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Approximating a geometric fractional
Brownian motion and related processes via
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We approximate the solution of some linear systems of SDEs driven by a fractional Brownian motion BH

with Hurst parameter H ∈ ( 1
2 ,1) in the Wick–Itô sense, including a geometric fractional Brownian motion.

To this end, we apply a Donsker-type approximation of the fractional Brownian motion by disturbed binary
random walks due to Sottinen. Moreover, we replace the rather complicated Wick products by their discrete
counterpart, acting on the binary variables, in the corresponding systems of Wick difference equations. As
the solutions of the SDEs admit series representations in terms of Wick powers, a key to the proof of our
Euler scheme is an approximation of the Hermite recursion formula for the Wick powers of BH .
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1. Introduction

A fractional Brownian motion BH with Hurst parameter H ∈ (0,1) is a continuous zero-mean
Gaussian process in R with stationary increments and covariance function

E[BH
t BH

s ] = 1
2 (|t |2H + |s|2H − |t − s|2H ).

The process B1/2 is a standard Brownian motion, but a fractional Brownian motion is not a
semimartingale for H �= 1

2 . In this paper, we restrict ourselves to the case H > 1/2, in which the
corresponding fractional Gaussian noise (BH

n+1 − BH
n )n∈N exhibits long-range dependence.

In recent years, a lively interest in integration theory with respect to fractional Brownian mo-
tion has emerged (see, e.g., the monographs by Mishura or Biagini et al. [4,15]). One of the
extensions of the Itô integral beyond semimartingales is the fractional Wick–Itô integral. It is
based on the Wick product �, which has its origin as a renormalization operator in quantum
physics. In probability theory, the Wick product with ordinary differentiation rule imitates the
situation of ordinary multiplication with Itô differentiation rule (cf. Holden et al. [11]). Actually,
this makes it a natural tool to apply for extending the Itô integral.

We first consider the fractional Doléans–Dade SDE dSt = Std�BH
t , S0 = 1, in terms of the

fractional Wick–Itô integral. The well-known solution, exp(BH
t − 1

2 t2H ), is the geometric frac-
tional Brownian motion, also known as the Wick exponential of fractional Brownian motion.
Note that the Wick exponential has expectation equal to one and can therefore be interpreted as
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a multiplicative noise. Moreover, the ordinary exponential can be obtained from the Wick ex-
ponential by a deterministic scaling. Neither process is a semimartingale for H �= 1

2 . The name
“Wick exponential” is justified by the fact that it exhibits a power series expansion with Wick
powers (BH

t )�k instead of ordinary powers.
More generally, we consider a linear system of SDEs,

dXt = (A1Xt + A2Yt )d�BH
t , X0 = x0,

(1)
dYt = (B1Xt + B2Yt )d�BH

t , Y0 = y0.

One can obtain Wick power series expansions for the solution of this system, too. Our goal is to
approximate these Wick analytic functionals of a fractional Brownian motion. To this end, we
require an approximation of a fractional Brownian motion and an approximation of the Wick
product.

There are several ways to approximate a fractional Brownian motion. One of the first ap-
proximations was given by Taqqu [22] in terms of stationary Gaussian sequences. We refer to
Mishura [15], Section 1.15.3, for further approaches to weak convergence to a fractional Brown-
ian motion. Sottinen constructed a simple approximation of a fractional Brownian motion on an
interval for H > 1

2 by sums of square-integrable random variables in [21]. He used the Wiener
integral representation of a fractional Brownian motion on an interval, BH

t = ∫ t

0 zH (t, s)dBs , for
a suitable deterministic kernel zH (t, s), due to Molchan and Golosov, and Norros et al. [16–18].
For this purpose, he combined a pointwise approximation of the kernel zH (t, s) with Donsker’s
theorem. This approach was extended by Nieminen [19] to weak convergence of perturbed mar-
tingale differences to fractional Brownian motion. We shall utilize Sottinen’s approximation with
binary random variables throughout this paper.

The main problem of applying the Wick product on random variables with continuous dis-
tributions is that it is not a pointwise operation. Thus, an explicit computation of the Wick–Itô
integral is only possible in rare special cases. But this is precisely the advantage of the binary ran-
dom walks. In such a purely discrete setup, we apply the discrete counterpart of the Wick product
as introduced in Holden et al. [10]. Starting from the binary random walk, one can build up a
discrete Wiener space, and the discrete Wick product depends on this discretization. This Wiener
chaos gives the analogy to the continuous Wick products. For a survey on discrete Wiener chaos,
we refer to Gzyl [9]. However, we will introduce the discrete Wick product in a self-contained
way in Section 3.

We can now formulate a weak Euler scheme of the linear system of SDEs (1) in the Wick–Itô
sense,

Xn
l = Xn

l−1 + (A1X
n
l−1 + A2Y

n
l−1) �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
,

Xn
0 = x0, l = 1, . . . , n,

(2)
Yn

l = Yn
l−1 + (B1X

n
l−1 + B2Y

n
l−1) �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
,

Y n
0 = y0, l = 1, . . . , n,

where �n is the discrete Wick product and (B
H,n
l/n − B

H,n
(l−1)/n) are the increments of the disturbed

binary random walk. As a main result, we show that the piecewise constant interpolation of the
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solution of (2) converges weakly in the Skorokhod space to the solution of (1). This is the first
rigorous convergence result connecting discrete and continuous Wick calculus of which we are
aware. As a special case, (2) contains the Wick difference equation

Xn
l = Xn

l−1 + Xn
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, Xn

0 = 1, l = 1, . . . , n. (3)

As a consequence, the piecewise constant interpolation of (3) converges weakly to a geometric
fractional Brownian motion, the solution of the fractional Doléans–Dade SDE. This was conjec-
tured by Bender and Elliott [3] in their study of the Wick fractional Black–Scholes market.

In [21], Sottinen considered the corresponding difference equation in the pathwise sense, that
is, with ordinary multiplication instead of the discrete Wick product:

X̂n
l = X̂n

l−1 + X̂n
l−1

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, X̂n

0 = 1, l = 1, . . . , n. (4)

The solution is explicitly given by the multiplicative expression

X̂n
l =

l∏
j=1

(
1 + (

B
H,n
j/n − B

H,n
(j−1)/n

))
. (5)

By the logarithmic transform of ordinary products into sums and a Taylor expansion, one obtains
an additive expression for ln(X̂n

l ) which converges weakly to a fractional Brownian motion.
In this way, Sottinen proved the convergence of X̂ to the ordinary exponential of a fractional
Brownian motion [21], Theorem 3. This approach fails for the solution of (3) since, in a product
representation, analogous to (5), the discrete Wick product �n appears instead of ordinary mul-
tiplication. There is, however, no straightforward way to transform discrete Wick products into
sums by application of a continuous functional.

However, the solution of (2) exhibits an expression which is closely related to a discrete Wick
power series representation. Therefore, the convergence can be initiated explicitly for the Wick
powers of a fractional Brownian motion, which fulfill the Hermite recursion formula. We obtain
a discrete analog to this recursion formula for discrete Wick powers of disturbed binary random
walks. Actually, the weak convergence of these discrete Wick powers is the key to the proof for
our Euler scheme.

The paper is organized as follows. In Section 2, we give some preliminaries on the Wick–Itô
integral with respect to a fractional Brownian motion and introduce the Wick exponential and
other Wick analytic functionals. We then define the approximating sequences and state the main
results in Section 3. Section 4 is devoted to some L2- estimates of the approximating sequences.
We prove convergence in finite-dimensional distributions in Section 5 and tightness in Section 6.

2. Wick exponential and Wick analytic functionals

In this section, we introduce the Wick product and the Wick–Itô integral, and describe the Her-
mite recursion formula for Wick powers of a zero-mean Gaussian random variable. We then
obtain the Wick power series expansions for the solutions of SDEs (1).
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We consider a geometric fractional Brownian motion or the so-called Wick exponential of a
fractional Brownian motion exp(BH

t − 1
2 t2H ). For H = 1

2 , this is exactly a geometric Brownian
motion, also known as the stochastic exponential of a standard Brownian motion. For all H ∈
(0,1) and t ≥ 0, it holds that t2H = E[(BH

t )2] and thus the Wick exponential generalizes the
stochastic exponential. It is well known that exp(Bt − 1

2 t) solves the Doléans–Dade equation

dSt = St dBt , S0 = 1,

where the integral is an ordinary Itô integral. Actually, the Wick exponential of fractional Brown-
ian motion solves the corresponding fractional Doléans–Dade equation

dSt = St d�BH
t , S0 = 1,

in terms of a fractional Wick–Itô integral (cf. Mishura [15], Theorem 3.3.2). We want to approx-
imate solutions of similar SDEs.

Let � and � be two zero-mean Gaussian random variables. The Wick exponential is then
defined as

exp�(�) := exp
(
� − 1

2 E[|�|2]).
For a standard Brownian motion (Bt )t≥0 and s < t < u, it holds that

exp�(Bu − Bt) exp�(Bt − Bs) = exp�(Bu − Bs).

Forcing this renormalization property to hold for all, possibly correlated, � and � , leads to the
definition of the Wick product � of two Wick exponentials:

exp�(�) � exp�(�) := exp�(� + �).

The Wick product can be extended to larger classes of random variables by density arguments
(cf. [2,6,20]). For a general introduction to the Wick product, we refer to the monographs by Kuo
and Holden et al. [11,14] and Hu and Yan [13]. Note that the Wick product is not a pointwise
operation. If we suppose that � ∼ N (0, σ ), then we have, by definition, ��0 = 1, ��1 = � and
the recursion

��n+1 = ��n � �.

Observe that it holds that

d

dx
exp�(x�)

∣∣∣∣
x=0

= d

dx
exp

(
x� − 1

2
E[|x�|2]

)∣∣∣∣
x=0

= (� − xσ 2) exp

(
x� − 1

2
E[|x�|2]

)∣∣∣∣
x=0

= �.

Suppose we have

��k = dk

dwk
exp�(w�)

∣∣∣∣
w=0
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for all positive integers k ≤ n. Then, with z = w + x, dz
dw

= dz
dx

= 1, we get

��(n+1) = dn

dwn
exp�(w�)

∣∣∣∣
w=0

� d

dx
exp�(x�)

∣∣∣∣
x=0

= dn

dwn

d

dx
exp�((w + x)�

)∣∣∣∣
w=0,x=0

= dn+1

dzn+1
exp�(z�)

∣∣∣∣
z=0

.

We now obtain, by differentiation and the Leibniz rule, the following Wick recursion formula:

��n+1 = dn

dwn

(
(� − wσ 2) exp

(
w� − 1

2
E[|w�|2]

))∣∣∣∣
w=0

= (� − wσ 2)
dn

dwn
exp

(
w� − 1

2
E[|x�|2]

)∣∣∣∣
w=0

(6)

+ n(−σ 2)
dn−1

dwn−1
exp

(
w� − 1

2
E[|w�|2]

)∣∣∣∣
w=0

= ���n − nσ 2��n−1.

Define the Hermite polynomial of degree n ∈ N with parameter σ 2 as

hn
σ 2(x) := (−σ 2)n exp

(
x2

2σ 2

)
dn

dxn
exp

(−x2

2σ 2

)
.

The series expansion

exp

(
x − 1

2
σ 2

)
=

∞∑
n=0

1

n!h
n
σ 2(x) (7)

then holds true. The first Hermite polynomials are h0
σ 2(x) = 1, h1

σ 2(x) = x. By the Leibniz rule,
we obtain the Hermite recursion formula

hn+1
σ 2 (x) = xhn

σ 2(x) − nσ 2hn−1
σ 2 (x). (8)

By the equivalent first terms and recursions (6) and (8), we can conclude that for any Gaussian
random variable � ∼ N (0, σ ) and all n ∈ N, we have

��n = hn
σ 2(�). (9)

By (7), we additionally have

exp�(�) =
∞∑

n=0

1

n!�
�n. (10)

The fractional Wick–Itô integral, introduced by Duncan et al. [6], is an extension of the Itô
integral beyond the semimartingale framework. There are several approaches to the fractional
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Wick–Itô integral. Essentially, these approaches are via white noise theory, as in Elliott and von
der Hoek [7], and Hu and Øksendal [12], by Malliavin calculus in Alòs et al. [1], or by an
S-transform approach in Bender [2]. In contrast to the forward integral, the fractional Wick–Itô
integral has zero mean in general. This is the crucial property for an additive noise. The Wick–Itô
integral is based on the Wick product. For a sufficiently good process (Xs)s∈[0,t], the fractional
Wick–Itô integral with respect to fractional Brownian motion (BH

s )[0,t] can be easily defined by
Wick–Riemann sums (cf. Duncan et al. [6] or Mishura [15], Theorem 2.3.10). If we suppose that
πn = {0 = t0 < t1 < · · · < tn = t} with maxti∈πn |ti − ti−1| → 0 for n → ∞, then∫ t

0
Xs d�BH

s := lim
n→∞

∑
ti∈πn

Xti−1 � (BH
ti

− BH
ti−1

),

if the Wick products and the L2(�)-limit exist. For more information on Wick–Itô integrals with
respect to fractional Brownian motion, we refer to Mishura [15], Chapter 2.

By the fractional Itô formula (cf. [2], Theorem 5.3 or [4], Theorem 3.7.2), we have

d(BH
t )�k = k(BH

t )�k−1 d�BH
t , (BH

0 )�k = 1{k=0}. (11)

For the Wick exponential

exp�(BH
t ) =

∞∑
k=0

1

k! (B
H
t )�k, (12)

we obtain, by summing up the identity (11), the fractional Doléans–Dade equation,

dSt = St d�BH
t , S0 = 1. (13)

For any analytic function F(x) = ∑∞
k=0

ak

k! x
k , we define the Wick version as

F �(�) =
∞∑

k=0

ak

k! �
�k.

From the recursive system of SDEs (11), we obtain SDEs for other Wick analytic functionals of
a fractional Brownian motion

F �(BH
t ) =

∞∑
k=0

ak

k! (B
H
t )�k.

Recall the linear system of SDEs (1),

dXt = (A1Xt + A2Yt )d�BH
t , X0 = x0,

dYt = (B1Xt + B2Yt )d�BH
t , Y0 = y0.

The coefficients of the solution,

Xt =
∑
k=0

ak

k! (B
H
t )�k, Yt =

∑
k=0

bk

k! (B
H
t )�k, (14)
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can be obtained recursively via (11) to be

a0 = x0, b0 = y0, ak = A1ak−1 + A2bk−1, bk = B1ak−1 + B2bk−1.

Note that it holds that |ak|, |bk| ≤ Ck for a C ∈ R+. This is according to the recursive deriva-
tion of the coefficients and it ensures that the Wick analytic functionals Xt and Yt are square-
integrable (cf. the proof of Proposition 6).

3. The approximation results

Here, we present the approximating sequences and discuss the main results. More precisely, we
introduce the Donsker-type approximation of a fractional Brownian motion and the discrete Wick
product, and obtain Wick difference equations, which correspond to the SDEs. We shall work
with a fractional Brownian motion on the interval [0,1], but all results extend to any compact
interval [0, T ].

We first consider the following kernel representation of a fractional Brownian motion on the
interval [0,1], based on works by Molchan and Golosov [16,17],

BH
t =

∫ t

0
zH (t, s)dBs. (15)

For H > 1
2 , the deterministic kernel takes the form

zH (t, s) = 1{t≥s}cH

(
H − 1

2

)
s1/2−H

∫ t

s

uH−1/2(u − s)H−3/2 du (16)

with the constant

cH =
√

2H�(3/2 − H)

�(H + 1/2)�(2 − 2H)
,

where � is the Gamma function (Norros et al. [18] or Nualart [20], Section 5.1.3). In order to
simplify the notation, we think of H ∈ ( 1

2 ,1) as fixed from now on and omit the subscript H

in the notation of the kernel. For an introduction to some elementary properties of fractional
Brownian motion, we refer to Nualart [20], Chapter 5, Mishura [15] or Biagini et al. [4].

We apply Sottinen’s approximation of a fractional Brownian motion by disturbed binary ran-
dom walks. Suppose (�, F ,P ) is a probability space and, for all n ∈ N and i = 1, . . . , n, we
have independent and identically distributed symmetric Bernoulli random variables ξn

i :� →
{−1,1} with P(ξn

i = 1) = P(ξn
i = −1). By Donsker’s theorem, the sequence of random walks

B
(n)
t = 1√

n

∑�nt�
i=1 ξ

(n)
i converges weakly to a standard Brownian motion B = (Bt )t∈[0,1] [5], The-

orem 16.1. The idea of Sottinen [21] is to combine these random walks with a pointwise ap-
proximation of the kernel in representation (15). Define the pointwise approximation of z(t, s)

as

z(n)(t, s) := n

∫ s

s−1/n

z

(�nt�
n

,u

)
du.
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The sequence of binary random walks

B
H,n
t :=

∫ t

0
z(n)(t, s)dB(n)

s =
�nt�∑
i=1

n

∫ i/n

(i−1)/n

z

(�nt�
n

, s

)
ds

1√
n
ξ

(n)
i

then converges weakly to a fractional Brownian motion (BH
t )t∈[0,1] in the Skorokhod space

D([0,1],R) [21], Theorem 1.
A major advantage of the binary random walks is that we can avoid the difficult Wick product

for random variables with continuous distributions. We approximate this operator on the binary
random walks by discrete Wick products.

For any n ∈ N, let (ξn
1 , ξn

2 , . . . , ξn
n ) be the n-tuple of independent and identically distributed

symmetric Bernoulli random variables for the binary random walk B
H,n
t . The discrete Wick prod-

uct is defined as ∏
i∈A

ξn
i �n

∏
i∈B

ξn
i :=

⎧⎨⎩
∏

i∈A∪B

ξn
i , if A ∩ B = ∅,

0, otherwise,

where A,B ⊆ {1, . . . , n}. We denote by

Fn := σ(ξn
1 , ξn

2 , . . . , ξn
n )

the σ -field generated by the Bernoulli variables. Define

	n
A :=

∏
i∈A

ξn
i .

Clearly, the family of functions {	n
A :A ⊆ {1, . . . , n}} is an orthonormal set in L2(�, Fn,P ).

Since its cardinality is equal to the dimension of L2(�, Fn,P ), it constitutes a basis. Thus,
every X ∈ L2(�, Fn,P ) has a unique expansion, called the Walsh decomposition,

X =
∑

A⊆{1,...,n}
xn
A	n

A,

where xn
A ∈ R. The Walsh decomposition can be regarded as a discrete version of the chaos ex-

pansion. By algebraic rules, one obtains, for X = ∑
A⊆{1,...,n} xn

A	n
A and Y = ∑

B⊆{1,...,n} yn
B	n

B ,

X �n Y =
∑

C⊆{1,...,n}

( ∑
A∪B=C
A∩B=∅

xn
Ayn

B

)
	n

C.

Furthermore, the L2-inner product can be computed in terms of the Walsh decomposition as

E[XY ] =
∑

A⊆{1,...,n}
xn
Ayn

A. (17)
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There exists an analogous formula for the Wick product on the white noise space via chaos
expansions that justifies the analogy between the discrete and ordinary Wick calculus (cf. Kuo
[14]). For more information on the discrete Wick product, we refer to Holden et al. [10]. More
generally, the introduction of a discrete Wiener chaos depends on the class of discrete random
variables (ξn

1 , ξn
2 , . . . , ξn

n ). We refer to Gzyl [9] for a survey of other discrete Wiener chaos ap-
proaches.

The representation

B
H,n
t =

�nt�∑
i=1

bn
t,iξ

n
i with bn

t,i := √
n

∫ i/n

(i−1)/n

z

(�nt�
n

, s

)
ds

is the Walsh decomposition for the binary random walk approximating BH in L2(�, Fn,P ).
Note that bn

t,i = bn�nt�/n,i . Thus, we can consider B
H,n
t = B

H,n
�nt�/n as a process in discrete time.

We can now state our first convergence result.

Theorem 1. Suppose that:

1. limn→∞ an,k = ak exists for all k ∈ N;
2. there exists a C ∈ R+ such that |an,k| ≤ Ck for all n, k ∈ N.

The sequence of processes
∑n

k=0
an,k

k! (BH,n)�nk then converges weakly to the Wick power series∑∞
k=0

ak

k! (B
H )�k in the Skorokhod space D([0,1],R).

The proof is given in Sections 5 and 6.
Consider now the following recursive system of Wick difference equations:

U
k,n
l = U

k,n
l−1 + kU

k−1,n
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, U

0,n
l = 1, U

k,n
0 = 0, (18)

for all l = 1, . . . , n and k ∈ N. This is the discrete counterpart of the recursive system of SDEs in
(11). We observe that U0,n = 1 = (BH,n)�n0 and U1,n = (BH,n)�n1, but

U
2,n
2 = 2B

H,n
1/n �n B

H,n
2/n �= B

H,n
2/n �n B

H,n
2/n = (B

H,n
2/n )�n2.

Thus, in contrast to the continuous case in (11), the discrete Wick powers are not the solutions
for (18) if k ≥ 2.

However, we can prove a variant of Theorem 1, based on the system of recursive Wick differ-
ence equations, whose proof will also be given in Sections 5 and 6.

Theorem 2. Under the assumptions of Theorem 1, define Ũ
k,n
t := U

k,n
�nt� as the piecewise con-

stant interpolation of (18).
The sequence of processes

∑n
k=0

an,k

k! Ũ k,n then converges weakly to the Wick power series∑∞
k=0

ak

k! (B
H )�k in the Skorokhod space D([0,1],R).



398 C. Bender and P. Parczewski

Example 1 (Wick powers of a fractional Brownian motion). For an,k = l!1{k=l},

(BH,n)�nl d−→ (BH )�l ,

Ũ l,n d−→ (BH )�l .

Example 2 (Geometric fractional Brownian motion). For an,k = ak = 1, we have

exp�n(B
H,n
t ) :=

�nt�∑
k=0

1

k! (B
H,n
t )�nk d→ exp�(BH ),

S̃n :=
n∑

k=0

1

k! Ũ
k,n d−→ exp�(BH ).

Observe that by summing up the recursive system of Wick difference equations (18), we obtain

Sn
l = Sn

l−1 + Sn
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, Sn

0 = 1, (19)

for l = 1, . . . , n, where Sn
l = S̃n

l/n. Hence, the piecewise constant interpolation of (19) converges
weakly to the solution of the fractional Doléans–Dade equation (13).

The reasoning of the previous example can be generalized as follows.

Theorem 3 (Linear SDE with drift). Suppose μ, s0 ∈ R, σ > 0. Then S̃n
t := Sn�nt�, where Sn is

the solution of the Wick difference equation

Sn
l =

(
1 + μ

n

)
Sn

l−1 + σSn
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, Sn

0 = s0, l = 1, . . . , n, (20)

converges weakly to the solution of the linear SDE with drift

dSt = μSt dt + σSt d�BH
t , S0 = s0, (21)

in the Skorokhod space D([0,1],R).

Proof. First, observe that for σn → σ > 0 and ãn,k = an,kσ
k
n , we obtain, by Theorem 2, that

Ṽ n :=
n∑

k=0

an,k

k! σk
n Ũk,n d−→

∞∑
k=0

ak

k! (σBH )�k.

With the choice an,k := 1 and

σn := σ

1 + μ/n
→ σ as n → ∞,
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we observe by (18) that V n
l := Ṽ n

l/n satisfies

V n
l = V n

l−1 +
(

σ

1 + μ/n

)
V n

l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, V n

0 = 1, l = 1, . . . , n.

Consider now the piecewise constant function (W̃ n
t )t∈[0,1] determined by W̃n

t := Wn�nt� and

Wn
l =

(
1 + μ

n

)
Wn

l−1, Wn
0 = s0, l = 1, . . . , n.

By this well-known Euler scheme,

(W̃ n
t )t∈[0,1] −→ s0(exp(μt))t∈[0,1] (22)

in the sup-norm on [0,1]. The product

V n
l Wn

l =
(

1 + μ

n

)
V n

l−1W
n
l−1 +

[(
σ

1 + μ/n

)
V n

l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)](
1 + μ

n

)
Wn

l−1

=
(

1 + μ

n

)
V n

l−1W
n
l−1 + σV n

l−1W
n
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
,

V n
0 Wn

0 = s0, l = 1, . . . , n,

satisfies the Wick difference equation (20) for Sn
l = V n

l Wn
l . The multiplication by the determin-

istic function s0 exp(μt) is continuous on the Skorokhod space. Thus, with (22) and Billingsley
[5], Theorem 4.1, we obtain

(S̃n
t )t∈[0,1] = (Ṽ n

t W̃ n
t )t∈[0,1]

d−→ s0(exp(μt) exp�(σBH
t ))t∈[0,1]

in the Skorokhod space D([0,1],R). As s0 exp(μt) exp�(σBH
t ) solves the SDE (21) (cf. Mishura

[15], Theorem 3.3.2), the proof is complete. �

Remark 1. Theorem 3 holds with additional approximations (σn,μn) → (σ,μ).

Remark 2. Theorem 3 was conjectured by Bender and Elliott [3] in their study of the discrete
Wick-fractional Black–Scholes market. They deduced an arbitrage in this model for sufficiently
large n. Although the arbitrage or no-arbitrage property is not preserved by weak convergence,
this model showed that it is even possible to obtain arbitrage in this simple discrete Wick frac-
tional market model. In a recent work [23], Valkeila shows that an alternative approximation to
the exponential of a fractional Brownian motion by a superposition of some independent renewal
reward processes leads to an arbitrage-free and complete model. We refer to Gaigalas and Kaj
[8] for a general limit discussion for these superposition processes.

Theorem 4 (Linear system of SDEs). The piecewise constant interpolation

(X̃n
t , Ỹ n

t )T := (
Xn�nt�, Y n�nt�

)T
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for the solution of the linear system of Wick difference equations

Xn
l = Xn

l−1 + (A1X
n
l−1 + A2Y

n
l−1) �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, Xn

0 = x0, l = 1, . . . , n,

Y n
l = Yn

l−1 + (B1X
n
l−1 + B2Y

n
l−1) �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, Y n

0 = y0, l = 1, . . . , n,

converges weakly to the solution (X,Y )T of the corresponding linear system of SDEs (1) in the
Skorokhod space D([0,1],R)2.

Proof. Analogously to (14), we obtain, by the recursive system of Wick difference equations for
Uk,n in (18), the coefficients for the solution of the systems of difference equations

Xn
l =

∞∑
k=0

ak

k! U
k,n
l , Y n

l =
∞∑

k=0

bk

k! U
k,n
l ,

recursively by

a0 = x0, b0 = y0, ak = A1ak−1 + A2bk−1, bk = B1ak−1 + B2bk−1.

We define the upper bound

MAB := 2 max{|A1|, |A2|, |B1|, |B2|}.

Suppose that r1, r2 ∈ R are arbitrary. By the linear system and (18), the sequence of processes

r1X̃
n + r2Ỹ

n =
n∑

k=0

(
r1ak + r2bk

k!
)

Ũ k,n

fulfils the conditions in Theorem 2 with

|r1ak + r2bk| ≤ max{|x0|, |y0|}(|r1| + |r2|)Mk
AB.

Thus, we obtain the weak convergence

r1X̃
n + r2Ỹ

n d−→
∞∑

k=0

(
r1ak + r2bk

k!
)

(BH,n)�k = r1X + r2Y.

The Cramér–Wold device (Billingsley [5], Theorem 7.7) can now be used to complete the
proof. �

Remark 3. Theorem 4 can be extended to higher-dimensional linear cases. It also holds for an
additional approximation of the coefficients An,i → Ai and Bn,i → Bi for n → ∞.
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Example 3 (Wick-sine and Wick-cosine). The piecewise constant interpolation of

Xn
l = Xn

l−1 + Yn
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, Xn

0 = 0, l = 1, . . . , n,

Y n
l = Yn

l−1 − Xn
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, Y n

0 = 1, l = 1, . . . , n,

converges weakly to the solution of the linear system

dXt = Yt d�BH
t , X0 = 0,

dYt = −Xt d�BH
t , Y0 = 1,

the process (sin�(BH
t ), cos�(BH

t ))T. By Theorem 1, it can also be approximated by the discrete
Wick version functional (sin�n(B

H,n
t ), cos�n(B

H,n
t ))T.

4. Walsh decompositions and L2-estimates

In this section, we give the Walsh decompositions for the approximating sequences and obtain
some L2-estimates. A key to the approximation results will be the convergence of the L2-norms
of the discrete Wick powers of B

H,n
t to the corresponding L2-norms of the Wick powers of BH

t .

Recall the Walsh decomposition B
H,n
t = ∑�nt�

i=1 bn
t,iξ

n
i . Define

bn
t,A :=

∏
i∈A

bn
t,i , 	n

A :=
∏
i∈A

ξn
i , dn

l,i := bn
l/n,i − bn

(l−1)/n,i

for l = 1, . . . , n. Note that dn
i,i = bn

i/n,i , dn
l,i = 0, for i > l and that the increment has the repre-

sentation

B
H,n
l/n − B

H,n
(l−1)/n =

l∑
i=1

dn
l,iξ

n
i .

Recall the recursive system of Wick difference equations,

U
k,n
l = U

k,n
l−1 + kU

k−1,n
l−1 �n

(
B

H,n
l/n − B

H,n
(l−1)/n

)
, U

0,n
l = 1, U

k,n
0 = 0, (23)

for l = 1, . . . , n and k ∈ N.

Proposition 1. For all n, k ∈ N and l = 0, . . . , n, we have the Walsh decompositions

1

k!U
k,n
l =

∑
C⊆{1,...,l}

|C|=k

( ∑
m:C→{1,...,l}

injective

∏
p∈C

dn
m(p),p

)
	n

C, (24)

1

k! (B
H,n
l/n )�nk =

∑
C⊆{1,...,l}

|C|=k

bn
l/n,C	n

C, (25)
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1

k! (B
H,n
l/n )�nk − 1

k!U
k,n
l =

∑
C⊆{1,...,l}

|C|=k

( ∑
m:C→{1,...,l}
not injective

∏
p∈C

dn
m(p),p

)
	n

C. (26)

Proof. We use the conventions that an empty sum is zero, an empty product is one and that there
exists exactly one map from the empty set to an arbitrary set. For these reasons, the formulas
hold for k = 0 or l = 0. We prove (24) by induction as follows. For all l = 0, . . . , n and all k ∈ N,
it is obvious that U

0,n
l = 1 and U

k,n
0 = 0, as in formula (24). Suppose the formula is proved for

all positive integers less than or equal to a certain k and all l = 0, . . . , n. Furthermore, for k + 1,
suppose the formula is proved for all positive integers less than or equal to a certain l. For k + 1
and l + 1, we compute, by the difference equation (23) and the induction hypothesis,

U
k+1,n
l+1 − U

k+1,n
l = (k + 1)k!

( ∑
C⊆{1,...,l}

|C|=k

∑
m:C→{1,...,l}

injective

∏
p∈C

dn
m(p),p	n

C

)
�n

l+1∑
i=1

dn
l+1,iξ

n
i

= (k + 1)!
∑

C⊆{1,...,l}
i∈{1,...,l+1}
|C|=k,i /∈C

∑
m:C→{1,...,l}

injective

∏
p∈C

dn
m(p),pdn

l+1,i	
n
C∪{i} (27)

= (k + 1)!
∑

C′⊆{1,...,l+1}
|C′|=k+1

∑
m′:C′→{1,...,l+1}

injective, ∃q:m(q)=l+1

∏
p∈C′

dn
m(p),p	n

C′ .

Note that dm,p = 0 for all p − 1 ≥ m. Thus, by the induction hypothesis,

U
k+1,n
l = (k + 1)!

∑
C⊆{1,...,l+1}

|C|=k+1

∑
m:C→{1,...,l+1}

injective, ∀q:m(q)<l+1

∏
p∈C

dn
m(p),p	n

C. (28)

Thanks to equations (27) and (28), we obtain (24). In particular, U
k,n
l = 0 for all k > l. We now

compute the kth Wick power of (B
H,n
l/n ) as follows:

(
n∑

i=1

bn
l/n,iξ

n
i

)�nk

=
l∑

i1,i2,...,ik=1
pairwise distinct

(
k∏

j=1

bn
l/n,ij

k∏
j=1

ξn
ij

)

=
∑

C⊆{1,...,l}
|C|=k

k!
(∏

i∈C

bn
l/n,i

∏
i∈C

ξn
i

)
=

∑
C⊆{1,...,l}

|C|=k

k!bn
l/n,C	n

C.

In particular, (B
H,n
l/n )�nk = 0 for all k > l. This yields (25).
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The telescoping sum yields

l∑
m(p)=1

dn
m(p),p =

l∑
m(p)=p

dn
m(p),p =

l∑
m(p)=p

(
bn
m(p)/n,p − bn

(m(p)−1)/n,p

) = bn
l/n,p

and thus we get

∑
m:C→{1,...,l}

∏
p∈C

dn
m(p),p =

∏
p∈C

(
l∑

m(p)=1

dn
m(p),p

)
=

∏
p∈C

bn
l/n,p = bn

l/n,C. (29)

Equation (26) is, thus, implied by (24) and (25). �

In the following propositions, we obtain some elementary estimates for the L2-norm of dis-
crete Wick powers of B

H,n
t .

Proposition 2. For all t ∈ [0,1] and i ∈ {1, . . . , �nt�},
bn
t,i ≤ 2cH n−(1−H).

Proof. We estimate

bn
t,i = n1/2cH

(
H − 1

2

)∫ i/n

(i−1)/n

s1/2−H

∫ �nt�/n

s

uH−1/2(u − s)H−3/2 duds

≤ n1/2cH

(
H − 1

2

)∫ i/n

(i−1)/n

s1/2−H

(�nt�
n

)H−1/2 1

H − 1/2

(�nt�
n

− s

)H−1/2

ds

≤ n1/2cH

1

3/2 − H

((
i

n

)3/2−H

−
(

i − 1

n

)3/2−H )(�nt�
n

)2(H−1/2)

.

Since t ≤ 1, 1
3/2−H

≤ 2 and |x|3/2−H − |y|3/2−H ≤ |x − y|3/2−H , the assertion follows. �

Remark 4. Observe that

E[BH,n
t BH,n

s ] = E

[ �nt�∑
i1,i2=1

bn
t,i1

bn
s,i2

ξn
i1
ξn
i2

]
=

�nt�∑
i=1

(bn
t,ib

n
s,i). (30)

By Nieminen [19], we thus get, for any s, t ∈ [0,1], the following convergence:

E[BH,n
t BH,n

s ] =
�nt�∑
i=1

n

∫ i/n

(i−1)/n

z

(�nt�
n

,u

)
du

∫ i/n

(i−1)/n

z

(�ns�
n

,u

)
du

(31)

−→
∫ 1

0
z(t, u)z(s, u)du = E[BH

t BH
s ].
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Moreover, we have, by the Cauchy–Schwarz inequality, the upper bound

E[(BH,n
t − BH,n

s )2] =
�nt�∑
i=1

(√
n

∫ i/n

(i−1)/n

(
z

(�nt�
n

,u

)
du − z

(�ns�
n

,u

))
du

)2

≤
�nt�∑
i=1

∫ i/n

(i−1)/n

(
z

(�nt�
n

,u

)
− z

(�ns�
n

,u

))2

du (32)

=
∣∣∣∣�nt�

n
− �ns�

n

∣∣∣∣2H

.

Proposition 3. For all t ≥ s in [0,1] and all N ∈ N such that �ns� ≥ N , we have

0 ≤ E[(BH,n
t )2]N + E[(BH,n

s )2]N − 2E[BH,n
t BH,n

s ]N

− 1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2] (33)

≤ 2c2
H N2t2H(N−1)n−(2−2H).

In particular,

lim
n→∞ E

[(
(B

H,n
t )�nN − (BH,n

s )�nN
)2] = E

[(
(BH

t )�N − (BH
s )�N

)2]
.

Proof. As N ≤ �ns�, we get, making use of Proposition 1, (17) and (30) in Remark 4,

1

N !E[(BH,n
t )�nN (BH,n

s )�nN ]

= 1

N !E
[(

N !
∑

C⊆{1,...,�nt�}
|C|=N

bn
t,C	n

C

)(
N !

∑
C⊆{1,...,�ns�}

|C|=N

bn
s,C	n

C

)]

= N !
∑

C⊆{1,...,�nt�}
|C|=N

bn
t,Cbn

s,C (34)

=
�nt�∑

i1,...,iN=1

N∏
j=1

(bn
t,ij

bn
s,ij

) −
�nt�∑

i1,...,iN=1
∃k,l : ik=il

N∏
j=1

(bn
t,ij

bn
s,ij

)

= E[BH,n
t BH,n

s ]N −
�nt�∑

i1,...,iN=1
∃k,l : ik=il

N∏
j=1

(bn
t,ij

bn
s,ij

).
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Thus, we have

E[(BH,n
t )2]N + E[(BH,n

s )2]N − 2E[BH,n
t BH,n

s ]N

− 1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2]

(35)

=
�nt�∑

i1,...,iN=1
∃k,l : ik=il

(
N∏

j=1

(bn
t,ij

)2 +
N∏

j=1

(bn
s,ij

)2 − 2
N∏

j=1

(bn
t,ij

bn
s,ij

)

)

=
�nt�∑

i1,...,iN=1
∃k,l : ik=il

(
N∏

j=1

(bn
t,ij

) −
N∏

j=1

(bn
s,ij

)

)2

≥ 0.

Hence, the left-hand side of the inequality in (33) follows. By Proposition 2, (30) and (32) in
Remark 4, as well as | �nt�

n
| ≤ t , we obtain

�nt�∑
i1,...,iN=1
∃k,l : ik=il

(
N∏

j=1

(bn
t,ij

) −
N∏

j=1

(bn
s,ij

)

)2

≤
�nt�∑

i1,...,iN=1
∃k,l : ik=il

(
N∏

j=1

(bn
t,ij

)

)2

≤
(

N

2

)(
max

i
(bn

t,i )
2
) �nt�∑

i1,...,iN−1=1

(
N−1∏
j=1

(bn
t,ij

)

)2

(36)

≤ 2c2
H N2E[(BH,n

t )2]N−1n−(2−2H) ≤ 2c2
HN2t2H(N−1)n−(2−2H) → 0

for n → ∞. The representation of Wick powers of BH
t by Hermite polynomials, as in (9),

their orthonormality (cf. Kuo [14], page 355) and the polarization identity collectively yield
E[(BH

t )�N(BH
s )�N ] = N !E[(BH

t )(BH
s )]N (cf. also [20], Lemma 1.1.1). Thus, we have, by (35),

E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2] − E

[(
(BH

t )�N − (BH
s )�N

)2]
= N !(E[(BH,n

t )2]N − E[(BH
t )2]N + E[(BH,n

s )2]N − E[(BH
s )2]N

− 2E[BH,n
t BH,n

s ]N + 2E[BH
t BH

s ]N )
− N !

�nt�∑
i1,...,iN=1
∃k,l : ik=il

(
N∏

j=1

(bn
t,ij

) −
N∏

j=1

(bn
s,ij

)

)2

.

Applying the convergences (36) and (31) yields

E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2] − E

[(
(BH

t )�N − (BH
s )�N

)2] → 0. �
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Remark 5. In particular, we obtain, by (34), (32) and | �nt�
n

| ≤ t ,

∑
C⊆{1,...,�nt�}

|C|=N

(bn
t,C)2 =

(
1

N !
)2

E[((BH,n
t )�nN )2]

(37)

≤ 1

N !E[(BH,n
t )2]N ≤ 1

N !
∣∣∣∣�nt�

n

∣∣∣∣2HN

≤ 1

N ! t
2HN.

The next proposition estimates the difference between the approximating sequences in Theo-
rems 1 and 2.

Proposition 4. Under the assumptions of Theorem 1, there exists a constant K > 0 such that for
all t ∈ [0,1], n ≥ 1 and k ∈ N,

E

[∣∣∣∣∣
n∑

k=0

an,k

k! (B
H,n
t )�nk −

n∑
k=0

an,k

k! Ũ
k,n
t

∣∣∣∣∣
2]

≤ Kn1−2H (38)

for the approximating processes in Theorems 1 and 2.

Proof. Recall that dn
r,i = bn

r/n,i − bn
(r−1)/n,i = √

n
∫ i/n

(i−1)/n(z(
r
n
, s) − z( r−1

n
, s))ds. By (32) in

Remark 4, we obtain

(dn
r,i )

2 ≤
r∑

i=1

(dn
r,i )

2 ≤
∣∣∣∣ rn − r − 1

n

∣∣∣∣2H

= n−2H .

Thus, we have dn
r,i ≤ n−H for all i, n, r ≥ 1. Hence, we obtain, as the sum in (29) telescopes, for

|C| ≥ 2, ∑
m:C→{1,...,�nt�}

not injective

∏
l∈C

dn
m(l),l =

∑
m:C→{1,...,�nt�}

∃u,v∈C : m(u)=m(v)

∏
l∈C

dn
m(l),l

=
∑
u∈C

∑
m:C\{u}→{1,...,�nt�}

( ∏
l∈C\{u}

dn
m(l),l

) ∑
v∈C\{u}

dn
m(v),u (39)

≤ max
i,r

dn
r,i(|C| − 1)

∑
C′⊂C

|C′|=|C|−1

∑
m:C′→{1,...,�nt�}

∏
l∈C′

dn
m(l),l

≤ n−H (|C| − 1)
∑

C′⊂C

|C′|=|C|−1

bn
t,C′ .
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By (26), (39), (37) and since (�nt� − (k − 1)) ≤ n, we obtain, for k ≥ 1,

E
[∣∣∣∣ 1

k!
(
(B

H,n
t )�nk − Ũ

k,n
t

)∣∣∣∣2]

≤
∑

C⊆{1,...,�nt�}
|C|=k

(
n−H (k − 1)

∑
C′⊂C

|C′|=|C|−1

bn
t,C′

)2

≤ n−2H (k − 1)2
∑

C⊆{1,...,�nt�}
|C|=k

(k − 1)
∑

C′⊂C

|C′|=|C|−1

(bn
t,C′)2

≤ n−2H (k − 1)3(�nt� − (k − 1)
) ∑

C′⊆{1,...,�nt�}
|C′|=k−1

(bn
t,C′)2 ≤ (k − 1)3

(k − 1)! t
2H(k−1)n1−2H .

Since an,k ≤ Ck in Theorems 1 and 2, and ((B
H,n
t )�nk − Ũ

k,n
t ) are zero for k = 0,1 and orthog-

onal for different k by Proposition 1 and (17), we get

E

[∣∣∣∣∣
n∑

k=0

an,k

k! (B
H,n
t )�nk −

n∑
k=0

an,k

k! Ũ
k,n
t

∣∣∣∣∣
2]

=
�nt�∑
k=2

E
[∣∣∣∣an,k

k!
(
(B

H,n
t )�nk − Ũ

k,n
t

)∣∣∣∣2]
≤

( ∞∑
k=2

C2k (k − 1)3

(k − 1)! t
2H(k−1)

)
n1−2H .

As the series on the right-hand side converges uniformly in t ∈ [0,1], the assertion follows. �

5. Convergence of the finite-dimensional distributions

We first prove that Theorems 1 and 2 hold with weak convergence replaced by convergence of
the finite-dimensional distributions. To this end, we first approximate the Wick powers of BH

t by
induction. We then combine these convergence results to approximate the Wick analytic func-
tionals F �(BH

t ) = ∑∞
k=0

ak

k! (B
H
t )�k . Finally, we conclude that convergence in finite dimensions

holds in Theorem 2.
We observed in Section 2 that (BH

t )�N = hN
|t |2H (BH

t ) and that the Hermite recursion formula

(BH
t )�(N+1) = (BH

t )(BH
t )�N − |t |2H N(BH

t )�(N−1) (40)

holds. For the discrete Wick powers of the discrete variables, we now obtain a discrete variant of
(40).
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Proposition 5 (Discrete Hermite recursion). For all N ≥ 1 and t ∈ [0,1],

(B
H,n
t )�n(N+1) = B

H,n
t (B

H,n
t )�nN − NE[(BH,n

t )2](BH,n
t )�n(N−1) + R(B

H,n
t ,N), (41)

with remainder

R(B
H,n
t ,N) = N !

∑
C⊆{1,...�nt�}

|C|=N−1

bn
t,C	n

C

∑
i∈C

(bn
t,i )

2 (42)

and

E[(R(B
H,n
t ,N))2] ≤ 16c4

H N !N3n−(4−4H). (43)

In particular, we will use the fact that the discrete Hermite recursion (41) converges weakly to
Hermite recursion (40) for n → ∞.

Proof. By Proposition 1, we get

(B
H,n
t )�n(N+1) = B

H,n
t �n (B

H,n
t )�nN =

(�nt�∑
i=1

bn
t,iξ

n
i

)
�n

( ∑
A⊆{1,...,�nt�}

|A|=N

N !bn
t,A	n

A

)
(44)

= B
H,n
t (B

H,n
t )�nN −

∑
A⊆{1,...,�nt�}

|A|=N

∑
i∈A

N !bn
t,ib

n
t,A	n

Aξn
i .

For the second term in the last line in equation (44), by (30) in Remark 4 and Proposition 1, we
obtain ∑

A⊆{1,...,�nt�}
|A|=N

∑
i∈A

N !bn
t,ib

n
t,A	n

Aξn
i

= N !
∑

A⊆{1,...,�nt�}
|A|=N

∑
i∈A

bn
t,A\{i}	n

A\{i}(bn
t,iξ

n
i )2 = N !

∑
C⊆{1,...,�nt�}

|C|=N−1

bn
t,C	n

C

∑
i /∈C

(bn
t,i)

2

= N(N − 1)!
∑

C⊆{1,...,�nt�}
|C|=N−1

bn
t,C	n

C

(�nt�∑
i=1

(bn
t,i )

2 −
∑
i∈C

(bn
t,i )

2

)

= N(B
H,n
t )�n(N−1)E[(BH,n

t )2] − N !
∑

C⊆{1,...,�nt�}
|C|=N−1

bn
t,C	n

C

∑
i∈C

(bn
t,i )

2,
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which yields (41) and (42). Thus, thanks to Proposition 2, Remark 5 and t ≤ 1, we obtain

E[(R(B
H,n
t ,N))2] = (N !)2

∑
C⊆{1,...,�nt�}

|C|=N−1

(bn
t,C)2

(∑
i∈C

(bn
t,i)

2
)2

≤ (N !)2 1

(N − 1)! t
2H(N−1)

(
(N − 1)4c2

H n−(2−2H)
)2

≤ 16c4
H N !N3n−(4−4H). �

Theorem 5. For all N ∈ N,

(1,BH,n, . . . , (BH,n)�nN )
f d−→ (1,BH , . . . , (BH )�N). (45)

Proof. The proof proceeds by induction on N . By Sottinen’s approximation, (1,BH,n)
f d−→

(1,BH ). Suppose that equation (45) is proved for some N ≥ 1. Assume that k ∈ N and r
j
i ∈ R for

j = 0, . . . ,N + 1 , i = 1, . . . , k and t1, t2, . . . , tk ∈ [0,1] are chosen arbitrarily. By the pointwise
convergence E[(BH,n

t )2] → |t |2H and the generalized continuous mapping theorem (Billingsley
[5], Theorem 5.5), the induction hypothesis implies that

N∑
l=0

(
k∑

j=1

rl
j (B

H,n
tj

)�nl

)
+

k∑
j=1

rN+1
j

(
B

H,n
tj

(B
H,n
tj

)�nN − NE[(BH,n
tj

)2](BH,n
tj

)�n(N−1)
)

d−→
N∑

l=0

(
k∑

j=1

rl
j (B

H
tj

)�l

)
+

k∑
j=1

rN+1
j

(
BH

tj
(BH

tj
)�N − N |tj |2H (BH

tj
)�(N−1)

)
.

Since H > 1
2 , (43) yields R(B

H,n
t ,N) −→ 0 in L2(�,P ). Thus, by Slutsky’s theorem [5], The-

orem 4.1, and the Hermite recursions (40) and (41), we obtain

N+1∑
l=0

(
k∑

j=1

rl
j (B

H,n
tj

)�nl

)
d−→

N+1∑
l=0

(
k∑

j=1

rl
j (B

H
tj

)�l

)
.

By the Cramér–Wold device (Billingsley [5], Theorem 7.7), we have

(1,BH,n, . . . , (BH,n)�nN+1)
f d−→ (1,BH , . . . , (BH )�N+1)

and the induction is complete. �

Proposition 6. In the context of Theorem 1, convergence holds in finite-dimensional distribu-
tions.
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Proof. By Billingsley [5], Theorem 4.2, it suffices to show that the following three conditions
hold:

∀m ∈ N,

m∑
k=0

an,k

k! (B
H,n
t )�nk f d−→

m∑
k=0

ak

k! (B
H
t )�k as n → ∞; (46)

∀t ∈ [0,1], lim
m→∞ lim sup

n→∞
E

[∣∣∣∣∣
n∑

k=0

an,k

k! (B
H,n
t )�nk −

m∑
k=0

an,k

k! (B
H,n
t )�nk

∣∣∣∣∣ ∧ 1

]
= 0; (47)

m∑
k=0

ak

k! (B
H
t )�k f d−→

∞∑
k=0

ak

k! (B
H
t )�k as m → ∞. (48)

Condition (46) follows directly from Theorem 5 and the generalized continuous mapping theo-
rem ([5], Theorem 5.5). For the second condition, we compute

E

[(
n∑

k=0

an,k

k! (B
H,n
t )�k −

m∑
k=0

an,k

k! (B
H,n
t )�nk

)2]

= E

[(
n∑

k=m+1

an,k

k! (B
H,n
t )�nk

)2]

=
n∑

k=m+1

(
an,k

k!
)2

E[((BH,n
t )�nk)2] ≤

n∑
k=m+1

(
Ck

k!
)2

k!t2Hk,

applying the estimate of Remark 5. Here, we used the fact that discrete Wick powers of different

orders are orthogonal. Thus, we even obtain limm→∞ lim supn→∞
∑n

k=m+1
C2k

k! = 0 and, for all
t ∈ [0,1], a stronger result than condition (47),

lim
m→∞ lim sup

n→∞
E

[(
n∑

k=0

an,k

k! (B
H,n
t )�k −

m∑
k=0

an,k

k! (B
H,n
t )�nk

)2]
= 0.

By the orthogonality of the different Wick powers, we have

E

[( ∞∑
k=m+1

ak

k! (B
H
t )�k

)2]
=

∞∑
k=m+1

(
ak

k!
)2

E[((BH
t )�k)2] ≤

∞∑
k=m+1

(
C2k

k!
)

t2Hk → 0

for m → ∞, which implies that condition (48) even holds in L2(�,P ). �

In view of Proposition 4 and Slutsky’s theorem, the previous proposition also implies the
following.

Proposition 7. In the context of Theorem 2, convergence holds in finite-dimensional distribu-
tions.



Approximating a GFBM and related processes 411

6. Tightness

We now show the tightness of the sequences in Theorems 1 and 2 by the following criterion,
which is a variant of Theorem 15.6 in Billingsley [5].

Theorem 6. Suppose that, for the random elements Yn in the Skorokhod space D([0,1],R) and∑∞
k=0

ak

k! (B
H )�k in C([0,1],R),

Yn f d−→
∞∑

k=0

ak

k! (B
H )�k,

and for s ≤ t in [0,1],

E[(Y n
t − Yn

s )2] ≤ L

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

,

where L > 0 is a constant. Then Yn converges weakly to
∑∞

k=0
ak

k! (B
H )�k in D([0,1],R).

Proof. Let s < t < u in [0,1]. By the Cauchy–Schwarz inequality,

E[|Yn
t − Yn

s ||Yn
u − Yn

t |]
≤ (E[|Yn

t − Yn
s |2])1/2(E[|Yn

u − Yn
t |2])1/2

≤ L

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣H ∣∣∣∣�nu�
n

− �nt�
n

∣∣∣∣H ≤ L

∣∣∣∣�nu�
n

− �ns�
n

∣∣∣∣2H

.

If u − s ≥ 1
n

, we have, since �nu� ≤ nu and −�ns� ≤ −ns + 1,∣∣∣∣�nu�
n

− �ns�
n

∣∣∣∣2H

≤ (
2(u − s)

)2H

and thus

E[|Yn
t − Yn

s ||Yn
u − Yn

t |] ≤ L22H (u − s)2H . (49)

If u − s < 1
n

, then we have either �ns� = �nt� or �nt� = �nu� and so the left-hand side in
(49) is zero. Thus, the inequality (49) holds for all s < t < u. By the convergence of the
finite-dimensional distributions and [5], Theorem 15.6, we get the weak convergence of the
processes. �

For the application of this criterion to the discrete Wick powers, we need two lemmas.

Lemma 1. Let (X, 〈·, ·〉) be a real inner product space and ‖x‖ := 〈x, x〉 the corresponding
norm on X. Then, for all x, y ∈ X and N ≥ 1,

‖x‖2N + ‖y‖2N − 2(〈x, y〉)N ≤ 2N+1(‖x‖ + ‖y‖)2(N−1)‖x − y‖2.
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Proof. It holds that

2(〈x, y〉)N = 2

(
1

2
(‖x‖2 + ‖y‖2 − ‖x − y‖2)

)N

= 1

2N−1

[
(‖x‖2 + ‖y‖2)N +

N−1∑
k=0

(
N

k

)
(‖x‖2 + ‖y‖2)k(−1)N−k‖x − y‖2(N−k)

]

= 1

2N−1
(‖x‖2 + ‖y‖2)N

− ‖x − y‖2 1

2N−1

N−1∑
k=0

(
N

k

)
(‖x‖2 + ‖y‖2)k(−1)N−k−1‖x − y‖2(N−k−1).

Hence, we get

‖x‖2N + ‖y‖2N − 2(〈x, y〉)N

= ‖x‖2N + ‖y‖2N − 1

2N−1
(‖x‖2 + ‖y‖2)N (50)

+ ‖x − y‖2 1

2N−1

N−1∑
k=0

(
N

k

)
(‖x‖2 + ‖y‖2)k(−1)N−k−1‖x − y‖2(N−k−1).

Since ( 1
2 )N−1 ∑N

k=0

(
N
k

) = 2, the first line on the right-hand side of (50) can be treated as
follows:

‖x‖2N + ‖y‖2N − 1

2N−1
(‖x‖2 + ‖y‖2)N

(51)

= 1

2N−1

N−1∑
k=1

(
N

k

)(‖x‖2N + ‖y‖2N

2
− ‖x‖2k‖y‖2(N−k)

)
.

As
(
N
k

) = (
N

N−k

)
, we now collect the corresponding summands in sum (51) for k �= N

2 . We obtain,
by the mean value theorem with

Mx,y := max
λ∈[0,1]

(
λ‖x‖ + (1 − λ)‖y‖) = max{‖x‖,‖y‖}

and since k(N − k) ≤ N2

4 ,

‖x‖2N + ‖y‖2N − ‖x‖2k‖y‖2(N−k) − ‖x‖2(N−k)‖y‖2k

= (‖x‖2k − ‖y‖2k)
(‖x‖2(N−k) − ‖y‖2(N−k)

)
≤ 2kM2k−1

x,y ‖x − y‖2(N − k)M2(N−k)−1
x,y ‖x − y‖ ≤ N2M2(N−1)

x,y ‖x − y‖2.
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Analogously, we obtain, for k = N
2 ,

‖x‖2N + ‖y‖2N

2
− ‖x‖N‖y‖N = 1

2
(‖x‖N − ‖y‖N)2 ≤ 1

2
M2(N−1)

x,y N2‖x − y‖2.

Plugging these estimates into (51) and recalling that ( 1
2 )N−1 ∑N−1

k=1

(
N
k

) 1
2 = (1− 1

2N−1 ), we obtain

‖x‖2N + ‖y‖2N −
(

1

2

)N−1

(‖x‖2 + ‖y‖2)N ≤
(

1 − 1

2N−1

)
N2M2(N−1)

x,y ‖x − y‖2. (52)

For the term in the second line on the right-hand side of (50), we observe that, by the triangle
inequality,

(‖x‖2 + ‖y‖2)k(−1)N−k−1‖x − y‖2(N−k−1)

≤ (‖x‖ + ‖y‖)2k(‖x‖ + ‖y‖)2(N−k−1) = (‖x‖ + ‖y‖)2(N−1).

Applying

Mx,y ≤ ‖x‖ + ‖y‖,
(

1

2

)N−1 N−1∑
k=0

(
N

k

)
= 2 − 1

2N−1
,

and (52) to (50), we have

‖x‖2N + ‖y‖2N − 2(〈x, y〉)N

≤
[(

1 − 1

2N−1

)
N2 +

(
2 − 1

2N−1

)]
(‖x‖ + ‖y‖)2(N−1)‖x − y‖2.

By a short calculation and induction, we obtain(
1 − 1

2N−1

)
N2 +

(
2 − 1

2N−1

)
≤ 1{N �=3}2N + 1{N=3}

17

2
< 2N+1. �

Lemma 2. For all t > s in [0,1], we have

1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2] ≤ 8N

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

.

Proof. For N = 1, the inequality is fulfilled by (32) in Remark 4. For N > 1, we consider the
cases N > �ns� and �ns� ≥ N separately. For �nt� ≥ N > �ns�, we have (B

H,n
s )�nN = 0. Hence,

Proposition 3 and Remark 5 imply that

1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2] = 1

N !E[((BH,n
t )�nN )2] ≤

∣∣∣∣�nt�
n

∣∣∣∣2HN

.
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Since N ≥ 2, 2H > 1 and �nt�
n

≤ 1, we obtain∣∣∣∣�nt�
n

∣∣∣∣2HN

≤
∣∣∣∣�nt�

n

∣∣∣∣2

=
(

1

n

)2(
(�nt� − �ns�) + �ns�)2

≤
(

1

n

)2(
(�nt� − �ns�) + N

)2 ≤
(

1

n

)2(
(�nt� − �ns�)(N + 1)

)2

= (N + 1)2
∣∣∣∣�nt�

n
− �ns�

n

∣∣∣∣2

.

Since (N + 1)2 ≤ 3N for N ≥ 2 and 2H < 2, we obtain

1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2] ≤ 3N

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

for all �nt� ≥ N > �ns�. Recall that, by Proposition 3, for �nt� > �ns� ≥ N ,

1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2]

≤ E[(BH,n
t )2]N + E[(BH,n

s )2]N − 2E[(BH,n
t )(BH,n

s )]N.

For any n ∈ N, we can rewrite

E[(BH,n
t )(BH,n

s )] =
n∑

i=1

bn
t,ib

n
s,i

as an ordinary inner product on R
n of the vectors (bn

t,1, . . . , b
n
t,n)

T and (bn
s,1, . . . , b

n
s,n)

T. Thus,
the application of Lemma 1 with t, s ∈ [0,1] gives

1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2]

≤ 2N+1(E[(BH,n
t )2]1/2 + E[(BH,n

s )2]1/2)2(N−1)E
[(

(B
H,n
t ) − (BH,n

s )
)2]

≤ 2N+122(N−1)

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

≤ 8N

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

.

If N > �nt�, then the left-hand side of the assertion vanishes. �

Remark 6. The proofs for a fractional Brownian motion on some interval [0, T ] ⊂ R follow by
a straightforward modification. As E[(BH,n

t )2] ≤ T 2H for t ∈ [0, T ] and∣∣∣∣�nt�
n

∣∣∣∣2HN

≤ T 2H(N−1)

∣∣∣∣�nt�
n

∣∣∣∣2H

,
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we obtain the previous lemma for t > s in [0, T ] as

1

N !E
[(

(B
H,n
t )�nN − (BH,n

s )�nN
)2] ≤ (8T 2H )N

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

.

We are now able to prove the weak convergence to the Wick analytic functionals of a fractional
Brownian motion.

Proof of Theorem 1. We apply Theorem 6. The convergence of finite-dimensional distributions
was shown in Proposition 6. Let s < t in [0,1]. Recall an,k ≤ Ck . Then, by the orthogonality of
((B

H,n
t )�nk − (B

H,n
s )�nk) for different k and Lemma 2, we have

E

[(
n∑

k=0

an,k

k! (B
H,n
t )�nk −

n∑
k=0

an,k

k! (BH,n
s )�nk

)2]

=
n∑

k=0

(
an,k

k!
)2

E
[(

(B
H,n
t )�nk − (BH,n

s )�nk
)2] ≤

n∑
k=0

C2k

k! 8k

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

.

Since 0 <
∑∞

k=0
8kC2k

k! = exp(8C2) =: L < ∞, we have

E

[(
n∑

k=0

an,k

k! (B
H,n
t )�nk −

n∑
k=0

an,k

k! (BH,n
s )�nk

)2]
≤ L

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

. (53)

�

The alternative approximation, stated in Theorem 2, follows similarly, as we shall now see.

Proof of Theorem 2. Let s < t in [0,1]. Recall that dn
m,i > 0 only if i ≤ m. Thus, by Proposi-

tion 1, we can write

n∑
k=0

an,k

k! Ũ k,n
s =

�nt�∑
k=0

an,k

∑
C⊆{1,...,�nt�}

|C|=k

∑
m:C→{1,...,�ns�}

injective

∏
l∈C

dn
m(l),l	

n
C.

Observe that, by the telescoping sum in (29), we have∑
m:C→{1,...,�nt�}

injective
∃u:m(u)>�ns�

∏
l∈C

dn
m(l),l ≤

∑
m:C→{1,...,�nt�}
∃u : m(u)>�ns�

∏
l∈C

dn
m(l),l

=
∑

m:C→{1,...,�nt�}

∏
l∈C

dn
m(l),l −

∑
m:C→{1,...,�ns�}

∏
l∈C

dn
m(l),l

= bn
t,C − bn

s,C.
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Thus, due to the orthogonality of Ũ
k,n
t −Ũ

k,n
s for different values of k, Proposition 1 and estimate

(53), we obtain

E

[(
n∑

k=0

an,k

k! Ũ
k,n
t −

n∑
k=0

an,k

k! Ũ k,n
s

)2]

=
�nt�∑
k=0

a2
n,k

∑
C⊆{1,...,�nt�}

|C|=k

( ∑
m:C→{1,...,�nt�}

injective
∃u:m(u)>�ns�

∏
l∈C

dn
m(l),l

)2

≤
�nt�∑
k=0

a2
n,k

∑
C⊂{1,...,�nt�}

|C|=k

(bn
t,C − bn

s,C)2 ≤ L

∣∣∣∣�nt�
n

− �ns�
n

∣∣∣∣2H

and the result follows from Proposition 7 and Theorem 6. �
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