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Uniform error bounds for a continuous
approximation of non-negative
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In this work, we deal with approximations for distribution functions of non-negative random variables.
More specifically, we construct continuous approximants using an acceleration technique over a well-know
inversion formula for Laplace transforms. We give uniform error bounds using a representation of these
approximations in terms of gamma-type operators. We apply our results to certain mixtures of Erlang dis-
tributions which contain the class of continuous phase-type distributions.
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1. Introduction

Frequent operations in probability such as convolution or random summation of random vari-
ables produce probability distributions which are difficult to evaluate in an explicit way. In these
cases, one needs to use numerical evaluation methods. For instance, one can use numerical in-
version of the Laplace or Fourier transform of the distribution at hand (see [2] for the general use
of Laplace–Stieltjes transforms in applied probability or [9,11] for the method of Fast Fourier
Transform in the context of risk theory). Another approach is the use of recursive evaluation
methods, of special interest for random sums (see [11,18], for instance). Some of the methods
mentioned above require a previous discretization step to be applied to the initial random vari-
ables when these are continuous. The usual way to do so is by means of rounding methods.
However, it is not always possible to evaluate the distribution of the rounded random variable
in an explicit way and it is not always clear when using these methods how the rounding error
propagates when one takes successive convolutions. In these cases, it seems worthwhile to con-
sider alternative discretization methods. For instance, when dealing with non-negative random
variables, the following method ([10], page 233) has been proposed in the literature. Let X be
a random variable taking values in [0,∞) with distribution function F . Denote by φX(·) the
Laplace–Stieltjes (LS) transform of X, that is,

φX(t) := Ee−tX =
∫

[0,∞)

e−tu dF(u), t > 0.
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For each t > 0, we define a random variable X•t taking values on k/t, k ∈ N, and such that

P(X•t = k/t) = (−t)k

k! φ
(k)
X (t), k ∈ N, (1)

where φ
(k)
X denotes the kth derivative (φ(0)

X ≡ φX).
Thus, if we denote by L∗

t F the distribution function of X•t , we have

L∗
t F (x) := P(X•t ≤ x) =

[tx]∑
k=0

(−t)k

k! φ
(k)
X (t), x ≥ 0, (2)

where [x] indicates the largest integer less than or equal to x. The use of this method allows one
to obtain the probability mass function in an explicit way in some situations in which rounding
methods could not (see, for instance, [4] for gamma distributions). Moreover, this method allows
for an easy representation of L∗

t F in terms of F , which makes possible the study of rates of
convergence in the approximation ([4,5]). In [4], the problem was studied in a general setting,
whereas in [5], a detailed analysis was carried out for the case of gamma distributions, that is,
distributions whose density function is given by

fa,p(x) := apxp−1e−ax

�(p)
, x > 0. (3)

Also, in [16], error bounds for random sums of mixtures of gamma distributions were obtained,
uniformly controlled on the parameters of the random summation index. In all of these papers, the
measure of distance considered was the Kolmogorov (or sup-norm) distance. More specifically,
for a given real-valued function f defined on [0,∞), we denote by ‖f ‖ the sup-norm, that is,

‖f ‖ := sup
x≥0

|f (x)|.

It was shown in [5] that for gamma distributions with shape parameter p ≥ 1, we have that
‖L∗

t F − F‖ is of order 1/t , the length of the discretization interval. Note that ‖L∗
t F − F‖ is the

Kolmogorov distance between X and X•t , as both are non-negative random variables.
The aim of this paper is twofold. First, we will consider a continuous modification of (2) and

give conditions under which this continuous modification has rate of convergence of 1/t2 instead
of 1/t (see Sections 2 and 3). In Section 4, we will consider the case of gamma distributions to
see that the error bounds are also uniform on the shape parameter. Finally, in Section 5, we will
consider the application of the results in Section 4 to the class of mixtures of Erlang distributions,
recently studied in [19]. This class contains many of the distributions used in applied probability
(in particular, phase-type distributions) and is closed under important operations such as mix-
tures, convolution and compounding.

2. The approximation procedure

The representation of L∗
t F in (2) in terms of a Gamma process (see [4]) will play an important

role in our proofs. We recall this representation. Let (S(u),u ≥ 0) be a gamma process, in which
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S(0) = 0 and such that for u > 0, each S(u) has a gamma density with parameters a = 1 and
p = u, as given in (3). Let g be a function defined on [0,∞). We consider the gamma-type
operator Lt given by

Ltg(x) := Eg

(
S(tx)

t

)
, x ≥ 0, t > 0, (4)

provided that this operator is well defined, that is, Lt |g|(x) < ∞, x ≥ 0, t > 0. Then, for F

continuous on (0,∞), L∗
t F in (2) can be written as (see [4], page 228)

L∗
t F (x) = LtF

( [tx] + 1

t

)
= EF

(
S([tx] + 1)

t

)
, x ≥ 0, t > 0. (5)

It can be seen that the rates of convergence of Ltg to g are, at most, of order 1/t (see (40) below).
Our aim now is to get faster rates of convergence. To this end, we will consider the following
operator, built using a classical acceleration technique (Richardson’s extrapolation – see, for
instance, [9,11]):

L
[2]
t g(x) := 2L2t g(x) − Ltg(x) = 2Eg

(
S(2tx)

2t

)
− Eg

(
S(tx)

t

)
, x ≥ 0. (6)

We will obtain a rate of uniform convergence from L
[2]
t g to g, of order 1/t2, on the following

class of functions:

D := {g ∈ C4([0,∞)): ‖x2giv(x)‖ < ∞}. (7)

The problem with L
[2]
t g is that when tx is not a natural number, Ltg(x) is given in terms of Weyl

fractional derivatives of the Laplace transform (see [6], page 92) and, in general, we are not able
to compute them in an explicit way. However, if we modify L

[2]
t g using linear interpolation, that

is,

M
[2]
t g(x) := (tx − [tx])

(
L

[2]
t g

( [tx] + 1

t

))
+ ([tx] + 1 − tx)

(
L

[2]
t g

( [tx]
t

))
, (8)

then we observe that the order of convergence of M
[2]
t g to g is also 1/t2 on the following class

of functions:

D1 := {g ∈ C4([0,∞)): ‖g′′(x)‖ ≤ ∞ and ‖x2giv(x)‖ < ∞}. (9)

Moreover, the advantage of using M
[2]
t g instead of L

[2]
t g to approximate g is the computability.

In the following result, we note that the last approximation applied to a distribution function F

is related to L∗
t F , as defined in (2). From now on, N

∗ will denote the set N \ {0}.
Proposition 2.1. Let X be a non-negative random variable with Laplace transform φX . Let
L∗

t F, t > 0, be as defined in (2) and let M
[2]
t F be as defined in (8). We have

M
[2]
t F

(
k

t

)
=

⎧⎨
⎩

F(0), if k = 0,

2L∗
2tF

(
2k − 1

2t

)
− L∗

t F

(
k − 1

t

)
, if k ∈ N

∗, (10)
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and

M
[2]
t F (x) = (tx − [tx])M [2]

t F

( [tx] + 1

t

)
+ ([tx] + 1 − tx)M

[2]
t F

( [tx]
t

)
. (11)

Proof. Let t > 0 be fixed. First, observe that by (8), we can write

M
[2]
t F

(
k

t

)
= L

[2]
t F

(
k

t

)
, k ∈ N. (12)

Now, using (6) and (4), we have M
[2]
t F (0) = L

[2]
t F (0) = F(0), which shows (10) for k = 0.

Finally, using (6), (4) and (5), we have, for k ∈ N
∗,

L
[2]
t F

(
k

t

)
= 2EF

(
S(2k)

2t

)
− EF

(
S(k)

t

)
= 2L∗

2tF

(
2k − 1

2t

)
− L∗

t F

(
k − 1

t

)
. (13)

Thus, (12) and (13) show (10) for k ∈ N
∗. Note that (11) is obvious by (8) and (12). This com-

pletes the proof of Proposition 2.1. �

In the following example, we illustrate the use of the previous approximant in the context of
random sums, defined in the following way. Let (Xi)i∈N∗ be a sequence of independent, iden-
tically distributed non-negative random variables. Let M be a random variable concentrated on
the non-negative integers, independent of (Xi)i∈N∗ . Consider the random variable

M∑
i=1

Xi, (14)

with the convention that the empty sum is 0.

Example 2.1. As pointed out in the Introduction, an explicit expression for the distribution of
(14) is usually not possible. Our aim is to consider an example in which this distribution can be
evaluated explicitly and to compare our approximation method with some others considered in
the literature. To this end, we consider that M follows a geometric distribution of parameter p,
that is, P(M = k) = (1 − p)kp, k ∈ N and (Xi)i∈N∗ are exponentially distributed (with mean 1,
for the sake of simplicity). In this case, it is well known (use LS transforms, for instance) that
(14) has the same distribution as a mixture of the degenerate distribution at 0 (with probability
p) and an exponential distribution, that is,

F(x) := P

(
M∑
i=1

Xi ≤ x

)
= p + (1 − p)(1 − e−px) = 1 − (1 − p)e−px, x ≥ 0. (15)

When an explicit expression is not possible, the usual approximate evaluation method is by dis-
cretizing the summands in (14) and then using recursive methods found in the literature for
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discrete random sums. By considering (1) as a first discretization method, we have (see [5],
page 391)

P

(
X•t

1 = k

t

)
=

(
t

t + 1

)k 1

t + 1
, k = 0,1, . . . . (16)

Thus, t
∑M

i=1 X•t
i is a geometric sum of geometric distributions with parameter r = (1 + t)−1. It

is easy to check (use LS transforms, for instance) that the distribution of such a random variable
is a mixture of the degenerate distribution at 0 (with probability p) and a geometric distribution
with parameter p∗ = 1 − (1 − r)(1 − (1 − p)r)−1 = 1 − t (t + p)−1, so that for each k ∈ N,

L∗
t F

(
k

t

)
= P

(
M∑
i=1

X•t
i ≤ k

t

)
(17)

= p + (1 − p)
(
1 − (1 − p∗)k+1) = 1 − (1 − p)

(
t

t + p

)k+1

.

Note that the first equality in (17) follows by recalling (2) and noting that (
∑M

i=1 Xi)
•t has the

same distribution as
∑M

i=1 X•t
i (see [16], Proposition 2.1). Actually, a more natural way (in this

case) to compute (17) is to evaluate the LS transform of (
∑M

i=1 Xi)
•t and then apply (1) and (2).

However, the previous computations enable easier comparisons with the following method. In
fact, one of the most obvious (and widely used) methods to discretize the summands in (14) is
by a rounding method. For instance, a rounding down method (we round Xi to [tXi]t−1) yields

P

( [tX1]
t

= k

t

)
= P

(
k

t
≤ X1 <

k + 1

t

)
= e−k/t (1 − e−1/t ), k ∈ N. (18)

In this case,
∑M

i=1[tXi] is a geometric sum of geometric distributions with parameter r ′ =
1 − e−1/t . We denote by RtF the distribution function of

∑M
i=1

[tXi ]
t

. Using the same arguments
as for (17), we obtain for each k ∈ N that

RtF

(
k

t

)
= P

(
M∑
i=1

[tXi]
t

≤ k

t

)
= 1 − (1 − p)

(
e−1/t

1 − (1 − p)(1 − e−1/t )

)k+1

. (19)

Finally, it would be interesting to compare the previous ‘discretization methods’ with a ‘trans-
form method.’ To this end, we consider the Laplace transform of F in (15) (instead of its LS
transform), that is,

wF (θ) =
∫ ∞

0
e−θuF (u)du = 1

θ
− 1 − p

θ + p
, θ > 0,

and apply the Post–Widder inversion formula (see [10], page 233), defined for t ∈ N
∗ as

WtF(x) = (−1)t−1

(t − 1)!
(

t

x

)t

w
(t−1)
F

(
t

x

)
= 1 − (1 − p)t t

(px + t)t
, x ≥ 0.
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Table 1. Comparison of different approximation methods for (15)

x = k
5 F(k

5 ) L∗
5F(k

5 ) R5F(k
5 ) W5F(k

5 )

0 = 0
5 0.1000 0.1176 0.1195 0.1000

1 = 5
5 0.1856 0.2008 0.2108 0.1848

5 = 25
5 0.4541 0.4622 0.4907 0.4412

10 = 50
5 0.6689 0.6722 0.7054 0.6383

15 = 75
5 0.7992 0.8002 0.8296 0.7576

20 = 100
5 0.8782 0.8782 0.9014 0.8327

30 = 150
5 0.9552 0.9548 0.9670 0.9142

40 = 200
5 0.9835 0.9832 0.9890 0.9524

In Table 1 (computations with MATLAB) we consider a ‘rough’ discretization interval (t = 5),
a small p (p = 0.1) and present, for different x = k/5, the exact values of F (column 2), the L∗

t

approximation (column 3), the ‘rounding down’ discretization (column 4) and the Post–Widder
inversion (column 5).

As we can see in Table 1, L∗
5F provides a better approximation than R5F . The intuitive expla-

nation of this fact is that, when approximating
∑M

i=1 Xi by
∑M

i=1 X•t
i , the error in the approxi-

mation can be controlled ‘uniformly,’ regardless of the distribution of M (see [16], Theorem 4.3).
This effect is obvious when we choose M with a large expected value (our choice of a small p

is for this reason – for larger values of p checked, L∗
5F is also better, but the difference is less

appreciable). However, if we compare the approximations L∗
5F and W5F , we see that the last

one is better for small values, whereas the first one is better for large values. To explain this fact,
it is interesting to point out that WtF , like L∗

t F , admits the following well-known representation.
For a function g defined on [0,∞), we can write, as in (5) (see [10], pages 220, 223),

Wtg(x) = Eg

(
x

S(t)

t

)
, x > 0. (20)

Note that the mean of the ‘random points’ defining Wt in (20) is E(xt−1S(t)) = x, whereas for
L∗

t in (5), we have E(t−1S([tx] + 1)) = t−1([tx] + 1). This means that Wt is centered at x,
whereas L∗

t is ‘biased’. The benefits of this property for Wt are observed at small values in
Table 1. However, we have Var(xt−1S(t)) = t−1x2, whereas Var(t−1S([tx] + 1)) = t−2([tx] +
1), the latter being of order t−1x, as t → ∞. The greater variability of the random variables
defining Wt for greater values of x produces an undesired effect in the approximation.

We now show the improvement in the approximation which occurs when using M
[2]
t , as de-

fined in (10), instead of L∗
t . In Table 2 below (t = 5), we compare M

[2]
t F (column 5) with

Richardson extrapolation for WtF (or Stehfest enhancement of order two for the Post–Widder
formula – see [1], page 40), that is,

G
[2]
t F (x) := 2W2tF (x) − WtF(x), x > 0. (21)
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Table 2. Comparison of M
[2]
5 in (10) with G

[2]
5 in (21)

x = k
5 F(k

5 ) L∗
5F(k−1

5 ) L∗
10F( 2k−1

10 ) M
[2]
5 F(k

5 ) G
[2]
5 F(k

5 )

1 = 5
5 0.1856 0.1848 0.1852 0.1856 0.1856

5 = 25
5 0.4541 0.4514 0.4528 0.4541 0.4538

10 = 50
5 0.6689 0.6656 0.6673 0.6689 0.6677

15 = 75
5 0.7992 0.7962 0.7977 0.7992 0.7975

20 = 100
5 0.8782 0.8758 0.8770 0.8782 0.8766

30 = 150
5 0.9552 0.9538 0.9545 0.9552 0.9553

40 = 200
5 0.9835 0.9829 0.9832 0.9835 0.9854

As we can see, M
[2]
5 F provides us with an exact value up to a four decimal places, whereas

G
[2]
5 F does not achieve this accuracy.

3. Error bounds for the approximation

Let g ∈ D, as defined in (7). Our first aim is to give bounds of ‖L[2]
t g−g‖ in terms of ‖x2giv(x)‖.

To this end, we will use the following as ‘test function’:

φ(x) =
⎧⎨
⎩

0, if x = 0,
x2

2

(
3

2
− log(x)

)
, otherwise.

(22)

Observe that φ ∈ D. In fact, by elementary calculus,

φ′(x) = x(1 − logx), φ′′(x) = − logx, φ′′′(x) = − 1

x
and φiv(x) = 1

x2
. (23)

In the next lemma, we make an explicit computation of Ltφ(x) in terms of the � (or digamma)
function. This function is defined as (see [3], page 258)

�(x) := d

dx
log(�(x)) = 1

�(x)

∫ ∞

0
logue−uux−1 du, x > 0, (24)

and, therefore, using the last equality, we have the following probabilistic expression of the psi
function in terms of the gamma process:

�(x) = E logS(x), x > 0. (25)

We will use the following property of this function (see [3], page 258):

�(x + 1) = 1

x
+ �(x). (26)
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Lemma 3.1. Let φ be defined as in (22) and let Lt , t > 0, be defined as in (4). We have that

Ltφ(x) = 1

2t2

(
3(tx)2

2
− tx

2
− 1 + tx(tx + 1)

(−�(tx) + log(t)
))

, x > 0. (27)

Proof. Let t > 0 and x > 0 be fixed. First, using elementary calculus, (4) and (26), we can write

Ltφ(x) = E
S(tx)2

2t2

(
3

2
− log

(
S(tx)

t

))

= 1

2t2

1

�(tx)

∫ ∞

0
u2

(
3

2
− log

(
u

t

))
e−uutx−1 du

(28)

= (tx)(tx + 1)

2t2

1

�(tx + 2)

∫ ∞

0

(
3

2
− log

(
u

t

))
e−uutx+1 du

= (tx)(tx + 1)

2t2

(
3

2
− E log

(
S(tx + 2)

t

))
.

Therefore, using (25), we can write

Ltφ(x) = (tx)(tx + 1)

2t2

(
3

2
− �(tx + 2) + log(t)

)
. (29)

Now, using (26) twice, we have

�(tx + 2) = 2(tx) + 1

tx(tx + 1)
+ �(tx). (30)

By (29), (30), we obtain

Ltφ(x) = (tx)(tx + 1)

2t2

(
3

2
− 2(tx) + 1

tx(tx + 1)
− �(tx) + log(t)

)
.

The result follows using elementary algebra in the expression above. �

In the next lemma, we will study the approximation properties of Ltφ to φ. We will make use
of the following inequalities for the psi function:

1

2x
≤ log(x) − �(x) ≤ 1

x
, x > 0; (31)

log(x) − �(x) − 1

2x
≤ 1

12x2
, x > 0. (32)

We can find (31) in [7], page 374, whereas (32) is an immediate consequence of the fact that the
function

�(x) − log(x) + 1

2x
+ 1

12x2
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is completely monotonic (see [15], page 304) and thus non-negative.

Lemma 3.2. Let φ be as defined in (22) and let Lt , t > 0, be as defined in (4). We have∥∥∥∥Ltφ(x) − φ(x) + x logx

2t
+ 1

3t2

∥∥∥∥ ≤ 3

8t2
. (33)

Proof. Let x > 0 and t > 0 be fixed. First of all, we can write

φ(x) = 1

2t2

(
3(tx)2

2
− (tx)2 log(tx) + (tx)2 log(t)

)
. (34)

On the other hand,

x logx

2t
+ 1

3t2
= 1

2t2

(
(tx) log tx − (tx) log t + 2

3

)
. (35)

Therefore, using Lemma 3.1, (34) and (35), we can write

Ltφ(x) − φ(x) + x logx

2t
+ 1

3t2

= 1

2t2

(
− tx

2
− 1 − (tx)2�(tx) − (tx)�(tx) + (tx)2 log(tx) + (tx) log(tx) + 2

3

)
(36)

= 1

2t2

(
(tx)2

(
log(tx) − �(tx) − 1

2(tx)

)
+ tx

(
log(tx) − �(tx)

) − 1

3

)
.

By (31), we have that 1/2 ≤ x(log(x) − �(x)) ≤ 1, x > 0, and thus

1
6 ≤ tx

(
log(tx) − �(tx)

) − 1
3 ≤ 2

3 . (37)

Thus, using (36), (37) and (32), we obtain (33). �

We are now in a position to state the following.

Theorem 3.1. Let g ∈ D, as defined in (7) and let L
[2]
t , t > 0, be as defined in (6). We have

∣∣L[2]
t g(x) − g(x)

∣∣ ≤ 1

6t2
‖xg′′′(x)‖ + 9

16t2
‖x2giv(x)‖.

Proof. We will first see that g ∈ D implies that

‖xg′′′(x)‖ ≤ ‖x2giv(x)‖ < ∞. (38)

To begin with, the fact that ‖x2giv(x)‖ < ∞ implies that limx→∞ x1+αgiv(x) = 0 for all
0 < α < 1. By L’Hôpital’s rule, we also have that limx→∞ xαg′′′(x) = 0, thus concluding that
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limx→∞ g′′′(x) = 0. Using this fact, we can write

g′′′(x) = −
∫ ∞

x

giv(u)du,

which implies easily (38) as

|xg′′′(x)| ≤ x

∫ ∞

x

|u2giv(u)|
u2

du ≤ ‖x2giv(x)‖.

Now, let t > 0 and let Lt be as in (4). As a previous step, we will prove that∣∣∣∣Ltg(x) − g(x) − xg′′(x)

2t
− xg′′′(x)

3t2

∣∣∣∣ ≤ 3

8t2
‖x2giv(x)‖, x > 0. (39)

To this end, let x > 0. Using a Taylor series expansion of the random point u = S(tx)/t around
x and taking into account that E(S(x) − x) = 0, E(S(x) − x)2 = x and E(S(x) − x)3 = 2x, we
can write

Ltg(x) − g(x) = Eg

(
S(tx)

t

)
− g(x)

= E(S(tx) − tx)2

2t2
g′′(x) + E(S(tx) − tx)3

6t3
g′′′(x)

(40)

+ 1

6
E

∫ S(tx)/t

x

giv(θ)

(
S(tx)

t
− θ

)3

dθ

= xg′′(x)

2t
+ xg′′′(x)

3t2
+ 1

6
E

∫ S(tx)/t

x

giv(θ)

(
S(tx)

t
− θ

)3

dθ.

Then, using (40), we get the bound∣∣∣∣Ltg(x) − g(x) − xg′′(x)

2t
− xg′′′(x)

3t2

∣∣∣∣
= 1

6

∣∣∣∣E
∫ S(tx)/t

x

giv(θ)

(
S(tx)

t
− θ

)3

dθ

∣∣∣∣
(41)

≤ ‖x2giv(x)‖
6

E

∫ max(x,S(tx)/t)

min(x,S(tx)/t)

∣∣∣∣S(tx)

t
− θ

∣∣∣∣
3 1

θ2
dθ

= ‖x2giv(x)‖
6

E

∫ S(tx)/t

x

(
S(tx)

t
− θ

)3 1

θ2
dθ.

Let φ(·) be as in (22). Using (40) and (23), we have

Ltφ(x) − φ(x) + x logx

2t
+ 1

3t2
= 1

6
E

∫ S(tx)/t

x

(
S(tx)

t
− θ

)3 1

θ2
dθ. (42)
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Then, by (41) and (42), we can write∣∣∣∣Ltg(x) − g(x) − xg′′(x)

2t
− xg′′′(x)

3t2

∣∣∣∣ ≤ ‖x2giv(x)‖
∥∥∥∥Ltφ(x) − φ(x) + x logx

2t
+ 1

3t2

∥∥∥∥.

Thus, (39) follows by applying Lemma 3.2.
Observe that in (39), the only term of order 1/t is the one involving the second derivative. By

means of the operator L
[2]
t , as defined in (6), this term is eliminated. In fact, using (39), we have

L
[2]
t g(x) − g(x) = 2

(
L2t g(x) − g(x)

) − (
Ltg(x) − g(x)

)
= 2

(
L2t g(x) − g(x) − x

4t
g′′(x) − x

12t2
g′′′(x)

)
(43)

−
(

Ltg(x) − g(x) − x

2t
g′′(x) − x

3t2
g′′′(x)

)
− x

6t2
g′′′(x)

≤ 1

6t2
‖xg′′′(x)‖ + 9

16t2
‖x2giv(x)‖.

This completes the proof of Theorem 3.1. �

Finally, in the next result, we study the approximation properties of M
[2]
t .

Theorem 3.2. Let g ∈ D1, as defined in (9) and let M
[2]
t , t > 0, be as defined in (8). We have

∥∥M
[2]
t g − g

∥∥ ≤ 1

8t2
‖g′′(x)‖ + 1

6t2
‖xg′′′(x)‖ + 9

16t2
‖x2giv(x)‖.

Proof. First, note that g ∈ D1 implies that ‖xg′′′(x)‖ < ∞, thanks to (38). Now, let t > 0 and
x > 0 be fixed. We write

M
[2]
t g(x) − g(x) = (tx − [tx])

(
L

[2]
t g

( [tx] + 1

t

)
− g

( [tx] + 1

t

))

+ ([tx] + 1 − tx)

(
L

[2]
t g

( [tx]
t

)
− g

( [tx]
t

))
(44)

+ (tx − [tx])
(

g

( [tx] + 1

t

)
− g(x)

)

+ ([tx] + 1 − tx)

(
g

( [tx]
t

)
− g(x)

)
.

Using the usual expansion

|g(y) − g(x) − (y − x)g′(x)| ≤ (y − x)2

2
‖g′′‖ (45)
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and taking into account that

(tx − [tx])
(

g

( [tx] + 1

t

)
− g(x)

)
+ ([tx] + 1 − tx)

(
g

( [tx]
t

)
− g(x)

)

= (tx − [tx])
(

g

( [tx] + 1

t

)
− g(x) − [tx] + 1 − tx

t
g′(x)

)
(46)

+ ([tx] + 1 − tx)

(
g

( [tx]
t

)
− g(x) − [tx] − tx

t
g′(x)

)
,

we obtain from the above expression and (45) that∣∣∣∣(tx − [tx])
(

g

( [tx] + 1

t

)
− g(x)

)
+ ([tx] + 1 − tx)

(
g

( [tx]
t

)
− g(x)

)∣∣∣∣
≤

(
(tx − [tx]) ([tx] + 1 − tx)2

2t2
+ ([tx] + 1 − tx)

([tx] − tx)2

2t2

)
‖g′′‖ (47)

= (tx − [tx])([tx] + 1 − tx)

2t2
‖g′′‖ ≤ 1

8t2
‖g′′‖,

the last inequality holding since for each k ∈ N, the supremum of (u − k)(k + 1 − u), k ≤ u ≤
k + 1, is attained at u = k + 1/2. On the other hand, taking into account Theorem 3.1, we have∣∣∣∣(tx − [tx])

(
L

[2]
t g

( [tx] + 1

t

)
− g

( [tx] + 1

t

))

+ ([tx] + 1 − tx)

(
L

[2]
t g

( [tx]
t

)
− g

( [tx]
t

))∣∣∣∣ (48)

≤ ∥∥L
[2]
t g − g

∥∥ ≤ 1

6t2
‖xg′′′(x)‖ + 9

16t2
‖x2giv(x)‖.

The result follows by (44), (47) and (48). �

4. Application to gamma distributions

In this section, we will study the case of gamma distributions, that is, distributions with density
functions as given in (3). It is not hard to see that these distributions are in the class D1, for a
shape parameter p = 1 or p ≥ 2, and, therefore, we are a position of apply Theorem 3.2. The aim
of this section is to show that, in fact, the bounds in this theorem can be uniformly bounded on the
shape parameter, which will be an advantage when dealing with mixtures of these distributions.
From now on, we define

fp(x) :=
⎧⎨
⎩

e−xxp−1

�(p)
, x > 0, if p ∈ R \ {0,−1,−2, . . .},

0, x > 0, if p ∈ {0,−1,−2, . . .}.
(49)
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The ‘odd’ definition of fp for p ∈ {0,−1,−2, . . .} is for notational convenience in (51). For
p > 0, the function above is the density of a gamma random variable as in (3), with scale para-
meter a = 1. Results for another scale parameter will follow by a change of scale (see Proposi-
tion 5.1 below). First, we will consider the case p = 1, that is, an exponential random variable. As
the distribution function of this random variable presents no computational problems, it makes
no sense to approximate it. However, when we consider the problem of approximating a general
mixture of Gamma distributions, the exponential distribution could be a component.

Lemma 4.1. Let F(x) = 1 − e−x, x ≥ 0. For t > 0, let M
[2]
t F be as defined in (8). We have that

∥∥M
[2]
t F − F

∥∥ ≤
(

1

8
+ 1

6e
+ 9

4e2

)
1

t2
.

Proof. First of all, note that |F (k)(x)| = e−x and that supx≥0 xke−x = kke−k, k = 1,2, . . . . Thus,
we have

‖F ′′‖ = 1, ‖xF ′′′(x)‖ = e−1 and ‖x2F iv(x)‖ = 22e−2. (50)

The conclusion follows by taking into account Theorem 3.2. �

We will now deal with the case p ≥ 2 in (49). The two following lemmas will be useful in
order to bound the derivatives of this density. For the sake of brevity, they are stated without
proof (only elementary calculus is required). For the proofs, we refer the interested reader to
[17], a preliminary version of this paper (available online).

Lemma 4.2. Let fp(·), p > 0, be as defined in (49). We have, for all n ∈ N,

dn

dxn
fp(x) = e−xxp−n−1

�(p)

n∑
i=0

(
n

i

)
(−1)i

(
n−i∏
j=1

(p − j)

)
xi

(51)

=
n∑

i=0

(
n

i

)
(−1)ifp−n+i (x), x > 0,

in which
∏0

j=1(p − j) = 1.

Next, we formulate a technical lemma in which we define certain decreasing functions which
will be used to bound the weighted derivatives of fp .

Lemma 4.3. We have:

(i) the function

g1(p) := 1

�(p)
e−(p−1)(p − 1)p−1, p > 1 (52)

(g1(1) = 1), is decreasing in p;
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(ii) the function

g2(p) := 1

�(p)
e−(p−1/2+1/2

√
4p−3)

(
p − 1

2
+ 1

2

√
4p − 3

)p−1/2

, p ≥ 1, (53)

is decreasing in p;
(iii) the function

g3(p) := 1

�(p)
e−(p−1−√

p−1)
(√

p − 1 − 1
)p−2(√

p − 1
)p−1

, p > 2 (54)

(g3(2) = 1), is decreasing in p;
(iv) the function

g4(p) := 1

�(p)
e−(p−√

3p−2)
(
p − √

3p − 2
)p−2(√3p − 2 − 1

)3
, p > 2 (55)

(g4(2) = 1), is decreasing in p.

In the following result, we get bounds of the quantities required in Theorem 3.2, depending on
the shape parameter p, but also decreasing on p.

Lemma 4.4. Let fp be as in (49) and gi, i = 1,2,3,4, be as in Lemma 4.3. We have:

(i) sup
x≥0

|fp(x)| = g1(p), p ≥ 1;

(ii) sup
x≥0

|xf ′
p(x)| = g2(p), p ≥ 1;

(iii) sup
x≥0

|f ′
p(x)| = g3(p), p ≥ 2;

(iv) sup
x≥0

|xf ′′
p (x)| ≤ max{g1(p − 1), g2(p − 1)}, p ≥ 2;

(v) sup
x≥0

|x2f ′′′
p (x)| ≤ g4(p) + 3g2(p − 1) + g1(p − 1), p ≥ 2.

Proof. To show part (i), it is clear that, for p ≥ 1,

sup
x≥0

fp(x) = fp(p − 1) = e−(p−1)(p − 1)p−1

�(p)

and (i) follows by recalling (52). To show part (ii), we have (see [16], Remark 3.2 and Lemma 5.2)

sup
x≥0

|xf ′
p(x)| = 1

�(p)

(
p − 1

2
+ 1

2

√
4p − 3

)p−1/2

e−p−1/2+1/2
√

4p−3, p > 1, (56)
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and (ii) follows by recalling (53). To show part (iii), by (51), we have for p ≥ 2 that

f ′
p(x) = 1

�(p)
e−xxp−2(p − 1 − x), x > 0, (57)

f ′′
p (x) = 1

�(p)
e−xxp−3((p − 1)(p − 2) − 2(p − 1)x + x2), x > 0, (58)

and it can be easily checked that the zeros of f ′′
p (x) are p1 := p − 1 − √

p − 1 and p2 :=
p − 1 + √

p − 1. Therefore, |f ′
p(x)| must attain its maximum value at either p1 or p2. Actually,

p1 corresponds to the maximum. To show that, we will see that

f ′
p(p1)

|f ′
p(p2)| = e2

√
p−1

(√
p − 1 − 1√
p − 1 + 1

)p−2

≥ 1, p ≥ 2. (59)

To show the last inequality in (59), taking logarithms, we will prove that

r1(p) := 2
√

p − 1 + (p − 2)
(
log

(√
p − 1 − 1

) − log
(√

p − 1 + 1
)) ≥ 0, p > 2. (60)

Define

ρ1(b) := 2b

b2 − 1
+ (

log(b − 1) − log(b + 1)
)
, b > 1.

Note that

r1(p) = (p − 2)ρ1
(√

p − 1
)
, p > 2. (61)

We will first prove that

ρ1(b) ≥ 0, b > 1. (62)

To show (62), it is readily seen that ρ ′
1(b) = −4(b2 − 1)−2, b > 1, so that ρ1 is decreasing. As

limb→∞ ρ1(b) = 0, we have (62). This implies also (60), recalling (61). Therefore, we conclude
that

sup
x>0

|f ′
p(x)| = f ′

p(p1) = 1

�(p)
e−(p−1−√

p−1)
(√

p − 1 − 1
)p−2(√

p − 1
)p−1

, (63)

which, together with (54), shows (iii).
To show part (iv), note that by using (51), we can write f ′

p(x) = fp−1(x) − fp(x) and, there-
fore,

xf ′′
p (x) = xf ′

p−1(x) − xf ′
p(x), x > 0,p ≥ 2. (64)

On the other hand, we see in (58) that f ′
p−1(x) and f ′

p(x) have the same sign for 0 < x < p − 2
and p − 1 < x < ∞ and, therefore, using part (ii) and Lemma 4.3(i), we can write

sup
x /∈[p−2,p−1]

|xf ′′
p (x)| ≤ max

(
g2(p − 1), g2(p)

) = g2(p − 1). (65)
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On the other hand, we have, by (58),

xf ′′
p (x) = 1

�(p)
e−xxp−2((p − 1)(p − 2) − 2(p − 1)x + x2). (66)

Using the above expression and taking into account that, for p − 2 ≤ x ≤ p − 1,

e−xx(p−2) ≤ e−p−2(p − 2)p−2 and |(p − 1)(p − 2) − 2(p − 1)x + x2| = p − 1, (67)

the last inequality holds as |(p − 1)(p − 2) − 2(p − 1)x + x2|,p − 2 ≤ x ≤ p − 1, attains its
maximum value at p − 1. From (66) and (67), we conclude that

sup
x∈[p−2,p−1]

|xf ′′
p (x)| ≤ 1

�(p)
e−(p−2)(p − 2)p−2(p − 1) = g1(p − 1), (68)

where the last inequality follows by recalling (52). Thus, (65) and (68) conclude the proof of
part (iv). To show part (v), let p ≥ 2. First, we have, by (51),

f ′′′
p (x) = fp−3(x) − 3fp−2(x) + 3fp−1(x) − fp(x)

= e−xxp−4

�(p)

(
(p − 1)(p − 2)(p − 3) − 3(p − 1)(p − 2)x + 3(p − 1)x2 − x3) (69)

= e−xxp−4

�(p)

(
(p − 1 − x)3 + 3(p − 1)

(
x − (p − 2)

) − (p − 1)
)
, x > 0.

Therefore, if we call

hp(x) := e−xxp−2

�(p)
(p − 1 − x)3, x > 0,

we have, recalling (57),

x2f ′′′
p (x) = e−xxp−2

�(p)

(
(p − 1 − x)3 − 3(p − 1)

(
x − (p − 2)

) − (p − 1)
)

(70)
= hp(x) + 3xf ′

p−1(x) − fp−1(x), x ≥ 0.

We will firstly see that

sup
x≥0

|hp(x)| = g4(p) (71)

with g4(·) as defined in (55). Note that

h′
p(x) = e−xxp−3

�(p)
(p − 1 − x)2(x2 − 2px + (p − 1)(p − 2)

)
, x > 0.

The maximum value of |hp| will be attained at the roots of the last polynomials, being p1 :=
p + √

3p − 2 and p2 := p − √
3p − 2. To check which value attains the maximum, define u :=
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√
3p − 2. Note that p1 = (u + 1)(u + 2)/3 and p2 = (u − 1)(u − 2)/3. Then, with this notation,

we will prove that

|hp(p2)|
|hp(p1)| = e2u

(
(u − 1)(u − 2)

(u + 1)(u + 2)

)(u2−4)/3(
u − 1

u + 1

)3

≥ 1, u > 2. (72)

To show the last inequality in (72), taking logarithms, we will show that

ρ2(u) := 2u + u2 − 4

3
log

(
(u − 1)(u − 2)

(u + 1)(u + 2)

)
+ 3 log

(
u − 1

u + 1

)
≥ 0, u > 2. (73)

Note that

ρ′
2(u) = 2 + 2u

3
log

(
(u − 1)(u − 2)

(u + 1)(u + 2)

)
+ u2 − 4

3

(
1

u − 1
+ 1

u − 2
− 1

u + 1
− 1

u + 2

)

+ 3

(
1

u − 1
− 1

u + 1

)

= 4u2

u2 − 1
+ 2u

3
log

(
(u − 1)(u − 2)

(u + 1)(u + 2)

)
, u > 2.

We will show that ρ′
2(u) ≤ 0, u > 2. In fact,

d

du

3

2u
ρ′

2(u) = 36

(u + 1)2(u − 1)2(u2 − 4)2
≥ 0, u > 2,

and then 3(2u)−1ρ′
2(u) is increasing. As limu→∞ 3(2u)−1ρ′

2(u) = 0, we conclude that 3(2u)−1 ×
ρ′

2(u) ≤ 0 and thus that ρ′
2(u) ≤ 0. Therefore, ρ2(u) is decreasing. This, together with the fact

that limu→∞ ρ2(u) = 0, proves (73) and therefore (72). Then, ‖hp‖ = hp(p2) = g4(p), thus
proving (71). The proof of part (iv) now follows easily by recalling (70) and using (71) and
parts (i) and (ii). �

As an immediate consequence of Theorem 3.2 and Lemma 4.4, we have the following corol-
lary.

Corollary 4.1. Let Fp be a gamma distribution with shape parameter p ≥ 2, that is, whose

density function is given by (49). Let M
[2]
t , t > 0, be defined as in (8). We have

∥∥M
[2]
t Fp − Fp

∥∥ ≤
(

17

12
+ 27

16e

)
1

t2
≈ 2.0375

t2
.

Proof. Let p ≥ 2 be fixed. The result is an immediate consequence of Theorem 3.2, as F ′
p = fp ,

as defined in (49). Therefore, by Lemma 4.4(iii) and Lemma 4.3(ii), we have that

‖F ′′
p‖ = ‖f ′

p‖ = g3(p) ≤ g3(2) = 1. (74)
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On the other hand, we see that by Lemma 4.3(i), we have that

g1(p − 1) ≤ g1(1) = 1 and g2(p − 1) ≤ g2(1) = e−1, p ≥ 2. (75)

Thus, using the above inequalities and Lemma 4.4(iv), we have

‖xF ′′′
p (x)‖ = ‖xf ′′

p (x)‖ ≤ 1. (76)

Finally by Lemma 4.4(v), Lemma 4.3(iv) and (75), we have

‖x2F iv
p (x)‖ = ‖x2f ′′′

p (x)‖ ≤ g4(2) + 3g2(1) + g1(1) = 2 + 3e−1. (77)

Using (74), (76), (77) and Theorem 3.2, we obtain the result. This completes the proof of Corol-
lary 4.1. �

5. Applications to mixtures of Erlang distributions and
phase-type distributions

In this section we apply the results from the previous section to mixtures of Erlang distributions
and to random sums of thereof. In order to undertake this study for an arbitrary scale parameter,
we need the following result which shows the behavior of M

[2]
t F under changes of scale.

Proposition 5.1. Let X be a random variable with distribution function F . For a given c > 0,
denote by Fc the distribution function of cX. Let M

[2]
t F and M

[2]
t F c , t > 0, be the respective

approximations for F and Fc, as defined in (8). We have that

M
[2]
t F c(x) = M

[2]
ct F (x/c), x ≥ 0. (78)

Therefore, ∥∥M
[2]
t F c − Fc

∥∥ = ∥∥M
[2]
ct F − F

∥∥. (79)

Proof. Let t > 0 and c > 0 be fixed. First, we will see that

M
[2]
t F c

(
k

t

)
= M

[2]
ct F

(
k

ct

)
, k ∈ N, (80)

and, therefore, (78) is satisfied for points in the set k/t, k ∈ N. To this end, we use (12) and (6),
and take into account that

Fc(x) = F(x/c), x ≥ 0, (81)

to write, for all k ∈ N,

M
[2]
t F c

(
k

t

)
= 2EFc

(
S(2k)

2t

)
− EFc

(
S(k)

t

)
(82)

= 2EF

(
S(2k)

2ct

)
− EF

(
S(k)

ct

)
= M

[2]
ct F

(
k

ct

)
,
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thus proving (80). For a general x > 0, we use (8) and (80), to see that

M
[2]
t F c(x) = (tx − [tx])M [2]

t F c

( [tx] + 1

t

)
+ ([tx] + 1 − tx)M

[2]
t F c

( [tx]
t

)

= (tx − [tx])M [2]
ct F

( [tx] + 1

ct

)
+ ([tx] + 1 − tx)M

[2]
ct F

( [tx]
ct

)
= M

[2]
ct F

(
x

c

)
,

the last inequality being trivial as tx = (ct)(x/c). This concludes the proof of (78). Finally, (79)
follows easily from (78) and (81), as we have

sup
x>0

∣∣M [2]
t F c(x) − Fc(x)

∣∣ = sup
x>0

∣∣M [2]
ct F (x/c) − F(x/c)

∣∣.
This concludes the proof of Proposition 5.1. �

As an application of the results in the previous section, we will consider the class of (possi-
bly infinite) mixtures of Erlang distributions recently studied by Willmot and Woo (see [19]).
More specifically, let F(a,j), a > 0, j ∈ N

∗, be the distribution function corresponding to the
density f(a,j) given in (3) (an Erlang j distribution with scale parameter a). We will consider a
finite number of scale parameters arranged in increasing order (0 < a1 < · · · < an) and a set of
non-negative numbers pij , i = 1, . . . , n, j = 0,1,2, . . . , such that

∑n
i=1

∑∞
j=1 pij = p ≤ 1, and

define the class of distribution functions M E (a1, . . . , an) given as

F(x) = (1 − p) +
n∑

i=1

∞∑
j=1

pijFai ,j (x), x ≥ 0 (83)

(we consider a slight modification of the class in [19], page 103, as we allow the point mass at 0
with probability 1 − p). Based on [19], page 103, we can alternatively write (83) by using only
the maximum of the scale parameters, that is,

F(x) = (1 − p) +
∞∑

j=1

pjFan,j (x), x ≥ 0. (84)

Moreover, the class (84) is a wide class containing many of the distributions considered in applied
probability, such as (obviously) finite mixtures of Erlang distributions, but also the class of phase-
type distributions (see Proposition 5.3 below). Every random variable having a representation as
in (83) can be approximated by means of M

[2]
t , as shown in the following result.

Proposition 5.2. Let F be a distribution function of the form M E (a1, . . . , an), 0 < a1 < · · · <

an, as in (83). Let M
[2]
t , t > 0, be defined as in (8). We have

∥∥M
[2]
t F − F

∥∥ ≤
(

17

12
+ 27

16e

)∑n
i=1(

∑∞
j=1 pij )a

2
i

t2
. (85)
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Proof. Let t > 0 and 0 < a1 < · · · < an be fixed. The linearity of M
[2]
t yields

M
[2]
t F (x) = (1 − p) +

n∑
i=1

∞∑
j=1

pijM
[2]
t Fai ,j (x), x ≥ 0. (86)

By Corollary 4.1, we can write, for a scale parameter 1,

∥∥M
[2]
t F1,j − F1,j

∥∥ ≤
(

17

12
+ 27

16e

)
1

t2
, j = 2,3, . . . . (87)

Moreover, using Lemma 4.1, we have

∥∥M
[2]
t F1,1 − F1,1

∥∥ ≤
(

1

2
+ 1

6e
+ 9

4e2

)
1

t2
≤

(
17

12
+ 27

16e

)
1

t2
. (88)

Now, let the general scale parameters be ai, i = 1, . . . , n. We use the fact that given X, a gamma
random variable of scale parameter 1, X/ai is a gamma random variable of scale parameter
ai , and, therefore, using Proposition 5.1, (87) and (88), we have for each ai, i = 1, . . . , n, and
j ∈ N

∗,

∥∥M
[2]
t Fai ,j − Fai,j

∥∥ = ∥∥M
[2]
t/ai

F1,j − F1,j

∥∥ ≤
(

17

12
+ 27

16e

)
a2
i

t2
. (89)

Thus, using (86) and (89), we have

∥∥M
[2]
t F − F

∥∥ ≤
n∑

i=1

∞∑
j=1

pij

∥∥M
[2]
t Fai ,j − Fai,j

∥∥
(90)

≤
(

17

12
+ 27

16e

)∑n
i=1(

∑∞
j=1 pij )a

2
i

t2
.

This completes the proof of Proposition 5.2. �

As a consequence of the previous result, we can provide error bounds for compound distribu-
tions (that is, distribution functions of random sums, as in (14)) when the summands are mixtures
of Erlang distributions, as stated in the following result.

Corollary 5.1. Let G be the distribution function of a random sum, as in (14), in which the
sequence of (Xi)i∈N∗ has a common distribution M E (a1, . . . , an), 0 < a1 < · · · < an, as defined
in (83). Let M

[2]
t be as in (8). We have that

∥∥M
[2]
t G − G

∥∥ ≤
(

17

12
+ 27

16e

)
(1 − G(0))a2

n

t2
.

Proof. The proof is immediate, taking into account that a mixture of Erlang distributions
M E (a1, . . . , an), 0 < a1 < · · · < an, can be expressed as in (84) and compound distributions
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of these random variables are also mixtures of Erlang distributions (see [19], page 106, with a
slight modification in the coefficients, as we allow a point mass at 0), that is, we can write

G(x) = q0 +
∞∑

j=1

qjFan,j (x), x ≥ 0,

in which {qj , j = 0,1, . . .} form a probability mass function (obviously, q0 = G(0)). The result
follows using the above expression and Proposition 5.2. �

The class of phase-type distributions, of great importance in applied probability, can be ex-
pressed as mixtures of Erlang distributions. A phase-type distribution is defined as the time until
absorption in a continuous-time Markov chain with one absorbent state (see, for instance, [12],
Chapter II or [8], Chapter VIII, and the references therein). A phase-type distribution can be
expressed in terms of a matrix exponential as follows. Consider a vector α = (α1, . . . , αn) of
non-negative numbers such that α1 + · · · + αn ≤ 1. Let A be a n × n matrix with negative diago-
nal entries, non-negative off-diagonal entries and non-positive row sums. A non-negative random
variable X is a phase-type distribution PH(α,A) if its distribution function can be written as

F(x) = 1 − αexA1′, x ≥ 0,

in which 1′ represents the transpose of the nth dimensional vector 1 = (1, . . . ,1). Note that
phase-type distributions are absolutely continuous random variables when α1 + · · · + αn = 1,
having positive mass at 0 (of magnitude 1 − (α1 + · · · + αn)) when α1 + · · · + αn < 1. Phase-
type distributions have been extensively studied from both theoretical and practical points of
view. For instance, it is well known that phase-type distributions have rational Laplace trans-
forms, thus allowing numerical computation using our approximation procedures. Also, in the
next proposition, we will give an expression of phase-type distributions in terms of mixtures of
Erlang distributions. This, together with Proposition 5.2, provides our approximations with rates
of convergence. The proof of the next result is based on the following property of phase-type
distributions, due to Maier (see [13], page 591). Let f be the density of an absolutely continuous
phase-type distribution. There exists some c > 0 verifying

cj := dj

dxj
ecxf (x)

∣∣∣∣
x=0

> 0, j ∈ N. (91)

We are now in a position to state the following.

Proposition 5.3. Let F be a phase-type distribution PH(α,A), with α1 + · · · + αn > 0. Let
c > 0 be such that the absolutely continuous part of F satisfies the property (91). Then, F can
be expressed as a mixture of Erlang distributions, that is,

F(x) = p0 +
∞∑

j=1

pjFc,j (x), x ≥ 0, (92)

in which p0 = 1 − (α1 + · · · + αn).
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Proof. To prove (a), assume first that F is absolutely continuous, that is, that α1 + · · · + αn = 1.
Its density is then given by f (x) = −αexAA1′, x > 0. We choose a c > 0 verifying (91). Note
that we can write

ecxf (x) = −αex(cI−A)A1′, x ≥ 0. (93)

It can be easily checked that the function −αex(cI−A)A1′, x ∈ R is analytic in R, so if we consider
the Taylor series expansion of this function around 0 and take into account (91) and (93), we have

ecxf (x) =
∞∑

j=0

cj

xj

j ! , x > 0,

from which we can write (recall (3))

f (x) =
∞∑

j=0

cj

cj+1

cj+1xj e−cx

j ! =
∞∑

j=0

cj

cj+1
fc,j+1(x), x > 0,

and, in this way, we obtain the expression of f in terms of a mixture of Erlang densities with
shape parameter c (by construction, the coefficients are non-negative and integrating both sides
in the above expression, we see that their sum is 1). As a consequence, we can write

F(x) =
∞∑

j=1

cj−1

cj
Fc,j (x), x ≥ 0, (94)

thus having expressed F as a mixture of Erlang distributions, as in (92). Now, assume that 0 <

α1 +· · ·+αn < 1. This means that F has a point mass at 0 of magnitude p0 := 1−(α1 +· · ·+αn).
The absolutely continuous part of F (F ac) is a phase-type distribution (PH(ᾱ,A)) with ᾱ =
(α1 + · · · + αn)

−1α. Let c > 0 be such that F ac verifies property (93). We can write, thanks to
(94),

F(x) = p0 + (1 − p0)F
ac(x) = p0 +

∞∑
j=1

(1 − p0)
cj−1

cj
Fc,j (x), x ≥ 0.

This completes the proof of Proposition 5.3. �

Remark 5.1. Expansions similar to those given in Proposition 5.3 can be found in [12], page 58.
These expansions are obtained using a representation PH(α,A) of the distribution under con-
sideration. Note that if we denote by ‖A‖ the maximum absolute value of the entries of A, then
it is easy to check using (93) (see [14], page 751) that c = ‖A‖ verifies (91). However, as the
representation of a phase-type distribution is not unique, this value might not be the optimum
one. Also, observe that the error bound given in (85) indicates that we should take c to be as
small as possible. This problem, then, is closely connected to Conjecture 6 in [14], concerning
the minimum c satisfying (91) and its relation with a phase-type representation having ‖A‖ as
small as possible. To the best of our knowledge, this conjecture remains unsolved.
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