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An interesting line of research is the investigation of the laws of random variables known as Dirichlet means.
However, there is not much information on interrelationships between different Dirichlet means. Here,
we introduce two distributional operations, one of which consists of multiplying a mean functional by an
independent beta random variable, the other being an operation involving an exponential change of measure.
These operations identify relationships between different means and their densities. This allows one to use
the often considerable analytic work on obtaining results for one Dirichlet mean to obtain results for an
entire family of otherwise seemingly unrelated Dirichlet means. Additionally, it allows one to obtain explicit
densities for the related class of random variables that have generalized gamma convolution distributions
and the finite-dimensional distribution of their associated Lévy processes. The importance of this latter
statement is that Lévy processes now commonly appear in a variety of applications in probability and
statistics, but there are relatively few cases where the relevant densities have been described explicitly. We
demonstrate how the technique allows one to obtain the finite-dimensional distribution of several interesting
subordinators which have recently appeared in the literature.

Keywords: beta–gamma algebra; Dirichlet means and processes; exponential tilting; generalized gamma
convolutions; Lévy processes

1. Introduction

In this work, we present two distributional operations which identify relationships between
seemingly different classes of random variables which are representable as linear functionals
of a Dirichlet process, otherwise known as Dirichlet means. Specifically, the first operation con-
sists of multiplication of a Dirichlet mean by an independent beta random variable and the second
operation involves an exponential change of measure to the density of a related infinitely divis-
ible random variable having a generalized gamma convolution distribution (GGC). This latter
operation is often referred to in the statistical literature as exponential tilting or in mathemati-
cal finance as an Esscher transform. We believe our results add a significant component to the
foundational work of Cifarelli and Regazzini [5,6]. In particular, our results allow one to use the
often considerable analytic work on obtaining results for one Dirichlet mean to obtain results for
an entire family of otherwise seemingly unrelated mean functionals. It also allows one to obtain
explicit densities for the related class of infinitely divisible random variables which are gener-
alized gamma convolutions and an explicit description of the finite-dimensional distribution of
their associated Lévy processes (see Bertoin [1] for the formalities of general Lévy processes).
The importance of this latter statement is that Lévy processes now commonly appear in a variety
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of applications in probability and statistics, but there are relatively few cases where the relevant
densities have been described explicitly. A detailed summary and outline of our results may be
found in Section 1.2. Some background information on, and notation for, Dirichlet processes
and Dirichlet means, their connection with GGC random variables, recent references and some
motivation for our work are given in the next section.

1.1. Background and motivation

Let X be a non-negative random variable with cumulative distribution function FX . Note, fur-
thermore, that for a measurable set C, we use the notation FX(C) to mean the probability that X

is in C. One may define a Dirichlet process random probability measure (see Freedman [17] and
Ferguson [15,16]), say Pθ , on [0,∞) with total mass parameter θ and prior parameter FX, via its
finite-dimensional distribution as follows: for any disjoint partition on [0,∞), say (C1, . . . ,Ck),
the distribution of the random vector (Pθ (C1), . . . ,Pθ (Ck)) is a k-variate Dirichlet distribution
with parameters (θFX(C1), . . . , θFX(Ck)). Hence, for each C,

Pθ(C) =
∫ ∞

0
I(x ∈ C)Pθ (dx)

has a beta distribution with parameters (θFX(C), θ(1 − FX(C))). Equivalently, setting
θFX(Ci) = θi for i = 1, . . . , k,

(Pθ (C1), . . . ,Pθ (Ck))
d=

(
Gθi

Gθ

; i = 1, . . . , k

)
,

where (Gθi
) are independent random variables with gamma(θi,1) distributions and Gθ = Gθ1 +

· · · + Gθk
has a gamma(θ,1) distribution. This means that one can define the Dirichlet process

via the normalization of an independent increment gamma process on [0,∞), say γθ (·), as

Pθ(·) = γθ (·)
γθ ([0,∞))

,

where γθ (Ci)
d= Gθi

, whose almost surely finite total random mass is γθ ([0,∞))
d= Gθ. A very

important aspect of this construction is the fact that Gθ is independent of Pθ and hence of any
functional of Pθ . This is a natural generalization of Lukacs’ [35] characterization of beta and
gamma random variables, which is fundamental to what is now referred to as the beta–gamma
algebra (for more on this, see Chaumont and Yor ([4], Section 4.2); see also Emery and Yor [11]
for some interesting relationships between gamma processes, Dirichlet processes and Brownian
bridges). Hereafter, for a random probability measure P on [0,∞), we write

P ∼ �θ,FX
,

to indicate that P is a Dirichlet process with parameters (θ,FX).

These simple representations and other nice features of the Dirichlet process have, since the
important work of Ferguson [15,16], contributed greatly to the relevance and practical utility
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of the field of Bayesian non- and semi-parametric statistics. Naturally, owing to the ubiquity of
the gamma and beta random variables, the Dirichlet process also arises in other areas. One of
the more interesting and, we believe, quite important topics related to the Dirichlet process is
the study of the laws of random variables called Dirichlet mean functionals, or simply Dirichlet
means, which we denote as

Mθ(FX)
d=

∫ ∞

0
xPθ (dx),

as initiated in the works of Cifarelli and Regazzini [5,6]. In [6], the authors obtained an im-
portant identity for the Cauchy–Stieltjes transform of order θ. This identity is often referred to
as the Markov–Krein identity, as can be seen in, for example, Diaconis and Kemperman [9],
Kerov [28] and Vershik, Yor and Tsilevich [40], where these authors highlight its importance
to, for instance, the study of the Markov moment problem, continued fraction theory and expo-
nential representation of analytic functions. This identity is later called the Cifarelli–Regazzini
identity in [21]. Cifarelli and Regazzini [6], owing to their primary interest, used this identity to
then obtain explicit density and cdf formulae for Mθ(FX). The density formulae may be seen as
Abel-type transforms and hence do not always have simple forms, although we stress that they
are still useful for some analytic calculations. The general exception is the case θ = 1, which
has a nice form. Some examples of works that have proceeded along these lines are Cifarelli and
Melilli [7], Regazzini, Guglielmi and di Nunno [38], Regazzini, Lijoi and Prünster [39], Hjort
and Ongaro [20], Lijoi and Regazzini [32], and Epifani, Guglielmi and Melilli [12,13]. Moreover,
the recent works of Bertoin et al. [2] and James, Lijoi and Prünster [25] (see also [23], which
is a preliminary version of this work) show that the study of mean functionals is relevant to the
analysis of phenomena related to Bessel and Brownian processes. In fact, the work of James,
Lijoi and Prünster [25] identifies many new explicit examples of Dirichlet means which have
interesting interpretations.

Related to these last points, Lijoi and Regazzini [32] have highlighted a close connection to
the theory of generalized gamma convolutions (see [3]). Specifically, it is known that a rich
subclass of random variables having generalized gamma convolutions (GGC) distributions may
be represented as

Tθ
d= GθMθ(FX)

d=
∫ ∞

0
xγθ (dx). (1.1)

We call these random variables GGC(θ,FX). In addition, we see from (1.1) that Tθ is a ran-
dom variable derived from a weighted gamma process and, hence, the calculus discussed in
Lo [33] and Lo and Weng [34] applies. In general, GGC random variables are an important class
of infinitely divisible random variables whose properties have been extensively studied by [3]
and others. We note further that although we have written a GGC(θ,FX) random variable as
GθMθ(FX), this representation is not unique and, in fact, it is quite rare to see Tθ represented in
this way. We will show that one can, in fact, exploit this non-uniqueness to obtain explicit densi-
ties for Tθ , even when it is not so easy to do so for Mθ(FX). While the representation GθMθ(FX)

is not unique, it helps one to understand the relationship between the Laplace transform of Tθ and
the Cauchy–Stieltjes transform of order θ of Mθ(FX), which, indeed, characterize respectively
the laws of Tθ and Mθ(FX). Specifically, using the independence property of Gθ and Mθ(FX)
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leads to, for λ ≥ 0,

E[e−λTθ ] = E
[(

1 + λMθ(FX)
)−θ ] = e−θψFX

(λ), (1.2)

where

ψFX
(λ) =

∫ ∞

0
log(1 + λx)FX(dx) = E[log(1 + λX)] (1.3)

is the Lévy exponent of Tθ . We note that Tθ and Mθ(FX) exist if and only if ψFX
(λ) < ∞ for

λ > 0 (see, e.g., [8] and [3]). The expressions in (1.2) equate with the aforementioned identity
obtained by Cifarelli and Regazzini [6].

Despite these interesting results, there is very little work on the relationship between different
mean functionals. Suppose, for instance, that for each fixed value of θ > 0, Mθ(FX) denotes
a Dirichlet mean and (Mθ(FZc); c > 0) denotes a collection of Dirichlet mean random variables
indexed by a family of distributions (FZc ; c > 0). One may then ask the following question: for
what choices of X and Zc are these mean functionals related, and in what sense? In particular,
one may wish to know how their densities are related. The rationale here is that if such a relation-
ship is established, then the effort that one puts forth to obtain results such as the explicit density
of Mθ(FX) can be applied to an entire family of Dirichlet means (Mθ(FZc); c > 0). Furthermore,
since Dirichlet means are associated with GGC random variables, this would establish relation-
ships between a GGC(θ,FX) random variable and a family of GGC(θ,FZc) random variables.
Simple examples are, of course, the choices Zc = X+c and Zc = cX, which, due to the linearity
properties of mean functionals, result easily in the identities in law

Mθ(FX+c) = c + Mθ(FX) and Mθ(FcX) = cMθ(FX).

Naturally, we are going to discuss more complex relationships, but with the same goal. That
is, we will identify non-trivial relationships so that the often considerable efforts that one makes
in the study of one mean functional Mθ(FX) can then be used to obtain more easily results for
other mean functionals, their corresponding GGC random variables and Lévy processes. In this
paper, we will describe two such operations which we elaborate on in the next subsection.

1.2. Outline and summary of results

Section 1.3 reviews some of the existing formulae for the densities and cdfs of Dirichlet means.
In Section 2, we will describe the operation of multiplying a mean functional Mθσ (FX) by
an independent beta random variable with parameters (θσ, θ(1 − σ)), say, βθσ,θ(1−σ), where
0 < σ < 1. We call this operation beta scaling. Theorem 2.1 shows that the resulting random
variable βθσ,θ(1−σ)Mθσ (FX) is again a mean functional, but now of order θ . In addition, the
GGC(θσ,FX) random variable Gθσ Mθσ (FX) is equivalently a GGC random variable of or-
der θ. Now, keeping in mind that tractable densities of mean functionals of order θ = 1 are
the easiest to obtain, Theorem 2.1 shows that by setting θ = 1, the densities of the uncount-
able collection of random variables (βσ,1−σ Mσ (FX);0 < σ ≤ 1) are all mean functionals of
order θ = 1. Theorem 2.2 then shows that efforts used to calculate the explicit density of any
one of these random variables, via the formulae of [6], lead to the explicit calculation of the
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densities of all of them. Additionally, Theorem 2.2 shows that the corresponding GGC random
variables may all be expressed as GGC random variables of order θ = 1, representable in dis-
tribution as G1βσ,1−σ Mσ (FX). A key point here is that Theorem 2.2 gives a tractable density
for βσ,1−σ Mσ (FX) without requiring knowledge of the density of Mσ (FX), which is usually
expressed in a complicated manner. These results will also yield some non-obvious integral
identities. Furthermore, noting that a GGC(θ,FX) random variable, Tθ , is infinitely divisible,
we associate it with an independent increment process (ζθ (t); t ≥ 0), known as a subordinator
(a non-decreasing non-negative Lévy process), where, for each fixed t,

E
[
e−λζθ (t)

] = E[e−λTθt ] = e−tθψFX
(λ).

That is, marginally, ζθ (1)
d= Tθ and ζθ (t)

d= ζθt (1)
d= Tθt . In addition, for s < t, ζθ (t) − ζθ (s)

d=
ζθ (t − s) is independent of ζθ (s). We say that the process (ζθ (t); t ≥ 0) is a GGC(θ,FX) sub-
ordinator. Proposition 2.1 shows how Theorems 2.1 and 2.2 can be used to address the usually
difficult problem of explicitly describing the densities of the finite-dimensional distribution of
a subordinator (see [29]). This has implications in, for instance, the explicit description of den-
sities of Bayesian nonparametric prior and posterior models, but is clearly of wider interest in
terms of the distribution theory of infinitely divisible random variables and associated processes.

In Section 3, we describe how the operation of exponentially tilting the density of
a GGC(θ,FX) random variable leads to a relationship between the densities of the mean func-
tional Mθ(FX) and yet another family of mean functionals. This is summarized in Theorem 3.1.
Section 3.1 then discusses a combination of the two operations. Proposition 3.1 describes the
density of beta-scaled and tilted mean functionals of order 1. Using this, Proposition 3.2 de-
scribes a method to calculate a key quantity in the explicit description of the densities and cdfs
of mean functionals. In Section 4, we show how the results in Sections 2 and 3 are used to derive
the finite-dimensional distribution and related quantities for classes of subordinators suggested
by the recent work of James, Lijoi and Prünster [25] and Bertoin et al. [2].

1.3. Preliminaries

Suppose that X is a positive random variable with distribution FX and define the function


FX
(t) =

∫ ∞

0
log(|t − x|)I(t �= x)FX(dx) = E[log(|t − X|)I(t �= X)].

Furthermore, define

�θ(t |FX) = 1

π
sin(πθFX(t))e−θ
FX

(t),

where, using a Lebesgue–Stieltjes integral, FX(t) = ∫ t

0 FX(dx). Cifarelli and Regazzini [6] (see
also [7]) apply an inversion formula to obtain the distributional formula for Mθ(FX) as follows.
For all θ > 0, the cdf can be expressed as

∫ x

0
(x − t)θ−1�θ(t |FX)dt, (1.4)
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provided that θFX possesses no jumps of size greater than or equal to one. If we let ξθFX
(·)

denote the density of Mθ(FX), then it takes its simplest form for θ = 1, which is

ξFX
(x) = �1(x|FX) = 1

π
sin(πFX(x))e−
(x). (1.5)

Density formulae for θ > 1 are described as

ξθFX
(x) = (θ − 1)

∫ x

0
(x − t)θ−2�θ(t |FX)dt. (1.6)

An expression for the density, which holds for all θ > 0, was recently obtained by James, Lijoi
and Prünster [25] as follows:

ξθFX
(x) = 1

π

∫ x

0
(x − t)θ−1dθ (t |FX)dt, (1.7)

where

dθ (t |FX) = d

dt
sin(πθFX(t))e−θ
(t).

For additional formulae, see [6,32,38].

Remark 1.1. Throughout, for random variables R and X, when we write the product RX, we
will assume, unless otherwise mentioned, that R and X are independent. This convention will
also apply to the multiplication of the special random variables that are expressed as mean func-
tionals. That is, the product Mθ(FX)Mθ(FZ) is understood to be a product of independent Dirich-
let means.

Remark 1.2. Throughout, we will be using the fact that if R is a gamma random variable, then

the independent random variables R,X,Z satisfying RX
d= RZ imply that X

d= Z. This is true
because gamma random variables are simplifiable. For the precise meaning of this term and
associated conditions, see Chaumont and Yor [4], Sections 1.12 and 1.13. This fact also applies
to the case where R is a positive stable random variable.

2. Beta scaling

In this section, we investigate the simple operation of multiplying a Dirichlet mean functional
Mθ(FX) by certain beta random variables. Note, first, that if M denotes an arbitrary positive
random variable with density fM, then, by elementary arguments, it follows that the random

variable W
d= βa,bM, where βa,b is beta(a, b) independent of M, has density expressible as

fW(w) = 
(a + b)


(a)
(b)

∫ 1

0
fM(w/u)ua−2(1 − u)b−1 du.
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However, it is only in special cases that the density fW can be expressed in even simpler terms.
That is to say, it is not obvious how to carry out the integration. In the next results, we show
how remarkable simplifications can be achieved when M = Mθ(FX), in particular, for the range
0 < θ ≤ 1, and when βa,b is a symmetric beta random variable. First, we will need to introduce
some additional notation. Let Yσ denote a Bernoulli random variable with success probability
0 < σ ≤ 1. Then, if X is a random variable with distribution FX , independent of Yσ , it follows
that the random variable XYσ has distribution

FXYσ (dx) = σFX(dx) + (1 − σ)δ0(dx) (2.1)

and cdf

FXYσ (x) = σFX(x) + (1 − σ)I(x ≥ 0). (2.2)

Hence, there exists the mean functional

Mθ(FXYσ )
d=

∫ ∞

0
yP̃θ (dy),

where P̃θ (dy) denotes a Dirichlet process with parameters (θ,FXYσ ). In addition, we have, for
x > 0,


FXYσ
(x) = E[log(|x − XYσ |)I(XYσ �= x)] = σ
FX

(x) + (1 − σ) log(x). (2.3)

When σ = 1, Yσ = 1 and hence FXY1(x) = FX(x). Let Eσ denote a set such that E[Pθ(Eσ )] = σ.

Note, now, that every beta random variable, βa,b, where a, b are arbitrary positive constants, can
be represented as the simple mean functional

Pθ(Eσ )
d= βθσ,θ(1−σ)

d= Mθ(FYσ ),

by choosing

σ = a

a + b
and θ = a + b.

We note, however, that there are other choices of FX that will also yield beta random variables as
mean functionals. Throughout, we will use the convention that βθ,0 := 1, that is, the case where
σ = 1. We now present our first result.

Theorem 2.1. For θ > 0 and 0 < σ ≤ 1, let βθσ,θ(1−σ) denote a beta random variable with
parameters (θσ, θ(1 − σ)), independent of the mean functional Mθσ (FX). Then:

(i) βθσ,θ(1−σ)Mθσ (FX)
d= Mθ(FXYσ );

(ii) equivalently, Mθ(FYσ )Mθσ (FX)
d= Mθ(FXYσ );

(iii) Gθσ Mθσ (FX)
d= GθMθ(FXYσ );

(iv) that is, GGC(θσ,FX) =GGC(θ,FXYσ ).



368 L. F. James

Proof. Since Mθ(FYσ )
d= βθσ,θ(1−σ), statements (i) and (ii) are equivalent. We proceed by first

establishing (iii) and (iv). Note that, using (1.3),

E[log(1 + λXYσ )] = σE[log(1 + λX)] = σ

∫ ∞

0
log(1 + λx)FX(dx).

Hence,

E
[
e−λGθMθ (FXYσ )

] = e−θσ
∫ ∞

0 log(1+λx)FX(dx) = E
[
e−λGθσ Mθσ (FX)

]
,

which means that GθMθ(FXYσ )
d= Gθσ Mθσ (FX), establishing statements (iii) and (iv). Now,

writing Gθσ = Gθβθσ,θ(1−σ), it follows that

GθMθ(FXYσ )
d= Gθβθσ,θ(1−σ)Mθσ (FX).

Hence, βθσ,θ(1−σ)Mθσ (FX)
d= Mθ(FXYσ ), by the fact that gamma random variables are simpli-

fiable. �

Remark 2.1. We note that parts (i) and (ii) of Theorem 2.1 also follow as consequences of Ethier
and Griffiths [14], Lemma 1. We now state their interesting result for clarity.

Lemma 2.1 (Ethier and Griffiths [14]). Let ν1 and ν2 denote two probability measures. Now,
for θ1, θ2 > 0, define the probability measure

ν(θ1,θ2)(dx) = θ1

θ1 + θ2
ν1(dx) + θ2

θ1 + θ2
ν2(dx).

Then, for independent Dirichlet processes μ1 ∼ �θ1,ν1 and μ2 ∼ �θ2,ν2 ,

μ1,2(·) d= βθ1,θ2μ1(·) + (1 − βθ1,θ2)μ2(·),
where μ1,2 is a Dirichlet process with parameters (θ1 + θ2, ν(θ1,θ2)).

Hence, as a general consequence,

Mθ1+θ2

(
ν(θ1,θ2)

) d= βθ1,θ2Mθ1(ν1) + (1 − βθ1,θ2)Mθ2(ν2).

Now, from (2.1), we see that setting ν1 = FX,ν2 = δ0, θ1 = θσ and θ2 = θ(1 − σ) yields state-
ments (i) and (ii). This is because Mθ(1−σ)(δ0) = 0.

When θ = 1, we obtain results for random variables βσ,1−σ Mσ (FX). The symmetric beta
random variables βσ,1−σ arise in a variety of important contexts and are often referred to as
generalized arcsine laws with density expressible as

sin(πσ)

π
uσ−1(1 − u)−σ for 0 < u < 1.
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Now, using (2.1) and (2.2), let C(FX) = {x : FX(x) > 0}. Then, for x > 0,

sin(πFXYσ (x)) =
{

sin
(
πσ [1 − FX(x)]), if x ∈ C(FX),

sin(π(1 − σ)), if x /∈ C(FX).
(2.4)

Also, note that sin(π[1−FX(x)]) = sin(πFX(x)). The next result yields another surprising prop-
erty of these random variables.

Theorem 2.2. Consider the setting in Theorem 2.1. Then, when θ = 1, it follows that for each

fixed 0 < σ ≤ 1, the random variable M1(FXYσ )
d= βσ,1−σ Mσ (FX) has density

ξFXYσ
(x) = xσ−1

π
sin(πFXYσ (x))e−σ
FX

(x) for x > 0, (2.5)

specified by (2.4). Since GGC(σ,FX) =GGC(1,FXYσ ), this implies that the random variable

Gσ Mσ (FX)
d= G1M1(FXYσ ) has density

gσ,FX
(x) = 1

π

∫ ∞

0
e−x/yyσ−2 sin(πFXYσ (y))e−σ
FX

(y) dy. (2.6)

Proof. Since M1(FXYσ )
d= βσ,1−σ Mσ (FX), the density is of the form (1.5) for each fixed σ ∈

(0,1]. Furthermore, we use the identity in (2.3). �

Remark 2.2. It is worthwhile to mention that transforming to the random variable 1/βσ,1−σ , (2.5)
is equivalent to the otherwise non-obvious integral identity

sin(πσ)

π

∫ ∞

1

ξσFX
(xy)

(y − 1)σ
dy = xσ−1

π
sin(πFXYσ (x))e−σ
(x).

This leads to interesting results when the density ξσFX
(x) has a known form. On the other

hand, we see that one does not need the explicit density of Mσ (FX) to obtain the density of

M1(FXYσ )
d= βσ,1−σ Mσ (FX). In fact, owing to our goal of yielding simple densities for many

Dirichlet means from one mean, we see that the effort to calculate the density of M1(FXYσ ) for
each 0 < σ ≤ 1 is no more than what is needed to calculate the density of M1(FX).

We now see how this translates into the usually difficult problem of explicitly describing the
density of the finite-dimensional distribution of a subordinator. In the next result, we write, for
some set C,

ζθ (C) :=
∫ ∞

0
I(s ∈ C)ζθ (ds).

Proposition 2.1. Let (ζθ (t); t ≤ 1/θ) denote a GGC(θ,FX) subordinator on [0,1/θ ]. Fur-
thermore, let (C1, . . . ,Ck) denote an arbitrary disjoint partition of the interval [0,1/θ ]. The
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finite-dimensional distribution (ζθ (C1), . . . , ζθ (Ck)) then has a joint density

k∏
i=1

gσi,FX
(xi), (2.7)

where each σi = θ |Ci | > 0 and
∑k

i=1 σi = 1. The density gσi,FX
is given by (2.6). That

is, ζθ (Ci)
d= G1M1(FXYσi

) and these are independent for i = 1, . . . , k, where M1(FXYσi
)

d=
βσi,1−σi

Mσi
(FX) has density

1

π
xσi−1 sin(πFXYσi

(x))e−σi
FX
(x).

Proof. First, since (C1, . . . ,Ck) partitions the interval [0,1/θ ], it follows that their sizes satisfy
0 < |Ck| ≤ 1/θ and

∑k
i=1 |Ck| = 1/θ. Since ζθ is a subordinator, the independence of the ζθ (Ci)

is a consequence of its independent increment property. In fact, these are essentially equivalent
statements. Hence, we can isolate each ζθ (Ci). It follows that for each i, the Laplace transform
is given by

E
[
e−λζθ (Ci)

] = e−θ |Ci |ψFX
(λ) = e−σiψFX

(λ),

which shows that each ζθ (Ci) is GGC(σi,FX) for 0 < σi ≤ 1. Hence, the result follows from
Theorem 2.2. �

3. Exponential tilting/Esscher transform

In this section, we describe how the operation of exponential tilting of the density of
a GGC(θ,FX) random variable leads to a non-trivial relationship between a mean functional
determined by FX and θ, and an entire family of mean functionals indexed by an arbitrary con-
stant c > 0. Additionally, this will identify a non-obvious relationship between two classes of
mean functionals. Exponential tilting is merely a convenient phrase for the operation of applying
an exponential change of measure to a density or more general measure. In mathematical finance
and other applications, it is known as an Esscher transform and is a key tool for option pricing.
We mention that there is much known about exponential tilting of infinitely divisible random
variables and, in fact, Bondesson [3], Example 3.2.5, explicitly discusses the case of GGC ran-
dom variables, albeit not in the way we shall describe it. In addition, examining the gamma
representation in (1.1), one can see a relationship to Lo and Weng [34], Proposition 3.1 (see also
Küchler and Sorensen [30] and James [22], Proposition 2.1), for results on exponential tilting of
Lévy processes). However, our focus here is on the properties of related mean functionals, which
leads to genuinely new insights.

Before we elaborate on this, we describe generically what we mean by exponential tilting.
Suppose that T denotes an arbitrary positive random variable with density, say, fT . It follows
that for each positive c, the random variable cT is well defined and has density

1

c
fT (t/c).
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Exponential tilting refers to the exponential change of measure resulting in a random variable,
say T̃c, defined by the density

f
T̃c

(t) = e−t (1/c)fT (t/c)

E[e−cT ] .

Thus, from the random variable T , one gets a family of random variables (T̃c; c > 0). Obviously,
the density for each T̃c does not differ much. However, something interesting happens when T

is a scale mixture of a gamma random variables, that is, T = GθM for some random positive
random variable M independent of Gθ. In that case, one can show, see [23], that Tc = GθM̃c,
where M̃c is sufficiently distinct for each value of c. We demonstrate this for the case where
M = Mθ(FX).

First, note that, obviously, cMθ(FX) = Mθ(FcX) for each c > 0, which, in itself, is not a very
interesting transformation. Now, setting Tθ = GθMθ(FX) with density denoted gθ,FX

, the corre-
sponding random variable T̃θ,c resulting from exponential tilting has density

e−t (1/c)gθ,FX
(t/c)eθψFX

(c) (3.1)

and Laplace transform

E[e−c(1+λ)GθMθ (FX)]
E[e−cGθMθ (FX)] = e−θ [ψFX

(c(1+λ))−ψFX
(c)]. (3.2)

Now, for each c > 0, define the random variable

Ac
d= cX

(cX + 1)
.

That is, the cdf of the random variable Ac can be expressed as

FAc(y) = FX

(
y

c(1 − y)

)
for 0 < y < 1.

In the next theorem, we will show that Mθ(FX) relates to the family of mean functionals
(Mθ(FAc); c > 0) by the tilting operation described above. Moreover, we will describe the rela-
tionship between their densities.

Theorem 3.1. Suppose that X has distribution FX and for each c > 0, Ac
d= cX/(cX + 1) is

a random variable with distribution FAc . For each θ > 0, let Tθ = GθMθ(FX) denote a GGC
(θ,FX) random variable having density gθ,FX

. Let T̃θ,c denote a random variable with density
and Laplace transform described by (3.1) and (3.2), respectively. T̃θ,c is then a GGC(θ,FAc) ran-
dom variable and hence representable as GθMθ(FAc). Furthermore, the following relationships
exist between the densities of the mean functionals Mθ(FX) and Mθ(FAc):



372 L. F. James

(i) supposing that the density of Mθ(FX), say ξθFX
, is known, then the density of Mθ(FAc) is

expressible as

ξθFAc
(y) = 1

c
eθψFX

(c)(1 − y)θ−2ξθFX

(
y

c(1 − y)

)

for 0 < y < 1;
(ii) conversely, if the density of Mθ(FAc), ξθFAc

(y), is known, then the density of Mθ(FX) is
given by

ξθFX
(x) = (1 + x)θ−2ξθFA1

(
x

1 + x

)
e−θψFX

(1).

Proof. We proceed by first examining the Lévy exponent [ψFX
(c(1 + λ)) − ψFX

(c)] associated
with T̃θ,c as described in (3.2). Note that

ψFX

(
c(1 + λ)

) =
∫ ∞

0
log

(
1 + c(1 + λ)x

)
FX(dx)

and ψFX
(c) is of the same form with λ = 0. Hence, isolating the logarithmic terms, we can focus

on the difference

log
(
1 + c(1 + λ)x

) − log(1 + cx).

This is equivalent to

log

(
1 + cx

1 + cx
λ

)
= log

(
1

1 + cx
+ cx

1 + cx
(1 + λ)

)
,

showing that T̃θ,c is GGC(θ,FAc). This fact can also be deduced from Proposition 3.1 in Lo
and Weng [34]. The next step is to identify the density of Mθ(FAc) in terms of the density of
Mθ(FX). Using the fact that Tθ = GθMθ(FX), one may write the density of Tθ in terms of
a gamma mixture as

gθ,FX
(t) = tθ−1


(θ)

∫ ∞

0
e−t/mm−θ ξθFX

(m)dm.

Hence, rearranging terms in (3.1), it follows that the density of T̃θ,c can be written as

eθψFX
(c) tθ−1


(θ)

∫ ∞

0
e−t(cm+1)/(cm)(cm)−θ ξθFX

(m)dm.

Now, further algebraic manipulation makes this look like a mixture of a gamma(θ,1) random
variables, as follows,

tθ−1


(θ)

∫ ∞

0
e−t(cm+1)/(cm)

[
cm + 1

cm

]θ eθψFX
(c)ξθFX

(m)

(1 + cm)θ
dm.



Dirichlet mean identities 373

Hence, it is evident that Mθ(FAc) has the same distribution as a random variable cM/(cM + 1),
where M has density

eθψFX
(c)(1 + cm)−θ ξθFX

(m).

Thus, statements (i) and (ii) follow. �

3.1. Tilting and beta scaling

This section describes what happens when one applies the exponential tilting operation rel-
ative to a mean functional resulting from beta scaling. Recall that the tilting operation ap-
plied to GθMθ(FX) described in the previous section sets up a relationship between Mθ(FX)

and Mθ(FAc). Consider the random variable βθσ,θ(1−σ)Mθσ (FX)
d= Mθ(FXYσ ). Then, tilting

GθMθ(FXYσ ) as in the previous section leads to the random variable GθMθ(FcXYσ /(cXYσ +1))

and hence relates

βθσ,θ(1−σ)Mθσ (FX)
d= Mθ(FXYσ )

to the Dirichlet mean of order θ,

Mθ

(
FcXYσ /(cXYσ +1)

)
.

Now, letting FAcYσ denote the distribution of AcYσ , one has

AcYσ
d= cXYσ

(cXYσ + 1)

and hence

Mθ

(
FcXYσ /(cXYσ +1)

) d= Mθ(FAcYσ )
d= βθσ,θ(1−σ)Mθσ (FAc). (3.3)

In a way, this shows that the order of beta scaling and tilting can be interchanged. We now derive
a result for the cases of M1(FXYσ ) = βσ,1−σ Mσ (FX) and M1(FAcYσ ) = βσ,1−σ Mσ (FAc), related
by the tilting operation described above. Combining Theorem 2.2 with Theorem 3.1 leads to the
following result.

Proposition 3.1. For each 0 < σ ≤ 1, the random variables M1(FXYσ ) = βσ,1−σ Mσ (FX) and
M1(FAcYσ ) = βσ,1−σ Mσ (FAc) satisfy the following:

(i) the density of M1(FAcYσ ) is expressible as

ξFAcYσ
(y) = eσψFX

(c)yσ−1

πcσ (1 − y)σ
sin

[
πFXYσ

(
y

c(1 − y)

)]
e−σ
FX

(y/(c(1−y)))

for 0 < y < 1;
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(ii) conversely, the density of M1(FXYσ ) is given by

ξFXYσ
(x) = e−σψFX

(1)xσ−1

π(1 + x)
sin

[
πFA1Yσ

(
x

1 + x

)]
e
−σ
FA1

(x/(1+x))
.

Proof. For clarity, statement (i) is obtained by first using Theorem 3.1, which gives

ξFAcYσ
(y) = 1

c
eψFXYσ

(c)
(1 − y)−1ξFXYσ

(
y

c(1 − y)

)

for 0 < y < 1. It then remains to substitute the form of the density (2.5) given in Theorem 2.2.
Statement (ii) proceeds in the same way, using (2.6). �

Note that even if one can calculate 
FAc
for some fixed value of c, it may not be so obvious

how to calculate it for another value. The previous results allow us to relate their calculation to
that of 
FX

, as described next.

Proposition 3.2. Set Ac = cX/(cX + 1) and define 
FAc
(y) = E[log(|y − Ac|)I(Ac �= y)].

Then, for 0 < y < 1,


FAc
(y) = 
FX

(
y

c(1 − y)

)
− ψFX

(c) + log
(
c(1 − y)

)
.

Proof. The result can be deduced by using Proposition 3.1 in the case σ = 1. First, note that
sin(πFX(

y
c(1−y)

)) = sin(πFAc(y)). Now, equating the form of the density of M1(FAc) given
by (1.5) with the expression given in Proposition 3.1, it follows that

e−
FAc
(y) = eψFX

(c)

c(1 − y)
e−
FX

(y/(c(1−y))),

which yields the result. �

Remark 3.1. We point out that if Gκ represents a gamma random variable for κ �= θ , independent
of Mθ(FX), then it is not necessarily true that GκMθ(FX) is a GGC random variable. For this to
be true, Mθ(FX) would need to be equivalent in distribution to some Mκ(FR). In that case, our
results above would be applied for a GGC(κ,FR) model.

4. Examples

In this section, we will demonstrate how our results in Sections 2 and 3 can be applied to extend
results for two random processes recently studied in the literature. The first involves a class
of GGC subordinators that can be derived from a random mean of a two-parameter Poisson–
Dirichlet process with a uniform base measure, which was studied as a special case in James,
Lijoi and Prünster [25]; see Pitman and Yor [37] for more details of the two parameter Poisson–
Dirichlet distribution. The second involves a class of processes recently studied in Bertoin et
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al. [2]; see also Maejima [36] for some discussion of this process. A key component will be the
ability to obtain an explicit expression for the respective 
FX

. In the first example, we do not
have much explicit information on the relevant density, ξθFX

; however, we can rely on a general
theorem of James, Lijoi and Prünster [25] to obtain 
FX

. In the second case of the models
discussed in Bertoin et al. [2], this theorem apparently does not apply. However, we will be able
to use an explicit form of the density, obtained for a particular value of θ by Bertoin et al. [2], to
obtain 
FX

.

As we shall show, both of these processes are connected to a random variable Zα , whose
properties we now describe. For 0 < α < 1, let Sα denote a positive α-stable random variable
specified by its Laplace transform

E[e−λSα ] = e−λα

.

In addition, define

Zα =
(

Sα

S′
α

)α

,

where S′
α is independent of Sα and has the same distribution. The density of this random variable

was obtained by Lamperti [31] (see also Chaumont and Yor [4], Exercise 4.2.1) and has the
remarkably simple form

fZα (y) = sin(πα)

πα

1

y2 + 2y cos(πα) + 1
for y > 0.

Furthermore (see Fujita and Yor [18] and (James [24], Proposition 2.1), it follows that the cdf
of Zα satisfies, for z > 0,

FZα (1/z) = 1 − 1

πα
cot−1

(
cos(πα) + 1/z

sin(πα)

)

= 1

πα
cot−1

(
cos(πα) + z

sin(πα)

)

= 1 − FZα(z),

sin(παFZα (z)) = z sin
(
πα

(
1 − FZα(z)

)) = z sin(πα)

[z2 + 2z cos(πα) + 1]1/2
(4.1)

and

sin
(
2πα[1 − FZα(z)]

) = sin(2πα) + 2z sin(πα)

1 + 2z cos(πα) + z2
(4.2)

= 2 sin(πα)[cos(πα) + z]
1 + 2z cos(πα) + z2

.
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When α = 1/2,

sin
(
π[1 − FZ1/2(z)]

) = z

z2 + 1
.

4.1. Subordinators derived from an example in James, Lijoi and Prünster

For 0 < α < 1 and θ > −α, we define the special case of a two-parameter Poisson–Dirichlet
random probability measures as

P̃α,θ (·) =
∞∑

k=1

Vk

k−1∏
i=1

(1 − Vi)δUk
(·),

where Uk are i.i.d. Uniform[0,1] random variables and the Vk are a sequence of independent
βα,θ+kα random variables, independent of (Uk). So, in particular, these random variables sat-
isfy E[P̃α,θ (·)] = FU(·), where U denotes a Uniform[0,1] random variable. In addition, P̃0,θ is
a Dirichlet process. Then, consider the random means given as

M̃α,θ (FU ) := Uα,θ =
∞∑

k=1

UkVk

k−1∏
i=1

(1 − Vi) =
∫ 1

0
uP̃α,θ (du).

The Uα,θ represent a special case of random variables representable as mean functionals of the
class of two-parameter (α, θ) Poisson–Dirichlet random probability measures – that is to say,
random variables M̃α,θ (FX), where FX is a general distribution. An extensive study of this larger
class was conducted by James, Lijoi and Prünster [25]. In regards to Uα,θ , they show that Uα,0
has an explicit density

sin(πα)

απ

(α + 1)tα(1 − t)α

[t2α+2 + 2tα+1(1 − t)α+1 cos(πα) + (1 − t)2α+2] .

Furthermore, from James, Lijoi and Prünster [25], Theorem 2.1, for θ > 0,

Uα,θ
d= Mθ(FUα,0).

This implies that

GθUα,θ
d= GθMθ(FUα,0)

are GGC(θ,FUα,0). Now, from Vershik, Yor and Tslevich [40] (see also James, Lijoi and Prün-
ster [25], equation (16)), it follows that

E[e−λGθ Uα,θ ] =
(

λ(α + 1)

(λ + 1)α+1 − 1

)θ/α

= exp
(−θE[log(1 + λUα,0)]

)
,
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where this expression follows from the generalized Stieltjes transform of order −α of a Uni-
form[0,1] random variable,

E[(1 + λU)α] =
∫ 1

0
(1 + λx)α dx = (λ + 1)α+1 − 1

λ(α + 1)
.

A description of the densities of Uα,θ for θ > −α is available from the results of [25]. However,
with the exceptions of Uα,1 and Uα,1−α, their densities are generally expressed in terms of inte-
grals with respect to functions that possibly take on negative values. Here, by focusing instead on
random variables βθ,1−θUα,θ for 0 < θ < 1, we can utilize the results in James, Lijoi and Prün-
ster [25] to obtain explicit expressions for their densities and the corresponding GGC(θ,FUα,0)

random variables.
In particular, we will obtain explicit descriptions for the finite-dimensional distribution of

a GGC(α,FUα,0), say (ϒα(t), t > 0), subordinator, where ϒα(1)
d= GαUα,α and hence

E
[
e−λϒα(1)

] = λ(α + 1)

(λ + 1)α+1 − 1
.

Although not immediately obvious, one can show that

Uα,0
d= Z

1/(α+1)
α

Z
1/(α+1)
α + 1

and hence FUα,0(t) = FZα

((
t

1 − t

)α+1)
.

From this, due to the tilting relationship discussed in Section 3, we see that we can also obtain
results for the GGC(α,F

Z
1/(α+1)
α

) subordinator, say (ϒ‡
α(t), t > 0). To the best of our knowledge,

this process and its mean functionals Mθ(FZ
1/(α+1
α

) have not been studied. Now, from James,
Lijoi and Prünster [25], Theorem 5.2(iii), it follows that

e
−
FUα,0

(t) = (α + 1)1/α

[t2α+2 + 2tα+1(1 − t)α+1 cos(πα) + (1 − t)2α+2]1/(2α)
. (4.3)

This, combined with our results, leads to an explicit description of the finite-dimensional dis-
tribution of the relevant subordinators.

Theorem 4.1. Consider the GGC(α,FUα,0) subordinator (ϒα(t), t ≤ 1/α) and the
GGC(α,F

Z
1/(α+1)
α

) subordinator (ϒ‡
α(t), t ≤ 1/α). Let (C1, . . . ,Ck) denote an arbitrary dis-

joint partition of the interval (0,1/α] with lengths |Ci | and set σi = α|Ci | for i = 1, . . . , k. The
following results then hold:

(i) The finite dimensional distribution of (ϒα(C1), . . . ,ϒα(Ck)) is such that each ϒα(Ci) is
independent and has distribution

ϒα(Ci)
d= G1M1(FYσi

Uα,0),
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where M1(FYσi
Uα,0)

d= βσi,1−σi
Uα,σi

. Furthermore, for any fixed 0 < σ ≤ 1, the density of
M1(FYσ Uα,0) is given by, for 0 < y < 1,

(α + 1)σ/αyσ−1 sin(πσ [1 − FUα,0(y)])
[y2α+2 + 2yα+1(1 − y)α+1 cos(πα) + (1 − y)2α+2]σ/(2α)

.

(ii) The finite-dimensional distribution of (ϒ‡
α(C1), . . . ,ϒ

‡
α(Ck)) is such that each ϒ‡

α(Ci) is
independent and has distribution

ϒ‡
α(Ci)

d= G1M1(FYσi
Z

1/(α+1)
α

),

where M1(FYσi
Z

1/(α+1)
α

)
d= βσi,1−σi

Mσi
(F

Z
1/(α+1)
α

). Furthermore, for any fixed 0 < σ ≤ 1,

the density of M1(FYσ Z
1/(α+1)
α

) is given by, for x > 0,

xσ−1(x + 1)σ(1+α)/α−1 sin(πσ [1 − FZα(x
α+1)])

[x2α+2 + 2xα+1 cos(πα) + 1]σ/(2α)
.

Proof. Statement (i) follows from Theorem 2.2 and Proposition 2.1 in combination
with (4.3). Noting the relationship between Z

1/(α+1)
α and Uα,0, statement (ii) follows from The-

orem 3.1(ii). �

From this, combined with an application of (4.1), we obtain a description for the densities
of ϒ‡

α(1) and ϒα(1). In addition, for α ≤ 1/2, we obtain a description of the density of ϒα(2)

using (4.3).

Proposition 4.1. Let ϒα(1) and ϒ‡
α(1) denote GGC random variables with parameters

(α,FUα,0) and (α,F
Z

1/(α+1
α

), respectively. Then:

(i) ϒα(1)
d= G1M1(FYαUα,0), where M1(FYαUα,0)

d= βα,1−αUα,α has density, for 0 < y < 1,

sin(πα)

π

(α + 1)yα−1(1 − y)α+1

[y2α+2 + 2yα+1(1 − y)α+1 cos(πα) + (1 − y)2α+2] .

(ii) ϒ‡
α(1)

d= G1M1(FYαZ
1/(α+1)
α

), where M1(FYαZ
1/(α+1)
α

) has density

sin(πα)

π

xα−1(1 + x)α

[x2α+2 + 2xα+1 cos(πα) + 1] for x > 0.

(iii) Supposing that α ≤ 1/2, then the GGC(2α,F
Z

1/(α+1
α

) random variable ϒ
‡
2α(1)

d= ϒ‡
α(2)

is equivalent in distribution to G1M1(FY2αZ
1/(α+1)
α

), where M1(FY2αZ
1/(α+1)
α

) has density

2x2α−1(x + 1)2α+1 sin(πα)[cos(πα) + xα+1]
[x2α+2 + 2xα+1 cos(πα) + 1]2

for x > 0.
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4.2. An example connected to Diaconis and Kemperman

Note that we have the following convergence in distribution results, as α → 0 :

M̃α,θ (FU ) = Mθ(FUα,0)
d→ Mθ(FU) for θ > 0

and

Uα,0
d→ 1 − U.

Furthermore, setting W = (1 − U)/U = G1/G′
1, we have

Mθ(FZ
1/(α+1)
α

)
d→ Mθ(FW) and Z1/(α+1)

α

d→ W,

where the last statement can be read from Chaumont and Yor [4], page 155 and page 169. It is
then natural to investigate the laws of the random processes connected with the GGC(θ,FU) and
GGC(θ,FW) random variables. It is known from Diaconis and Kemperman [9] that the density
of M1(FU) is

e

π
sin(πy)y−y(1 − y)−(1−y) for 0 < y < 1. (4.4)

Note, furthermore, that T̃1
d= G1M1(FU ) is GGC(1,FU) and has Laplace transform

E
[
e−λG1M1(FU )

] = e−ψFU
(λ) = e(1 + λ)−((λ+1)/λ).

Now, G1M1(FW ) is a GGC(1,FW ) with ψFW
(λ) = λ

λ−1 log(λ). Theorem 3.1 shows that M1(FU )

arises from tilting the density of G1M1(FW ). The density of M1(FW ) is obtained by applying
statement (ii) of Theorem 3.1 to (4.4), or by statement (ii) of Proposition 3.1, and is given by

ξFW
(x) = 1

π
sin

(
πx

1 + x

)
x−x/(1+x) for x > 0.

We now apply Theorem 2.2 and Proposition 2.1 to give a description of the finite-dimensional
distribution of the subordinators associated with the two random variables above.

Proposition 4.2. Let U denote a uniform [0,1] random variable and let W = G1/G′
1 denote

a ratio of independent exponential (1) random variables.

(i) Suppose that (ζ̃1(t);0 < t < 1) is a GGC(1,FU) subordinator. Then, for (C1, . . . ,Ck),
a disjoint partition of (0,1), the finite-dimensional distribution has joint density as
in (2.7), with

gσi,FU
(xi) =

∫ 1

0
e−xi/y

eσi

π
sin

(
πσi(1 − y)

)
yσi(1−y)−2(1 − y)−σi(1−y) dy

for i = 1, . . . , k.
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(ii) That is, ζ̃1(Ci)
d= G1M1(FUYσi

) and they are independent for i = 1, . . . , k. Furthermore,

the density of M1(FUYσi
)

d= βσi,1−σi
Mσi

(FU) is

eσi

π
sin

(
πσi(1 − y)

)
yσi(1−y)−1(1 − y)−σi(1−y)

for 0 < y < 1.

(iii) If (ζ1(t);0 < t < 1) is a GGC(1,FW ) subordinator, then the finite-dimensional distribu-
tion (ζ1(C1), . . . , ζ1(Ck)) is now described, with

gσi,FW
(xi) =

∫ ∞

0
e−xi/w

1

π
sin

(
πσi

1 + w

)
wσi/(1+w)−2 dw.

(iv) That is, ζ1(Ci)
d= G1M1(FWYσi

) and they are independent for i = 1, . . . , k. Furthermore,

the density of M1(FWYσi
)

d= βσi,1−σi
Mσi

(FW ) is

1

π
sin

(
πσi

1 + x

)
xσi/(1+x)−1

for x > 0.

Proof. This now follows from Theorem 2.2, Proposition 2.1 and (4.4). Specifically, note that
C(FU ) = (0,∞), so for any 0 < σ < 1,

sin(πFUYσ (u)) = sin
(
πσ(1 − u)

)

for 0 < u < 1 and 0 otherwise. Furthermore, from (4.4), or by direct argument, it is easy to see
that


FU
(y) = − log

(
y−y(1 − y)−(1−y)

) − 1.

This fact is also evident from Diaconis and Kemperman [9]. It follows that M1(FUYσ ) has density

eσ

π
sin

(
πσ(1 − y)

)
yσ(1−y)−1(1 − y)−σ(1−y) for 0 < y < 1.

The density for M1(FWYσ ) is obtained in a similar fashion by Proposition 3.1. �

Remark 4.1. Setting

Ac
d= cG1

cG1 + G′
1
,

one can easily obtain the density of the random variable M1(FAc) for each c > 0 by using state-
ment (ii) of Theorem 3.1. Note, also, that one can deduce from the density of M1(FW ) that
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FW
(x) = [x/(1 + x)] log(x). Hence, in this case, an application of Proposition 3.2 shows that


FAc
(y) = y

c(1 − y) + y
log

(
y

c(1 − y)

)
− c log(c)

c − 1
+ log

(
c(1 − y)

)
.

We note that, otherwise, it is not easy to calculate 
Ac , in this case, by direct arguments.

4.3. The finite-dimensional distribution of subordinators of Bertoin et al.

Our final example shows how one can apply the results in Sections 2 and 3 to obtain new results
for subordinators recently studied by Bertoin et al. [2]. In particular, they investigate properties
of the random variables corresponding to the lengths of excursions of Bessel processes straddling
an independent exponential time, which can be expressed as

d(α)
e − g(α)

e ,

where, for any t > 0,

g
(α)
t := sup{s ≤ t,Rs = 0}, d

(α)
t := inf{s ≥ t,Rs = 0} (4.5)

for (Rt , t ≥ 0) a Bessel process starting from 0 with dimension d = 2(1 − α), with 0 < d < 2

or, equivalently, 0 < α < 1. Additionally, e d= G1, an exponentially distributed random variable
with mean 1. See also Fujita and Yor [19] for closely related work.

In order to avoid confusion, we will now denote relevant random variables appearing originally
as �α and Gα in Bertoin et al. [2] as �α and Gα , respectively. From Bertoin et al. [2], let
(�α(t); t > 0) denote a subordinator such that

E
[
e−λ�α(t)

] = (
(λ + 1)α − λα

)t

= exp
(−t (1 − α)E[log(1 + λ/Gα)]),

where, from Bertoin et al. [2], Theorems 1.1 and 1.3, Gα denotes a random variable such that

Gα
d= Z

1/α

1−α

1 + Z
1/α

1−α

and has density on (0,1) given by

fGα
(u) = α sin(πα)

(1 − α)π

uα−1(1 − u)α−1

u2α − 2(1 − u)αuα cos(πα) + (1 − u)2α
.

Hence, it follows that the random variable 1/Gα takes its values on (1,∞) with probability one
and has cdf satisfying

1 − F1/Gα
(x) = FGα

(1/x) = FZ1−α

(
(x − 1)−α

)
.
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As noted by Bertoin et al. [2], (�α(t); t > 0) is a GGC(1 − α,F1/Gα
) subordinator, where the

GGC(1 − α,F1/Gα
) random variable �α

d= �α(1) satisfies

�α
d= d(α)

e − g(α)
e

d= G1−α

βα,1

d= G1−α

U1/α
,

where U denotes a uniform[0,1] random variable and, for clarity, G1−α is a gamma(1 − α,1)

random variable. This means that the density of �α is

α


(1 − α)
x−α−1(1 − e−x) for x > 0.

It is evident, as investigated in Fujita and Yor [18], that

M1−α(F1/Gα
)

d= 1

βα,1

d= U−1/α.

Remark 4.2. Note that when α = 1/2, G1/2
d= β1/2,1/2. It is known that for each fixed t,

�1/2(t)
d= Gt/2

β1/2,(1+t)/2
,

which implies that

Mt/2(F1/G1/2) = Mt/2(F1/β1/2,1/2)
d= 1

β1/2,(1+t)/2
. (4.6)

This result may be found in James and Yor [27]. Related to this fact, Cifarelli and Melilli [7]

have shown that Mt/2(Fβ1/2,1/2)
d= β(t+1)/2,(t+1)/2 for t > 0.

In regards to exponentially tilting GGC(1 − α,F1/Gα
), note that for c > 0,

c/Gα

c/Gα + 1
= c

Gα + c
.

Thus, a GGC(1 −α,Fc/(Gα+c)) subordinator, say (�
†
α,c(t), t ≤ 1/(1 −α)), arises from exponen-

tial tilting. Naturally, the density of �
†
α,c(1)/c is given by

αx−α−1e−cx(1 − e−x)

[(c + 1)α − cα]
(1 − α)
for x > 0.

Equivalently, �
†
α,c(1)

d= G1−αM1−α(Fc/(Gα+c)), where M1−α(Fc/(Gα+c)) has density

αcα

(c + 1)α − cα
u−α−1 for

c

c + 1
< u < 1.
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Now, using the facts discussed above, we will show how to use the results in Section 2 to
explicitly describe the finite-dimensional distribution of the subordinators (�α(t), t > 0) and
(�

†
α,c(t), t > 0) over the range 0 < t ≤ 1/(1 − α). Additionally, the analysis will also yield

expressions for mean functionals based on F1/Gα
. First, note that, using (2.4), one has

sin(πFY1−α/Gα
(x)) =

{
sin

(
π(1 − α)FGα

(1/x)
)
, if x > 1,

sin
(
π(1 − α)

)
, if 0 < x ≤ 1,

(4.7)

where, again using the properties of FZ1−α
, as deduced from James [24], Proposition 2.1(iii),

sin
(
π(1 − α)FGα

(1/x)
) = sin(π(1 − α))

[(x − 1)2α − 2(x − 1)α cos(πα) + 1]1/2
. (4.8)

We now use this to calculate


F1/Gα
(x) = E[log(|x − 1/Gα|)I(x �= 1/Gα)]. (4.9)

Proposition 4.3. For 0 < α < 1, consider 
F1/Gα
(x) as defined in (4.9). Then,


F1/Gα
(x)

(4.10)

=

⎧⎪⎪⎨
⎪⎪⎩

1

2(1 − α)

[
log

(
x2

[(x − 1)2α − 2(x − 1)α cos(πα) + 1]
)]

, if x > 1,

1

1 − α
log

(
x/[1 − (1 − x)α]), if 0 < x ≤ 1.

Proof. Using simple beta–gamma algebra, we have

�α
d= G1−α

βα,1

d= G1
β1−α,α

U1/α
.

Hence, applying Theorem 2.1, with θ = 1 and σ = 1 − α, it follows that �α is also
GGC(1,FY1−α/Gα

) and

Bα := β1−α,α

βα,1

d= β1−α,α

U1/α

d= M1(FY1−α/Gα
). (4.11)

By standard calculations, the density of Bα = β1−α,α/βα,1 is given by

fBα (x) = sin(π(1 − α))

π
x−α−1[1 − (1 − x)αI(x ≤ 1)].

However, we see from (4.11) that Bα
d= M1(FY1−α/Gα

). Hence, Theorem 2.2 applies and the
density of Bα can be written as

fBα (x) = x−α

π
sin(πFY1−α/Gα

(x))e−(1−α)
F1/Gα
(x)

.
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Now, equating the two forms of the density of Bα and using (4.7) and (4.8), one then obtains the
expression for 
F1/Gα

. �

Now, for z > 0, define the function

Sα,σ (z) = sin(πσFZ1−α
(z−α))[z2α − 2zα cos(πα) + 1]σ/(2(1−α))

and define,

Dα,σ (x) =
{

sin(πσ)[1 − (1 − x)α]σ/(1−α), if x ≤ 1,

Sα,σ (x − 1), if x > 1.

Hereafter, (C1, . . . ,Ck) will denote an arbitrary disjoint partition of the interval (0,1/(1 −α)]
with lengths |Ci |, and σi = (1 − α)|Ci | for i = 1, . . . , k.

Theorem 4.2. Consider the GGC(1 − α,F1/Gα
) subordinator (�α(t), t ≤ 1/(1 − α)) and, for

each fixed c > 0, the GGC(1−α,Fc/(Gα+c) subordinator (�
†
α,c(t), t ≤ 1/(1−α)). The following

results then hold:

(i) The finite-dimensional distribution of (�α(C1), . . . ,�α(Ck)) is such that each �α(Ci) is
independent and has distribution

�α(Ci)
d= G1M1(FYσi

/Gα
),

where M1(FYσi
/Gα

)
d= βσi,1−σi

Mσi
(F1/Gα

). Furthermore, for any fixed 0 < σ ≤ 1, the
density of M1(FYσ /Gα

) is given by

1

π
x−(σα/(1−α)+1)Dα,σ (x) for x > 0.

(ii) For the GGC(1 − α,Fc/(Gα+c)) process, �
†
α,c , it follows that each

�†
α,c(Ci)

d= G1M1
(
FYσi

c/(Gα+c)

)
,

where for each 0 < σ ≤ 1, M1(FYσ c/(Gα+c)) has density

[c(1 − y)]σα/(1−α)Dα(y/(c(1 − y)))

π[(c + 1)α − cα]σ yσα/(1−α)+1
for 0 < y < 1.

Proof. From Theorem 2.2, we have that the general form of the density of M1(FYσ /Gα
) is given

by

xσ−1

π
sin(πFYσ /Gα

(x))e−σ
F1/Gα
(x)

.

The proof is completed by applying Proposition 4.3 and (4.7) and (4.8). �
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Remark 4.3. The process �α,c(t)/c is well defined for c ≥ 0 and 0 ≤ α < 1, and presents itself
as an interesting class worthy of further investigation. Letting c → 0, it is evident that �

†
α,c(1)/c

converges to �α(1). As shown by Bertoin et al. [2], Section 3.6.3, �0,c(1)/c, for c > 0, has
a similar interpretation as �α(1), but where the Bessel process (Rt , t > 0) is now replaced
by a diffusion process whose inverse local time at 0 is distributed as a gamma subordinator
(γl/c; l > 0). Furthermore, albeit not explicitly addressed in Bertoin et al. [2], the random vari-

able �α,c(1)/c
d= d

(α,c)
e −g

(α,c)
e has a similar interpretation where (Rt , t > 0) is now replaced by

a process (R
(α,c)
t , t > 0) whose inverse local time is distributed as a generalized gamma subor-

dinator, that is, a subordinator whose Lévy density is specified by Cy−α−1e−cy for y > 0. This
interpretation may be deduced from Donati-Martin and Yor ([10], see page 880 (1.c)), where
R(α,c) equates with a downwards Bessel process with drift c.

Bertoin et al. [2] also show that a GGC (1 − α,FGα
) random variable satisfies

G1−αM1−α(FGα
) = G1−αU.

Hence, the Laplace transform of the GGC (1 − α,FGα
) subordinator, say (Z †

α,1(t), t > 0), is
given by

(
1

αλ
[(λ + 1)α − 1]

)t

.

Additionally, using the fact that

1

Gα

d= 1

Z
1/α

1−α

+ 1
d= Z

1/α

1−α + 1 (4.12)

leads to

M1−α(F
Z

1/α
1−α

)
d= M1−α(F1/Gα

) − 1
d= G1

Gα

,

which leads to a description of a GGC(1 − α,F
Z

1/α
1−α

) subordinator. The above points may also

be found in the survey paper of James, Roynette and Yor [26].

Theorem 4.3. Consider the GGC(1 − α,F
Z

1/α
1−α

) subordinator (Zα(t), t ≤ 1/(1 − α)) and the

GGC(1 − α,FGα
) subordinator (Z †

α,1(t), t ≤ 1/(1 − α)). The following results then hold:

(i) The finite-dimensional distribution of (Zα(C1), . . . , Zα(Ck)) is such that each Zα(Ci) is
independent and is equivalent in distribution to

Zα(Ci)
d= G1M1(FYσi

Z
1/α
1−α

).
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Furthermore, for any fixed 0 < σ ≤ 1, the density of M1(FYσ Z
1/α
1−α

)
d= βσ,1−σ Mσ (F

Z
1/α
1−α

) is

given by, for z > 0,

zσ−1

π(1 + z)σ/(1−α)
Sα,σ (z).

(ii) Similarly, each Z †
α(Ci)

d= G1M1(FYσi
Gα

) and, for each fixed 0 < σ ≤ 1, M1(FYσ Gα
) has

density

ασ/(1−α)

π
yσ−1(1 − y)σα/(1−α)Sα,σ

(
y

1 − y

)
.

Proof. Apply Theorem 2.2 and Theorem 3.1, where, from (4.12),


F
Z

1/α
1−α

(z) = 
F1/Gα
(z + 1). �

Remark 4.4. Note that as α → 1,

Mθ(FGα
)

d→ Mθ(FU) and Mθ(FZ
1/α
1−α

)
d→ Mθ(FW).

Hence, they have the same limiting behavior, described in Section 4.2, as the random variables
in Section 4.1.
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