions remain open. One may ask, what is the convergence rate of such
stochastic algorithms? A first result has been proven in Delyon, Lavielle and Moulines (1999) for
the standard SAEM algorithm. Under mild conditions, the authors state a central limit theorem
for an average sequence of the estimated parameters (θk)k . Concerning the generalization when
introducing MCMC, a first step has been tackled in Andrieu and Moulines (2006). Under some
restrictive assumptions, the authors can prove a central limit theorem for an ergodic adaptive
Monte Carlo Markov chain. We believe that it is possible to obtain these kinds of convergence
rates for the SAEM-MCMC algorithm proposed in this paper.

Another question refers to the extension of the stochastic scheme to mixtures of deformable
models (defined as the multicomponent model in Allassonnière, Amit and Trouvé (2007)), where
the parameters are the weights of the individual components and, for each component, the as-
sociated template and deformation law. This is of particular importance for real data analysis
where the restriction to a unique deformable model could be too limiting. The design of such
mixtures corresponds to some kind of deformation invariant clustering approach of the data,
which is a basic issue in any unsupervised data analysis scheme. This extension is, however, not
as straightforward as it would appear at first glance: due to the high-dimensional hidden defor-
mation variables, a naive extension of the Markovian dynamics to the component variables will
have extremely poor mixing properties, leading to an impractical algorithm. A less straightfor-
ward extension involving multiple MCMC chains is currently being studied.

Another interesting extension is to consider diffeomorphic mappings and not only displace-
ment fields for the hidden deformation. This appears to be particularly interesting in the context
of computational anatomy, where a one-to-one correspondence between the template and the ob-
servation is usually needed and cannot be guaranteed with linear spline interpolation schemes.
This extension could, in principle, be done using tangent models based on geodesic shooting, in
the spirit of Vaillant et al. (2004).
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